

LA-UR-13-22252

Approved for public release; distribution is unlimited.

Title: Evolutionary Enhancements to UO2

Author(s): Leckie, Rafael M.
Luther, Erik Paul

Intended for: Report

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Report on Evolutionary Enhancements to UO₂ Pellets

LA-UR 13-

*Prepared for
U.S. Department of
Energy
FC R&D Program*

***Rafael M. Leckie
Erik P. Luther
Los Alamos National
Laboratory***

SUMMARY

Sintered uranium oxide fuel pellets are the primary fuel used in civilian nuclear reactors. Due to extensive experience and established infrastructure, these ceramic fuels are likely to remain important for nuclear energy well into the future.

Fuel pellets are produced mainly through cold-pressing ceramic powder and high temperature sintering. The processing technique presented here is designed to fit into the current fuel pellet production infrastructure with minimal changes to fuel manufacturers and reactor operators. This study makes changes in the UO₂ powder before the pellets are pressed, possibly requiring only minor changes in the manufacturing process.

Oxide additives to UO₂ have been studied since the early days of nuclear energy. Additives can effect the performance of UO₂ in several ways, altering the grain size, sintering behavior, and mechanical behavior such as creep, toughness, and hardness. The first part of this study is to identify techniques to controllably alter pellet microstructure. The next step will be to test the mechanical properties of the doped UO₂. The ultimate goal in developing this processing technique is to produce well-defined microstructural features that can be tested in controlled studies to better understand their role in fuel pellet performance.

There are two unique aspects to this study. While the majority of research into additives has focused on producing large grain sizes, this study is also interested in restricting grain growth. In addition, most studies have introduced additives by the traditional method of blending oxide powders with UO₂. This study employs a metal precursor technique to introduce additives to the matrix. The additives being investigated thus far are aluminum oxide, titanium oxide, vanadium oxide, and yttrium oxide.

This report provides an update on progress thus far in enhancing the properties of UO₂ with oxide additives.

CONTENTS

1. Introduction	5
2. Grain Size Control - Additives to UO₂	6
2.1 Background	6
2.2 Experimental.....	6
2.3 Results & Discussion	7
3. Future Work.....	13
4. Conclusions	14
5. References	14

ACRONYMS

ADS	Aluminum Di-Stearate
EBS	Ethylene Bis Stearamide
EBSD	Electron Back Scattered Diffraction
PCMI	Pellet Cladding Mechanical Interaction
SEM	Scanning Electron Microscopy
BEI	Backscattered Electron Image
SEI	Secondary Electron Image
SPEX	Manufacturer of SPEX brand high-energy mill

1. Introduction

Uranium oxide fuel pellets power most civilian nuclear reactors today. With over 400 civilian nuclear reactors worldwide, the combined operational experience and infrastructure of this user base implies that ceramic nuclear fuels will remain important well into the future. Despite the conservative approach taken by the nuclear industry, improvements in reactor operation are still being sought. The properties of the ceramic fuel itself have received substantial attention over the years. This report updates the progress of studies to enhance the behavior of UO₂ by altering its properties and microstructure with oxide additives.

This study envisions changes that can be applied with current equipment and processes. Fuel pellets are typically made by cold-pressing dry ceramic powder. Before being pressed into pellets, the powder may be blended with additives or binders. By introducing the additives at the mixing and blending step, this approach modifies the fuel with little change to the rest of the process.

Fuel rod performance is of great interest to operators of nuclear reactors. Fuel rod failures can lead to expensive maintenance and down time for the reactor. A common cause of these failures is pellet cladding mechanical interaction (PCMI), which can be caused by pellet fracture or swelling. Fuel pellets increase their dimensions under reactor conditions due to the formation of insoluble fission gasses that migrate to grain boundaries. Thermal expansion of the pellet can also cause contact between the pellet and the cladding. Additives have been studied to modify microstructure to improve fission gas retention as well as to alter the mechanical properties of the UO₂ to lessen PCMI. Therefore, techniques to tailor these characteristics for improving the performance of UO₂ fuel pellets could be highly valuable to the nuclear industry.

The standard average grain size in light water reactor fuel is around 10-12 μm . Grain size effects have been noted for both creep and release of fission gas, making control of grain size important to the properties and performance of fuel.[1,2,3,4,5] Solid solution chemistry and grain boundary phases can raise creep rates in ceramics through enhanced material transport or grain boundary sliding. Higher creep rates are desired for reducing PCMI. This study aims to use oxide additives to control grain size in UO₂ and to alter the mechanical properties of UO₂ towards the goal of reducing PCMI. For more even dispersion, a metal precursor technique is being used to distribute the additives within the UO₂ powder.

2. Grain Size Control – Additives to UO₂

2.1 Background

Over the past 60 years much effort has gone into using oxide additives to modify the properties and/or microstructure of UO₂. Despite this long history a few areas have not been well explored. Details are scarce in the open literature on creating fine-grained microstructures and on techniques to distribute the additives.

This work seeks to address the above areas by examining the use of additives to restrict grain size and by exploring an unconventional method of incorporating those additives into UO₂ powder. In this study metal precursors were used as additive sources as opposed to the more traditional route of oxide powder blends. Once the effects of the additives on microstructure have been characterized, tests are planned to determine the mechanical properties of the doped materials, such as hardness.

