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Controlled Shock Loading for Microstructural Correlation of Dynamic
Damage Behavior

D. Dennis-Koller

Los Alamos National Laboratory

Materials performance is recognized as being central to many emergent technologies.
Future technologies will place increasing demands on materials performance with respect
to extremes in stress, strain, temperature, and pressure. In this study, the dynamic ductile
damage evolution of OFHC Cu is explored as a test bed to understand the role of spatial
effects due to loading profile and defect density. Well characterized OFHC Cu samples
of 30 pm, 60 pm, 100 pm, and 200 pm grain sizes were subjected to plate impact
uniaxial strain loading at 1.5 GPa. This spall geometry produced early stage (insipient)
damage in the Cu samples that could be correlated to microstructural features in
metallographic analysis. The recovered damaged microstructure was examined using
traditional 2D metallographic techniques (optical and electron microscopy) as well as 3D
x-ray microtomography. Calculated spall strength from the free surface velocimetry
(VISAR) showed no change with respect to changes in grain size, however, the
magnitude of the peak after the first pull-back as well as rate of re-acceleration are
dependent on grain size and can be correlated to damage observed in the recovered
samples. These results reveal a critical length scale for the transition from a nucleation
dominated regime to a growth dominated regime for the damage evolution process. The
results show that for samples with small (30 pm) and large (200 um) grain sizes the
growth of voids is dominated by coalescence, whereas for medium (60 um and 100 pum)
grain sizes the growth is restricted to a much slower process of individual void growth.
Electron backscatter diffraction reveals that voids preferentially nucleate at grain
boundaries with high misorientation angles while special boundaries (low angle > 1 and
high angle }'3) proved to be resistant to void nucleation. Based on these findings,
mechanisms for the void nucleation/growth and coalescence are proposed.
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Wave interactions in the material place the material in a
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- HE loading has triangular wave shape
(Taylor wave)

« Duration of release in plate impact
experiment differs from that of a real Taylor
wave; much shorter in the gun
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1. Can we partition deterministic processes (controllable) Vs.
stochastic (random) processes?

2. Can we develop a multi-scale understanding of these
processes?

3. Can we control these behaviors through processing?
4. Can we capture the essential physics in our models?
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To 'do this, wé want to understand the connections
between loading environment and the characteristics of
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-These data frequently show that
material response in dependent on
strain rate

.Good understanding up to 10%/s

-Would like to extend that
understanding to 10°-107/s

-These data are extrapolated to high
strain rates to predict dynamic failures
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— OFHC Cu

- Experiment shows that plate impact experiments can be used to explore a range of peak

20

—— 8 GPa plate impact
—— 36 GPa HE PWL

Gl \/—\/\

spall scab

thickness

0.378 mm
1.0 ~

o 3 ~ < < ® - - = - -
0.5 ~
0.0 = T T T
0 5e-7 1e-6 1e-6
time (s)

pressure states while maintaining the same strain rate on the release.

- When the 9501 booster was added the duration of the tensile pulse was shortened and the
material spalled just as was seen in the plate impact experiment using a triangle wave with

similar strain rate on release.
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Comparison: Cu driven by P-022 Plane Wave Lens
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Proceedings, 2005.

Hypothesis: kinetic and spatial parameters have an
s Los Alamos important role in dynamic damage evolution
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Fig. 2 Microstructures tested: {a) 450 °C — 30 min {30 um), {b) 600°C -1 hr {60 pum), {c) 850 °C ~1 hr (100 um),
{d) 900°C — 35 min {200 um).
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Both EBSD (2D) and tomography (3D) show
larger voids. Arrows in OIM maps (and plot)
show coalescence of small voids.
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Both EBSD (2D) and tomography (3D) show
smaller and isolated voids as compared with
the 30 um case.
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100 pm
———g

EBSD (2D) isolated voids (as 60 um) but some
started to grow. That is reflected on the plot
showing the void distribution (arrow).
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Both EBSD (2D) and tomography (3D) show
the largest voids, also reflected on the
distribution plot (arrow).
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individual void growth to void coalescence.
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Regions of
enhanced
misorientation may
lead to damage
coalescence

Total Partition
Min  Max Fraction Fraction
U6 0971 0971
1.7 0026 0.026
4 0.000 0.000
3 0.000 0.000
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« Coalescing voids show
highly localized regions of
misorientation

« Individually growing voids
show overlapping regions
of misorientation which
may indicate the pathway
for coalescence to begin.

Slide 27

Operated by Los Alamos National Security, LLC for NNSA



!

» Los Alamos

NATIONAL LABORATORY UNCLASSIFIED Slide 28

EST.1943

Operated by Los Alamos National Security, LLC for NNSA Fd'b
=72




» Los Alamos
NATIONAL LABORATORY
EST.1943

i

[T —

High angle boundary (~50°)

UNCLASSIFIED

EEE s T

« Low angle boundaries 21
(<5°) show no void formation

« High angle boundaries 2.3
(60°) show no void formation

« All voids form at boundaries
between 15° and 55°
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excursion.

=  The energy required to collapse
the porous structure dynamically
is translated into kinetic energy of
the individual molecules. P

s  Shock compression of solid
metals does not reach high
enough temperatures.

Solid Hugoniot

Solid rayleigh line

porous Hugoniot

s  Shock compression of porous
materials (density below
theoretical) results in much higher

temperatures.
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Shock loading and microstructure are intimately connected to yield a
dynamic material response.

A critical length scale exists where mechanisms of ductile damage
formation transition from individual void growth to coalescence
dominated.

An understanding of mechanisms dominating damage regimes is
necessary to quantitatively interpret velocimetry results.

Voids are preferentially nucleated at grain boundaries between 15°-55°

Plastic work observed in the microstructure indicates that the stress
evolution plays a critical role in the resultant damage.

New morphology studies on CeO, powder are showing significant
influence on compaction.

Compaction processes do not appear to be overdriven at high
pressures.
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