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Techniques for applylng ab-initio calculations to the analysis of atomic
sp@ctﬁa are investigated, along with the relationship between the semi-
empirical and ab-initio forms of Slater-Condoun theory. Slater-Condon
theory 1is reviewed with a focus on the essentilal features that lead to
the effective Hamiltonians associated with the semi-enmpirical form of
the theory. Ab=-initio spectroscopic parameters are calculated from
wavefunctions obtained via self-consistent field methods, while multdi-
configuration Hamiltonian matrices are constructed and dlagonalized with
computer codes written by Robert Cowan of Los Alamos Scientific Labora-
tory. Group theoretical analysis demonstrates that wavefunciions more
general than Slater determinants (i.e. wavefunctions with radial corre-
lations between electrons) lead to essentially the same parameterization
of effective Hamiltonlans. In the spirit of this analysis, a strategy
is developed for adjusting ab-initiec values of the spectroscopic parame=

ters, reproducing parameters obtained by fitting the corresponding

s



effective Hamiltonian. Secondary parameters are used to "screen' the
calculated (primary) spectroscopic parameters, their values determined
by least squares. Extrapolations of the secondary parameters determined
from analyzed spectra are attempted to correct calculations of atoms and
ions without experimental levels. The adjustment strategy and extrapo-

7+

lations are tested on the K I sequence from KO+ through Fe' ', fitting to

experimental levels for Vé+, and Cr5+; unobserved levels and spectra are
predicted for several members of the sequence. A related problem is
also discussed: Eﬁergy levels of the Uranium hexahalide complexes,
(UX6)2$ for X =F, Cl, Br, and I, are fit to an effective Hamiltonian

(the fz configuration in Oh symmetry) with corrections proposed by Brian

Judd.
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I- Introduction

Since the birth of quantum mechanics, the theory of electronic
structure for atoms and lorns has progressed significantly in terms of
the number of phenomena explained and the sophistication of calcula-
tions. The basic theory relevant to the classification of atomic states
and spectral transitions was outlined by Slaterl in 1929, and expanded
in the classic text by Condon and Shortleyz a few years later. The evo-
lution of this theory, referred to here as Slater-Condon theory? has
been influenced by the parallel development of mathematical and computa-

tional tools.

Spectral Analysis

The analysis of optical spectra from atoms and ions amounts to the
application of the Rydberg principle in a manner appropriate to the
observed spectra. The wavelength of every spectral line is inversely
proportional to the energy difference of the pair of levels involved,
but even in theory, transitions between all pairs of levels are not
observable. A typical emission spectrum obtained from an exclted sample
of atoms and a grating spectrometer motivates the need for heuristics in
the analysis. Line spectra are usually contaminated with emissions from
impurity atoms, and the instrument is limited to finite window of
observable wavelengths. Determining the relative scheme of energy lev-
els is complicated by superposition of impurity spectra and the absence
of many of connecting transitions. Analysis of a line spectrum with no
predictable patterns would be difficult and unreliable; the collection

and interpretation of these patterns is Slater~Condon theory.



1.1 Slater—Condon Theory

The Slater-Condon theory of atomic structure predicts the general
distribution of the low lylng energy levels of an atom or ion. Ortho~
normal atomic wavefunctions constructed from Slater determinants,
antisymmmetrized products of N l-electron wavefunctions possessing
definite rotational symmetry, are used to approximate the eigenstates of
the atom or ion. Upon restriction of the atomic Hamiltonian operator to
a subspace spanned by a finite set of these wavefunctions, the spectral
decomposition of the resulting matrix is a variational estimate of a
portion of the energy spectrum of the atom. The basis vectors can be
transformed to the linear combinations of Slater determinants with
definite N-electron rotational symmetry. Then the Hamiltonian matrix

becomes block diagonal and the rotational degeneracy can be eliminated.

The classic version of the theory assumes the l-electron wavefunc-
tions are products of spin, angular, and radial functions—the eigen-
functions of a non-relativistic, rotationally invariant l-electron Ham~-
iltonian operator. Atomic wavefunctions are grouped according to confi-
gurations, or sets of Slater determinants constructed from a fixed set
of radial wavefunctions. For an optimal choice of the radial wavefunc-
tions, the eigenvalues and eigenvectors of the restricted Hamiltonian
operator are expected to be good approximations to actusl atomic ener-
gies and eigenstates. Specifying a scheme for calculating the radial
wavefunctions, using them to calculate the integrals needed to construct
the Hamiltonian matrix, and using the eigenvalues and eigenvectors of
this matrix to obtain atomic properties is the ab-initio form of

Slater-Condon theory. Assuming an optimal set radial wavefunctions
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exists and parameterizing the dependence of atomic propertles on them is

the semi-empirical form.

Semi-empirical Slater—-Condon Theory

Application of the theory to spectral analysis in its early days
was largely limited to the semi-empirical form. The Hamiltonisn opera-
tor 18 resolved into components with definite l-electron rotational sym=
metry. Because the atomic wavefunctions are constructed from l-electron
central field wavefunctions, the dependence of the Hamiltonlan matrix on
the spin-angle wavefunctions can be separated from the radial wavefunc=-
tions. The Hamiltonian matrix becomes a superposition of matrices with
coefficients that depend on integrals involving the radial wavefunc—
tions. The semi-empirical theory treats these coefficients as free
parameters, creating an effective Hamiltonian description of an N-

electron system.

Analyses of spectra are accomplished by the interplay of two opera-
tions: The trial and error assignments of hypothetical energy levels
according to configuration and symmetry type, and the adjustment of the
free parameters until the best agreement is obtained between the eigen-
values of the Hamiltonian matrix and the experimental levels. The
analysis is complete when a self-consistent agreement 1s reached between
experimental and calculated levels, with parameter values that are

acceptable on physical grounds.

The semi-empirical method of analysis has become highly developed.

Its successes and limitations are presented by Edléﬁ7s Although the

method was prescribed by Condon and Shcrtleyz in 1935, significant
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advances in the amnalysis of complex spectra were made by applyling group
theory to the general problem of finding lineay combinations of deter-
minant wavefunctions with definite N-electron rotation symmetry, and to

the calculation of matrix elements of tensor operators8e

Ab-initio Slater—Condon Theory

Calculation of atomic wavefunctions and energy levels from first
principles requires some method of obtaining the radial wavefunctions.
Then the Hamiltonian matrix 1s simply diagonalized to obtain variational
estimates of the energies and eigenstates. Although Hartree,é Focks5
Slater,6 and others proposed schemes for calculating the radial
wavefunctions and the integrals necessary for constructing the Hamil-
tonian matrix, few of these calculations were performed initially

because of the labor involved.

Ab-initio calculations became feasible on a large scale with the
advent of digital computers; many computer calculations began appearing
in the late 1950°s and early 1960°s. TFor example, a program employing
numerical integration of the self-consistent-field (SCF) equations, and
the results for many atoms were published by Herman and Skillman in
19639e These caleculations required experience and an investment in com=-
puter time that discouraged their use by non-experts. As a resulf, the
use of ab-initio cvalculations as an aild in solving experimental problems

was limited to already published calculations, or collaborations between

experimenters and the authors of computer codes.

With the present generation of computers, numerical integrations of

the non-relativistic SCF calculations have become falrly trivial. A



sophisticated, fast, and convenient series of computer codes has been

109119129 In addition, Cowan has

developed by Robert Cowan of Los Alamos
developed codes that construct and diagonalize the Hamiltonian matrix
employing the radial integrals obtained from the the SCF codes. These
codes can also calculate a theoretical spectrum arising from transitions

between pailrs of ab-initio energy 1evelsl3a

Cowan’s codes and tﬁé current computer technology make it possible
to implement ab-initio Slater-Condon theory with a relatively small
investment of time and expense. The values of the semi-empirical param-
eters calculated from integrals involving the radial wavefunctions, how-
ever, are found to deviate from the parameters obtained by the semi~-
emplrical analysis of the spectra to the extent that caution must be

exercised when using the calculations as a tool for analyzing spectra.

Typically9 the predicted levels and spectra are qualitatively the
same as the experimental observations, but the calculations are of abso-~
lute energies and cannot hope overall to be as precise as the experimen-
tal observations of relative energies, since the albeit small correla-
tion effects are comparable to the differences between the approximate
energy levels. Fven within configurations, however, where observed and
predicted relative energies should be of comparable precision, sys-
tematic differences are apparemtlée This work attempts to develop a
better understanding of these differences and develop a hybrid of the

semi-empirical and ab-initio forms of Slater-Condon theory to make the

best use of avallable calculations in the problem of spectral analysis.



1.2 Applications of Ab-Initio Slater—Condon Theory

Finding strategies for applying ab-initio calculations of atoms and
ions to gpectral analysis can be likened to developing the heuristics of
semi~empirical Slater-Condon theory. Because the calculation of radial
wavefunctions is so difficult without computers, a semi-empirical theory
was needed to parameterize the dependence of atomic properties on them.
With computers available, the ab-initio Slater-Condon theory becomes
readily available to non-experts, By the same token, more sophisticated
(and perhaps hypothetical) approximate atomic theories are possible15
that account for more correlation among electrons. These calculations,
however, are again beyond the reach of non~experts. This suggests that
new semi-empirical theories might be developed that parameterize the

discrepancies between ab-initio Slater-Condon theory and a more sophis=

ticated approximation.

A number of interconnected problems emerge in this context.
Because of the success of the semi-empirical theory, it is desirable to
remain within this general framework. Then the the nature of the rela-
tionship between ab-initio and semi-empirical spectroscopic pavameters,
or how correlations might be included in the semi-empirical description
becomes of Interest. Insight into this question can help in the task of
finding a new set of parameters that can be used to map the predicted
spectroscopic parameters Into their empirically determined values. The
dependence of this mapping on the nuclear charge Z and the number of
electrons N is of interest in order to extrapolate the adjustments of

analyzed dons or atoms to unknown or partially analyzed cases.

Chapter 11 reviews the descriptive features of Slater=Condon theory



and leads naturally to Chapter III, a review of the computer calcula-
tions. Density matrices and effective operators are employed to isolate
the features of Slater-Condon theory leading to the semi-empirical
theory and parameterization of effective Hamiltonians. The effective
operator forﬁalism and its group theoretical analysis are developed in
some detall for the discussion in Chapter IV. Chapter III discusses the
5CF method for solving the configuration-averaged non-relativistic
Havtree~Fock equations, Cowan’s HX approximation, relativistic and
correlation corrections, the construction of the Hamiltonian matrix,

predicted spectra, and least squares minimization.

Chapter IV explores the possibility of wavefunctions more general
than Slater determinants allowing more correlations among electrons, but
leading essentially to the same semi-empirical parameterization. The
parameterization of effective Hamiltonians from symmetry properties is
considered, focusing on representations of symmetry groups for unper-
turbed Hamiltonians. The irreducible representations of these groups
are examined, representations of other groups induced from them, and
their branching properties under restrictions to various subgroups.
These considerations are used in part to estimate the qualitative
effects of additional correlations on the spectroscoplc parameters exam-—

ined in Chapter V.

Chapter V contains the applications of the gb-initio calculations
to spectral analysis. The first section, (5.1), explains the methods
used to select and adjust the spectroscopic parameters with a secondary
set of free parameters to bring the ab-initlo results into the best

agreement with expevimental levels using least squares. Methods for



agreement with experimental levels using least squaves. Methods for
extrapolating adjustments to other atoms and ilons are considered,
including isoelectronic extrapolation from formal 1/Z perturbation

theory.

Section (5.2) is a study of the K I isoelectronic sequence from KO+

to F€7+a The adjustment and isoelectronic extrapolation strategies are
combined and applied to the 3p53d29 3p53d4f9 3p53dé»ss and the Rydberg
396n6 configurations. Section (5.3) is a discussion of a modified
strategy used on Ué+e Energy levels of the fz configuration in Oh sym=
metry are modeled and fit to data on the hexahalide complexes, (Uxé)zm
where (X = F,C1,Br,I), using a model proposed by Briam Judd. The
results of chapter V are reviewed in the summary, chaptexr VI, in thé

context of the preceding chapters, followed by appendices containing

tables of energy levels, spectra, and listings of computer programs.



1X. Descriptions of N=Electron Systems and Slater-Condon Theory

A discussion of the descriptions of N-electron systems with rota-
tional symmetry and Slater~Condon theory is presented here. Determinant
wavefunctions and density matrices are discussed in section (2.1),
including many density matrix expressions relevant to antisymmetrized
product wavefunctions. Flements of Slater-Condon theory are reviewed in
section (2§2), including atomic Hamiltonlans, spherical tensor opera-
tors, effective operators, and SLJ=coupled basis vectors and their
matrix elements. The parameterization of effective Hamiltonians on fin-
ite dimensional subspaces spanned by determinant wavefunctions are dis-
cussed in section (2.3); this discussion complements material in section

(2:2).

Density matrices and effective operators descriptions are employed
here as a framework for calculations involving determinant wavefunc-
tions, and as a means of isolating the independent parameters associated
with semi-empirical Slater-Condon theory. The effective operator
methods are generalized in chapter IV to show that semi-empirical
Slater-Condon theory is consistent with N-electron atomic wavefunctions
constructed from l-electron angular momentum eigenfunctions and arbi-

trary Nedimensional radial wavefunctions.

2.1 HN=electron Wavefunctions and n~Flectron Density Matrices

Ignoring corrections to the same order as hyperfine interactions
and isotope shifts, an atom or ilom can be described by a ZN (or 4N relag-

tivistile) rank spinor-valued, square-integrable (over RSN)g N-electron

th

wavefunction. The 1~ electron coordinates are denoted here by
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S
xi = (r igé"i) :

N> > > XN
§ (1? l,rzseeang){ﬁ} = § (Xlgngeseng) (2913.)
(0} = {0),0,000,0} (2. 1b)
187 = § dxpeeedig 18, ex) 1P < 0 (2010)
(o0)
+ Y
ax = 5§ a%F (20 1d)
(@) o=y (@)

Symmetry Properties

In general, an N-electron Hamiltonian is invariant with respect to
permutations of the sets of electyron coordinates and a group of gpatial
symmetry transformations. A free atom or ion is invariant with respect
to simultaneous identical rvotations and reflections of the electron
coordinates, but permutation symmetry is perhaps the most rigorous sym~
metry for any N-electron system. Only wavefunctions that carry the
totally antisymuetric irreducible representation of SN9 the symmetric
group of order N!, can represent physical states of such a system.
Nature has been kind by allowing only the one-dimensional representa-
tions of SN for identical particles, and perhaps has been kinder still
by choosing the antisymmetric rather than the symmetric representation

for electrons, as this also reduces the complexity of spectra somewhat,

1 , .
In any case, Slater naturally used antisymmetrized products N l-
electron wavefunctions to generate N-electron wavefunctions for atoms.

An arbitrary antisymmetrized Neelectron product wavefunctions with
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definite rotation and reflection symmetry is conceptually awkward, but
l-electron wavefunctions that carry irreducible representations of

SU(2), the gquantum mechanical rotation group, are well known. Slater
reduced the problem to finding the irreducible representations of the

rotation group that can be reduced from linear combinations of this

type °

2.1.1 Determinant Wavefunctions

A determinant wavefunction is the antisymmetrized product of N 1-
o . A A A :
electron wavefunctions. Consider a set A = {¢19¢299339¢N} of N linearly
independent  l-electron wavefunctions, and define the matrix valued func-

tion M(A;X19X29e359XN) with elements given by:

A
M(A;xlgxzsagasx = ¢i(xj) (2.2)

N 13

The N=e1ectrbn determinant wavefunction §§ is defined:
N = . 1y yZ 9
§A(X19X2’°°Q’XN) = det!M(Asxl,xzseeeaxN)i/(Ng) (2.3)

Uniqueness

A determinant wavefunction does not uniquely determine a set of 1-
electron wavefunctions. Let A° be the set obtained from A by a non-
singular linear transformation T:

A’ .
R 2

A
jleji ¢j(x) (2.4)

Since the determinant of the product of two matrices is equal to the
product of theilr determinants, the relationship between the determinant

wavefunctions %i and @z, is given by:
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N N
gAf(X19X29°°°9XN) = detlTlgA(xlsxzsa‘*“st) (2:5)

In particular, a normalized determinant wavefunction constructed from an
arbitrary set of N linearly independent l-electron wavefunctions is-—up
to a phase factor=—equal to the determinant wavefunction constructed
from an orthonormal set of l-electron wavefunctions that span the same
subspace of the l-electron Hilbert space. A given N-electron deter-
minant wavefunction is uniquely related to an N-dimensional subspace of
the l-electrom Hilbert space. This property is obvious when a density
matrix description is used in place of N-electron determinant wavefunc-

tions,

2.1.2 Matrix FElements and Density Matrices

The density matrix description was formalized by von Neumann16 to
help explain the statistical nature of quantum mechanics. Dirac17
ploneered a density matrix description of the atom to justify theoreti-
cally the semi-classical Thomas-Fermi model, and his techniques were
quickly applied to the Hartree-Fock equations for determinant wavefunc—

tionslga ngdinlg expanded and generalized this framework for work with

superpositions of Slater determinants.

Density Matrices

Table (2.1) 1s a list of definitions used to develop a density
matrix description of the N-electron Hilbert space with a certain set of
state vectors in mind. Instead of employing only reduced density
matrices in this approach, an object called the n-electron transition

matrix is defined. This object is unnecessary for a physical theory, as
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all physical properties can be obtained from the n-—electron reduced den-
sity matrices, but it is a useful component in a hybrid description
involving density matrices and a specified set of N-electron wavefunc-
tions (e.g. the Slater determinant wavefunctions). The n-electron
reduced density matrices are referred to here as simply n-electron den-
sity matrices, the lower=case "n" indicating the reduced density matrix

as opposed to the "N'-electron density matrix.

The n-electron transitlon matrices can perhaps be best described as
kernels of bounded integral operators on an n-particle Hilbert space,
while the n-electron density matrices comprise the convex linear hull of
the non-negative definite, self-adjoint operators of trace class.
Alternately, the n=-electron transition matrices can be obtained by
extending the set of density matrices to a vector space over the complex

field.

Matrix Elements

The n—electron transition matrices allow the matrix elements of the

symmetric n-electron operators to be formally expressed as:

N AN (RN , . . .
<§a!Qn*§b> &= “@a“”@bn Sﬁxldxleeedxndxn 6(x1mx1)5535(xnwxn)
anria](xlseai,xn;xis@aagxg) (2.8a)
. e . — rlet q act on x, then set g;gx
o H = < o
gaXdX b (xx ﬁsqﬁj(x,x ) iand sum/integrate over xx(rgﬁﬁT (2.8b)

If ﬁga is the integral operator with the corresponding n-electron tran-

sition matrix as its kernel, (2.8a) can formally be rewritten as a trace
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Table (2.1)

Components of a Density Matrix—Basis Set Description

Basis Set

{QF;iaigzsnee} — any set of N-electromn
i . .
wavefunctions of interest

n~Electron Operators

Nen+1 N
Qn = igﬁal seai >% qn(llsossgin) (206)
1 0’ tn-1
qn(ilgizﬁﬂ699in) — an n—-electron operator that

acts on the electron coordi-
nates with indices (ilsssagi )
and is dinvariant with respect
to permutations of these in-
dices

n-Electron Kernels

n—electron transition matrices:

14 4 o N "~ N N m"‘l
ﬁga(xlwmsxngxlsmegxn) = ['ﬂ} L]!@bu ”@a“ R{ gdyn+laaadyN (2.@73,)

N
[@b (Xla 800 9Xn9yn+l9 cee 9YN)

’-N*{ 4 v
%a N ERLREEMENAE LR £

) = T (2.75)

s
®

1
. . e m N
n~electron density matrix of %az
I

P 2 . s w P4 n & Y
N Xlsaaagxnsxlsa@egxn) = Fﬂ {Algauegxn§xiggeegxn) (2.7¢)

aa

general n-electron density matrices:

= 1 . -y
r‘?@‘(xl, coesX 5Ky ene,x)) = %%iri(xpmwxn;x?; voay®!) (2.7d)

0 = {0, 1 0<e <1330, =1} (2.7e)
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over any complete orthoncrmal basis of the n-=particle Hilbert space:

[ﬁia%nj(xls°°a’xn) = (2.9a)

n
Sﬁyleaedynfia(xlgasagxn;ylgesagyn)%’(yl,eaasyn)

I

(2o lady = naduna ex [ o2 ] (2.9b)

il

nedimaln e [ 2]

Bxpressing formally the matrix elements of n-electron operators
using n—electron transition matrices is of little value unless the tran-
sition matrices can be given in more detail. This is possible for
determninant wavefunctions, and proves useful for examining the symmetry

properties of transition arrays of determinant wavefunctions.

2.1.3 Aptisymmetrized Product Wavefunctions

Before examining in detail the components of a density matrix-
deterninant wavefunction description of an atom or ion, it is useful to
consider antisymmetrized product wavefunctions in general. Let %Z and
§§ be V- and C~electron antisymmetrized wavefunctions where C+4+V = N.

Then the N-electron wavefunction §§b is defined:

N N Yy, [V ¢
@ab(xl,eaest) = [V] 2AN Ea(xlseaeng)Qb(xv+Iseee,xNi (2.10)

AN is the projection operator for the antisymmetric representation of SN

1
and the binomial coefficient factor [@] /2 is convenient for normaliza-

. \
tion. Because ¢  and @g are both antisymmetric, (2.10) can be rewritten
in the form of a sum over all distinct V-element ordered subsets of the

index set Z(N) = {1,2,c00,N}2
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N o)=Yy v S(1),V C
@ab(X199999XN) - LV] T(::ZZ(N) (ml) @a(xl)ﬁb(xf) (2: 11&1)
S(I) = (1) + (1,-2) +eeed (1y=V) (2. 11b)
v ty iy N
s = 5 S ... S (2.11c)
ICZ () ilgl iz>i1 iv>iVM1

XI and Xf are the electron coordinates labeled by the sets I =

{ilgﬁsﬁain}and T =2(N) -~ I N Z(N), the complement of T in Z(N).

N-Electron Transition Matrices

Fauation (2.11) can be used to obtain an expression for the N-

electron transition matrix between two product wavefunctions @N and

“ab
N,
Ecd°
2 , oy Ny -1 s
IaJ;de(lesaenggxlg Qeest) - D&,de [\J] \26128)
- - L 8(T=d , »
sV A GRS DN e aep s
TCZM) JCZ0D c -
i
ENTENTENTEN
D o (2.12b)
abed s nne |
“ab cd
S(I=J) = (1y=3) + (i,m3,) +oent (Ly~iy) (2.12¢)
XI3 Xps Xy and X% are defined as 1n (2.11).