Four additives were chosen based on their anticipated effect or utility, Al₂O₃, TiO₂, Y₂O₃, and V₂O₅. Al₂O₃ was chosen as a known grain growth inhibitor, TiO₂ was chosen because it is known to enhance grain growth in UO₂. Some evidence exists that Y₂O₃ may also inhibit grain growth [6], while the studies with V₂O₅ have shown varying results.[6,7,8,9]

The solid solubility of the additive in UO₂ is a key aspect to its effect upon grain growth.[9] All additives in solid solution are believed to increase material transport rates.[7] Insoluble second phases are expected to slow material transport and/or pin grain boundaries.[10] Therefore, the prediction is that additives at concentrations below their solid solution limit will result in larger grains than pure UO₂, whereas once the solution limit has been exceeded grain growth might be impeded by second phases.

Initial test samples provided encouraging results indicating that additives were indeed affecting the grain size in the UO₂ in expected ways. The remaining compositions proposed for this study have been prepared, and samples sintered and characterized. This update presents data from those results.

2.2 Experimental

As-received depleted UO₂ from Areva was milled for 15 minutes in a high energy SPEX mill and sieved through 60 and 200 mesh sieves. Powder retained on the 200 mesh sieve was recycled for use as part of additional batches of powder. This milled and sieved powder was collected and stored for mixing with metal precursors.

The precursors for the liquid mixing method were Ti-diisopropoxide (liquid), Y-nitrate (solid), and Vanadyl-acetyl acetonate (solid). The appropriate amounts of each precursor dissolved in ethanol to allow accurate measurements of the precursor solution. The solutions were assayed by pyrolyzing measured amounts of solution and determining the yield of oxide powder per gram of solution.

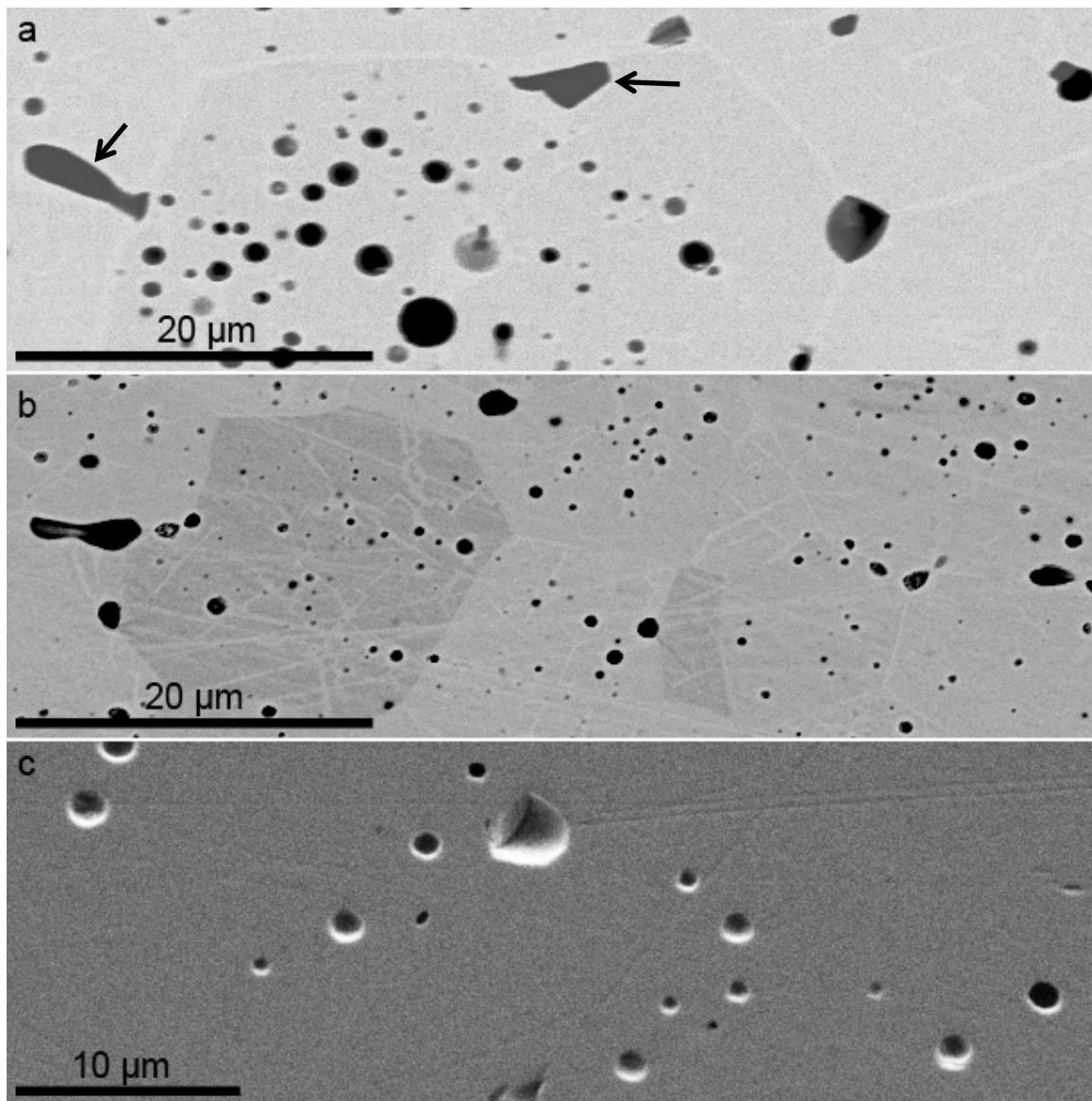
For the mixing step, eight grams of the conditioned UO₂ powder were measured into a weighing boat and spread out into a thin layer. Appropriate amounts of solution were poured onto the powder. Some dry ethanol was then used to rinse remaining solution from the transfer bottle into the powder in the weighing boat. Using a metal spatula, the powder and solution were mixed by hand.

Aluminum dis-stearate (ADS) was chosen to determine whether a solid precursor technique might also be effective at distributing a precursor. For the Al₂O₃ doped samples eight gram batches of UO₂ were placed in a plastic mixing jar. The appropriate amount of assayed ADS was measured into the mixing jar. For comparison with the ADS containing samples, ethylene bis stearamide (EBS) binder was added to powders containing no inorganic components to reach

consistent total amounts of solid additive. The amounts were 0.25, 0.5 and 1.0 wt% total solid additive. These batches of powder were then mixed for 5 minutes in the mill with a plastic ball. The jar and ball were cleaned in between batches.

Pellets were pressed at 100 MPa with a 5.7 mm pellet punch and die set using a uniaxial hydraulic hand press. A thin layer of oil was added to lubricate the die. All samples were heated to 450°C at 2°C/min and held for 1 hour to burnout organic matter under an environment of ultra high purity Ar containing ~100 ppm O₂. Specimens were then heated to 1600°C for 4 hours at 8°C/min. The furnace environment at 1600°C was ultra high purity Ar with ~10 ppm O₂.

Table I lists the composition matrix for this study. The compositions have been chosen in accordance with the solubility limit in order to sample materials at, below, and above the solid solubility limits of the additive in UO₂, with the exception of Y₂O₃, which is expected to be in solid solution at all of these concentrations.[11] All other solubility limits are from Peres et al.[12] which publishes the Ph.D. thesis work of Bourgeois.[9]


Table I. Composition matrix for additive experiments.

Composition (ppm)	Al ₂ O ₃	TiO ₂	V ₂ O ₅	Y ₂ O ₃
50	X			
100	X	X	X	X
500	X	X	X	X
700			X	
1000	X*	X	X	X
2000		X	X	X

*1100 ppm for Al₂O₃. Green shading indicates at or below the solid solution limit in UO₂ for each additive.