The sum over the index set J, however, in (2.12) can be vewritien

in form that is relative to the sum over the index set I. This i

5]

equivalent to summing over partitions of Z(N) idnto four disjoint sub-

sets: {K,K, 1,0} where T = {RUK} T = {LUDY, T = {RUL}, and J = {xuilt. X
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and L have o elements, K has V~o elements, while T has C-o elements;

0<o<V (without loss of generality 1t has been assumed that V<C):

v
F‘N (X 33X, an) = D [N]“l" (-1)° }:‘V (2.13)
abed 70 ¥z () abed |v) 2, Lo
Y \"
s 5° F‘ ( Xz, )f‘ ( Koo X2)
& 2 e O R X XM O X3 0 5

The factor (-1)° is the parity of the permutation that brings the parti-

tion {K,K,L,L} to the form {K,L,K,L}.

The N-electron transition matrix expression (2.13) leads to the
expressions for the overlaps and norms of the product wavefunctions in

terms of the n~electron transition matrices (0<n<V):

(2.142)

| WO p—

T (
o) = lee] nu@bnn@dntu § (-1)° e [P0, ]

Yy
(2. 14b)

| VOO 4

l’ MA
el = n@‘”’un@bn;u 5 (-1)° e | PR ]
o=

2

n-Electron Transition Matrices

Expressions for the n-electron transition matrices between two N-
electron product wavefunctions §§b and §§d can be obtained from (2.13)
by contracting over the pairs of coordinates {(xi,xg) I dsntl,nt2, 000,87

7

and multiplying by L§1e This process is somewhat awkward, however,
because it involves a sum over all distributions of the index set Z{(n) =
{1,2,¢0+,n} among the subsets X, K, L, and T. However, if the coordi-

nates x with indices in Z(n) are summed over all distributions between

@:, §§ and similarly for the corresponding x° coordinates between %Zs
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§§9 and then the remaining coordinates are summed over all possible dis~

tributions in a manner similar to (2.13), an expression for the n-

electron transition matrix is emerges:

, ., min{V-v_,Centv
min(n, V) (Vv € <

iy (K, c00s® KT g000,%°) = D . 2 b3
abed "1 n’"1 n abed v v =max (0,n~C) e=0
er(n=-v_)Y{(v_-v . de ’ P
< > < 3 1
(1) [1"] LF ]LJ A f § azdy (2.15a)
v ] lo=v) |v 7
(o) |
i ) 7 op? z ] o e s T
ac(xls&“e’xv’l’xl’“B°9Xv’sy>lbdixv+l9eaggAngg’X”5+1’e°a9x n9Z>JAh
v, = min{v,v"); vy o= max(v,v ); v = “>+@; g = ney e (2.15B)

The x and x° coordinates ave antisymmetrized with Aﬁ and AI, and the
integrations with respect to dZ and dY ave over e-m and e+m dummy sets

of electren coordinates respectively unless either e-m or etm is zero.

Strict Orthogonality

. ; 4 s 20
The special case of strict or strong orthogonality”™’ between the
two components of an antisymmetrized product wavefunction 1s worth men-

tioning. The usual notion of orthogonality can be generalized for any

; . v C . L o=V G .
palr of wavefunctions @3 and é% by saying that §9 and §b are orthogonal
8 L3 L) i
{raking for comvenience V<C} if
= 0 <2016}

This is equivalent to the usual notion

s &V
wavefunctions §a and %5 are sald to be gty

2)y~electron wavefunction given by
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N=2
gab (XlgeeestEZ) = (2.1738)

V¥ C
(é;)dy §a (x19geengmlgy)§b(yng9eaangE2>

has a norm of 0. This is equivalent to
"l 1] B
tr Lr‘a Rl = o (2. 17b)

The probability statement implied by (2.17) 1s, of course, stronger
than (2.16). (2.17) is equivalent to saying that the probability of
finding any electron of the V electrons described by §Z and any electron
of the C electrons described by §§ in the same l-electron state or orbit
is zero. Classically, this is equivalent to saying that the distribu-
tion functions describing the two systems have no overlap in phase

space.

The expression for the n-electron transition matrix between the
states §§b and éfd is much simpler, however, when the pairs of wavefunc-
s =V C vV .C ;
rions @as @d and écg §b are strictly orthogonal. (2.15) reduces to a

single sum:

min£§3V) o
fﬁbcd(xlseechn;xigsaesx;) = Dyped z [V] (2.18a)
v=max (0,n=C)
=17 . .
r (Xv+19eeegxnng+lgeaegxn)7AI

N 2 s
AﬁLF;C(xlgeaesxvgxlgeeang)rgd

For the strictly orthogonal @Z and §§9 the n-electron density matrix for

N .
gab becomes
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n min(n,V) 0
rabcd(xp ““sxngxig °°°9X;1) = z [v] (2.18b)
v=max (0,n~C)

1,7

Fv P e =V op ¥ e
AhLﬁé(Xl9°°°9Xv’xlgse°9xv)r§ (Xv+19E°Q9Xn9xv+19”“°°xn)J

2.1.4 Density Matrices and Determinant Wavefunctions

Expressions for n~electron transition matrices involving deter-
minant wavefunctions can be obtained from the Laplace expansion of the
determinant of a matrix, and contracting over the (N-n) unused coordi-

nates. It is not always possible or desirable to assume the l-electron

wavefunctions are orthonormal, so table (2.2) contains definitions for
components used in these expressions involving the overlap integrals

between l-electron wavefunctions. Table (2.3) contains the general

expressions for the n~electron transition and density matrices.

Except for some notational changes, the expressions in table (2.3}
are identical to those of ngdinlge BEquation (2.29) shows explicitly
that all of the n-electron density matrices for a single Slater deter-
minant are uniquely determined by the l-electron density matrix. The
l=electron density matrix is the kernel of a projection operator for an
M~dimensional subspace of the l-electyon Hilbert space, thus all physi-

cal properties of a determinant wavefunction can be obtained from this

operator.

Orthogonalized Density Matrix Expressions

For two arbitrary sets of N lwelectron wavefunctions A and B,
independent unitary linear transformations can be performed on the sets

A and B so that any function of the transformed set A" will be
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Table (2.2)

1-Flectron Wavefunction Expressions

Overlap Matrix Functions

overlap matrix function for @2 and @g:

A% B
0(4B) = § axg (0 (x) (2.19)
(w)
0(4A) = 0(AA)
(N=r)=-ranked submatrices of 0(AB):
I,J = {iz<eee<ir} {31<ae@<3 Yo r= (2.20a)
elément ordered subsets of
{19299699“}
O(ATBT) = the sub matrix of O(AB) ob- (2.20b)
tained by deleting the rows
labeled by the set I, and the
columns labeled by J
(N-r)-ranked normalized co-minors of O(AR):
m(ATBj> = (“1)8(19J)d(AfBj)/“d(A)dfﬁT (2.21a)
d(AiBj) = det |0 (A= BJ)} (2.21b)
S(L,J) = il+”e+ip+j1+e“+jp (2.21c)
m(AB) = d(AB) = det]0(AB)|
Primitive Kernels
d(AB) # O
N
yBA(X;XQ) = s ¢ (X)¢ (X )O(AB) (2.22a)
i,j=1
Y (xsx”) = Ypplesx”) (2.22b)
r-vranked subkernels:
(x3x7) = 9) (x)¢ (x )m(AmBJ) (2.23)

yBJAI

c(z.%(
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Table (2.3)

Density Matrix Expressio

ns for Determinant Wavefunctions

Inn

er Products

overlaps:

UL

norms:

(3123)

it

aasy = llaylliegl My, (2.24)

il

11@2152 = d(4) (2.25)

n—-Electron

Transition Matrices

n-electyon sub determinant form:

s & &
fa%Aﬁxl’““’xn’xl“w’xﬁ

Zﬂ

IEzZ ()

Ay

= 3" st @%(xlwasxn> (2.26a)

TEZ)IEZM) T
gzk(ngehasxg) m(Ai'Bj)/n!

primitive kernel determinant from:

F%A(xlgesagxn;xlsa@esxn)

[G (xsx")) ..

BJAI ij
JAB
non~zero overlap form (d7 #0):
f%Aﬂxlseesgxn;xisgaaﬁxg)
[GBAKX;X )]ij
n-electron density matrix:
Im‘g;(xla 2 oo 5Xn§Xis eve 9X;>

[GA<X;X9)} 19

J
Nen+1l Nen+2 N
= > S eee > (2.26b)
bp=bod>iy i
A A .
= {¢§ 9¢i 9°9°9¢i ¥ (2.26c)
1 2 )
- g st det |G, 4 (xsx) ] (2.27a)
TCZ(MN)ICzZ (W) J*1
= ) (%, 3%°) (2.276)
BJAI 1°7]
= detIGBAﬁx;x’)l/ni {2.28a)
= Ypp(xysx)) 2.28b)
= dethA(x;x’)i/nl (2.298)
= V(x5 (2.29b)
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orthogonal to all but at most one of the funcitlons of the tramsformed
set B”e This follows from the fact that the overlap matrix O(AB) caﬁ
always be written in polar form, thus there exists a unitary transforma-
tion that can be applied to the set A so that 0(A’B) is Hermitlan sym-
metric, and another unitary transformation that can be applied to both
A° and B so that O(A"B’) diagonal. Without loss of generality then, the
2N l-electron wavefunctions of the sets A and B can be assumed to

satisfy the orthogonality relations:

<¢f!¢?> = 6ij I ¢‘§H (2.30a)
B, B. _ B
lﬂ 'y
s i 6ij i>r
<¢i]¢j> = ) icr (2.70c)
{

where v is a non-negative integer and (N-r) is the rank of the matrix

O(AB) .

The expressions for the n-electron transition matrices between two
determinant wavefunctions @i and §§ are of course simplified when the
sets A and B are orthonormal with respect to each other. Unfortunately,
the linear transformations required to bring two arbitrary sets of N l-
electron wavefunctions to this form is not in general uniquely or simply
defined. An exceptional case occurs when the overlap matrix 0(AB) is
non=singular; the n-electron transition matrices are completely deter=
mined by the primitive kernel YBA(X;X’) defined by equation (2.22a) of

table (2.2). 1In this case the orthonormalizing transformation is
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generated by the matrix O(AB)W1 applied to the set A as in equation
(2.4). 1If A=B, O(A) is the Gram matrix, and is a positive definite Her-
mitian symmetric matrix for non-vanishing @i, and the set of functions A

yz

is orthonormalized by the matriz 0(A) 2.

The n-electron transition matrices between @E and §§ for sets A and
B that satisfy (2.30) are conveniently expressed in terms of the r-
electron transition matrices between QE, and ng and the (n-r)=-electron

- I A A &
znr where A" = {¢l,e”9¢r}9 B? =

transition matrices between §§:r and ¢
B By  au L A A w _ .. B B e
{¢19“99¢r}9 A = {¢r+lyssﬁ9¢N}, and B" = {¢r+1“w,¢m}e This is the
strict orthogonality case of the general expression for the n-electron
transition matrix between N=-electron wavefunctions constructed antisym-

metrizing the product of a r-electron and an (N-r)~electron wavefunc=

tion, equation (2.18b).

r‘*‘;A<x1”mxn;x1“Wx;) = (2.31)
I r‘ér ( ° rd & 49) 1
f 7 | TCAC TR FYRERTL SET ST SPRRTES 3 | .
L?J Ay T [T . . -, T A
| BUA" Xr+1’xr+29@”°9anxr+l9xr+2’°°Q9Xﬁ)J

r*-:r ¥ s g B - " . . -
IBﬁAy and ﬁgﬂgﬂ are convenlently calculated using expressions from table

(2.3)

If the sets A and B of N l-electron wavefunctions are taken from a
single set of orthonormal l-electron wavefunctions, the orthogonality
conditions (2.30) may be satisfied after one of the sets A or B is per-
muted so that the l-electron wavefunctions common to A and B will have

the same index. Only relative permutations need be considered, 1f the
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identical permutation 1s applied to both sets, the n-electron transition
matrices are unaffected. If S(AgB)%SN is any permutation that accom-
plishes the desired change of relative orderings, the n~electron transi-

S(A’B)9 the parity of the relative

tion matrices are multiplied by (-1)
permutation. Expldicit expressions for the 1 and 2-electron transition

matrices become:

N

FeaCssx) = 8y, 5 gpGogl (x) (2.32)
S 1|
S8 5o
*8ap ), (aopy D Pp ()9, (x7)
ﬁéAﬁxlsngxi’X§> - DSAP E 88

r 1

|
< Tg(xlgxi)fi(xzsxg> - Fi(xlzxg)Fi(XZ;Xi) j

ACRUNCIVICTES

N e e

+ 8 (2.33)

(Amgﬁa) 9 (B""@b)

P e A Y

= By G B, G6)g Gigsx )|

( 5, e L

|8y (x)8, (X8 (%508, (x5) |

+ 6(&3 3 ) < N N >
Pa=be)» (3P4 = 8, 0L 0 i) 13 D)

+ ( same expression with 1-»2;2-»1 ) }
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2.2 Slater-Condon Theory

A method of deducing the occurrence and approximate energy inter-
vals of groups of atomic energy levels was introduced by Slater1 in
1929, and was expanded a few years later into a comprehensive theory of
electronic structure and spectra in the classic text by Condon and
Shortleyze Cowan> uses the phrase "Slater-Condon theory" to describe
Slater s method of approximating groups of atomic states with linear
combinations from a finite set of determinant wavefunctions. Briefly,

the theory has three main features:

(1) A model N-electron atomic Hamiltonian is chosen, and the matrix
representation of the Hamiltonian restricted to a subspace spanned
by determinant wavefunctions is analyzed for its eigenvalues and

elgenvectors.

(2 The l-electron wavefunctions used to construct the determinant
wavefunctions have definite rotation symmetry, and the determinant
wavefunctions are chosen so that the subspace spanned is invariant
with respect to simultaneous identical rotations of all N elec-

trons.

(3) Because of the rotatlonal symmetry of the atomic Hamiltonian, a
major task of the theory 1s to reduce the subspace with respect to
irreducible representations of the quantum-mechanical rotation
group in order remove complexity of the Hamilionian matrix arising

from the associated degeneracies.

Several features of Slater-Condon theory are highlighted in this
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section. Configurations, the subspaces of determinant wavefunctions are
discussed in (2.2.1). The empirical form of Slater-Condon theory is
distinguished from the ab-initio form of the theory in (2.2.2), while
the atomic Hamiltonians used in the theory are discussed in (2.2.3).
Spherical tensor operators and matrix elements are developed in (2.2.4),
and effective operators unit tensor expansions are discussed in (2.2.5).
The construction of basis vectors that carry irreducible representations
of SU(2) and their matrix elements is sketched in (2.2.6), but some
additional details concerning the actual construction of Hamiltonian
matrices and matrix elements of other operators is presented in chapter

I1T within the context of Cowan’s computer codes.

2:2.1 Central Field Model

A common heuristic used to introduce Slater-Condon theory is the
central field model. A separable N~electron Hamiltonian with a spheri-
cally symmetric local potential is used to represent the time-averaged
interaction of each electron with the nucleus and the other N-1 elec-
trons. The traditional form is non-relativistic for optical spectra
analysis, as the wavefunctions of the relevant energy levels are assumed
to differ significantly only in regions far from the nucleus. The cen-
tral field Hamitonian takes the form (energy is measured in Rydbergs

throughout this chapter):

(2.34)

The eigenfunctions of Hc are products of the eigenfunctions of the

associlated l-electron Hamiltonian. The particular eigenfunctions of
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interest are the the determinants comprised of N distinct l-electron

eigenfunctions

¢ (x) = R, ()Y (8,4)X (0) (2.35a)

nmp P

X{(&) = & (2.35b)
p B0

where the radial wavefunctions are labeled in analogy to the eigenfunc-
tions of the non-relativistic hydrogen atom (this labeling, however,

refers t£o an energy spectrum unique to the coulomb potentia1521)

The symmetry group of rotations for a non-relativistic, central-
field l=electron eigenfunction is SU(Z)XO+(3)9 with representations of
the form: (usgur)% SU(Z)XO+(3)S% D-yz(us)@Dﬁ(ur}e This representation
corresponds to independent rotations with respect to the spin and the
space coordinates, and the rotations of a l-electron central field

wavefunctilon are given by:

(x) = 2 s (2.36)

) Y, 0
J ?"’yze‘ 1/2 myzmé

[ s r
LU(u s4 )¢n61&lu

Dé%i(us}ng,m(ur)¢no,Pp(x)
A l-electron central field wavefunction also has reflection symmetry

with a sign of (El}6 under reflections. TIn contrast, relativistic 1
electron central field wavefunctions have the rotation symmetry group
SU(2), corresponding to simultaneous identical rotations of the space

and spin coordinates, and an even or odd veflection symmetry for a given

representation uéSU(2) —» ().

Configurations
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All central fleld eigenfunctions containing the same set of N I-
electron radial wavefunctions are degenerate. All determinant central
field eigenfunctions constructed with the same set of radial wavefunc-=

tions are said to belong to a configuration 0 denoted by

u.

) b
Q;(nlgl §n2§2 secay nchp)g where wy is the number of Rhiéi(r) radial

functions and p 1s the number of distinct radial wavefunctions in the
set Q,(ai%ui+wQe+uth)e A determinant wavefunctlon must be composed of
N linearly independent l-electron wavefunctions, so uy cannot be greater

than é§i+29 the number of l-electron eigenfunctions with a Rn § ()
174

radlal wavefunction.

The determinant wavefunctions belonging to a single configuration
span the zero-order degenerate manifolds used in central field perturba-
tion theory. A given member of a configuration Q(Z) corresponds to the
choices for the sets (Zlgzz,eseszq) of (msp) quantum numbers (Za =
{mdggdidglgzsaae,wa})a The number of determinants £{(0) in a given con-
figuration is equal to the number of possibilities for the sets

(Z.,,2,,000,72 ), given by the product of binomial coefficients:
1°%2 q’ &

4§i+2

1
£(Q) = t (2.37)
=

(=%
[ =
oy

o e ey

The relative phases of the determinants are determined by the ord-
ering convention for the l-electron wavefunctions. The determinant
N obtained from Q(Z) = {¢W
0(2) i

phase determined by the one to one correspondence of the index i to

wavefunction & (z)i i=1,2,000,N}, has a

(nfmpu) .
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2.20.2 Semi-empirical and Ab-intic Theories

The semi-empirical form of Slater-~Condon theory assumes that radial
wavefunctions with the same "{§" quantum number are orthonormal, but
their specific form is arbitrary. The Hamiltonian matrix is resolved
into a linear combination of Hermitian symmetric matrices with coeffi-
cients determined by integrals involving the radial wavefunctions. The
Hamiltonian is resolved into a sum of spherical tensor operators, effec-
tively separating the action of the Hamiltonian on the angle-spin coor-

dinates from the radial coordinates of each electron.

The coeffigients involving the radial wavefunctions are treated as
arbitrary parameters. A set of atomic energy levels is classified
according to one or more configurations 1f values of these parameters
exist such that the elgenvalues of the Hamiltonian matrix approximate
the experimental levels with reasonable accuarcy. Some rvestrictions are
usually place on the ranges of acceptable values for the parameters as

an additional test of the validity of a classification.

The ab-initio theory specifies a method for obtaining the radial
wavefunctions. The Hamiltonian matrix is cast in the same form as in
the semi-empirical theory, but the parameters are now calculated from
the radial wavefunctions. In general, the ab-initio parameters differ
significantly from the optimal values obtained in the semi-empirical
theory, even when stringent criteria are applied to the ranges of
acceptable values., Classification of experimental levels belonging to
even a single configuration is difficult based on ab-initio predictions

alone, thus susceptable to error.
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For example, the discrepancy between the parameters obtained by
least squares fitting to a set of obsarved‘levels and parameters calcu~
lated from Hartree-Fock radial wavefunctions is well known; the
Hartree=Fock parameters for the electron—-electron Coulomb interaction
tend to be larger than the least squares valueszze This discrepancy has
been investigated qualitatively by formally applying second order per-

23,24,25

turbation theory to the central field model , and quantitatively

by applying many-body perturbation techniques to zero-order self-

consistent-field calculation826927,

A reliable ab-initio form of Slater-Condon theory is highly desir-
able because it is much simpler than a separate variational calculations
for some of the lowest lying energy levels for each ilrreducible
representation of the atomic symmetry group. If the successes and limi-
tations of the semi-empirical theory are not simply fortuitous, then the
significance of the semi-empirical parameters may come from the
existence of a more general form of approximate atomic wavefunctions
than the central field determinant wavefunctions consistent with the
same pavameterization. Chapter IV pursues this idea in order to gain
insight into some possible strategiles for analyzing atomic spectra with

ab~-initio predictions.

242.3 Atomic Hamiltonians

The parameterization of the Hamitonian matrix for a set of one or
more configurations will depend on the Hamiltonian operator chosen to
model the atom or ion. For the semi-empirical form of Slater~Condon

theory, the Hamiltonian operator is usually obtained by selecting vari-
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oug terms from the Pauli approximationzg to the Breit equation that are
deemed important to the relative level structure. The choice of only a
mildly relativistic Hamiltonian, even in the case of heavy atoms, is
justified by the fact that the relative energy separations are deter-
mined only by the radial wavefunctions that tend to be localized in
regions far from the nucleus. Then the parameterization of the Hamil-
tonian matrix tends to be effectively the same for a fully relativistic

central field model and the non-vrelativistic Pauli approximation.

The terms of the Pauli approximation to the Breit equation are
given in table (2.4). The important feature of the Pauli Hamiltonian is
its composition in terms of only 1 and 2-electron operators. Effective
operators that act on the coordinates of 3 or more electrons are some-
times extracted from the second order perturbations of the central

field, 23 24

but basically the parameterization of the Hamiltonian matrix
is determined from the | and 2-electron transition arrays for the deter-

minants involved.

A common approximation is the non-relativistic Hamiltonian He with

an effective spin-orbit interaction:

N
- -3
H = B+ iilg(ri>‘?€asj_ (24 40a)
2 dU _(r)
g(r) = %;=ww§;ﬂ“ (2.40b)

The operator g(r) is a l=electron radial operator chavacterizing the
interaction of the spin magnetic moment of the electron in a central
field derived from Ue(r)e The spin-orbit operator of He leads to the

same parameterization of the Hamiltonian matrix as the operator H@O of
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Table (2.4)

Atomic Hamiltonian—Pauli Approximationzs
H Hy + H o+ H o +H o +H +H +H . (2.38)
N N
H, Spp -2+ 5 A (2.392)
k=1 ko k>i=1"kj
N N (T, %P, ) S
‘r B
- - - ki "k k
Hso Zdz z‘fkesk w%-m 2 A 3 (2.39b)
k=1 £ k#j=1 rkj
N (v, . Xp,; )5S,
H «2% s ki k3 (2.39¢)
50 k#i=1 r3
J ki
H o’ s | L 33, % )G F o
8s et Led RT3 T T kT
J=L Ty (2.39d)
6 2 > =  _>
- m(” (8, Sj)s(rkj)
2 N
M “%:“ 5 o, (2.39)
k=1
2 N 2 N
) Y o5 o3 “ - > > -3
H i 2o Sp.er,.r,” +1i S p,er, . T . (2.39£)
d TR 8 pger KT
N [ T (FyeBy) D
N > > ki ki P kIF 4
i « s ?lw 1 By by + 32 L (2.39)
k>i=1"k] | J e f
! k] J

The term enclosed by [ ] is to be evaluated by integrating

the desired matrix element over all space except for a

sphere of radius < centered about the singularity, and then

taking the limit as € -» 0.
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equation (2.39b) if H’so ie spherically averaged over the coordinates of

one of the two electrons (see section 2.3).