2.3 Results & Discussion

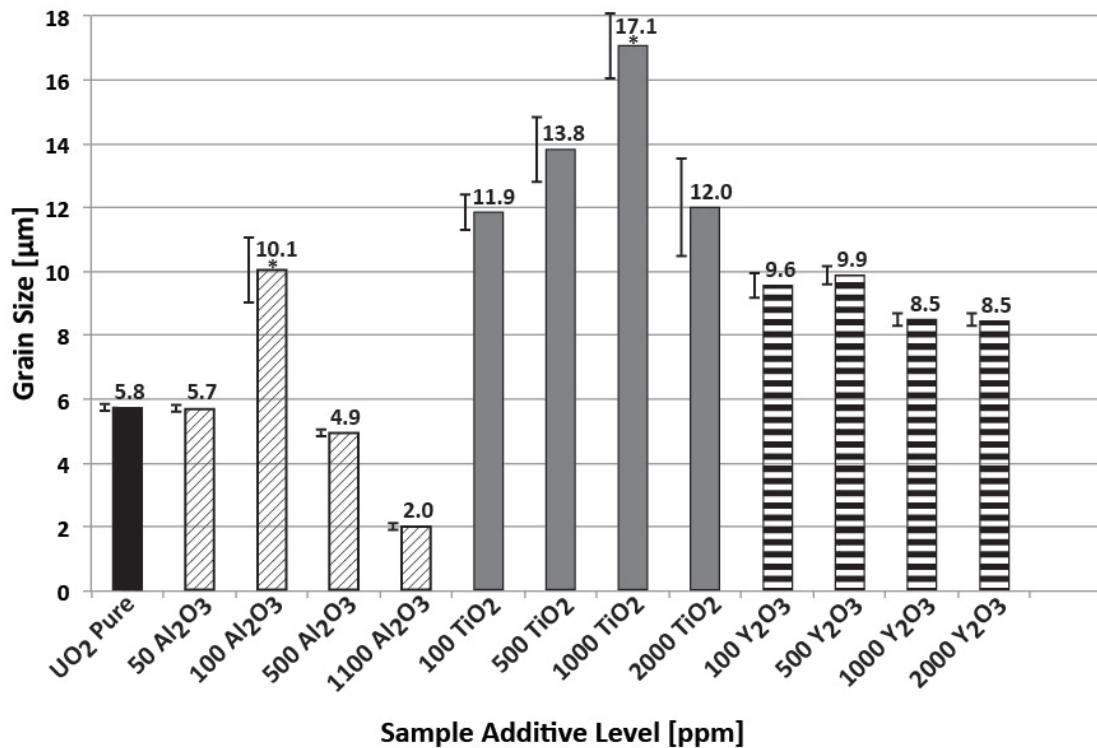
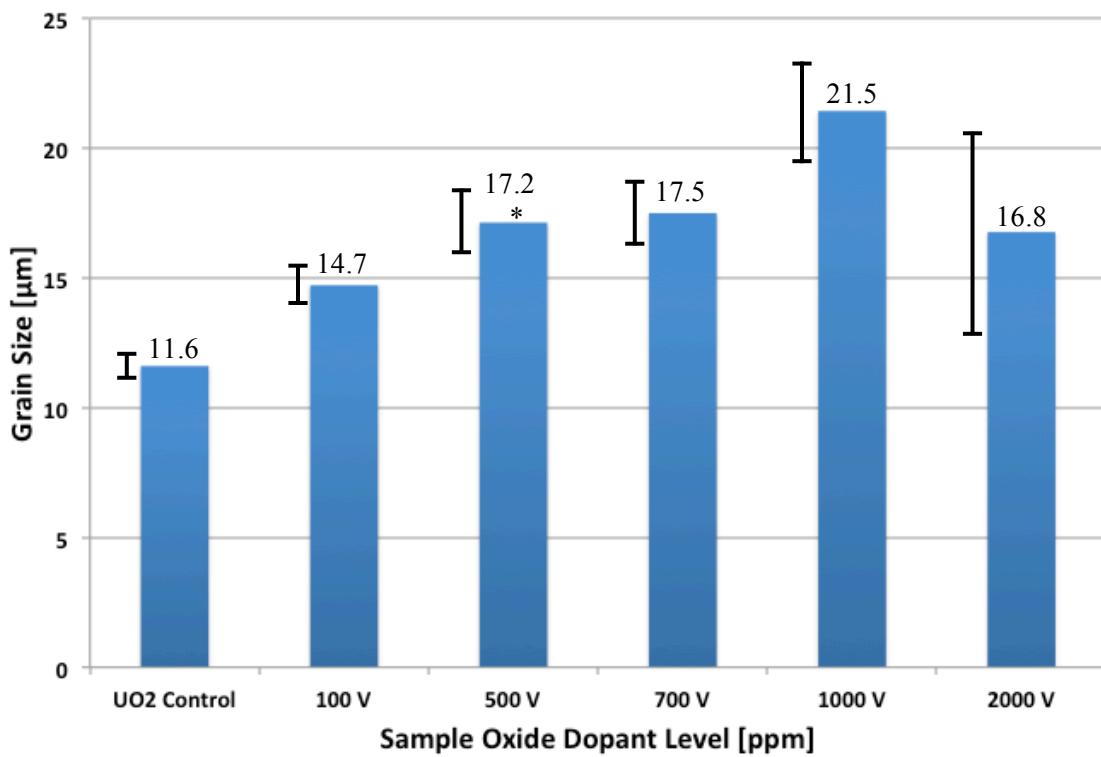

A complete set of samples from the composition matrix has been sintered, and characterized for grain size data. Evidence of precipitates was found by scanning electron microscopy (SEM) in the 1000 ppm compositions of Al₂O₃ and TiO₂ doped UO₂.[13] SEM images have thus far not shown similar precipitates in the Y₂O₃ or V₂O₅ doped materials. Figure 1 shows SEM backscattered electron images (BEI) from the 2000 ppm TiO₂ and the 1000 ppm Y₂O₃ samples, and a secondary electron image (SEI) of the 1000 ppm V₂O₅ samples. Precipitates are highlighted with arrows in the TiO₂ sample (fig. 1a). As expected, no precipitates are observed in the Y₂O₃ doped samples, which are well within their solubility limits (fig. 1b). The image of the V₂O₅ sample also shows no signs of precipitates or second phases (fig. 1c). Given the large mass difference between vanadium and uranium, any vanadium rich phase could reasonably be expected to show up via z-number contrast, despite this being a secondary electron image.

Figure 1. SEM images of sintered doped pellets a) 2000 ppm TiO₂, BEI image. b) 1000 ppm Y₂O₃, BEI image. c) 1000 ppm V₂O₅, SEI image.


Grain size measurements were made using Electron Back Scatter Diffraction (EBSD) providing quantitative measurements. Figure 2 charts the grain size data for the Al₂O₃, TiO₂, and Y₂O₃ doped pellets versus additive concentration. The importance of the solid solubility of the additive is clearly demonstrated. For both Al₂O₃ and TiO₂ doped UO₂ the grain size increases up to the solid solubility limit and declines when the additive concentration exceeds the limit. For Al₂O₃, the 50 ppm sample's average grain size is similar to the control's, showing little effect at this concentration of Al₂O₃. However, near the solubility limit of 100 ppm, there is a clear increase in grain size. As the amount of Al₂O₃ is increased above 100 ppm, the grains decrease in size, which is pronounced for the 1100 ppm Al₂O₃ sample. The TiO₂ doped pellets show the same trend. Up to the solid solubility limit of 1000 ppm TiO₂ the average grain size increases, falling at 2000 ppm. The Y₂O₃ doped materials show a small increase in grain size independent of concentration. This may be related to the high solubility limit of Y₂O₃ in UO₂ (~48 mole % [11]). Within this concentration range the Y₂O₃ may not alter the UO₂ matrix enough to cause

greater material transport rates. It also does not precipitate out of solution and therefore would not be expected to restrict grain growth.

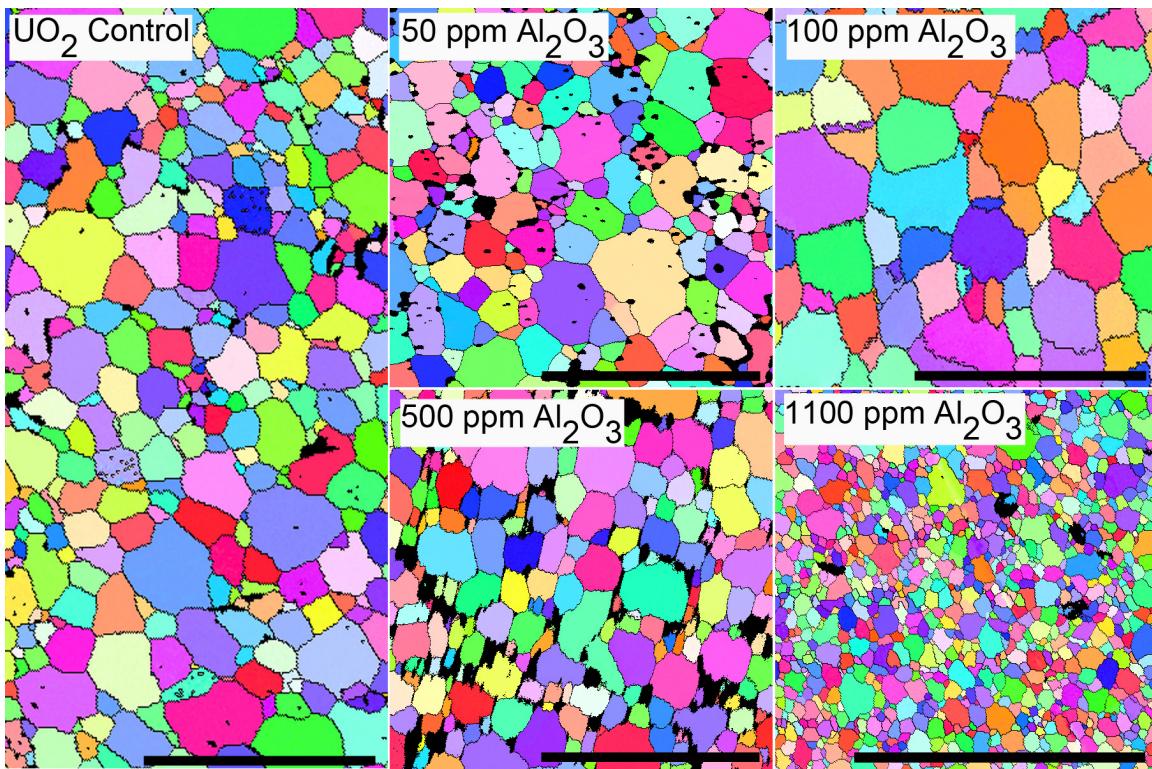
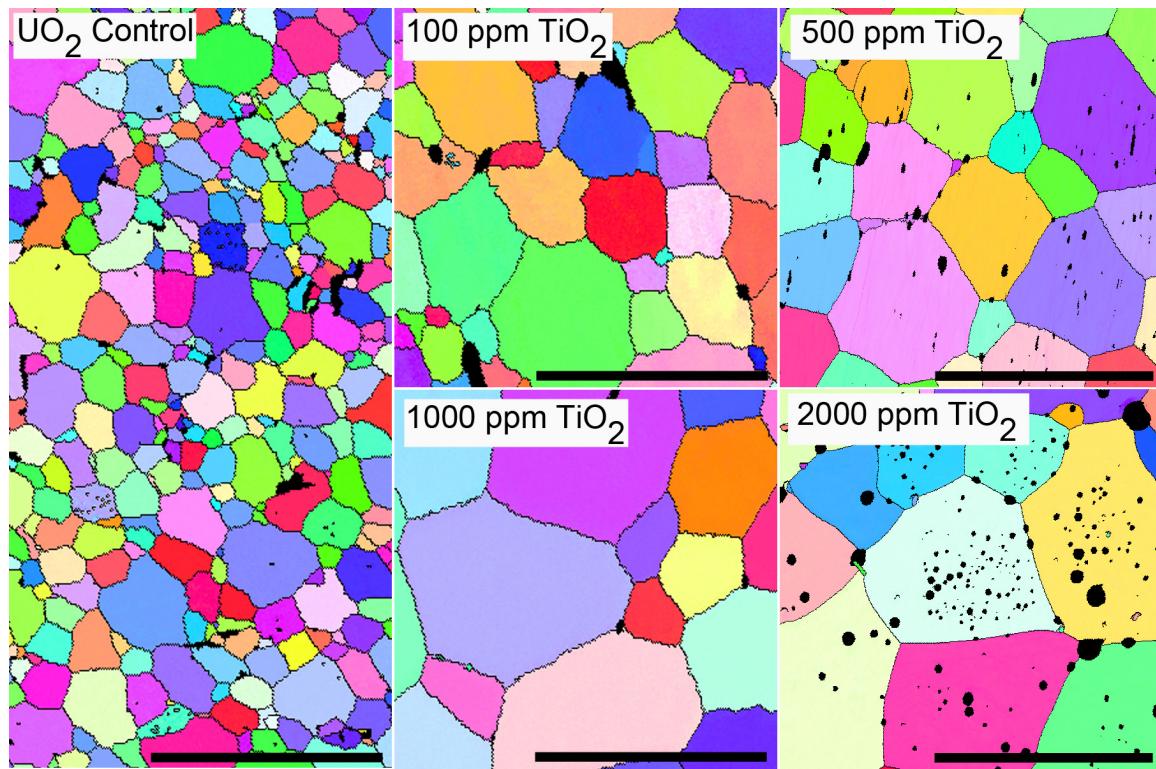