20.2-4 Spherical Tensor Operators and Reduced Matrix Elements

For a sufficiently well behaved n-electron operator q,> say one
with a range and a domain that are invarlant under independent votations
of the n sets of electronic coordinates, an operator representation of

10T (3)x07(3)1™= 01 (3)x07(3) ... 0T(3)x0T(3) (n times) is generated by

(ujgui) .. e(ui,ui)(a ot 3)yxot (31"

T T,8 1
U(uPu )eeeU(ungun)an (ulgu )QMU (ungun)

This representation 1s reducible to families of operators that carry
irreducible representations of [O+(3)XO+(3)]n, thus q, can be expressed

as a sum over members of operator families:

@ ® ot @ {x 1k1° ° e)<nkn}
qn(}‘”“”n) = s S e S s 4, (1,000,n) (2.418)
)<1-=O k ==O Knﬁi) kn:O
X k X k
{x 1k 10 e)<nkn} ‘21 .} n n 1 _
q = 2 S ... 3 5 o7

n . -
M=Ky gk mosaK g =k T s€S
( Kk oo oK ko klkleuﬁ k.

c HE (1)seee,8(n)) + (2.419)
L AyQqeeel d) Wyq eeefl q.

C,Klkl“")(nk }<1k1993)< k
MqQyeeef g Mdyeeet

P(8(1),0en,8(n)) +

Kykqoook ko Kqkqeo ok ko
et bR Rl DL a1y s ) e |
1917 M9y M9yl )
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The sum over permutations S%Sn guarantees the permutation symmetry of

{xk} o <k}
(ﬁq)}s {t (ﬁq)}s

}, etc. can occur in the sum (for an atomic Hamiltonian, this

4, and only a finite number of operator families {t

wiXk}
te (nq)

number is less than or equal to the number of times the identity
. . . + + + n
representation occurs in the reduction of 0 (3)C [0 (3)x0 (3] A

{Xk}} transforms under rotations via

family of operators {t(ﬁq)
X kooeaX k

8 v 8 T "1 nn t,. 8 r T s v, _

U(ulsul)aesU(un,un)tﬁlqleeeﬁnqn(iseeegn)U (ulsul)eeeU un,un) =

Xl kl kn kn Xl s kl
3 S ... S $ D, (u )Dq,q (u§>eaa (2.41c)
ﬁlgm:Kl qlzmkl an%xn qngﬂkn 1

X k Xikieoook k
bs (@0 0 D s T R
nn 959, 191° M9,

Examples of the resolution of the operators taken from the Pauli
Hamiltonian are given by Juddzga The spherical symmetry of atoms
implies that the spherical tensor components ngk} of the atomic Hamil-

tonian are invariant with respect to O+(3)C: [0+(3)X0+(3)]ns The tensor

operators that comprise He of (2.40a) take the forms Q?O (1-body

scalar), ngoo (2-body scalar), Qil (from the spin-orbit operator), and
ngOk (from the l/rij interaction). The resolution of the coulomb

interaction between electrons, l/f12§ is given by

1 @ k q .k K
= Zu(r,,r,) 2 (1) CH(e,,9.)C (€,,¢,) (2.423)
LD k=0 k*1°%2 q=-k g 12717 =g 7272
[ kot
[T/ Ty Xo2ry
Uy (rgs1y) |t (2.42b)
! 27
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k = fk* - il 1/2
Cq(®:9) = D o(~9.6,0) (2k+1)J LC ) (2.42¢)

k

where the qu,(¢99;%) is the parameterization of the representation Dk

of SU(2) in terms of the Fuler anglesBOQ

Matrix Elements and the Wigner-~Eckart Theorem

The Wigner=Eckart theorem31 describes the relationships among the
matrix elements of a families of operators and groups of state vectors
that all carvry irreducible unitary representations of a finite or com-
pact Lie group- TFor a simply reducible32 group such as SU(2), this can
be illustrated with the matrix elements the l-electron spherical tensor
operator {ti | gq=-k,s00,k} between the orthomormal l-electron wavefunc—
tions {¢a’3 o | m==3", 500,57} and {¢a"j”m" | m"==i",0c0,7"}s All pos=-

sible matrix elements are determined up to a constant of proportionality
<a J ”t H aH H>

FERN
| |

< a i'm’ St l¢a"3"m"> = ('ﬂl)j —H -n’ q " <a i Nt Ha” ”> (2.43)

Where the 3-j symbols are related to the transformations that reduce

J h|
representations of the type D z'(‘u)@D Z(u) %= u%SU(2)29’30932:
D‘miml(u)Dmgmz(u> = ) m[ ,2 ° N ;2 ' mpf . (2.33%-1) (2.44)
33713131 mg==dy my=-ij

(. . .
(J1 J2 d3
L
\

mz m

[t

%31 p) j3} g
| |
J

l
‘|
M M2 M

1-Flectron Spherical Tensor Operators
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By way of proving (2.43), the matrix element on the left-hand-side
can be regarded as the trace of the operator tz with one of the 1-
electron operators <€ ' ,(a"3";a”1") that carry the representation

Dj(u)@Dj(u) %~ ueSU(2) (using the equivalence relationship Di (u) =

1™
« & m, ==
T w) =1) ' ?) where:
M =
o= ) & o & "+ ¢ ot g 2 &
G CUE LSTAS 1O T CT0 R Y CLk LIS 1 (2.45a)
T "' ,(a" i"sa®37) = ‘¢a"3"m"><¢aaj m’ .| (2.45b)
T jﬁ:‘ j‘a: s §Y
U(u)*t ey (a2’ i) (u) = b 2 Di m”(u) (2.45¢)

Dgn (u) € a''m ;(8,” " 3&)

The application of (2.44) to (2.45abc) allows the operators
T "' ,(a"1":a”9’) to be related by a real orthogonal transformation to a
set of lwelectron tensor operators that carry irreducible representa-

tions of SU(2):

U3 J
T SN ,{a"3"; sa i) = Y Y (-1)d "™ (2.46a)
J=[3"=3"] M=-

l/ (j” jﬁ 37

{31 2::11” —;? _MJ (“]Jj -3 (aﬁ "sa”3i")
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PE1] s 2

3 6'“ &
iz*i(a"j”;a";:%’@) = 2 5 (=nI™m (2.46b)
: m"zaj” magaj’ ¢ )

y fmoar el
2 ‘ ! 134 =J M = Well, ¢ 2%
[J] Lmn -m’ EHMJ (=1) ’tmnmf (a"3"3273")

where [X,¥,..0,2] 18 an abbreviation for [(2x+1),(2y+Ll),cs0,(22+1)],

The adjoint l-electron operators are given by

Ty (2137527370 = L (a3 52" (2.47a)
s _ 87
ﬁif(a’jﬁga”j") = (-nd i Qiﬁ(anj";a’j’) (2.47b)

and in addition to (2.46sb), the relationships

) S
T oo (@"3%a737) = 2 s (2.48a)
J=3"=3"| M=-J
Lo s rj'“ i’ Ji
134w i o1 oo, uan
(-1) Lm" -’ MJ WM (a”375a"3")
jﬂ ja
‘ﬁ’sﬁ(a’j”;a"j") = 2 2 [3317/2 (2, 48b)
m"@uj” m‘?:g“j’
131 & 1
(“1)jp@m’ lj j J‘ @% (a"jﬂoaajy>
im” -1’ M‘l n'm’ 5

are also useful. Comparing with (2.43), (2J+1)y2 is the reduced matrix

element <a’jiﬂﬁé(a’j’;a"j")ﬂa"j"> as (2.48b) and the symmetry of the

3mj29930 symbols gives:

1 ooy g g
TR TP [J} /2("’"1)3 E l

]
;«j AR N | R § i
oy (a”375a"i") g, i ARy (2.49)

< & a8
Pa j‘m
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The matrix element on the left-hand-side of (2.43) can now be

expressed as trace involving tg and the unit tensor operator %ée Com=

bining equations (2.49a), and (2.46a), and exploiting the symmetry of

the 3-j symbols:

TR S [J] (2@50)

<p I T

aﬁj ﬂma

37 _m? j J ? =
L R L T CEMTUEID
M m J q M

The trace is invariant with respect to identical rotations of both
operators. The only non-vanishing contributions to (2.50) take the form

(applying (2344) for the special case of jBaO):

B k nkT & & Qv;‘g j
S K
g;;{n 0¥ (a”j";a"3i™
(2k+1)

_ k
kAJT ﬁo&s 77 ¢ 9% ] — =
tr LthM (a’3%3a"i") | = &§..56 3

(2-51)
J, k"M, q q’ =k

Equation (2.43) is established provided the reduced matrix element

<a'j’HtkHa”j"> is identified as:

Ek‘ak‘r Caryd 13 H]
k t W ,(a sa
< ;qu q( ] i"™

L
<a’3lIefanyts = (kT2 (2kt1)

(2.52)
q ==k

The spherical unit tensor ﬁé is easily generalized to non-
relativistic central fileld electrons with SU(Z)XO+(3) symmetry. The I-

Eas
electron transition operator T (0" §73m"" ("), obtained from a pair

?J’miﬁl”m"

of N-electron central field determinant wavefunctions can be expanded in

families of operators %;i(n’é’;n”ﬁ")z

s\tﬁl"m“p”m’ (nnowgnag&) = !¢ny6pmaﬁl,><¢nno" o "l (2.53a)

e
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1 X §U+§° k y
o m (n“(}"sn 7y = 3 ) by S [x,kl] 2 (ZaSBb)
?" P X=0 m=-x k=|§"-§°] q=-
1 ( /2 )( 1/27 . &réf k (4)371
/ 2] . (ml)Q e nii@xknn"ﬁ’;n" ")
L (™ ¢ )
The matrix elements of a l-electron operator E@E become:
fl/ y,
2 X 2
<P,y ;ltkki¢ wan o n> = (-1 yzﬁfu " l (2.543)
n 4w g 0" "' ﬁu mop
g [0 0]
- I
- >
(=) lmmp q m“l <n’§ ¢ Hn 0
)(k 1/2 }< k E£ Lt);z @);I;T(naay;nn W)]
<’ G 0> = Kk by (2.54b)
2X+ k1
=X q=-k (2x+1) (2 )
The actions of the operators Qﬁk(n §7:0"0") on the electronic
coordinates can be factored into spin and space parts via
FE@ gnmgm = @ anym e (2.55)
wq q w
where ﬁi(n’é’;n"é”) is an integral operator with the kernel
(0§’ """ ??f?') and éi can be represented as a matrix e (6”6’)
HArir’) .
L 4 i w}:‘}' = Pniion 6 6 6" o7 4
ukq(n Q Py 0”1 rsr ) ‘1’51’ Q’kq (99¢9% 9¢ } (2@56&)

Pn’Q"n”O”(r;ry) = arfﬁf(r)r’Rnﬁon(rl) (2.56b)



Rl Qﬁ O” ? e ff e
ol Viegsergy = 3 s (it g
m’gaﬁé m'“%«ss@“
réa OH k?
ﬁ"+m" & , ,
’Lms mn qu Ygrmﬁ (99¢) (“l) Y§nmmn(@ 9¢ )

01 Y
QBOO (e9¢99 5¢ )

8.8

where PQ(€6§’) is
vkﬁ(oa’;dj) =
a0 = L1

\2

~1 Ty
v, 0= \2 S2
1 s
¥y = \2 SO
Al — "t
ST L
Sq is

+¥9 +15
s z (=1

2 2
pre= Yo pt=- ¥y

i
BRI
o -
= o o)
i o)
T -y
o 9
Y

i

)

7 = 8in(6)sin(® )cos(g-¢’) + cos(@)cos(8’)

a legendre polynomial and

]
|

-n]

RPN
Léla Fln

&% ]7/ "
X (XK., (00)(-1) 72
P -

.

(2.56¢)

(2.56d)

(2.56e)

(2.57a)

(2.57b)

(2.57¢)

(2.574)

(2.57e)

a spherical tensor component of the spin angular momentum

operatorlfe The identification of the éé operators with the identity

and spin angular momentum operators for a single electron reveals that
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the operators T "

WA, R ° k— AN, s x°

n'l E m;(n 0":m°8°) and %Eq(n 0":n"8°) have inversion
g

symmetry given by (-1) .

n-Electron Spherical Tensor operators

Equation (2.43) 1s easily generalized to n-electron operators.

A
Jieosld
matrix element of a tensor operator t

is expressable in terms of
M,...oM

1 n

a trace with l-electron operators % w0’

4 ;n" 0 H) .

Jyeeed,
<¢ P ,”ggf ’ .t

l¢ RAAVS ] u°°°¢ LA T O 1]
131 1 &n nmn M1ﬁ°°Mn 131 1 njnmn>
o *nT Jlesaj
o R AN e [ F L S (2. 58a)
1o oM
n §5-m? {j;. Ji Jg] y
= <ar e Enyms nent | 1,172
. =1 M, m, i
i=1 L i i 1J
31 Jn
«ar g e Ma@nms = w02 5 L s (2.580)
= Mo==d
n n
- Jyeeed T Jioeed
§9 299 ]' n]
LE Lw QQGM ({a j } {a }>t 1@99M
[J 1§a9593ﬁ]
'«nT P sy, g HT iR - Lo 141
1 ({a’3 };{a J ¥ o= ﬁ T o'n ,,(a 9a j ) (2.58¢c)
(m Y (m")
i=1 ™4
o= 16983 Tﬂ({a } {an H}) = J“T
MM 3 ]

n
Ty (agjzgagji‘) (2.58d)
i=1 1
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{xq}

Matrix elements of n~electron tensor operators t(ﬁq)

ducts of l=electron central field wavefunctions can be expressed simi-

between pro=

larly:
X,k ,sak k.
171 PP
§°“°¢ 4 1 !¢ AN TIND n°“’¢ [ ST T AT = (2.59a)
(4 L R e L R e L R F”p>
T
S S S Vi Vo[V % ol s i
< e e T (- P I -
i=1 e Pi) ™ 1]
<{naOa}”t{Kk}”{nnon}> - (2.59b)
Xk, T
1™
W (n’oy,n"ﬁ")
_ - {)<k} pomqy A4
S cee T tr {Wq} ﬁ
Midy ﬁpqp Q(Zki+l)(ZKi+1)
If the operator téxqi posesses a definite inversion symmetry with
th 6§+§§
respect to the i~ electron’s coordinates, it must be (~I) ot the

matrix element vanishes.

242-5 Unit Tensors, Effective Operators, and Tensor Algebra

The application of the Wigner-=Eckart theorem to the matrix elements
of a family of operators {t%iéi} as in (2.59ab) demonstrates that the
{xk}

matrizx elements of any equivalent family of operators {ti(ﬁq)

carries the same irreducible representation of [O+(3)XO+(3)]H) are sim-

} (one that

ply related by the ratlos of the reduced matrix elements. This suggests
that the matrix elements of n-=body spherical temnsor operators between
atomic wavefunctions can be reduced to calculating matrix elements for
certain "unit” tensor families of operators and reduced matrix elements

as needed. Equivalently, on a given manifold spanned by products of 1-
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electron central field wavefunctions, the n-body spherical tensor opera-
tors can be replaced by effective operators--sums over unit tensors mul-

tiplied by parameterized reduced matrix elements.

Integral Operator Expansions

For the purpose of calculating matrix elements of n-—electron opera-
tors on the subspace X, the linear span of all N-electron determinant
wavefunctions constructed from a set § = {¢d(x) | d=1,000,d} 0of ortho-
normal l-electron Wavfunctions9 the n-electron operators can be expanded

in terms of l-electron integral operators {%&p | dsB=l,e0a,d}s

d d N
- N 5 n(q) S &Y (4, .e0,i ) (2.60a)
" (oo =1 ByooeP =l ab I=i <eeci 2P ! "
= < oo oo > 2.60b
n - -
) (Lyewesn) = 'tdlﬁl(nnstdnign(n) (2.60c)

%dB(i) ig the integral operator with the kernel
* &
qi(p(xigxi) = ¢d(xi>¢ﬁ(xi) {(2.60d)
i.e.
(20 (1, ] ) = g (x))eeedy (x) (2.60
L ab EEEE) J xlsgegng = dl Xl e oo dn xn o e)

& y*(? *(y N(& &
Sﬁxlqgedxn¢5 xl)e“giB xn)% xlgeeegxnsxn+l,@sest)
1 n

On the linear span of all possible product wavefunctions con-

structed from S, the operators ‘%Zb are an orthonormal basis for all n-

body operators that map this linear span into 1tself. The scalar
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product is the trace over all n-particle product wavefunctions con-

structed from S9

"‘HT _ =
ggL j = 6 Bﬁ1°’°°dd5§ B = 6ab (2-61)

and an operator 4, becomes:

5 L j
q. = s 5 tr q & (2.62)
= b ab
oo Bl.upn a

On an N-particle space however, the n-body operators for n<N are linear

combinations of the N-particle operators. For example

=1 . on =N-n .
fﬁab(l,a.wn) = v (1, ee0,m)T (n+l, coe,N) (2.63)
- % 2N
- {a,)’ 9°°°9y }{b )/ 959@9}/
1~)’n+le . s)/N n+l N n+l N

where

(], 000, M) = T(atl) ... T(N) (2.64a)
and the l-particle identity operator I(i) is an integral operator with

the kernel:

d
I(Xi;x;) = dm d:G((xlsx y = SS(XiWX£> (2.64b)

The n-body operators of interest are invariant with respect to per-
mutations of the particle coordinates. A symmetric n-body operator Q}:1
acting on the N-particle subspace can be expressed in terms of the sym-

; n
metric n-body operators Eab:

1 d d n
Q = 57 s Y m(q ) i (2.65a)
n! n’ab “ab
dlﬂa.dnwl ﬁleeeg =]

n
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N

11 = = 20 s
Eab ‘ 2 - eab(119eee,in) (2965b}

1=1 <ooo<d

1 n
AT . m - on .
eab(llsesesln> - S;g Tab(is(l)sesegls(n)> (Zeésc)
n

The factor E%=compensates for overcounting, and the sum over S%Sn indi-
cates the symmetrization with respect to to all permutations of the

arguments.

The operators EZb’ even for n=N, are not linearly independent. To

examine some of their properties, first notice that the l-electron

operators %iﬁzz Eib, a = {d} and b = {B}, have the commutation relations

[EdpsEdspyE = 6M’Ed§3§ - 5BsdEC(«9B (2966}

The %iﬁ

tary group U(d) corresponding to unitary transformations of the set S.

‘s are therefore a representation of the Lie algebra of the uni-

The number operator N defined by

N = $T(1) = 3E (2.67)
i=1 o(=1

is a scalar invariant with respect to unitary transformations of the set

S and commutes with all the Ed ‘S

P

0 , ;
The operators Ea are expressable as polynomials in the E, ‘s.

b «p
This can be seen from the recursive relationship
EI:{L En”l}? - n;-;lé En'si (2.68)
agdn}{bgﬁn} ab dan 2 dngi a{b“ﬁi+ﬁn} .
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where {mei+Bn} indicates the subset of S obtalned by replacing Bi with

B, in the set b. For example, when n=2:

2
E = E E -8 E (2:69)
(B By} LBy LBy By By
Equation (2.68) also implies the contraction property
%Eﬂ - (Neot+1)EX (2.70)
dgl {a9c(}{b9d} ab

Restricted Operators

The properties exhibited in equations (2.66) through (2.70) are
independent of the permutation symmetry of the space acted on by the n=
body operators. Additional properties result from the specialization to
the antisymmetric case, as an n-—electvon operator has non-vanishing
matrix elements only between determinant wavefunctions that differ by n
or less l-electron wavefunctions. To be explicit, 1f a(CA(ES, b (EB(ES,

and {b-alb}NA = ¢, then apart from a factor +1, E°_  transforms @i into

ab

gie A permutation applied to either of the sets a or b of an operator

Ezb is equivalent to a permutation applied to §i ot @E respectively.

The n—=electron operators rvestricted to a subspace spanned by all
determinant wavefunctions constructed from the set S can be expressed in
the form (a "™ " is used here to indicate that and operator has been res-

tricted to a subspace of antisymmetrized N-electron wavefunctions):

[ 1 d d
n ol 2 2 m(q ) . B (2.71a)
15((18»sdn lapleaegn ab
d d -
= 2 s m(qn)ab Eab (2.71b)

=, <o e<d 1=, <. <B,



by
fﬁ(qn)ab - <§Z‘qnl§§> =k [ﬁﬁzqn] (2971c?

This representation of the n-electron operator Qn is the projection of
Qn onto a space of operators that map the subspace X into itself. How-
ever, 1f a density matrix description of the basis vectors is used, the
representation of 4, in the form of (2.71) is implicit in the calcula-~
tion of matrix elements. In addition to the commutation relations

(2.66) the restricted l-electron operators, {%i | ,B=1,+00.,d}, also

B

satisfy

EG(BEC(;{B” = mEdB,Ed.qp + Sd,BEdB,, + 60({3,

~

B

(B (2.72)

reflecting the projection of the generators onto the antisymmetric sub-

space carrying the representation of the Lie algebra.

Configurations

In general, atomic wavefunctions are not all possible determinants
constructed from a single set S, but are grouped into configuratioms. A
configuration Q = {uigu%sseasu%} congists of all determinant wavefun-
tions constructed by selecting wy elements (uﬁ>0) from each of the sets
Si = {gsid | dslseeesdi} of orthonormal l-electron wavefunctions where
(i=1,2,..0,p) and (uﬁ+wae+u% =N). The operators Ezb factor into com=

ponents corresponding to each set Si9 and the operator expansion (2.71)

is revised to include all partitions of p consistent with Q:
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»1+eea+wp=n

. d d
R :

3 -

2 6os (2.73)
Qi»iimi Iﬂ.:(lgl<e.m<¢:(n91 1=-?§319l<e,§.a<[31[191
d d (o Y, ]
- - - ~ Vi
5 5 (g™, | 1T E |
1§dlsp<°e°<dn,p =By ,<eo+<By p [i=1 “i7i]

s

1 replace N

Restricted to a single configuration, the number operators N
where each ﬁi has the eigenvalue uy . Inter=configuration operators do

not factor in the form of (2.73), and must be treated as special cases.