Figure 2. Chart of average grain size vs. additive level for Al₂O₃, TiO₂ and Y₂O₃ doped samples. Average grain size value is given at the top of each column for that sample. Reported values for solid solubility limits of the additive in UO₂ at 1700°C are noted with an asterisk at the top of relevant column.[9]

Figure 3 charts average grain size versus additive concentration for the V₂O₅ doped UO₂ samples. This data follows the same trend as the Al₂O₃ and TiO₂ materials, with increasing grain size until the solubility limit has been exceeded. While this data indicates that the solubility limit at 1600°C is higher than the reported limit at 1700°C (1000 ppm vs. ~500 ppm [9]), the error in the data for the 2000 ppm V₂O₅ sample is too high for certainty. The samples doped with V₂O₅ will be recharacterized to verify the statistics. One anomaly was found in the V₂O₅ sample data, the pure UO₂ control run with these pellets shows a much higher average grain size than the other controls (11.6 μm vs. 5.8 μm). Because the control sample was in the same crucible as V₂O₅ containing pellets, it is speculated that V₂O₅ vapor from the doped samples may have affected the control sample. To test this hypothesis, another set of pellets has been made with control samples sintered either in a separate crucible or a crucible along side a V₂O₅ containing sample. These samples will be characterized for grain size in the near future.


Figure 3. Chart of average grain size vs. additive level for V₂O₅ doped samples. Average grain size value is given at the top of each column for that sample. Approximately 500 ppm V₂O₅ is the reported solid solubility limit at 1700°C, indicated with asterisk.[9]

Images from the EBSD scans are shown in figures 4, 5, 6 and 7. Figure 4 shows the grain size images of the control sample and the Al₂O₃ doped materials. The Al₂O₃ images most clearly show the effect of solid solubility on grain growth or restriction. The 50 ppm image is similar to the control, showing little effect at this concentration of Al₂O₃. Near the solubility limit of 100 ppm, grain size is increased. The grain size decreases with increasing additive concentration until at 1100 ppm of Al₂O₃ it is much smaller than in the control.

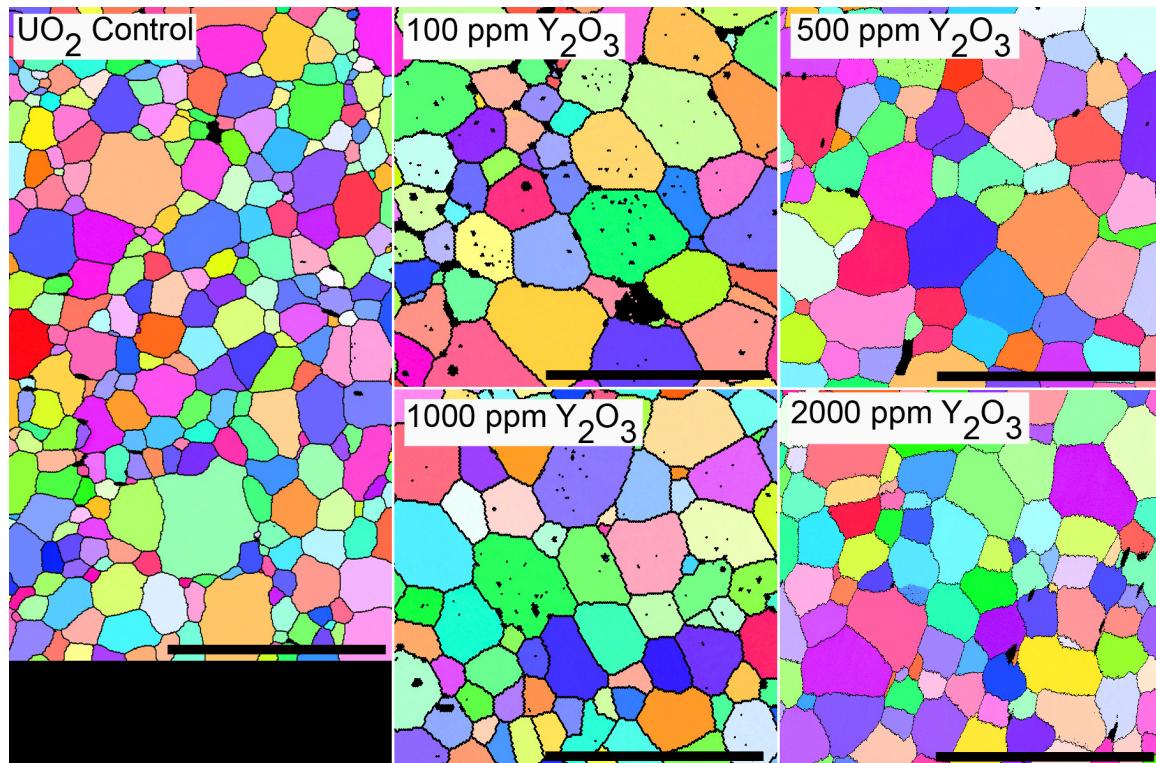


Figure 4. EBSD images for the Al₂O₃ doped UO₂ pellets. Solid solubility is exceeded after 100 ppm Al₂O₃.[9] Scale bars represent 50 μ m.

Figure 5 shows the EBSD images from the TiO₂ doped UO₂ pellets. For the TiO₂ doped materials, the grain size increased until the solid solution limit was reached at 1000 ppm TiO₂. The decrease in average grain size is not visibly obvious in the EBSD image shown, but is clearly seen in the statistical data presented in figure 3. Figure 6 shows the EBSD images from the series of samples doped with Y₂O₃. Although average grain size increases with Y₂O₃ additions, there is no clear trend because these additive levels are well below the solid solution limit and therefore there is no grain boundary pinning effect from precipitates.

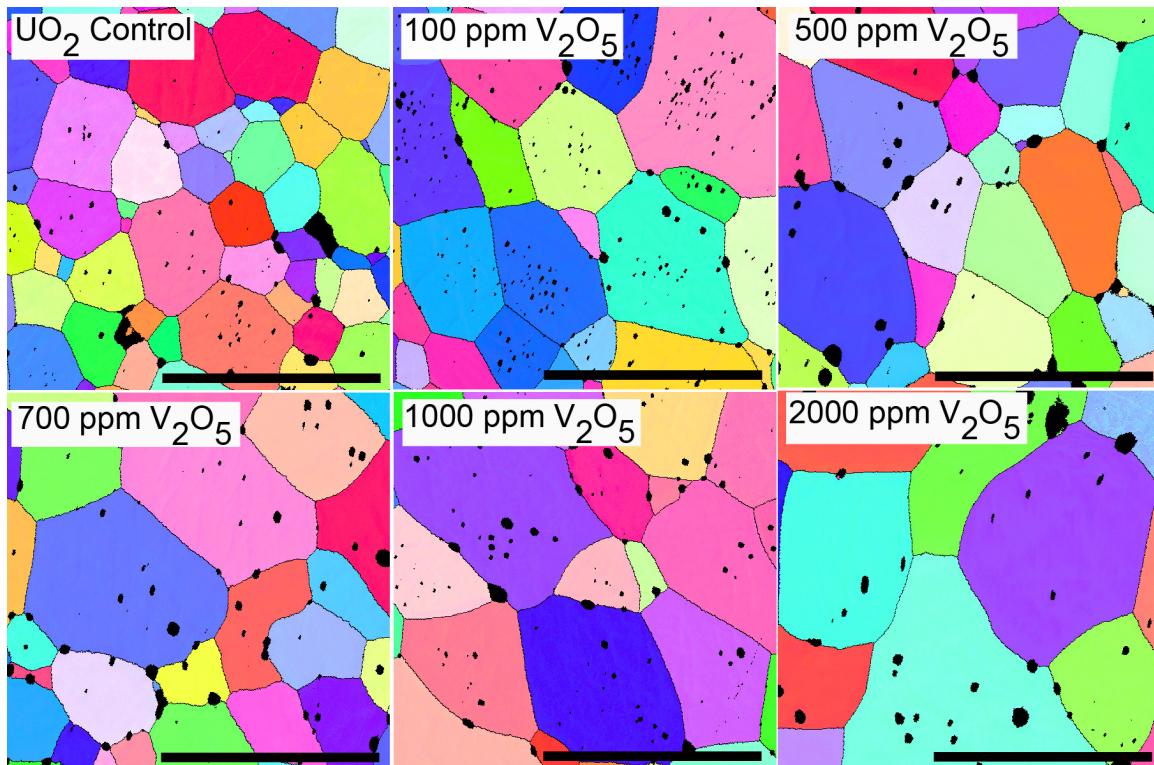


Figure 5. EBSD images for the TiO_2 doped UO_2 pellets. Solid solubility limit is 1000 ppm.[9] Scale bars represent 50 μm .