Unit Tensor Expansions

The integral operator expansions are easily adapted to spherical

tensor operators. An operator O{J}

n ? constructed from a family of opera-

J J J

tors that carries the irreducible representation D 8 D Z@ege p " of
[SU(Z)]n9 where

J J

1 n Jieoed Jiooesd
- - 1 1 3
oij} = g cos = Sy Mn fM Mn (2.74a)
Mggmj Mgsj leeen 1eean
1 1 n n

has a spherical unit tensor expansion

=1 - -
oY o a2 5SS e s (2.700)
n 1 n Y. 19 299
{a’3°} {a"j"}
Jl Jn Jlnaajﬁ Jlagajn
3 vee 3 gy M Ty M ({a”3"¥;{a"i"y)
Mzmj Mgmj 1sean 1eeen
1 1 n n
where the sums SS SS are over sets of l-electron wavefunctions
{a’3i"} {a"3"}
Sap = {¢aejamé

| m° ==j,¢00,3°} etc. needed to span the subspace X.
Note that oij}

is not necessarily invariant under permutations of the
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electronic coordinates.

If oij} has rotational or point group symmetry, the sum over the

~{J}

operators W<M) takes the form

J ——
n J =

- AI¥e{d} "t - J =

s ses 3 (M)Q(M)({a J7rs{a"i"y) = > B z (2.75)

M3 s M (@) EG)

RSN IR CISICISIS I IC LN SRS CEIS IS FECIR DD
(") (5"

where %ﬁm,)(m")({a’j’};{a" i"}) is the n-electron analog of (2.45a):

. g

5%, (2.76)
m), ~m

1 i

({a”3"3;{a"3"}) =

[
s

g7 s v
T’y @™ g(aii‘ a3l (=1)

and J = 0 in case of rotational symmetry. The coefficients

<C(8)Y{37 33" 3aM {3 ¥ ){3"}(n'") > are the matrix elements of a unitary

2 7

28, 218 J
transformation C that reduces the representation D{J 337 D 1@

Djlﬁ @Djdﬁ D'" of [SU(2)]1%™ carried by the F°
e 7 (m”) (m")

operators to block diagonal form with blocks of irreducible representa-

({a’i ¥ {a"i"»

tions DJe The transformation C will generally require a parameter or

parameters © to distinguish between multiple occurrences of an irreduci-

{3753")

ble representations DJ in the reduction of D

If n>1, there can be several possible reductions of the representa-

27 o 591
tion D{J 3370 of [SU(Z)]2n into irreducible representations DJe As a
result there are several possibilities for the decomposition of the n-

electron operators @53 ({a’373:4{a"3"}) into irreducible operator

n’) (m')

representations of SU(2). ¥or example the two decompositiouns:
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(2.77a)

%B}:(lm§ ) (m'") ({a”3"F;{a"i"N

S O R RN IR TC S TR TC DI AR CEIE IS FRUNID)
M

5 ©
(2.77b)

Tlaey m (2737 354"
567 5C7<cr (07) 457 33T ¥ ) (3" H M >eC O (a5 354"
—— B M

I, M

where C and C’ are two possible unitary transformations or coupling
s o o st
{3733 }g The two schemes are

schemes that accomplish the reduction of D
related by the recoupling unitary transformation:
(2-78)

ﬁii (gi)J({aﬁj’};{a”j"})
M
ﬁc(%>J({aﬁji};{aHjH})

sCec(e)(3”33"MITIC7 (07 )3 53"y T>
M

e
Relationships of this type simplify expressions for the n-electron

operators (2.7lab) given in spherical tensor form.

1-Electron Effective Operators

Consider first the effective l-electron spherical tensor operators.
gkk} can be expanded:

A general l-electron tensor operator ¢



=59~

1
GO L g8 S8 2 Mg s (2.79a)

1- n#ga nﬂo”

X k
S5 ent A gm0
=) gk

(2.79a) 1s the spherical tensor analog of (2.62). The spherical tensor

analog of (2.65a) is

¥t - 55 s D172 < g ) DK g s (2.79)
n?qi n”o”
X k
S5 e im0
m=x gq=-k "

ka corresponds to %Kk in (2.53b) if < womn. o o 18 replaced with with
wq mg p m

i
?-l”m”{ll m e
Examples of operators Q{Xk} are the angular momentum operatorsnf =
N N
> K$i and § = S ‘ii:
i=1 i=1
vl(ag)
@, = 2ian, = S<alTie s (2.80a)
4 nf né \6
<TG = NCZEFD T+ (2.80b)
Ve (ﬂ@)
) = 2 st = B SN Yys T (2.81a)
g T o \3(23+1)
<Yplish Vo> = 372 (2.81b)

where f;(né)Ug(nO) = sz(ﬁO) = ﬁéz(nggné)g and 'f and‘§ are given in

spherical tensor components.
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The operators {ﬁiz(nﬁ) | =X, 000,Ks g=—K,;c00,k}, for a given sub-
shell (nl), are equivalent to Racah’s unit tensorsge If §>0, two rota-
tionally invariant operators can be constructed from this set. The
first, ng(nQ;nO) is invariant with respect to O+(3)x0+(3)9 and is

related to the number operator N(ng):
= 7R 00
(ng) = V@2 Wy (ad) (2.82)

The other operator is invariant under 0+(3)C O+(3)XO+(3):

134 a- Yo 1l .
(- 3772 o) (2.83)

M1 s

w00y

i

q=-1

W(ll)o(nﬁ) is used to construct the effective spin-orbit operator for a

given configuration Q:

N
- -» > o~
S ogrT S, » 526, £ <The< 30 Yp> #00 %0 2080
i=1 ‘ nf
T, 2.2
éno = %dr rR7 (1)g(r) (2.85)
2~Electron Spherical Tensor Operators
Consider now a general 2-electron spherical tensor operator:
Ok Kok} X ok
1 2 - - k
q49 e = 2 2 3§q {(2.86a)
==K gk
{ K )k X+ 4k, <k -
Ly akpoko)x Xy HRg ek )k ok ) kKK |
2 *n + (-1) u |
L q fiq |
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where
T k k
Oc K )<,k KK )il )iz 1 1 y
tﬁq = 2 2 2 2 [Xlsklskzskzj

M=Ky my==k, dp=-ky dy=-ky

Oyl igky?

qy is symmetric with respect to interchanges of the electron

coordinates as long as
Kikpaky

X kX k
uﬁz 2);1 Ly = « 2 22,1 (2.86¢)
292194 SRS APAY)

Adapting (2.74ab) to non-relativistic, central-field l-electron
wavefunctions, and for convenience, ordering the sums over sets SnO
etc. of l-electron wavefunctions leads to the equation (2.87). The cou~

0k Kok 5 KK
pled 2-electron spherical tensor operators @Wq are obtained by

KkpRoky ) tkzklkzkz

substituting W ¥ in equation (2.86b).
T1917292 R RSMPAY]

L0k Roky
An expression for the effective operator Q2 generated from
Ok Rk} N 393
q, is obtained by recoupling the operators ﬁﬁq - Then

the symmetry properties of the E operators with respect to

2
(m’P’ ) (‘m"ﬁl”)
permutations of the l=electron quantum numbers can be exploited. Fory

example, the alternate coupling scheme, C129 with coefficients of the

form



L.

e T N ‘m’sul i im? § ms Yt § = ’
<Gy (R jle R gl Rreal 1 B fmis oy B jmpal s HymysGps F5mp> = (2-88)
<0 % Kl sipisgpse s> <ClpE kal b ing i oms pinyi5n5>

couples Qig T to gl’ 029 Og to Ezg and El’ QZ to k, while the parallel
scheme is used to couple the spins to X. The C12 coupling scheme is
parameterized by the intermediate angular momenta € = (ﬁlﬁlfziz) and a

typical recoupling takes the form:

0%k Rk KK
% (0§05 8550505 8Y) O,
g 23 oMy - 5 D<19kls)<2§k2]1/2
LSRRIy Kk Rk =8
lrl/z iz xl} {og 0y k;}
By =15k g R % | — || s
(-1) PRI PN I P N (2.89)
I N N P
I
Cqp (@K
g (PplieplsnnlonTiy)

where the recoupling coefficients are expressed in terms of the 9-j sym=

29

bols and phase factors are added as needed (cf. the SL coupling case,

(@)){k
equation (2.94) below). The operators W nq are defined by replac-

ing the %f ‘s with the E ‘s in the transformation

f‘l ) (miipﬂ) (mfﬁli) (m”fu")

G, (8)Kk
that yields the ﬁﬁq ‘s, and satisfy the relationships

Gy, (@)Kk - Cy o (®XK

i = -
L T e SV PRV TP ORI CRL LY



0K Kok}
d, 22 D< |5k Kgsky] /2237;1; i % s0 s@
ng TP <ty (YID<@yip
L
Skt
<nplinalolle oy byny 05> -
0c ke e gk K Flp Ogkokykpkk
kﬁq (nlﬁl 26293 Q" "Q ) + (-1) %ﬁ’q {(n éﬁznl [sm vvbvv névvg{
Kk peoks
*mplgnitylie IFp 005> -
0¢ e e keI F1a O gle gk ke KK ”’}
‘Yﬁ‘q (np9pq Bgsmplipni i) + (1) T (ny¥ina85sn1iynat3)
ALSUPLY)
Ty lynadolle lFo3 503 07> -
qu (nlél APEL I E R b’ ﬁﬁq CHEMISH T
X 1k Kk
RAPLY!
+o<nbonidglie Injdynsa5> -
06 e <k KK Flo Okgkpkye K
qu (no¥oni 3oy lymy ) + (1) W EULIFRIIP LY ?ﬂ
X (K Kk
+ SQ- 5@: <ni (} ?n@ 0 9“ t l 1 2 2” n??o?'n1709|> °
(nﬁgi) (nvvoiv) j
i
(< k Kok )Xk (Rok oKk Kk >
}Ww R T L Y PP
g " i
F X 4K, KHk =k
NPTS TR R R

=56

<k Xk o)

Effective Operator Expansion of q,

Equation (2.87)
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because of the aﬁtisymmetry of the operators EZ

(m‘?ﬁlf ) (mpr)

to permutations of the l-electron quantum numbers, and the factorization

with respect

2 ) ) 5
E<mﬁp,)(mupu) given by (2.69) is transformed to (8 = {Klklxzkz})

(9))(1&: ¥k Kok
1 ’ ~ 1 272 Yk
qu (i inytpsmiingty) = (00 @iapagupi t Sy [
] XD 1= e
2 ue 1] (“1) (’2@9]’)
[ iy N
RCIR IR P S T I
< < > “Wk(nigigngg'w
Ix, Y2 X llk, by & T )
\ N J

where ( }éz indicates the coupling of (2.86b). The expression for the

LRy gRoky
effective 2~electron operator Q2 restricted to a single confi-

guration, is given by equation (2.92), the spherical tensor analog of

(2.71a) .

Applications
The effective operator expansions of operators Q?Kk}
LR gkRoky
Q2 have useful applications. For example, effective operator

expansions can be used to find particular types of contributions of the
Pauli Hamiltonian (table 2.4) when restricted to a single configuration.

An overall comnstant energy can be found by inspection when the Pauli

Ok ok
Hamiltonianis expanded in components QZ . The operators

(nO;nO) are equivalent to mao/ﬁ(hé+2) » 80 collecting all terms com~

posed only of operators of this type gives a contribution proportional
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Rk <ok}
Effective Operator Expaunsion of Q2
LRk Kok ( - Xk Kok
3, et o .i 0 . ’f“ Lrarge Y 2 2 e g
}<lkl)<2 L (n"9° )'%(n 0"
rl 1 1 f s I ?
8)2 5“’ 6)‘2’ 6“" I /2 /2 )<li !0 0 kli
I T I o7 RV Ay || |
’ DRk k] 2<1/Z 2 Koy 07 07 ko
DKok sKosk,]
o s s 5
3 X X k, k k
1 2 1 2
\ J L J
§ 7= "=k 4K =K Xk Kok

. (-1) 2727272 pegeamgrye B2 Znn"o"””}

R
(n i 2 2(n"0">]“§

J—"‘"“\
7<a

X K Kok a3y Kk \
b 5% aapntle T Paenes | (7 @ni T Pan 5
(nd) L K
LA IR () |
4 (ml))<+k < y > < r}’i)( (nﬁ)] >
Ix, Yo X1k, 0 EI |
)L ) )

Equation (2.92)

to the identity matrix.

Contributions the restricted Pauli Hamiltonian in the form of the
spin-orbit operator, (2.83), are also of interest for constructing the
effective Hamiltonian given by (2.40a). This was accomplished by Blume

33

and Watson for a configuration with a single unfilled subshell (n{),

by first resolving the Pauli Hamiltonian into components of the form of
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Ok Roky)
4, and then inspecting the matrix elements with determinant

wavefunctions for all contributions proportional to E ‘?ess

Alternately, the component operators can be expanded in the form of
PR
2
FADO0 0 hing) or W

. Then, using (2.91) all terms proportional to
OO( PomhTy o ﬁ(ll)o(nO;nO) can be found. The
terms of this type have matrix elements proportional to those of énﬁs
ﬁ(ll)o(nQ;QO)e In this way, an expression for §n0 can be obtained
involving integrals over radial wavefunctions, without an explict opera-

tor g(r), or assuming a configuration with only a single unfilled sub-

shell.

SL Coupling

Another recoupling of the 2-electron temsor operators, connected

with the 2-electron SL basis functions, is related to the C12 scheme via

’?73012(}(]}{1)6< ))zkﬂgy AT HQH) 1
9
Lils] i 1 1 2 2 l l 2 = S [SﬂgLﬁgsngL”} /2
Sy ity it
\’D<1,k19)<29k2] SLS"L

(2.93a)

o (87L78"LM¥K
(ny 09515 lynply)

and the inverse transformation
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(S L S"L”}}{k
(0] §no 05 U nb45) 1 :
» bl oL U DXk X kpl 2 (2.93D)
\[8”,L7,8",L"] klklkzkz

( ( ]

i 1/2 1/2 )<ll I(}i i kll

il 1 i P 1 I lz():lklkzkz)Xk (TR

< /2 /2 )<2> <02 OZ kz) frq (ﬁlélﬁzﬁzan Q 6 )

( | |

% g° gt ? g iLa L" ”E’ i

The alternate coupling scheme, C,., is parameterized by the intermediate

SL

angular momenta (S°L7S"L"), and factorizes like the Cl2 scheme into

1mleae 3 §> and

pairs of coefficients <C, (L’ L"ykql ¢

Y& 1} 2 & 7y, 11 & I3 & 131 113 13
<CS(S S )Xﬁlslpleaeszp2>a CSL couples 019 62 to L%, 1 Q to L', and

L°, and 1" to k, while the parallel scheme is used to couple the spins

to Ko

£ (§ V't "pl) and (§imYs%ul!) are exchanged in the C scheme, a

11871 pmps Yy ST,

11
, results. From the properties of the 3=j or vector cou=

"
pling coefficientsgzg’go this CSL is related to by a change in phase:

e
new scheme, CSL

1] ¢ 7 ¢ . it 9' 7? 7‘ — 1) ¢ o ® 'Y 11 'V '?
S @Rl U Umy P igmg> = <Cp (L Kal Fimg D jm g >

gL

= (=1) <€, (L L™kql ] ¥ § Ymt > (2.94)

L4 4 111
oy omy Bym

A similar relation applies to the spins, so that
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ﬁ (nlgl Zgzsnv anzgg) = (ZGQS)

U+ 5-L7-8" Cgp (@)KE n
» v s, 1% k)
(-1) Tog  (P1lgnplomoliony ]

Cgy (8)KK
As din the Ciz coupling case, the W mq operators are velated to the

o v . i 8 by the same linear transformation that connects the
m ) (m"'t)
Cqp (@)K

W s and the %: n -
mq mp’) (")
o

(m TU- )(mnﬁln)

numbers impliess

‘s, so0 the antisymmetry of the

‘s with respect to permutations of the l-electron quantum

SL(@)XK SL(@)Xk
L4 & ¥ " H 13
Wog  (RUERRIGRIERTEY) = A (ajdnd5sn 0ind0) (2.36)
Combined with (2.95), (2.96) implies that if (ng ?) = (n' Q )9 then
S"+L" must be even or the operator vanishes, and similarly, S°+L° must

be even if (nlgi) = (néﬁé)o

The SL-coupled 2-electron spherical tensor operators are sym-
metrized integral operators with kernels that can be expressed in terms

of 2=-electron wavefunctions:

oy FallT Nl
CSL(S L78" LMk

CHnl Bl o Y _
g (nlﬁlnzgzsnl 6 ) = (2.98a)
N Cgp, (87L78" LKk
3 SEX; dx; K (Xi PRy XL X[ )
1

1=1 <i, 1 2 ™ TR Mt M
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CSL(S"L’S”L”)K L’ i s’ g
K (R, ,%53%5,%5) = Y s s s
mq brm2emir2 y M M M
b raar Mpvaogn Mgeo_go Mgno_gn
(al)S’UMS’i s” x §" %( 1)L"»~JIL;3 L’ kv l (2. 98m)
L""Mse i MSHJ L“ML«? i ML”J
' (ST LM M %y, %) 02 i (S"LM_ M ik, x%)
{nﬂﬁi} -Sp L?s 19 2 {nﬂon} SH Liis 19 2
If the coefficients Béz take the form
f)? — 31
Yk Ykl - i [
B?; = (-D)F 372 ; R (2.99)
q Lﬁ q ai’ M

then the sum over the SL-coupled spherical tensor effective operators

becomes
== _Cq  (8)Kk
o Kk ~75L SR o _ex e, M EH_T KT _
ZB);q ¥ (nj#inolosnylinyly) = (2.100)
wq
$ 57 st O g
W W 1 172%2°71%1727 2
M==]J
PN CON
can be expressed by recoupling

and the operators W_
M
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Cgp (BKK)T
W (nﬁﬁanpévgnwgwnﬂbi') = (29101)
— 1717272
M
{Ss SW ’i)z; .
. 1 _.c (8J°J3"MJ
s k72 < ope g o (n]d{np 055070 00
Jogn | | u s
NI fﬁ
_Cgp (8373
where W _ is an integral operator related to the 2-electron

M

SLJ-coupled wavefunctions in the same manner as in (2.98). 1In the spe~-

cial case where J = 0

_Cop 1(87L7IS"LT)0
\[(ZJ+1) W (niqiningng myis) = (2.102a)
N Cor (S°L°IS"LTI)0
N SLJ
2 S&Xf dx’ K (%, ,x, x5 ,%x5 )
1=i,<i, S ) L,
Cgy 7(87L7IS"L" )0 J
K (x,x,3%],%5) = 2 (2.102b)
=]
§2 (S’L’JM:"X % )@2* (S"L"JM°X'? Xi)
{n’§°} X Rangmy e

2.2.6 8LJ-Coupled Basis Vectors

Although the N-electron determinant wavefunctions employed in
Slater-~Condon theory are constructed from l-electron wavefunctions that
carry drreducible representations of SU(Z)X0+(3)9 in general, a subspace
spanned by one or more configurations cannot be invariant with respect

to the independent rotations of the spin and space coordinates of all N
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An example of the LS recoupling scheme:
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electrons because of the antisymmetry requirement. Atomic Hamiltonians
are invariant with respect to identical rotations applied to all eleéw
tronic coordinates, although many components of an atomic Hamiltonian
are spin independent. For this reason it is convenilent to transform the
N-electron central field determinant wavefunctions into a set of basis
vectors that carry irreducible representations DJ of SU(2)E
[SU(Z)XO+(3)}9 making the Hamiltonian matrix block diagonal, and remov-

ing of the (2J+l)-dimensional degeneracy associated with each DJ=

The effective operators L(nO)qs S(nﬁ)qg and J(n(})q = L(nQ)q +
S(n{))q defined through (2.81) and (2.82) commute with permutations of
electrons, commute with their equivalents for any (n§‘) 4 (uf), and
are a representation of the Lie algebra for the simultaneous rotations
of all l-electron wavefunciions {¢nomfd | ng;yzg m=={,cco;,0} on any
subspace spanned by products of l-electron wavefunctions of this type.
The existence of these operators implies that the determinant basis vec=
tors of a configuration Q = {uﬁgs@egu%} can be transformed to a set of

w
antisymmetrized products of wavefunctions §n10 EXISILlMiMé], oooy
171

S L
1 1
] that carry irreducible representations D 8 D "H...

(s}
. PP
én p[dpprpMLMS

w T T

L
8D Po D P of [SU(Z)X0+(3)]p, where the di’s are indices used to distin-

S, T,
. , . , i i
guish among any identical representations D "8 D that may occur.

These antisymmetrized product wavefunctions can be reduced by any
coupling scheme to irreducible representations DJ under the restriction

SU(Z)C:[SU(Z)XO+(3)]pa A common choice 1s successively couple the §7s

and the L’s in the form S19 S2 to §2, then §2’ 53 to §39 and so on until
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Spm19 SP are coupled to §p9 while a parallel coupling scheme is used on

the L°s to couple to ipa Then §p and ip are coupled to J. This reduc-
tion, SLJ coupling, is often used when Hamiltonian matrices are expli-
citly constructed and diagonalized. The difficult part of this scheme
is the construction of the antisymmetrized wavefunctions @mﬁiSLMSM },
because the individual rotations of electrons described by one of these
wavefunctions do not commute with permutations. A coupling scheme or
pairwise reduction of representations of [SU(Z)XO+(3)}mlof uwrproducts of

(nf) electrons cannot guarantee the resulting wavefunctions are

antisymmetric.

Fractional Parentage

.Racah8 found an iterative solution to the problem of constructing

the wavefunctions @féEXSLMSﬂL], using an earlier concept of fractional

parentage. The solutions took the form

fasmgn | = 5 (IEEheeny @Yo "L, 0 sasnngy (2.103a)
«SL
@w[om’l&-s”f,o;dsmsmﬂxp“,XLUJ = (2.103b)
s ol
- L}l/z : 1)Sa= /Z%SJVL“QML; s i S} {L b L §
2 9 = ea
P LM§ PN J LMi " MLJ
UL I e
9 QiSLM§Mi§x19eesgxukl]¢nomp(xu2

where (@me%ff w
Shi"YSL) is a coefficient of fractional parentage, or cfp.