Figure 6. EBSD images for the Y_2O_3 doped UO_2 pellets. Scale bars represent 50 μm .

Figure 7 reveals the large amount of grain growth displayed by V₂O₅ additions. The 1000 ppm V₂O₅ doped sample has the largest average grain size of this study. The reduction in average grain size from 1000 ppm to 2000 ppm V₂O₅ is not clear in this image due to the small number of grains being shown, however this is highlighted in the chart of the grain size statistics shown in Figure 3. This data will be verified with further characterization of the V₂O₅ doped samples. Nevertheless, the trend is the same for Al₂O₃, TiO₂, and V₂O₅ doped materials, grain growth up to the point of solid solution, with grain size decreasing with additions above the solid solution limit.

Figure 7. EBSD images for the V₂O₅ doped UO₂ pellets. Control sample is from the same sintering run as the V₂O₅ doped pellets. The literature reports the solid solubility limit for V₂O₅ in UO₂ at 1700°C as ~500 ppm.[9] Scale bars represent 50 μ m.

3. Future Work

With this success in manipulating grain size and distributing additives into UO₂, future work will expand the study to explore the mechanical properties of the modified UO₂. Further, additional precursor materials are being prepared to introduce the oxides Cr₂O₃ and SiO₂. These may be added individually, or in concert with the current oxides. Mechanical testing of the current materials is in the early stages. Preliminary hardness testing shows some softening effect in the doped Al₂O₃ samples, but the tests will be redone to improve the quality of the data. Hot hardness testing is also being pursued, with samples already sintered and prepared from the existing doped UO₂ powders. By the end of the fiscal year, data will be collected and analyzed to downselect which additives show promise in modifying the mechanical properties of UO₂ in order to minimize the PCMI effects.

4. Conclusions

Al₂O₃, TiO₂, Y₂O₃, and V₂O₅ oxides have been added to UO₂ and sintered successfully using new liquid and solid mixing techniques. Grain size analysis revealed that the additives influenced grain growth in a manner consistent with reported solubility limits for the additives. In the case of Y₂O₃ the solubility limit is not reached; therefore grain growth is modestly enhanced regardless of concentration. This technique demonstrates the ability to both increase and restrict the grain growth of UO₂ through the use of oxide additives.

5. References

- [1] Turnbull, J. A. (1974). "The effect of grain size on the swelling and gas release properties of UO₂ during irradiation." *Journal of Nuclear Materials* **50**(1): 62-68.
- [2] Spino, J., H. Santa Cruz, et al. (2012). "Bulk-nanocrystalline oxide nuclear fuels – An innovative material option for increasing fission gas retention, plasticity and radiation-tolerance." *Journal of Nuclear Materials* **422**(1-3): 27-44.
- [3] Nonon, C., J.-C. Menard, et al. (2004). "PCI Behaviour of Chromium Oxide-Doped Fuel." *Pellet-Clad Interaction in Water Reactor Fuels*. Aix-en-Provence, France,, NEA. **OECDNEA No. 6004**: 305-319.
- [4] Assmann, H., W. Dörr, et al. (1981). "Doping UO₂ with Niobia - Beneficial or Not?" *Journal of Nuclear Materials* **98**(1-2): 216-220.
- [5] Sawbridge, P. T., G. L. Reynolds, et al. (1981). "The creep of UO₂ fuel doped with Nb₂O₅." *Journal of Nuclear Materials* **97**(3): 300-308.
- [6] Dooies, B. J. (2008). *Enhancement of Uranium Dioxide Thermal and Mechanical Properties by Oxide Dopants*. Masters, University of Florida.
- [7] Amato, I., M. Ravizza, et al. (1967). "The effect of vanadium oxide additions on sintering and grain growth of uranium dioxide." *Journal of Nuclear Materials* **23**(1): 103-106.
- [8] Aybers, M. T., A. A. Aksit, et al. (2004). "Grain growth in corundum oxides-doped uranium dioxide and effects of grain growth to the mechanical properties of uranium dioxide such as elasticity determined by ultrasonic methods." *Euro Ceramics Viii, Pts 1-3*. H. Mandal and L. Ovecoglu. Zurich-Uetikon, Trans Tech Publications Ltd. **264-268**: 985-988.
- [9] Bourgeois, L. (1992). *Effect of additives on enhanced sintering and grain growth in uranium dioxide*. Doctorate, Institut National Polytechnique, Grenoble.
- [10] Kingery, W. D. (1976). "Introduction to Ceramics, 2nd Ed." New York, Wiley-Interscience.
- [11] Bartram, S. F., E. F. Juenke, et al. (1964). "Phase Relations in the System UO₂-UO₃-Y₂O₃." *Journal of the American Ceramic Society* **47**(4): 171-175.
- [12] Peres, V., L. Bourgeois, et al. (1993). "Grain-Growth and Ostwald Ripening in Chromia-Doped Uranium-Dioxide." *Journal De Physique IV* **3**(C7): 1477-1480.
- [13] Leckie, R. M., Luther, E. P. (2012) "Report on Controlling the Microstructure of UO₂ Pellets." Los Alamos National Lab, Los Alamos, LA-UR-12-24919.