Standard conventions have been adopted for phases and the selection of

states (QQ&SL) when several states with the same SL occurgée These
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choices can be related to a chain of irreducible representations carried
on the supspace of urelectron determinant wavefunctions constructed from

8’299 The chain of subgroups begins with the

the {¢n0m§} wavefunctions

antisymmetric representation of the unitary group U{w) induced from the
1

vepresentation D /ZﬁDé carried by each electron and ends with represen-

tations DSQDL

The watrix elements of the l-electron spherical unit tensors

ﬁ;g(né) (the standard cfp’s are real) are given by:

Wi, . & rd # k ul El .
(0™ s L omgm ﬁq(n@)]o KOS L M, ) =
, S’sMS,f s x ") L’«ML;f L. k1]
- - . 4a)
(1) My MSH}< 1) t“ML' . Mi”j (2.104a)

(0°5 s L W ) s

(s I mn s ) = ween P s Y2

s (31>L+s+s +3/2

ofSL

(2.104b)

ﬁ.’.._.,..iv...._ﬂ

IS 0% s L) (TS e s

Standard cfps, (QuHSL) states, and the reduced matrix elements of
the unit temsor operators Uk(né) = ﬂE'WOk(nO) and Vkl(nﬁ) =
V(Zbii?’wlo(nﬁ) have been tabulated by Nielsen and Koster34e With this

information, the matrix elements of a 2-electron unit tensor can be cal=

culated via
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. (x k.ﬁ )ﬁk
<§xti’SyL’MS¢ML,] qul ! (n Gn63n0n0)1§ Ei"S"L” SHMLn]> =
S’sM.S,fS” x s L’wML;fL’ x L)
(-1) l [(=1) ! | (2.105a)
‘Mss ={¥ MS"J iMLp ={] ML”J
(X k Kok )Kk
(s B2 P agng sngng ) s L)
Xk Xk e
(s i ani 2 Fan PR teste) - -
( [
— — Ik, ¥ le ikz k kli
o ¢ 1] 4 i <
(7,51 V2 (oSS LAY | (2.105b)

| a- wl | 9
oSL !S s 8 L L L

A

(0% s 1 1 ) s g sl ()1 1 s )

With (2.91), effective operator expansions, and the above expressions
for reduced matrix elements, all matrix elements of the 1= and 2~
electron operators can be calculated between (QuaSL) wavefunctions.
With sultable recouplings, all intra-configuration matrix elements can
be calculated with these expressions, and with these same principles,
the inter-configuration matrix elements as well. Calculation of matrix
elements by these techniques are discussed in detail by Cowang3 and a

few more comments on this subject are made in chapter I1I1.

2.3 Parameterization of Effective Hamiltonians

Consider a subspace X of the N-electron Hilbert space spaunned by
the set of orthonormal N-electron wavefunctions Q = {@S | a=1l,000,f}0

Since X has dimension £, upon restriction to X, an operator Q with a
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domain D(Q)2) X will have an fXf matrix representation M(Q) given by:
N N
W@, = (2]ole) (2.106)

Equivalently, the operator Q can be replaced on the N-electron Hilbert
space by the effective operator (a "™" 1s used here to denote the res-

triction of an operator to X):
o f ];%N
Q = § M(Q)ab ab (2.107a)

Following equation (2.9),

A= el e (2.107b)

a

The matrix elements M(Q)ab are also given by:
M@y, = sc| e | (2.107c)

In principle, there are fz linearly independent equivalent operators on
X, but if the operators considered have any additional symmetry propeyr-
ties, this number is reduced (e.g. Q self-adjoint, QT = (J, Q can have
only £(f<1) linearly independent components). This section discusses
the relationship of the independent components of an effective operator

to its symmetry properties, particularly in the case of the N-electron

Hamiltondian.

2.3.-1 Effective Hamiltonians

The symmetry properties of H, the Hamiltonian for an N-electron
system, and the structure of the subspace X determine the possible set

of linearly independent operators that can be used to represent H. 1If W
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has a group of invariant symmetry transformations G, then assume X car-
ries or is minimally extended to carry a unitary representation of G.
The representation of G carried by X is a subset of the unitary
transformations on the basis vectors Q; an irreducible representation of
the f-dimensional unitary group U(£). The operators ﬁib are the
representation of the Lie Algebra for U(f) on X, and as such carry the

%
reducible representation U(£)BU(L) 029’35936537

The operators ﬁﬁb can be transformed into families of operators
that carry irreducible representations U(f) via the vector coupling
matrix that reduces the representation U(f)@U(f)*a The symmetry
transformations of G on X are a subgroup of U(f), so on restriction to
this subgroup, irreducible representations of U(f) become reducible into
irréducible representations of G. Since H is dinvariant under the
transformations of G, H is a linear combination of the operators that

carry identity representations of G.

For a suitable choice for X, the number of independent components
of the effective Hamiltounian operator fl is often less than the number of
distinct eigenvalues of the matrix M(H). In this case, H can be con-
sidered a vector in the space spanned by its component operators, and
its coefficients treated as free parameters (within constraints such as
Hermiticity of M(H) and physical considerations). The optimal set of
parameters give the best agreement between a set of observed energy lev-
els and the eigenvalues of M{H). This parameterization is implied when
"effective Hamiltonian" is referred to here in the context of a semi-

empirical theory.
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20302 Unitary Decomposition of the n-Electron Operators

A major simplification in the parameterization of effective opera~-
tors on X occurs if X i1s spanned by determinant wavefunctions. ¥For sim-
plicity, let Q be the set of all N-electron determinant wavefunctions
constructed from S = {¢d I d=1,.00,d}, a set of orthonormal l-electron
wavefunctions; Q = {@i | AC S}, and X has dimension f = [%]a S is
chosen so that one or more irreducible representations of the symmetry
group G of the Hamiltonian are carried by subsets of 5. The transforma-
tions of the group G can regarded as subgroup of U(d), the set of uni-
tary transformations on S In the case of atoms, G = SU(2) and the

wavefunctions of S carry representations of SU(Z)XO+(3)Q

The first step toward finding the linearly independent operators on
X is the reduction of representations of U(f) carried by the operators

upon restriction to U(d). The N-electron determinants O carry the

35,36, 37

irreducible representation {lN] of U(d), where [lN] is an abbre-

viation for the set of non-negative integers [AlgfssAdzp} that specify a

Wey136 tableau representation of U(d). The set of all linear operators
i #

acting on the basis set W carries the representation lejﬁilN] of

=N

U{d), which 1s equivalent to {leﬁ[ld ]@[ﬁldjg’i and can be reduced to

the direct sum of irreducible representations:

] { min(N,d=N) . 1 ,
(1Mo 119 Y 19t~ | o7 g 2192k 1 1199 (9, 108a)
l k=1 )

Each representation on the right-hand-side of (2.108a) is dirreducible
and occurs only once. The reduction is perhaps simpler with the res-

triction SU(d) CU(d): [rd] for any integer r becomes the ldentity ([0])
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e

representation (if <0, [rd]EE {§rid]*)37

Because Hamiltonian operators generally act on the coordinates of
only one or two electrons, 1t is convenient to expand them in operators

Ezbg n=1,2, as in (2.65). These n-body operators can also be reduced

according to their transformation properties under U(d)gge It is clear

from (2.70) that the operators Ez are contractions of the operators

b
{ﬁN | A,B (28} that span the space of all operators on X, and this
AB

a

relationship also implies that the operators ol

o CATYY the representa~-

%
tion {ln]&[ln] of SU(d). This representation is equivalent to

{1n]®[ldmn] and reduces to a direct sum of irreducible representations
min{n,d-n)
(18197~ o1 + s 12K, 1972k (2.108b)
k=1

Again, each irreducible representation in the sum occurs ounly once, but

the reductions for the n-, (d-n)-body operators are identical. The

dimension of a representation [A] of U(d) or SU(d)29’37 is
d - j=itA,-A,
dim(iAyeedg) = I - (2.109)
1 d s j=i
I1=1<j

but the number of independent components an n-body operators is related
to the number of identity representations contained in the reduction of
SU(d) restricted to the symmmetry group of the operator involved (e.g.

O+(3) or some point symmetry group).

In the common situation where n < min(N,d-N), the n-electron opera-
tors that carry various irreducible representations of SU(d) can be
recognized by their trace properties. It follows from the contraction

property, (2.70), that the traceless n-electron operatorsze9 {(i.e. Qn
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such that
d
S 5 m(q ) = 03  i,7=1,2,000,n (2.110)
dpoet Py By By
J
. . n,d-2n
and m(qn)ab as in{(2.60b) ) must carry the representation [271 1 of
5U(d). For example, when n=1:
d=2
~121°7°0 o [ . PR
Q ZB Lm(ql)c(g 5(1(]3 m(q,;) | EC(B (2.111a)
ol = W A (2.111b)
m{q,) = < I m(q,) (2.111¢)
1 d (o1 1ddo
Configurations

Wavefunctions belonging to a configuration carry the antisym-

b

ul
metrized irreducible representation {[1 "I,[1 "1,c.0,5[1 P]} of the
direct product of unitary groups U(dl)XU(dZ)X“eXU(dP)e The direct pro-
duct representation can of course be regarded as a subgroup of

U(dl+d2+sae+dp)a The operators Eg factor into components corrvesponding

b
to each representation of U(di) as expressed by equation (2.63), and the
n-electron operators can be resolved with respect to jrreducible
representations of the unitary groups U(di)o Within a configuration,
this can sometimes be accomplished by resolving the matrices 1'ii(cfl)a.b

into components that are traceless or proportional to the traces with

respect to pairs of indices corresponding to the same set Sia

Inter—configuration operators can be resolved by considering situa-
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tions such as (u&suﬁ) R (uﬁml,u%+1) as a new configuration carrying a

representation of U(d,+d,) X I % U(d,), merging the sets S, and S..
i k#,3 k i 3
9

However, not all operator representations of U(di+dj) will occur,
because of the restriction on the number of elements allowed from Si and

Sj used to construct the determinant wavefunctions. Usually inter-

2

ab with

configuration operators are resolved into 2-electron operators E
no common indices that can be contracted, and as such are linearly

independent of all the intra-configuration operators.

2.3-3 Subgroup Decomposition of the n-Electron Operators

A method for resolving the n-electron operators into linearly
independent components is to consider the reductions into irreducible
representations of the operators on restriction of U(d) to its various
subgroups. Juddzg has studied the properties of the operators under
various symmetries, and in a second-quantized creation and destruction

39,40, There are two basic choices for the chainsg of

operator formalism
subgroups: SU(4§+2) ) SU(2)xSU(Z2{+1) I SU(Z)XO+(26+1) ) SU(Z)XO+(3)
and SU(4§+2) O Sp(4f§+2) D SU(2)x0T(2§+1) 2 sU(2)x07(3), where

Sp(4{+2) is the symplectic group of 4§+2 dimensions generated by the
unit tensors ka(nb) for x+k odd. For f electrons (§ = 3), an addi-

tional link in the chain can be added with the group €(2); O+(7} e}

c(2) 5 ot 3).

The representations of SU(Z)XO+(3) carried by the l-electron ten-
8018 {WKk(ﬁO) F'x =0,1: k=0,1,¢00.,20} are self-evident, but their rela-
tionships to the other groups are not. WOO(nO) becomes the identity

representation and the others carry the representation [214§] of
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SU4H+2) . [Zléﬁj branches to the irreducible representations (20...0)
and (110...0) of Sp(4{+2) (the representations of Sp(2)) are given by v
. . . ka

non-negative integers (G},eeegﬁb) ), carried by the tensors (nf)
with X+k odd and even resPectively36e Then the tensors with k even (and
§S1>

[og

a fixed projection 7 for X =1) carry the representation (20 ok

O+(2§+l) while the the tensors with k odd carry the representation

(110Qm2)29,40e

If § = 3, the unit tensors with {k = 2,4,6}, {k = 1,5},
and {k =3}, carry the respective representations (20), (11), and (10) of

G(2).

The reduction of the 2«electron unit tensors into chains of sub-~
group representations is considerably more complex. The tensors
CSL(S’LpS"L”)
{W }y S°+L° and S"+L" even, must carry the operator
representations of SU(4(+2) on the antisymmetric subspace of w, (n{)=-

electrons when 2 < w< 4f. These operators can be coupled, recoupled,

and expanded via:

_Cgp (87L7S"L"Kk
W

q (nfnf:nlnd) Iy
S ——— = 2 DRy sy oX gk y] "2
\I[s”,L7,8",L"] Xk ok,
( 1 )
;1/2 by, ><1§ ;6 b kl; R - B
SRR 7 SN T e [ i i 2<no>}};§ (2.112)
l I [ :
’Sp SYP }’?! iLﬁ LH i;l
\ ) )
fl 7
e 1Y y, | [ ]
RPRE- 3 RS S IV |
%, Y ¥ > (“‘”]
|2 2 bk, 0 k™
5 J L J
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CSL(S’L’S"L”)?&Q
Linear combinations of the W unit tensors can be used to

find tensor operators that carry the irreducible representations of

~

SU(4(+2). TFor example, the trace over all 2-electron operators Ez

ab’
equivalent to
] (8L _C. (SLSL) 00 19
2 [S’L]/Z éii“é — @ o (n{nfndnd) = %?1) - 5 3
ST X=0 k=0

SL

o )< k N
L ’ 1™ FE Q)T (ad) - z%%]
ﬁ":.:)( qs""*k Wq "“ﬁ‘"q Q

must correspond to the identity representation [0]. The reduction of

the effective Coulomb operator, EJAg has been carried out by Racah8 and
12

also presented by Juddzge
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ITI. Computer Calculations

This chapter is a review of the ab-initio calculations performed by
Cowan’s computer codes, and least squares fitting the eigenvalues of a
parmeterized matrixvto a set of experimental energy levels. Section
(3.1) reviews the self consistent field calculations controlled by the
codes RCN and HF(mod7), while section (3.2) briefly reviews the con-
struction of the Hamiltonilan matrix and ancillary calculations involving
the eigenvectors (gyromagnetic ratios, line strengths, lifetimes, etc.)
performed by the computer code RCG. Detailed accounts of these calcula-

3,10-13,43-45 only a brief outline is given

tions are given elsewhere,
here with a few additional comments. Section (3.3) is the review of

least squares minimization.

3.1 SCF Calculations

Most schemes for obtaining radial wavefunctions for the gb-initio
form of Slater-Condon theory involve the solution of a set of coupled
integro~-differential equations by an iterative procedure known as the
self consistent field or SCF method. These equations are arrived at by
assuming that a matrix element or linear combination of matrix elements
of the atomic Hamiltonian operator between central field determinant
wavefunctions is stationary with respect to variations of the radial

wavefunctions.

Usually, a set of radial wavefunctions is found for each configura-
tion. ¥For a single configuration consisting only of closed subshells
(uﬁ = 4Qi+2; i=1,000,9), there is only one determinant wavefunction in

the configuration, so equations for the radial wavefunctions can be
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found by variation of average energy (the diagonal matrix element) of
this state. For an arbitrary configuration, Slaterél purposed that the
average energy of configuration

Byv = E;;J“Ziwﬁwz)lﬁ‘%(zﬂ (3.1)

should be stationary with respect to varilation of any of the radial
wavefunctions, as a zero order Hamiltonian used in a Slater-Condon
theory perturbation scheme will be degenerate with respect to all the

determinant states belonging to the same configuration.

For the non-relativistic Hamiltonian

N j N

Ho= Spl-Z+ 5 2 (3.2)
. i r, ‘s r,,
1=1‘ 1J i>3=1 "1ij

the average energy of configuration becomes (a spin-orbit interaction of

the type g(rf?FE? does not contribute):

( 12
q q ug(uﬁml) [ 0 2§ ,+1 iéi k Oi§ K ]
E = Swi() + 33— | F (i3;1) - ="— 3 (i)
T j=1 2 Al S0 0 OJ
( 12
q 0 1 !Qj k Ojl K
+ = woay | F (i:9) -5 g 0 0 0' G (i:9) (3.3a)
l=i<j © k>0 ]
Where
@ [ 2 §.(p.+D) ]
1) = Cdep (py]. 4, 273 0 22
5(; o ar r? r | By () (3-3)

(i39) = RE(L,331.9) (3.3¢)



¢®(139)

Rk(agc;bsd)

and

Uy (r38)

3101

= RN(4,733,1)

~70-

(3-3d)

o (e8]
= %drgdsPa(r)PC(s)Uk(r;s)?b(r)Pd(s) (3. 3e)

"
! ;”k"';i r<s

< (3.3f)
| Gk

| " 128

L Y

Hartree-Fock Equations for the Average Fnerpgy of Configuration

Requiring the quantity

E -

3
av T 2

w0
&Lé.S\dr
{e= 10

ll

2, & R
I?i(r)l + ig'u%uﬁéij§;drPi(r)Pj(r)

#3

to be stationary with respect to variations of the radial wavefunctions

leads to the configuration

table (3.1).

radial wavefunctions.

average Hartree-Fock or HF equations given in

The <;’s and the éij s are Lagrange multipliers (%ij = 4ji
and %ij = (0 if Oi # Oj) used to preserve the orthonormality of the
These equations are solved wnumerically by
42,43 code. Griffiné4

HWF(mod7), a modified version of a Froese-Fischer

explains in detail the method of solution and the numerical procedures

used by the computer code,

The filrst step in the

some initial estimates for

genic, solutions to some central potential model, etc.).

so only a few highlights are given here.

SCF Procedure

solving these equations is the selection of
the radial wavefunctions (screened hydro-

Then these
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Table (3.1)

Configuration Averaged Hartree-Fock Equations

[ 2 b i+ 2(2-Y, (x)) )
|- d2+ - ; - rl -Gl Ry =
| dr r ) (3.4a)
2 -
+ = X (r) - Zuww<,.P. (1)
r 1 j%ij 1373
P.(0) = 0 lim P (r) = 0 (3. 4b)
=200
FRERE:
st e
X, (r) = Sw Yy 2 Y (i,351) (3. 5a)
i . ji 3 kﬁOLO 0 0J ’
¥, () = Y(r) =y (r) (3.5b)
q 0
Y(r) = S owY (F,5;:1) (3.5¢3
o] J
j
0 26i+1
yi(r) Y (isigr) + (lili“l) 46 +1
i
- [ 12 .5
0y k0 (3.5d)
s | Y (i,1i310)
k>0LO 0 oJ
k o0
Y (i,j:r) = Shds ?i(s)rUk(r;s)Pj(s) {(3.5e)
0
éig éij — Lagrange multipliers (see text)

estimates are used to calculate Yl(r) and Xl(r), the potential and
exchange functions, and the off diagonal energy parameters or &ij’so

The éij 8 satisfy
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‘9 7 %1 T 60 (0w

o9}
Car [Y (r) - ¥, (r)JP ()P, ()
3 i 0

g N\

Carl ]
+ gdrixi(r)Pj(r) - Xj(r)Pi(r)|> (3.6)

[ ]
© | i] -
= 6 —t_ 5| !iLs =~LJ
T I i R 2

[[46+2 -y IRE(13510) = [41+2 - u333k<ij;jj>]

vhere § = Giz éj’ and can be computed with this expression if wy # uﬁe
If wy = mﬁg the@ the average energy is invardiant with respect to any
real orthogonal transformation applied to Pi(r) and Pj(r)e In this
case, any solution of the configuration average HF equations that has
linearly independent radial functions with the same "{" and occupation
number can be arbitrarily orthogonalized. The off-diagonal energy
parameters can be estimated with a trial and error procedure, or elim-
inated if the SCF technique used to solve the equations leads to

linearly independent radial wavefunctions.

The next step is to integrate the resulting differential equations
to obtain a new or output set of radial wavefuntions. These functions
are then used to compute potential, exchange, and éij rerms for the next
iteration or potential cycle. For the remainder of the procedure, the
previous steps are vepeated until the output radial wavefunctions are

equal to the input radial wavefunctions to within the desired accuracy.

In practice, the convergence is expedited by taking the input

radial wavefunctions for the (m=+=1)St cycele as linear combinations of the
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input and output radial wavefunctions from the mth cycle:

+1 . _ ™ . m
P:,Q_(IHPUt) = CiPn,O,(1BPUt) + (1 Ci)Pn_
i¥4 ivi i

(output) (3.7)
i

0

The acceleration factors, {Ci | i=1,000,p3 Qici<1}s can be adjusted dur-
ing the course of the SCF cycles to speed convergence, and are sometimes

esgential in obtaining any convergence at all.

Numerical Integration of the Radial Wavefunctions

For each potential cycle of the SCF calculation, the output Pi(r)'s

are solutions of inhomogeneous differential equations of the form:

[ 42 ]
L- ;”E’+ fi(r) - éi!Pi(r) = gi(r) (3.8a)
r

with the boundary conditions:

PO = 05 Lm R = 05 IRl =1 (3.8b)

The %i’s must be chosen so that the Pi(r)’s are normalized, and have

n,- §.-1 nodes.
i i

The radial wavefunctions are represented as values at points on a
numerical grid. Since the functions oscillate more rapidly near the
origin, the density of grid points must be greater as r-»0. In HF, this

is accomplished by making the change of variable

t = lo(Zr) (3.9a)

P.(t) = B 1/ZP
5 = r{t) i(r(t)) (3.9b)
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with the corresponding changes are made in configuration average HF
equations The §£(t)’s are represented on a numerical grid of typically

600 equally spaced points.

With an asymptotic form for Fi(r) as r-»0 and an estimate for €4
the differential equation for a given Pi(r) can be accurately integrated
outward to the matching radius, the point where the curvature of Pi(r)
changes sign (somewhere after its last node). The asymptotic forms of
all the Pi(r)’s at small r are determined by the éi’s and the initial

"slope'" parameters

1 4+l
ag = lim r P.(t) i=1,2;000,q (3.10)
i
r=>0

with the convention that the a ‘s are always chosen to be positive.

0

Cowan’s codes obtain the matching radii as well as initial estimates of
the Pi(r)'s, the éi’s, and the aéﬁs for the first cycle of the SCF pro-
cedure from an approximation to the configuration average HF equations
that leads to homogencus differential equations (see the HX approxima-

tion below—in this case each matching radius corresponds to a classical

turning point in a potential well).

Similarly, the asymptotic form for a given radial wavefunction as
r->m allows (3.8) to be integrated inward to the matching radius, the
point where the outward integration is ended. The large r dependence of
the Pi(r)’s is a function of the éi’s and another set of scale factors

o

1isg which can be simply chosen to make the radial

analgous to the a,

wavefunctions continuous at the matching radius. The precise asymptotic

forms of the radial wavefunctions are difficult to obtain because of the
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presence of the exchange and < terms in (3.4), so these are neglected

ij ’
and essentially the WKB solutions for the homgeneous differential equa-
tions are used in the large r vegion. This results in some errors,
mainly to the wavefunctions localized nearest the nucleus, as the
exchange and off diagonal terms cause some very small amplitude oscilaa~-
tions in the tail region of these wavefunctions. Since the relative
energies of the low lying atomic levels are most sensitive to the radial

wavefunctions with the greatest radial extent, this source of error is

tolerated,

s

Then the éi’s and the al

Oﬁs are adjusted and the integrations

repeated until the outward Pi(r)’s have ni-liml nodes, the derivatives
of the radial wavefunctions are continuous at the matching radii, and
the Pi(r)’s are normalized to unity. In practice, linear combinations
of the homogenous and inhomogenous integrals are used to obtain con~-
tinuity of the derivatives at the matching radius, so that two numerical
integrations of each radial wavefunction are made and only the éi’s are
adjusted until the conditions (3.8b) are obtained. The entire numerical
integration procedure has been explained in detail by Griffin449 includ-
ing variations for cases where convergence of the SCF calculation is

difficult to obtain {(e.g. configurations with excited d and f elec-

tronsés)e

3-1.2 HX Approximation to the Eav Hartree-Fock Equations

Cowan has developed an approximation to the configuration average
HF equations resulting in homogenous differential equations for the

radial wavefunctions. This is equivalent to replacing the off-diagonal
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and exchange terms with a local potential in (3.4), although the local
potential term used 1s functionally dependent on the radial wavefunc-
tions. Cowan’s potential is a semi-empirical improvement over a similar

approximation proposed by Slater465

Slater replaced the exchange terms by a local potential, expressed

in terms of the spherically averaged electron number density, p(r)z

3 (x) V3 :
Vs(r) = (:{3[24%%] (3.11a)
9 4 2
p(r) = iilwipi(r) = iil wiPi(r) (3.11b)

Vs(r) has the same functional dependence on the number density p(r) as
the exchange contribution per electron to the average emergy of a zero
temperature free electron gas. The radial wavefunctions are found by

solving the equations:

[ 2 3. (1.+1) )
d it7i 1
E - 2 + % -V (r)jyi(r) = <P (1) (3-12a)
Where
vi(r) = §l§»:§X£ELL -V (r) 319

Slater chose = 1, but 1if the radial wavefunctions are chosen by varia-
tion of the average energy of configuration with the exchange terms
approximated by the volume integral of P(I)VS(}:)5 o = 1 is replaced by
o« = %3. In this approximation, all the electrons have the same central
potential, so the Pi’s are automatically orthogonal and no off diagonal

Lagrange multipliers are required.
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The radial wavefunctions obtained by Slater’s approximation or HFS
method are significantly different from the HF radial wavefunctions |
because of the asymptotic behavior of the exchange potential. Cowan
modified and adjusted the exchange potential to find an approximation in

better agreement with the HF results, and arrived at a new local poten-

tial:
) 1 )
Vi(r) = an[Z‘.Z(r);-*v (r)] +V§;(r) (3.13a)
Where
i - ] o’ (p1(24 V3
vi-(r) RS LP”’kz/(ni“li)] lp )i P) (3-130)
P’ = p () = p(r) = [min(2,w)]p, () (3.13c)
Pl (x)
pi(x) = 2 (3.13d)
[z

and £(x) is a factor that improves the orthogonality of radial wavefunc-
tions with the same "{" but different "n" values. Usually, f(r) = I,

but in some cases f(r) slightly increases the value of the potential in

for Gi>1 where Oial = Qi or inz = Qi and W, = 1s

; 1 S
? (3.13e)

L 1+k3(1=r/r0) 3 r<ry,
The point ro is the location of the mth node of Pi(r); where m is the
number of subshells with {§ = Qi and n<n, . kl = .65, k2 = ,70, and

k3 = .50 are Cowan’slz choices for the three empirically adjustable
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parameters.

Numerical Solution of the HX Xquations

The SCF calculation of the radial wavefunctions via the HX approxi-
mation 1s performed by the computer code RCN. RCN evolved from a code
implementing the HFS method written by Hermann and Skillmanag The
radial wavefunctions are represented on a numerical grid of 640 points
that are equally spaced values of the radius for blocks of 40 points.
The step size of each block increases so that the density of points
increases with decreasing r. The differential equations for each poten=
tial cyele are integrated out from the origin and in from the large r

region to a matching radius that occurs near Vi(r) = VE

The local potential approximation (3.12a) in place of (3.4) has
some advantages with respect to the numerical SCF prodedure: The dif-
ferential equations are homogenecus, so only the %igs are adjusted until
the Pi(r)’s have the correct number of nodes and continuous first
derivatives at the matching radius. Only one numerical integration of
each radial wavefunction is required instead of a homogeneous and an
inhomogeneous integral. This makes convergence of the SC¥ process much

easier to obtain.

3-1-3 Relativistic and Correlation Corrections

Cowan has introduced approximate corrections to the configuration
averaged energy and the radial wavefunctions due to relativistic and
correlation effects. As in the spirit of the HX approximation itself,

these corrections are perhaps best justified by the improvements they
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make in the agreement between the results of the HF and HX calculations

with experiment, rather than on vigorous theoretical grounds.
3,11 , ,
are derived from the l-body terms in

the Pauli reduction of the Breit Hamiltonianzga If the radial wavefunc-

The relatlvity corrections

tion equations satisfy the local potential equation (3.12), the rela-

tivistic mass~velocity and Darwin terms can be evaluated via:

i _ ¢ PEEEVN T
E = %drl’i(r)!@imvl(r)] P, (r) (3.14)
, 2 @ [ 2 ) 1-1
Ez = 360 0 %?*5\drPi(r)§1+'%j'[éiwvl(r)]} (3.15)
, i 0 . ]

[ im]{d 1]
14V dr o T x) Py (1)

These corrections are normally added to the configuration average energy
by the computer codes (Vi(r) is taken as the local potential of the HX
approximation for both the HX and HF calculations). TIf the radial
wavefunctions are determined variationally with these terms included in
the configuration average energy, the quantities between the pair of
Pi(;)’s appear as operators in the radial wave equation for Pi(r) in
either the HF or HX equations. As an option, Cowan incorporates these
changes in the radial wavefunction equations in his codes for both the

HX (HXR) or HF (HFR) methods.

The correlation correction to the average energy of configuration
is rather roughly defined as the difference between the HF average
energy and the experimentally determined average energy after relativis-

tic effects have been added to the HF average energy. Empirically 1t is



-89

determined that for heavy atoms the average correlation energy E} is

roughly -.08 Ry per electroné7s

A number of perturbative calculations of the average correlation
energy per electron of a zero temperature free electron gas have been
made48 for both high and low density limits. The correlation energy is
usually parameterized by L the radius of a sphere with volume equal to

the average volume per electron:

(313
rg = LAWPJ (3.16)

The average result of calculations of the correlation energy per elec-
tron of a free electron gas in the low density limit takes the form
E;(rs) = (15142rs)“19 Cowan used an approximate interpolation formula

between the high and low density limits of the form

1 _
e (r) = {4@;9) /2 +% (161421%)} 1 (3.17)

and computed the correlation energy via
] R4, = i
E, = EwE = aﬁ%’p (x)e, (r (r))dr (3.18a)

where

( . 711/3

| P (3.18b)
Lp(t)wpl(r)J

ri(n) =

However this method tends to overestimate the correlatlon energy of
the atom, presumably because it tends to count the contribution from a
strongly correlated pair of electrons twice. In an effort to avoid poor

counting statistics of an atom of relatively few electrons as opposed to
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an infinite number of electrons in a free electron gas, the correlation
energy is also computed by summing over the increments of in the corre%
lation energy as electrons are added to the atom in order from the most
tightly bound to the least tightly bound. This alternative correlation

energy is computed via

W,
q 1o ,
B, = 3 5 $rime (P (3.198)
i=1 p=10 ‘
where
ip T 2 1
r T(r) = imi S (w.=p)Pi(r)| (3.19b)
L3r j=1 d J

This correction improves the theoretical ionization energies com-
puted for various neutral atoms by differencing the average energies of
configuxation910 but there is little or no evidence for its usefulness
with respect to higher stages of ionization. Any user of Cowan’s com-
puter codes should be aware that the correlation correction is automati=-
cally added to the configuration average energies, because the outputted
values of various quantities may not be appropriate for any purpose
other than the ab-initio predictions of the optical spectrum of an atom

or ion.

3.1.4 OQutput Parameters

The programs RCN and HF produce absolute configuration average
energies, the Slater integrals Fk and Gk needed for signle configration

energy matrix calculations, and estimates of the spin orbit parameters

éﬂﬁs The program RCN merely calculates the HX approximation to énﬁ’



=0 =

2 o n {
X _ o 2 13 (1) .
§ 5 %drf’no(w (3.20)

ng T Sr

while the program HF estimates the spin-orbit coupling parameter from
the Mk integrals as described by Blume and Watson33e Additional radial
integrals are needed for the Hamiltonian matrix of several interacting

configurations, and for calculating the spectra from the resulting

energy levelss

The program RCN2 takes radial wavefunctions calculated by either
RCN or HF (interpolating the logrithmic grid used by HF to the block
linear grid of RCN) and calculates the Slater integrals Rk between con=
figurations of the same parity. In general, only the core wavefunctlons
are assumed identical for all configurations and the spin-—orbit interac-
tion between configurations is ignored, introducing a small error that
Cowan argues is within the overall accuracy of the approximationBS How=
ever, the program RCN2 can be used to calculate overlap integrals
between any pair of radial wavefﬁnctions5 and the Rk integral with any

four radial wavefunctions, so this assumptions can be tested if desired.

In addition, RCN2 calculates the reduced matrix elements of the
electric dipole operator between pairs of configurations of opposite
parity that differ in one radisl wavefunction (using the same ortho-
gonality assumptions as for the configuration interaction). As an
option, the electric quadrapole reduced matrix elements can alsc be cal-
culated, supplying all the information needed to calculate electric
dipole, magnetic dipole, and electric quadrupole transition probabili-

ties,
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3.2 Hamiltonian Matrix and Eigenvector Calculations

Hamiltonian matrices are constructed in a stralght-forward fashion
by Cowan’s RCG(mods 5,6,7) computer codes based on Racah’sg techniques.
The Hamiltonian matrix is diagonalized giving the eigenvalues, eigenvec—
tors, and gyromagnetic ratios in the intemediate coupling scheme. If
the appropriate reduced matrix elements are supplied, the spontaneous
emission rates and line strength factors for electric dipole, magnetic
dipole, and electric quadrapole radiation are calculated, as well as
estimates for the lifetimes. The algorithms used are very well docu-

3,13

mented , 80 only brief commenis are given here.

3.2.1 Construction of the Hamiltonian Matrix

‘As described in section (2.2.6), Racah8 was able to systematically
attack the problem of constructing Hamiltonian matrices for complex con-
figurations by finding a basis set for (a)¥ configurations by group 2
subgroup chains of representations ending in irreducible representations
p°8pl of SU(2)x8U(2), and by using recoupling or "tensor algebra" tech-
niques. Basis vectors for N-electron configurations with more than one
subshell become antisymmetrized products of (n8") basis states,
%[né“KSLMSML], and the resulting direct product representations of
SU(2)%80(2) are veduced by successive SL coupling to irreducible DS@DL

representations, and finally to representations DJ of

SU(2) ¢ sU(2)x8U(2).

The program RCG represents all configurations of a given parity as

ut
g~tuples of the form (éllyeaegoz ) and calculates the matrix elements

for the Hamiltonian (2.40). The matrix elements are calculated with the
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effective operator techniques described in chapter I1; the cfps
appropriate to each configuration are supplied and all unit tensor
reduced matrix elements and recoupling coefficients are calculated as
needed. Considerable recoupling of the SLJ basis vectors must be done
for the intra=configuration matrix elements 1f there are several
unfilled shellslg9 and the details of the procedure used by RCG ave dis-~
cussed in chapter twelve of Cowan’s textge Inter-configuration matrix
elements can be more complicated, and Cowan has grouped them into eleven
classes iﬁcluding expansions with the coefficients of fractional
grandparents (uncoupling of 2-electron states from the §"YSL states)

described in detail in chapter thirteen.

Although the SLJ coupling sheme is used to comstruct the Hamil-
tonian matrix, transformations to the jj and other schemes are calcu-
lated and the eigenvectors given in these basis if desired. Because of
these transformations, Cowan’s code constructs the states (L§)J rather

than (SL)J. The net result is a phase change:

<L'S"J"

QjL"s”J"> = (3.21)

& rd 93 nm 7 Tt
(wl)S FLAST L =T =T l\fS’L’J? QISWLHJW>

This convention has no physical consequences for the energy levels or
transition probabilities, but is of interest if the matrix elements were
used to construct a Hamiltonian matrix with lower symmetry (e.g. a cry-

stal field problem).
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302-2 Calculations of Spectra

If the SCF calculations are made for an atom or ion with configura-
tions of both parities, the program RCN2 that prepares input data for
RCG calculates the reduced matrix elements of the‘?)operatOf between
the appropriate radial wavefunctions. As an option, the reduced matrix
elements of the electric quadrapole operator are also calculated, so
that transition probabilities for electric dipole, magnetic dipole, and
electric quadrapole can be calculated by RCG. The transition probabili-
ties peraunit time for spontaneous emission by electric and magnetic

multipole radiation are given byégz

AR A ey 2 i) Mg V|2
) ) <§f‘Pm‘§i>l (3-21a)
[CAFDY LTOAGA+D) )
N
Pi - 5 rici(@i) (3.21b)

i=1
. 3 AL AL 141y 112 (20t ‘<§ !MAI%HZ (3.22a)
MA [C2A+1) 112\ (A+1) Elim 74
- 5w A [ ley [ T, 2] ) (2.220)
n 2 (2A-1) e’i)L}\%nl TR I °

where ¢ is the reciprocal wavelength in Rydbergs, the unit of time is

2

the orbital period of the Bohr atom electron h/dzmc , and §f9 §i are the

final and initial states.

The initial and final states are members of J-manifolds, §f =

@(YfJfo) and %i = @(YiJiMi), so the Wigner Eckart theorem imlies a

relationship between the transition probabilities for all components:
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£ i

[
1
(Yeapee| |y o) = zLMf no | |{(Yeagia?y o) |2 (3:23)

(QA is any multipole operator). Symmetries also dictate selection
rules: Mf“Mi = m; st Ji, and A must satisfy the triangle condition; J]c
and Ji cannot both be zero; and the product of parities of the initilal

and final states must equal the parity of the multipole operator.

If the light is observed from an isotropic source, the individual
Zeeman components (Mi T Mf) are not resclved, and all states of a given
energy are equally populated. The probability of observing a line asso-
ciated with a transition between the pair of J-manifolds from such a
source is proportional to an average over the initial states and a sum

over the final states and components of the multipole operator:

-1
A(yijl"”})/fjf)q}\ = gJiSQA(yiJignyf) (3624&}
gy = 23+l (3.24b)
- A 2 3
Sop 95 Ye ) = [(Yeaehayg a,)| (3.24c)

A

SQA(yiJi’nyf) is the line strength factor for the Q" multipole transi-
tion between the (ijf) and (YiJi) J=manifolds, and is symmtric with
respect to interchange of (yiJi) and (ijf)e The observed rate of spon-
taneously emitted radiation for a given line and an isotropic source is
proportional to the weighted transition probability gA,

gA = gJiA(YiJim%nyf> = ngA(Yfwa%YiJi) (3-25)
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and 1s also symmetrical with respect to interchange of the initial and
final J-manifolds. A quantity proportional to the induced emission or

absorption transitional probability is the weighted oscillator strength
gf,

= o L2
gf = gJif()’iJi@yjjf) = 5o O ngA()’fme}}’iJi) (3.26)
where the oscillator strength is taken as positive for absorption and

negative for emission.

The code RCG calculates the electric dipole gA and gf for each
transition in an array of configurations of both parities. The key
quantity is SEl(nyfsyiJi)9 the line strength, or its aquare root,
<nyfHP1HYiJi>e The details of how the code RCG calculates this
reduced matrix element in the SL basis set are given in chapter fourteen
of Cowan’s texts3 and when the Hamiltonian matrix is diagonalized, the
line strength factors are transformed to the eigenvector (intermediate
coupling) basis. An estimate of the lifetime of a given state is
obtained from the reciprocal sum of all the transition probabilties to

lower-lying levels in the transition array.

Gyromagnetic Ratios

Tf the light source is placed in a strong magnetic field, the indi-
vidual Zeeman components of a line can be resolved. For a weak uniform

magnetic field, the change in the energy of a given (YI)-level is given

by

A Il((T+g, ) « B lys> (3.27a)
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<Y3ll (g )11 YI>
DATEAPAR

<yam| T ym> = By (B (3.27b)

where'§ {(in Bohr magnetons) has been taken along the z axis, gyJ is the

gyromagnetic ratio, and 8 is the spin gyromagnetic ratio (g55260023)a

In SL coupling Bgy3 is given simply:

) J(IH1) + S(8+1) = L(L+1)
Bgrg = I+ (gg-D) 23 (341) (3.28)

The magnetic field operator is diagonal to first order in the (|SLJ)
basis (off diagonal elements with states of J° =J+1 are not considered),
so the gyromagnetic ratio in the intermediate coupling basis is given

simply by

gYJ = 2 {<YJ]dSLJ>!Z BgL] (3.29)

qSLJ
so the gyromagnetic ratios for the eigenvectors of the Hamiltonian

matrix are easily calculated by RCG.

so the gyromagnetic ratio in the intermediate coupling basis is given

simply by

ST o [(vausr)]* oy, (3.29)

The gyromagnetic ratios for the eigenvectors of the Hamiltonilan matrix

are easily calculated by RCG.

3.3 Least Squares Fitting

The method of least squares is commonly used to estimate parameters
of a theoretical model from experimental data. In this work the spec-

troscopic parameters of the semi-empirical Slater-Condon theory and the



~98—

parameters of isocelectronic sequence polynomials are determined by least
squares. The method is briefly outlined in thils section to define the

quantities used to characterize the least squares fits presented here.

3-3.1 Statistical Model

The paradigm for the least squares analysis is one or more experi-
ments with outcomes that are predictable, in principle up to random

50’51a A set of experimental quantities, x =

fluctuations
{elgezsa@egeN}, are determined to precislons represented by the errvor
estimates {0’,Gé,see,dh}s The experimental quantities are assumed to
represent a random sample from a multivariate normal distribution for N

independent random variables centered about the theoretical quantities

{tlgtzseesgzN}s

In general the theoretical values -re known only as functions of a
set of parameters {plngasg,pm}, and the point g‘ﬁ {éiggzseee,gﬁ} in
parameter space corresponding to the ideal theoretical quantities,
{gl;gzgaeagzﬁ}, must be found from the experimental data. The parame-
terization of the theoretical quantities often includes the measuring
process of the experiment, as well as the fundamental nature of the sys-

tem under examination.

Maximum Likelihood Estimates

A common method of estimating the parameters of a statistical model
is the maximum likelihood method. Given the above assumptions about the
experimental data, the probability of having obtained the experimental

quantitdles x = {el,ez,aeageN} for a specified set of parameters p is
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given by the likelihood function L(x;p):

_ - ( 2 ]
N N (e, =t{(p).)
L(X;P) = L f}—j:%*wj exp{ E,Lb > ””k;””gilgw“ { (3.30)

The maximum likelihood estimates for the parameters {Eiggésﬁeeanm} are
obtained by maximizing the likelihood function L(x;p) with respect to

the parameters p. This is equivalent to minimizing the sum of squares

Xz(p):
2
N (e, -t,)
XZ(P) - Sm.ﬂ.ffwzkw (3.31)
k=1 @k

where the random variable XZ(E) has a probability density given by the
chi-square density function for N degrees of freedom:
/21

2
P(X“3N) = —Smm—e
roe/2) 2V 2

exp @XZ/Z ] (3.32)

The maximum likelihood parameters ? = {§19§29°°°’§m} are obtained

by solving the equations

d;(x3p) = 0 (3-33a)
where
N e, ~t, (p) St (p)
, o k] k : ,
d; (x5p) = z*m~*¢§~M°~wg§j~~ i=1,2,00m (3-33b)

k=1 Gk i

Statistical Parameters

The random variables {di(xgﬁ) | i=1,2,.00,m}, are normally distvi-

buted with means of 0 and covariances given by
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) N ot, ot
o} = C, = EW &R . isj;l929“°9m (3@34)

If the theoretical quantities are linear functions of the parameters,
the deviations of the least squares parameters from the "true” parame~
ters (i.e. the quantities {@iégi | i=1,2,0-0,m} are linearly related to
the randon variables {di(x;§) | 1=1,2,.5.,m}), the least squares parame-
ters can be shown to be unbiased estimates for the parameters ;a The
covariance matrix for the least squares estimates is the inverse of the

covariance matrix for the di(x;p):

@éﬁ' - c;‘}l i,9=1,2, cee,m (3.35)
If the theoretical quantities are non-linear functions of the
parameters, the least squares estimates for the parameters often have
the sawe properties. For experimental data that are sufficiently pre=
cise, a random sample x = {elgezgeaa,em} will with high probability be
very close to the theoretical quantities {E&9529oaeaz.} (i.e-
!ekazkl = Gk)ﬁ Barring any pathological behavior of the theoretical
quantities as functions of the parameters P the least squares estimates
should fall within a neighborhood of the parameters E-such that the
theoretical quantities can be approximated as linear functions of the
parameters p. In this case the matrices Cij and C;; are obtained by

evaluating the right-hand-side of equation (3.34) at the point f.

. 2 , o . :
The residual sum of squares X (p) is a statistic, distributed
according to a chi-square probability density with Nem degrees of free-
dom. Thus Xz(ﬁ) is a useful test of the hypothesis that the experimen~

tal data {el,ezgsaﬂgeN} were obtalned from the model defined by equation
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(3.30). Also, the reduced chi-square, Xz(ﬁ)/(Nam)9 can be used to test
the relative likelihood of two or more models. The relative probability
of obtaining the set of experimental data from one model and not another
can be expressed in terms of the ratio of the reduced chi-squares for
the two models. Finally, if the precisions of the experimental data
represented by the error estimates {G1gﬁb,aaagﬁk} are only relative
error estimates, then the reduced chi-square Xz(ﬁ)/(Nwm) is an unbilased
estimate of the ratio of the absolute error estimates to the relative
error estimates. The expression on the right-hand-side of (3.34) must
be multiplied by this factor to obtain the best estimates for the

. . -1
matrices C and C "«

3-3.2 Spectroscopic Parameter Fitting

For the case of fitting the spectroscopic parameters associated
with the semi-empirical form of Slater-Condon theory, the experimental
quantities are the energy levels of an atom and 1on, and the theoretical
quantities are the eigenvalues of a Hamiltonian matrix for the confi-
gurations of interest. If the Zeeman splittings of the spectra deter~
mining the experimental energy levels have been observed, then it is
possible to fit the experimental gyromagnetic ratios. The gyromagnetic
ratios are more sensitive to the choice of eigenvectors than the eigen-
values, but their partial derivatives with repect to the parameters are
more complicated and take longer to compute, thus they are generally not

used in the fitting procedure.
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The Hamiltonian Matrix

The Hamiltonian is a linear combination of the spectroscopic param-
eters times thelr respective real symmetric coefficient matrices. In
general H is block diagonal due to the symmetry of the physical situa-
tion (i.e. H is a direct sum of submatrices corresponding to irreduci-

ble representations of SU(2) or some point group), so H takes the form:

piM(s;i) (3.36)

juni
i
[ VA s
HEREAR-]

1 i=1

5

K is the number of block diagonal submatrices of H, and the coefficient
matrices M(s;1) can be of higher symmetry than H, sometimes having only

a small percentage of non-vanishing elements.

Using symmetry of the N-slectron system, the Hamiltonian matrix is
reduced so that there only accidental degeneracies can occur in the
elgenvalue spectrum of any submatrix. The eigenvalues of I are holo-
morphic functions of the parameters with exceptional points correspond-
. . . 52 . .
ing to accldental degeneracies”™ . 1If the eigenvalues and eipgenvectors
are dentoted by {A(S;P)j,§(ssp)j! j:lgzga»e,Rs} with the ordering con=

vention {A(S;p)l S_A(S;P)Z £ ses §~A(S;P)R ¥, the eigenvalues can be
8

linearly approximated in the region of the point po (assuning PO is not

an exceptional point) by

m .0
Asipy, = Mesph, + 5 RERD o 0 (3.37a)
J b= 9Py
0
dA(ssp ),
ARG I R PP 5 U
) \2Css5p ) M(sgl)‘@(s,p )5) (3.37b)
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the eigenvectors by

m 5@(S§PO)4

) . Y R 0 q -
2sip)y; = @(ssp )y F iil 5, (py= py) (3-38a)
é@(s;po). % <§(s;po)k’M(s;i)}@(s;p0>.> 0
*mwgg"*J~ = 2 G 5 1 ®(s5p )y (3.38h)
i k#j Alssp )y =A(ssp )y
and the gyromagnetic ratios by
(aco3p0, oo a3 ) + 2 3
glsip), = (B(ssp ), |G(s)|¥(s5p ), ) +2 2 = (3.39)
A e P i=1 ktj
(a¢s3p™, Jrcs i) |2cs 00 5p%) Watssp? [eco) [acssp™ ) .
N R < — L (p.= ps)

1 1

A(S;po)kwA(S;pO)j

G(s), the gyromagnetic ratio matrix, and the matrices M(s;1) have been

taken as real symmetrice.

Minimizing Chi-Square

The chi-square to be minimized is in the form of (3.31); the

theoretical quantitiles are eigenvalues of the Hamiltonian matrix and

gyromagnetic ratios:

Nl

.2 . = L7 . 2 :
A L YCICO TN (3.40)
k=1 o L J
k
NZ : r
+ 2 =l L ) 2
k:l @,é Lgk fs(s(k) 9P)L(k)}i
The Ek’s are the experimental energies, the gk’s are the experimental g

values, and s(k), i(k) indicate the assignment of the experimental
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quantities to the symmetry submatrix and eigenvalue or eigenvector.

Using the linear approximations to the eigenvalues and g factors,

the minimum can be found iteratively by solving for the minimum of

I I
XZQQP) Np = (Dyseee,D ) where

1 1-1
DY = p, = p. 3.41
3 PJ Py ( a)
I T1 T

. = p. =+ DI 3.41b
Py Py 3 ( )

and then diagonalizing the matrix for the new set of parameters pI until
convergence is reached. This algorithm is used in this work via the
computer program THI written by Melhorn539 modified slightly for present
purposes. Modifications include a means of defining a new set of param~
eters by linear transformation, and the assigmment of experimental lev-

els to eigenvalues.

If all energy levels are corresponding to the eigenvalues of a
given Hamiltonian matrix, the experimental and calculated values can be
matched by relative energy ordering. The starting values of the parame-
ters, p09 must be close to the desired set, however, as many local
minima can exist for chi-square. This problem is compounded when the
experimental levels are incomplete. Two or more eigenvalues can change
their relative energy orderings with each iteration, but may retain an
approximate symmetry or eigenvector charactieristic of some coupling

scheme.

If the Hamiltonian matrix is nearly diagonal in SL coupling, for
example, it is desirable to assign energies on the basis of the largest

eigenvector component, when relative intensities of the spectral lines
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might indicate such a preference (gee chapter sixteen of Cowan’s textg)»
In addition to assignments based on energy ordering, the program THI was
modified to assign selected experimental levels by largest elgenvector
component if the absolute magnitude of the component is greater than a
predetermined value. Remaining experimental energies are assigned on
the basis of minimum residuals subject to a requirement that the eigen-

vectors have a specific component greater than some minimum value.

3-3.3 Isoelectronic Polynomial Fitting

A number empirical formulas are used to characterize the behavior
of atomic properties as functions of the nuclear charge Z, with N, the
number of electrons, fixed. For example, configuration average term

energies have been fit to polynomials of the form54955

3 VA = 7 = 27 3.42
(2 2 a_(Z-s) (3-42)

. s . 55
with relativistic corrections

A (2Z) = A(Z-s)y" + B(2-s)0 + c(z-s7)8 (3.43)

including term splittings and shifts of the average energy.

Since many atomic properties can be interpolated and extrapolated
by such polynomials, the program S5PCFT was written to fit an arbitrary

polynomial of the form

Py p
21(2=D1) T+ a,(2-D,) 2.

Because negative powers are desirable, SPCFI was counstructed around a

56

least squares minimization package VARPRO that allows fitting on both
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linear and non-linear parameters. SPCFT computes the all the statisti-=
cal parameters mentioned above and is used here whenever a polynomial
fit is needed for extrapolation or interpolation; a copy of the program

can be obtained from the author.
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IV, Effective Hamiltonians from Symmetry Considerations

Portions of the energy spectrum of an N-electron system such as an
atom or molecule are often related to a set of semi-empirical parameters
by an effectiﬁe Hamiltonian description of the system. From Slater-
Condon theory, an atomic effective Hamiltonians is obtained by first
restricting the Hamiltonian operator to a finite dimensional subspace of
the N-electron Hilbert space. Then a matrix representation of the Ham-
iltonian operator on the subspace is found using a basis set of Slater
determinants constructed from l-electron central field wavefunctiouns.

To compute_the Hamiltonian matrix, the integrals over angle and sums
over spin coordinates are done explicitly, while integrals over the

radial coordinates are treated parametricallye.

Although the spin and angle dependence of the N-electron wavefunc~—
tions in terms of l-electron angular momentum eigenfunctions is essen-
tial to the Slater~Condon parameterization, a basis set of antisym~-
metrized products of l-electron central field wavefunctions is not. In
general, effective Hamiltonians descriptions are useful when portions of
the spectrum of a Hamiltonian operator can be well approximated by res-
tricting it to finilte dimensional subspaces spanned by wavefunctions
with certain symmetry properties. The optimal set of trial wavefunce
tions can be chosen variationally, via the win-max principle, but an
effective Hamiltonian emerges if the choice is treated empirically: The
action of the Hamiltonian operator with respect to the unspecified por-
tions of the trial wavefunctions is parameterized, with parameters
chosen to give the best agreement between eigenvalues and a set of

experimental energy levels.
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This chapter discusses a paradigm for effective Hamiltonian
descriptions of systems of N ldentical particles based on symmetry con-
siderations. Trial wavefunctions are not specifically assumed to be
linear combinations of products of l=particle wavefunctions, but are
allowed stronger correlations among coordinates unrelated to the speci-
fied symmetry properties. Section (4.1) outlines how effective Hamil-
tonians are obtained, while sections (4.2) and (4.3) discuss the struc-
ture and representation theory of the relevant symmetry groups. Section
(4.4) compares this approach with independent particle models, paying

particular attention to the relevance to atomic structure.

4.1 Origins of Effective Hamiltonians

let H = HO + Hl be the Hamiltonian for N identical particles, where
HO is an unperturbed Hamiltonian and Hl is a perturbation. HO is
invariant with vespect to permutations of the particles, and G; a finilte
or compact Lie group of symmetry transformations on the generalized
coordinates of any individual particle. Then FN9 the covering group of
all symmetry transformations of Hog is either finite or a product
(direct, semi-direct, etc.) of a finite and a compact Lie group. The
representation theory of FN9 of 1ts subgroups, and of induced represen-

tations of other groups provides the framework for parameterizing effec-

tive Hamiltonians.

Hl must be invariant with respect to permutations of the particles,
and, if an effective Hamiltonian description is to be used, Hl must have
lower symmetry than HO° Typically GHg the symmetry group of H (and

therefore Hl)9 is G or one of its subgroups (identical transformations
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applied to all particles). 1If Hl must also be reasonably well behaved
if it is to be restricted to a finite dimensional subspace that carries
a representation of FN {e-go féFN —» U(f) a unitary operator represen=

tation of ¥, and feFN - U(f)HlUT(f) is well defined). Then H

N’ can be

1
expressed as a linear combination of elements from a vector space of

operators that carries a (reducible) representation of FNe

Except for accidental degeneracies, the spectral projections of HO

generate subspaces that carry drreducible representations of F As gum~

N
ing that G 1s compact implies these representations are finite and are a
subset of the the unitary transformations that map a given subspace into
itself. A set of basis vectors can be found to span the subspace and
carry the representation of FN as one link in a chain of subgroups
beginning with the unitary transformations on the set of basis vectors
{i.e. the unitary transformations that map the subspace into itself and

ending with G,, the symmetry group of the Hamiltonian. All operators

H?
that map the subspace into itself are linear combinations of the genera-
tors of the unitary transformations on the basis vectors, and can bhe

resolved according to irreducible representations of the same chain of

subgroups. The operators that are invariant representations of G, are

H

possible components of the effective Hamiltonian.

Of course, not all possible components of an effective Hamiltonian
are requlred, as in Slater-Condon theory (section (2.3) ), only the com-

ponents related to the l- and Z2-electron operators are needed. If Gc c

FN is a link in the chain of subgroups, Hl and the basis vectors can be

reduced according to irreducible representations of Gca The matrix ele~

ments of the restricted Hamiltonian can be written in the form:
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X’ SN SR VS IV (I LS G T o
<§x' H{%k"> T2 ; Ay <§x’ QX‘%%”> + Ay <§x§ Qx]§§"> (4-1a)
Q7 sx
DX(f) is an irreducible representation of Gcg
« =X =X _ o Xk XTI
$q,Q = Zaq Q (4. 1b)

E
»

%
and DX is equivalent to DX (H 1s expressed as explicitly self-adjoint).
The coefficients 9y must make the linear combination a scalar under the
subgroup GH; there can be as many distinct operators QX for a given X as

there are scalar representations in this reduction.

The Wigner=Eckart theorem applies at any level of the chain, so the

133
Qﬁl%§”> for any choice of {x’,x,x"} are determined

matrix elements <§§,

up to one or more reduced matrix elements:

. Xy Ky o X
(2. Qfl%i» - )i’?{(x’(xgx";d)gxfaxgxgx",x"> & ”iﬁ% >c( (4.22)

=1 ddxp

4

an is the dimension of the representation DX and

X1 X !
(e, = s (x’(x,x”;dnxfxx,x;x",x”)*w%iz (4-2b)

d X€9X9Xv9 \}dx"
The Clebsch-=Gordon or CG coefficient, C§X"’ is the number of times the
X’ XH
irreducible representation D™ occurs in the reduction of DxﬁD » and
<Xf(X,X";d)9x’lex;X"sx"> is a coefficient of the unitary transformation
that explicltly displays the reduction. The reduced matrix elements

provide a natural parameterization for an effective Hamiltonian, subject

to whatever constraints are necessary to insure Hermiticity of the
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matrix. The effective Hamiltonian must also be physically reasonable
(e.g. Slater-Condeon theory: reasonable values for the radial

integrals).

Effective Hamiltonians can be constructed without an explicit HO ot
ng only the algebraic properties of FN and the detailed symmetry pro-

perties of H, are essential to the pavameterization: The number and

1
types of irreducible representations of a subgroup Gc are determined by
the representation of FN carried by the subspace. The construction of
an effective Hamiltonian might be difficult at am arbitrary level in the
chain of subgroups because the coupling coefficients to reduce the
Kronecker product representations of the group are needed. For this
reason, construction is usually done at the level where a detailed

knowledge of the representation theory is available (e.g. SU(2) or one

of its point subgroups).

The assumption that G is a compact Lie group allows much to be said

about the algebraic structure of F_, and useful information can be

N’
obtained from such general knowledge. The basic structure of an effec-
tive Hamiltonian is determined from the CG coefficients and branching
properties of FN and the other links in the chain of subgroups. The
number of Independent component operators available for the effective
Hamiltonian are determined by these factors. In the next two sections,
conjugate classes, unitary irreducible representations, simple charac~

ters, etc. are related to their counterparts of G and the symmetric

(permutation) groups.
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4.2 The Structure of F

N

The relationship of the structure of FN to the structure of G and
the symmetric groups is discussed in this section. Some of the proper-
ties of an abstract group FN are revealed in (4.2.1), while the conju-
gate classes of FN are felatéd to the conjugate classes of G and the
symmetric groups in (4.2.2). This relationship is needed for the dis-
cussion of the simple characters, CG coefficients, and branching proper-

ties of FN in section (4.3).

4e2.1 Multiplication Table of Fy

FN has two major subgroups: the permutation group SN’ and the
group GN = GXGXoo %G (N times). However, the unitary operators
representing elements of SN and GN acting on N-particle wavefunctions do
not in general commute. If the elements of FN9 {(s:Y) | S%SN9 )’(uGN}9
correspond to the sequential application of a permutation s followed by

a transformation Y to a set of coordinates (x19 Koy oo xN)9 then the

natural law of composition becomes (cf. eq. (4.12) below):

(850)(s73Y") = (ss”3YY)) (4.3a)
(83Y) = (I;Y)e(s31) = (s;i)a(I;)’g) (4+3b)
CE R CHY /) (4:3c)
Where
ss = 1 (4.3d)
y = {glsg29°“”9gN} (4.3e)
Y-Y" = {glgi9g2g§’°°°’gNg§} (4.3£)

Y = {gg(l)sgg(z)aﬁessgg(N)} (4. 3g)
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(for notational convenience a (-) over a permutation denotes its
inverse). It is clear from the multiplication law of the group ele~
ments, {(4.3a), that FN is a semi-~direct product of GN with SNo As a
result, GN is a mnormal subgroup of FN and the structure of FN is rather

intimately related to the structure of SNa

4.2.2 Conjugate Classes of FN

Just as an element s of 5, can be resolved into a product of com-

N

muting cyclic permutations, an element (s;Y) of FN has a similar resclu-

tion:

(s3Y) = 11 (Vi;ai) (beta)
i

A typlcal (V;g)%FN in this vesolution consists of a cyclic permutation

of length o
VE (vyvyeeev) (4 4b)
( ]
. D Vasn,ey K]
» (k) = i k k%\) ’ kglsoeagN (4:;4(3)
L )
a(ismy0) = L (Ldn=1) ooy (Lo bd)

with the convention Vl‘i Vs i=1,2,.00,0, and a corresponding element B
£ G2
o Py

g = {Clgczsaeech} (éeé—@)

g€y i€y
I iV

[ =

(
I
<
| (4o 4F)
L
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Conjugation of (V;%) with an arbitrary element (t;?) of FN takes

the form
(£ (B8) + (F:I21) = (131 (31 (V38) + (E31)+ (13771 (4. 5a)

equivalent to conjugation with the permutation (t;I) followed by conju~

gation with (1;9). Conjugation of (V;g) with (t;I) results in:

(£31) - (%38)« (651 = (), 36,) (4:5b)
V, = th = [<vt)leaa(vt>oj (4.5¢)
tvy) < t(vy) i=1,2, 000,50 (4e5e)

An element (Qt;at) conjugate to (V;8) for a given t%Sﬁ consists of
a cyclic permutation conjugate to V, and an element of GN corresponding
to a cyclic permutation of a fixed subset of G indexed by the cycle of
permuted particles. To be more explicit, let ¢ be the o-element ordered

subset of G defined as a function of (V;§):

¢ = ¢g(\8) = {c, sc seeesc ) (4:6)

Then ¢t = ¢(»t;gt), téSNg is a cyclic permutation of ¢, as

t o &= - = oo o = °
¢ ¢(\)taat) {Ct[(vt)llsct{(vt)zls sct[(vt)o]} (47a)

C§[(vt)i] = Cq(isn,o) (4-7b)
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and in particular, if t = U, V = §W?, and

BB = (q(1im,00 " Cq(osm,0)) (he7e)
Conjugation of (V;) with an element (I;Y) of Fy results in
W = (GHme I =TT (4.8a)
Then
g = ¢<v;?a?gl> = {EV c, g:l,év c, g;lsgasesgv c, g;l 3 (4.8b)
1717 V2 V2 Vi o Yo Vo-1

Notice that 5 can also be any cyclic permutation of ¢ (e.g. let

V= o8

aﬁnaﬁnw 1° %

Cyecle Products

The conjugate elements (V;g) and (V;é) are related to a conjugate

class of G by thelr cycle products W9§6G9 where

o= w(\ye) = ¢, Sy ool (4s9a)
o o=l i
~ ~ ~ ~e1
o= w(\%g) = g, ng, (4+9b)
o 0

The cycle products of any two conjugate cycle elements are in the same
conjugate class of G, and conversely, if two cycle elements of FN of the
same length have cycle products in the same conjugate class of G, they
are conjugate elements of FNe This follows from the property that an

equality between the two products of group elements

B1E5° B, = B18y° -8, (4.10a)
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has a general relatlonship between individual elements of the form

where

-1
LI

=g
i

¢ I -1 s
(glesegi) gleeegi 1§lgseegn

(4.10b)

(4.10c)

(4.10d4)

The cycle product 1s the link between the conjugate classes of FN and

the ¢

onjugate classes of G and SNe

related to the conjugate classes of G and SN as follows:

Let S%SN have a cycle resolution s = vlwzagevm. Then
(s;Y)éFN can be characterized by the pairs {(Vi,wi) |
i=l,eee,m}, my o= w(V;3))e  If (8,Y) is also an element of Fy
characterized by the pairs {(ﬁi,%i) | i=l,00e,m}, (s:Y) and
(§;?) are conjugate elements of FN9 if and only if there
exists a one to one correspondence between the pairs IA\N
and the pairs {%,%} such that each corresponding 9,3 and ng
are conjugate elements of SN and G respectively. It follows

that a conjugate class of F, is characterized by a permuta-

N
tion cycle structure {dl,sw@,dN} (di is the number of cycles

of length 1 and ld1+ 2d2+a@@ ﬂdN% N), with a corresponding

conjugate class K of G for each cycle {Kigesag %i s K§99939
1

2 N
K 9 esegK }a
oG, ol

The conjugate classes of FN are



4.3 Representation Theory of Fy

Unitary matrix irreducible representations of FN can be found

the following method:

(

(

(

b

2)

3)

An induced unitary operator representation of FN is obtained
by allowing the permutation operators to act on an orthopnor-
mal set of N-particle wavefunctions that carry an irreducible
representation of GNe The resulting unitary operator
representation of FN is carried on a finite dimensional

spaces

An orthonormal basis for this space can be used to generate a

unitary matrix representation of FNG

A finite dimensional unitary representation of FN can be com=
pletely reduced to a direct sum of irreducible representa-

tionse.

4.3.1 Induced Representations of FN

Let the N-electron wavefunctions {%gg(xlssaeng) ] ﬁéBR}s BR

{(blgeee,bN) | lgblidr ,eseglibNidr }s carry the irreducible repr
1

N
T T

«117=

by

esen—

tation Y%GN - DR(Y) = D l(gl)@eag L)) N(gN); gbG > Dr(g) is a unitary

matyix irreducible representation of G, R = {rlgeeeng}g and dT is the

. R ¥
dimensdion of D .

¥

N

on these wavefunctions is defined by:

The action of the unitary operator representation of
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i N - R N
E(SQY%PRQJ (X19°°°9X~N) = 2 RDQ,"S(YS)‘I’RB‘,(XS(l)Saae,xS(N))
PreB
R
= 5 0° HE L (x %) (4.12a)
2 E;'B SR Ba 195359 N e
,, R "s"s sts
peB
Where
drl drN
C D S (4.12b)
B%BR blal szl
RS = (r§<l)9e”9r§(N)) (4912(:)
BS = (b§(1)9°699b§(N)) (éalZd)
so that
R Rs
Do, (V) = D . (Y bo12
B’ BB, s’ (4 12¢)

The functions {%N Elg(sgi)w%N ] | 8¢S, BéBR} span the carrier
sR_P_ Rp N

space of the induced representation of FN’ but generally are not all
linearly independent. The carrier space of the induced representation
is, however, composed of orthogonal subspaces that carry inequivalent
irreducible representations of GN’ corresponding to the distinct permu-~

tations of R = {rlsees,rN}a

Representations Dgﬂgg F

N

It suffices to consider representations of FN induced from
uy w u,
representations Y%GN - DQ(Y) of GN’ where Q = {rl seeegrpp} (ril indi=-

X,

i
cates D~ occurs ul ¢4 : oo ol = Q .
L times); uﬁ+i L, = N. If sy (= Sy is the subgroup



=119~

of all permutations within the subsets of elements wl = {1,29eeeﬂml}s

, Q .
= {@i+1995e,uﬁ+u§}9 enoy Wp = {Nuu%+igeea,N} (iee. SN is isomorphic
. ] CQ _ Q. Q
with 8 X...X5 ), then the left cosets v {fw | weSg) of Sy gen=
P

erated by the permutations LQ = {Q%SN P o)<f(3) 1£ k < j and kgjéwi

for some i=1,2,..0,p} in turn generate orthogonal subspaces that carry

Q
inequivalent representations D 0 of GN spanned by the vectors K% =
— a A _
{%O goﬁ = U({w; I)*}Q5 I WéS BEBY (note: wa = QQ)“ Under the
action of the unitary operator representation of FN’ these vectors
transform:
= - = 0 be
U(s; )’)%Of "0y B gQ zg ngo'w,s(}”w Dgﬁf ()/5)%0 f3( 13a)
0EL™ weSy B
5 5.0
= 2 Y z (Y)%’ (4-13b)
o 10" UBypy, 0P

01 wesy pes

From equation (4.13b) it appears, perhaps, that the induced carvier

space of F_ carries a reducible representation of GNXS§°as a subgroup of

N
FNe In fact, (4.13b) has the correct form for an element of the direct
product representation of G xsﬁ’ if 0 =0, s = w, and B; = B,

Fach linear span of vectors K% is in turn a direct sum of orthogo-

nal subspaces j%ﬁ’ spanned by the vectors V%Q = {%gwg, | wésﬁ} for

o P

each pair ({,B). Any subspace JQ is mapped by a unitary transforma-

Bl
tion (permutation) into any other subspace JQF ,o Thus any orthonormal
0°p
basis constructed from the subset VQE spanning J%§9 where § is any fixed

element of BQ} generates an orthonormal basis for the entire carrier

space of the induced representation of FND The inner product between
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any pair of vectors in the set {%OWQ B | QgLQ3 w%S%, ﬁéBQ? can be
0

expressed:

N N § NN
(%Q,ngopﬁ, ?OWQQQ> - 55@’60§’<%iW’QQBi%IwQQ§> (he14)

Generators and Subgroups

The operator representations of some of the projections from the
group ring of GN can be employed to investigate the carrier space of the
induced representation of FN° Let the operators {Egﬁ’i ?;?’FBR} be

defined:

R N R -1
E ’ = d aeed d y D a (y ) U(I;y) (4915)
pB Ty N §§ PP
N
The integral
N
S\d y = S\dg dgneeedgy = 1
& e 17e2 N

N N

represents the multiple integration with respect to the normalized left

invariant Haar measure over the group G798,

579589 combined with

The translation invariance of the Haar measure
the orthogonality of the matrix elements of unitary irreducible

representations expressed by

Bopebn 0ebn ns
N, R% 0 R RRT7B1By PoPy
4 Dy g NDg (N = =375
GN 1r1 272 Ty ry
give these operators the properties:
RT R
E - = B - (40163)
PP PP
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R R_
U(s3Y)ER : o (ONE & L, U(s31) (4.16b)
BB R ﬁ By BuBs
?”%
R R R
1 2 1
E* ,E“, = 6 _ &, E_ -, (4o 160)
BiBl "ByBy  RyR, BB, ByP) ’
R
Bl (Kpseeeany) = B o Boao e o (kyaeeerxg)  (4e16d)
1By RoBy N RiR)BIBy RyPy L N

The operators, {ERs, ﬁggféBR} for fixed R, are also a representa-

p

tion of the Lie algebra for the set of all unitary transformations on
the set of N-particle wavefunctions {%kgl §%BR}9that carry y%GN“%DR(Y)

(i.e. Y%GN@DR(Y) Reyy ¢ U(dg), dp = d_ -e.d_ ). The representation
- 1 N

DR is a link in a number of possible chains of subgroups headed by

U(dR)g
A representation of SU(d_ )xSU(d_ )% ...x30(d_ ) is generated by
Y1 2 N
(r;)
the operators {e "b,(i R) | b",b”7 :1929°9°9dr } defined by
1
(xy) _ R
epm, e (13R) = by 6b,.b, 5b"b“ 11 &, b,, ;3”@” (4.17)
W opeonk i i ’l%l
p",pUeB

A yepresentation D' is a subgroup of SU(dr), generated by some subset of

T,
the operators {egﬂby}e If the representations {D + | i=1,.0..,N} are

faithful representations of the group G, there is a chain of subgroups

U(dp) 9 SU_ )% ...xSU(d_ ) I Gy I G
1 N

Another chain of subgroups appropriate to the irreducible represen-
. - . T
tations of SNXGQ,FN is generated by the operators {Eb”b’

bY,b" 31929956gdr}§ defined by
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‘ _ N (ry) .
Eb"b’ B gg, iilérsr.eb" "(is“g"0> (4.18)
féL

These operators commute with permutations of the particles and generate

a representation of SU(dr IR eeexSU(dr ) on the induced carrier space of
1 P

FN@

Representations ggjsﬁ

Another subgroup of U(dR)9 induced from a representation DR of GNs
is the set of permutations the vectors {%Rﬁ | BéBR}, distinct from the
subgroup of permutations of the particles that leaves R invariant. This

relationship is a key to the representation structure of F

N
If p={by=eee =b =b,, b . =cee=b =b,, cou, b
1 1? +1 2° * YNews 41
uy wy w, N
= b.=b_}, the vectors VQ% = {F x| W%SQ? carry a repreéentation of g
N~ Ppe Ip 1O N N

Q

under wEST =» U(wil). An equivalent representation of S% is carrvied by

N
the vectors V%ﬁ for each OéLQ} ﬁeBQ, with the equivalence mapping:
R UOHSDER 05 (4.198)
U(w;1) - [U(Q;1>EQ~}U<w;1>[U(¢;I>EQ~]T (4.19D)
PB BB
o o
=5 0 uawo e
PyPy PyPy

The unitary operators {PQTW) | wé5§}9 defined by

Q Q
My = S S E ~U(gw@“"1;1)2~6

b
(4.208)
B
vl pesd (0P PyPy
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are a representation of S%} and from (4.6d)

P (w’ )

OWQO§ = %ngwgoﬁ (4+20b)

implying that
Pl (I, Yy = U(I3))P%w) (4e20c)

For completeness, note that the unitary operators, {fgiw} ] wésﬁ},

defined by

¢}
e = s 5 B!

ger pes?

(L.21)
PowPy

. FQ a - +
commute with the operators {F™(w) | W%SN}9 and are also a representation

of SQE These operators permute the vectors {¥ | BéEQ} for fixed
N OWOQQ?

ngba Also, the combined operators {ﬂg(w) | wes%}s

o = e = P2 (4e22)

1

are direct sums operators {U(fw{ ~;I) | W%S%? restricted to the sub-

spaces

Bo’

The commutation relation (4.20c) indicates that a set of N-particle
wavefunctions can be found that carries an irreducible representation
DQQDA of GNxsg’under YéGNgweS%’w% U(I;Y)PQTW)Q If G, the symmetry
group of a single particle, is the rvotation group, the symmetry group S%
applies to the radial coordinates: The operators {PQKW) | wesﬁ} permute
the radial coordinates of the particles that carry the same representa-

tion of the rotation group. In general, the N-particle wavefunctions

have one or more degrees of freedom associated with each particle that
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are independent of symmetry operations of G, and the operators {?Q(w) ]
w%S%} permute the coordinates associated with the additional degrees of
freedom among groups of corresponding to the same irreducible represen-

tation of G.

The irreducible matrix representations of S%

s 8 5 eoes S o An
wy
2 P

irreducible :epresentation of Sulis described by a Young diagram, or

are Kronecker products

of the irreducible matrix representations of 8

equivalently a set of integers [A] = [Al > eoee z_Aulz_O]; A1+939+Au§ We
The basis vectors of of an irreducible representation of Sulare labeled
by the standard Young tableaux depicted in figure (4.la). A standard
Young tableau is simply the Young diagram filled with the integers
{l;2,c00,u} in increasing order from left to right in each row and top
to bottom in gach column. The standard tableaux graphically denote the
decomposition of an irreducible representation of Sulinto irreducible
representations of its subgroups via the chain %mc QMP1C aeeC:Sle
Removing the boxes containing the integers wy, uwrl, <., w=q+l, from a
standard tableau of Sulleaves a standard tableau of S&kq°

0]

An irreducible representation DA of SN is labeled by p Young

(ot | is1,...,p) where [A1T =

[

diagrams or the p sets of integers A

1 .41 1 i 1
{Al 3’A2‘3 eoe i’Aag > 0; A1+gas+ﬁa%

il

uy}o The basis vectors of DA are

p~tuples of standard Young tableaux as indicated in figure (4.1b). A
standard p-tuple p from the set Yg consists of p Young diagrams where
the 1th diagram is filled with the integers Wis ordered by increasing

values with respect to rows and columns.



fey
b” b;z b|3 e o o b{)\ b!jé{hZ?"‘?w}
A, Boxes ' N
biwi,j” bij
A, Boxes bay | bee T bzxz bi,j+17bij
r= 4 4,32
-3 © rey[ ]
. o 1[31]415]
r=12168
X, Boxes by | ® ° b“’kw 719
Figure (4.la)
Young tableau describing a basis vector of an irreducible
representation D of §
w
peY‘A
| ! | p P p
TR P R LN by | b ©oc byaP,
| | p P
oy 0t b, boy | o0 0 | Paah,
PN o o & e
| p
o o o b | o o o p
wlkw‘ b‘”p'\wp
k
bijéwkg{Gk+|’gk+2’“"’€k+wk}
T W twoto Wy
XBL 805-899

Figure (4.1b)

p~Tuple of Young tableaux describing a basis vector of the

irreducible representation of SN@
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4.3.2 Unitary Irreducible Representations of FN

With the above considerations about the reduction of the induced
. . . o
representation of FN in terms of representation of wasNg a general

statement about unitary representations of FN can now be made:

Let {@éﬁmm) l @%BQ; peYA} be an orthonormal set of N-particle

wavefunctions that carries the unitary irreducible represen=
tations BK@DQ'of S§XGN and under the actions of the operator

representations Y%GN - U(L;Y), wésg’a% PQ(W):

Bavangghl o, eom) =3 s (4.23)
pev" pes’

#\ & DQ (y) (gg/\) ( e o0 b
pp (M ggr D™ ey eeesy)
with U(I;Y) and PQKW) defined as above: Then the set of N-

('Q:9A) = U e I (QESA)
ipp (43 )@QP 1

PGYA} carry an induced unitary representation of FN given by

i, per?,

particle wavefunctions {§

(Q,A)

U(SEY)§ovpaP§(Xls9eeny) = E .Q' QW So (4«»24&)
b6 wesd
. i~ (@A)
5 g e () 1{\ g Gy )
%B %‘YJ\ frsg”

and the matrices for this representation are given by

2,0 @A)\ L @A) _ @
(a} Lypp 106 y)l%aﬁ,P,) = Pygnieprpr V) (4.24b)
A(Tst” 359 ol oy B (se)

ﬁ psé PP
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where
{ 1 wéS%
Aﬁw;5§? = < (4224c)
| 0 w%SQ
L N
(0,A)

Irreducibilty of D

It 1s straight forward to show that the unitary representations of
FN defined by (4.24) are also irreducible. From the orthogonality rela-

tion (4.6) it follows that

. (O A% (Q 5N\
5d1\4y a’'a (53Y) ng‘b b

D ppe. s L(s3)) =
GN 6aBaPaOaBaPa

0 PLPy 05 PoPp

PR , 8y o O
ﬁagb (ﬁa)sog(ﬁb)sog % OaOb Aa% p%
— p " L(F st D Pg(§asog) (4. 26a)

dQé PaPa & PpPo

- Q9 - a
A(Oasoa;SN ) &(éasob;SN )

but
= Qh = Qa = Qé = Qh
AT e8¢ ) AT 80538y ) = AT s07355) AT 0¢38) (42 26b)
= Qa S e = QE
since (Qasoa)gsN implies that (éaséa)z (ﬁaséa)éSN o« Thus (4.26a) is
Qé 0
non=vanishing only if Gé = O;w, W%SN . However, each {éL™ generates
Qa
distinct left coset of SN s 80 this can only be true if ég = Q; and

= I. Then from the orthogonality of the unitary matrix elements of

W
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(0, \,)* @A)
I = N b
TR 'y D L(s3Y) D cpepne(83)) = (4-26c)
e séSN é; ﬁaPa aga Pa bﬁbpbobpbpb
6, o 000,80 6 Byorobp A 6 6, ,
Vﬁaﬁb ﬁaﬁb gagb anb O@ﬁp AaAb PaPb PaPb
0
a’a

In the case of a finite or compact Lie group, the orthogonality (4.26c)

of the matrix representations is equivalent to irrveducibilty.

4.3.3 The Characters 2£=EN

»\)

The character of the irreducible representation D(Qa is calcu-

lated by summing the diagonal matrix elements given by (4.24b):

Aoy = 5 55 Ashsd D%?%o')z:/\(cso) (4.27)
01 pes® pey '

- 3 5 g >1¥\ )
8 (Fs0),v {3{3
yerl w{asQ- BEB pe-Y/\

Q

The content of this expression becomes clearer if W%SN is resolved
into cycle elements. The cycle structure of any wéSﬁ’is comensurate

with O = {uﬁ9see,u%}, so0 a given wéS%’can be expressed in the form:

p n(l) ..
w = 1 11 VY (4. 28a)
i=l j=1
vlj _ ( 113 ij j
= vV, eaovoi'! Lo Wi (4.28b)
L I

Coubining with (4.27) leads to:
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p 1 ,
5 (}’503\ L) =5 1 xWIT il yin(), (4.29)
YA BB PP Q i=1
B%B pe BER

n{i) L i ry g ]
§ (8y . VD (g )« oDy (g ) .
j=1 LP lb OO(V )b zb 10( ») VobV0m1Q(v°) (vleasvo)ﬁvlj

The sum over any cycle of elements {bv saee,bv } is a character of a

1 s
cycle product:
d
T L s
X (cv ool Y = 2 Db (cV )@seDb (¢ ) (4.30)
O l b ® 28 b 2l v v 1 v v O
vl vo 1 o o o=l

The character of féFNm% D(Q”A)(f) becomes

(QasA) o = <
X (s3Y) z (w Fs0) (4.31)
QéLQ*wesQ
P i . n(i) r 4
ﬁ X[)\] (\)lls”\)in(l)) l Xi( j)
1=1 j=1

where W N ﬁ(vij Y§)

A nonvanishing term in the double sum on the right-hand-side of
(4.31) means that {§wd = s, or equivalently that each QLJ = §k9 where %k

is a cyelic permutation of s. It follows that W(Vlj 94 L) and W(Q 37
.

are conjugate elements of G, and that X(QWA)(S;Y) is a function of only
the cycle structure {} = {dl,dzgesast} of 8, and the cycle products
{mn} = {W§ ! jglszpasssdi; i=1,2,.+0,N}. The permutations O%Lg'map the
sets of integers Wi into all possible Wy =y U=, oo, u%melement9
ordered, disjoint subsets of {1,2,...,N}. Effectively, (4.30) is a sum

over all distinct distributions of the cycle pairs of (s:Y), {(V,m3, in



=130=-

to p groups with the cycle lengths commensurate with {uﬁ,uésge,,u%}s
Expressed in terms {d}, {w}, X(QWA)(S;Y) becomes
oy oy P

X(Qﬁ/\)({dﬁ?}:’ = 5 v oe 5 ﬁ 6 i i i
(BYy 20 (B)y 2 0 4=l (Py¥2Byte - HBy)uy

N o ! i
n —— xPh g R, im) (42322
j=l gégm Bl

d

N i orlks(B),1 .
YUY, () = 1T - 5 1 X Fed (4.32b)
j=1 %4t tes, kel e (k)
h
(
i r
1 1
| X 1<k < By
) 1 1.2
rlks(B),] < & WPy S k< By
X S . (4.32¢)
‘ e
| T >
; 2P o phHl <k < g
L
e . -
s = 5 . 5 8, . ) (4.32d)
(?)jio B;Z;O E?E;O Bj °oes Bj Sy

and from the translation invariance of the Haar wmeasure and the ortho-
normality of the characters of a finite or compact Lie group, the func-

tions YQT{B}ﬁ{d;W}) have orthogonality properties:
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§a™y Y3 Upy, (Y (P Y (M) = (4.338)

Bilo..pbt
Mlmwwm“m,é 5

PR (B ¥proea

e

In addition, some other relations useful in determining the CG coeffi-

clents of F_ are given by:

N
A m.g.,.iwwd N 2 1 PRy
ﬁ §avy lY’Q‘({B} {d;3 w})1 X (wj) = g 2 Cpp By (4.33)
g ,!eaaBN' G j {=1 1

N
N o ! y )
1 W-*Ll = § %y [Papy, G |2 @l = (4.33¢)
j=1 ij Bt Gy

1 PoF P19 P F1 Fye ti Y1 1,1°
Lii Crr Cror ﬁj(Bjml) + f (Crr Cryr ;+ Crf.cr’r )Ejpj

=10 | 42y TTy T 1A=l TT1 T Ty L
1]
C;rg ig a CG coefficient for the group G, and k # k“ in (4.33c).

Subgroup Branching

(Q,\)

The expression for the character X given by (4.32) is espe-

cially suited to the branching of F_ under the restriction to the sub-

N
group GNa In this case the permutation s = I, so dlz N, dzg oo =tlye= 0,
and X(Q“K) reduces to
@.) 2y
X =) = dy X' (4o 34)

5
jer

reflecting the decoumposition of the carrier space into a direct sum of

9
subspaces that carry the representations D L of GND
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Representations of F_ must decompose into irreducible representa-

N

tions of SNXG upon restriction to this subgroup. To exhibit this decom-

position of of F The function YQ({B}S{d;ﬁ}) can be rewritten as

N9
P Swi R il .0
By, (G = Lﬁ s *xle <B},M=,BN21 22y, (m) (40350)
i=1 [P]i
ST dy P

cos 3 (4-35b)

2 ne . . 1
(5)1 >0 (S)N >0 {=1 (Bji+2;3§+aae+NBN) ﬂlxi

[

z({Iply, (5 m)

P i i
QLB 1 epyty voiepy, dimp
=1

using the completeness of the simple characters in the space of class
valued functions of the symmetric groups369 i.e.

S

8, -
{B" 3By A
and O({B}) is the number of group elements 1n the conjugate class {B}.

The products of characters of the symmetric groups Sux reduce to
i

the Clebsch=Gordon series

i R i i i
P b amh - s Y xMaph wese
ry A7 [p]

The expression (4.35a) contains a multiple sum of terms of this type, as

i ;
él xA] (B oo By) YHUBY (M) = (4.37)

1 P P i .
2 C[»El 1 e oo S C[\)]p p gﬁ X{»] (le.ss°°9¥3§)
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The sum over products of simple characters of § |, ..., %ﬁ ’

P

o |4
Dy = 5P . 3V o6

1 i (4.38)
<B)1 20 (B)N > 0 i=1 (;31.4.12;32.,;,.9 “+NB’N) sty

is a compound character of SNs the character of the outer product

g L P
representation36 obtained from D[Q} 5 ecog D[w . An outer product
representation is completely reducible into irreducible representations
of SN; the rules for the reduction are given graphically using Young

diagrams by Hammermeshgéa

If the reduction of an outer product representation contains the
symmetric representation of SN (DB\”)9 the component representations
must all be symmetric (" = [mﬁ]), and if 1t contains the antisym~

N
metric representation (D[l ])9 the component representations must all be

1L
kR

antisymmetric ((V}i = [1 "1). This places a constraint on the Kronecker

i

1
product representations D[A] B Dip] In the symmetric case, [A]i must

i i
equal [F]i, while in the antisymmetric case, D[A] and D[Pj must be
conjugate representations (the Young diagram of one representation is

the transpose of the other).

Upon restriction of FN to SNXG9 ZQ({[ﬁj},{d;ﬁ}) has a clearer

interpretation. ZQ({[F]}g{d;W}) is the product of characters of the

r r.

, i i
representations D "® ...8D (uﬁ times) projected on the permutation

symmetry [Fjie Bquivalently, ZQ<{[F]}9{d;W}) is the character of the
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direct product representations of [@]i of SU(dr ) for i=l,..0,p, Tes=

tricted to the subgroup representation of G as discussed in (4.3.1). 1In

T
i, . .
particular, 1£ D is a l«dimensional representation of G, the represen-

uy,

tation of SU(dr ) is [m&]g and {A]i must be [uﬁj or [1 l] if the
i

representation of SNKG is to contain a symmetric or antisymmetric

representation of SN respectively.

1=-Particle Operators

Although an evaluation of (4.32) in the general case is formidable,
the characters of the representations carried on the vector spaces of
the 1- or 2-particle operators are simple and of practical interest.

The irreducible representations of ¥, carried by operators on the N~

N

particle Hilbert space must contain identity representations of SN on

restriction of P, to this subgroup. This limits the possible choices

N
for A in (Q,A). For example, a non=trivial l-particle operator implies

o= {rsile}9 where 1 is the identity representation and r#I is an arbi-
trary vepresentation of G (if r = I, the operator is a multiple of the

identity). This implies A = {[1],[N-1]}, and

oy
() - or, 1
T {dswy) = (1= Yy 2 X (w)) (4.3%a)
€07 2" Mk
(1-6, ) d
(.0 <1
- [X{N]({d}) + X[Nﬁlglj({d})] —dt s ¥ ah
dy  g=y K

The forms velevant to both subgroup branchings, FN -] GN and FN - SNXG9
are given. The permutation invariant representation in the branching to

SNXG has the character of D[Nlﬁbr:
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) (esmy) = xM e 2 () (4.39)

To find the number of times the representation D(Q”A ) occurs in

the reduction of D(r)&D(Q”A> for a general (Q,A\), notice that (4.33a)
implies
oy

5 ¥ ()RR, (my) = (4. 40a)
k=1

T,

p &
LBy Gy 3 el B+ Y ARG .-
i i

i. e. the product can be expanded in the orthogonal set of functions
{YQ({B}s{d;W}), Y‘g ({PY,{d;w}), o-= } with the original component multi-
plied by a coefficient dependent on the CG coefficients for the group G.

The CG coefficlents for F), become

5 S

(QsA’) _ 1 s-ml W;L Emp 2 :j j

“an T ur, t 2 , ;2 ,ilcn‘ﬁl (42 400)
(p Pogpy

i,
= i = =
> = > soo 2 5 1 i 1 {(4.40c)
+ 2 4+ eoe + NR g,
(! B 20 By 20 Prt 2Bz Py
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!r 1,
(@A) B 53 [ J ]
C = 5 C < Sansl 14+ 3 (1-B . ) (4.404)
(1) (@A) 21T M k=2 AL
L
[l

|
A=A =11} e b mgin  GO3AI 0T A1 P d i)

where the last step follows from By = Ximﬂ({ﬁ}) + Xiuﬁlsl]({B}) and the

CG coefficients for the symmetric groupsBéa For simply reducible

(0N
(r) @A) =P

groups, the CG coefficients are either 0 or 1, and C

2=Particle Operators

The vector space of 2-particle operators can carry three possible

non-trivial representations of FN:

(1) Q=512 (ef1), A = {[2],[N=2]):

<y

2
(™) - or, l..r, 1
X ({dswy) = (1-6, )(1=8, .) 3 X (@)X (n) (4o41a)
ST SPASTOVTE 3
oy
+ (16, ) 5 X*(nd)
d,00 0 K

with an alternate form
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2 2
D Gy = [fo”2°1 Ve + 2220 ey 4 2x 110y

+ X[NJ({d})] (1m6d10)(1ﬂ§i11) i;- X (nhyxF (nh) (4o h1b)
(1-8, o) o
2 €0 42
# [f 22y - 1  wan  x™Man | gt s )
2 k=l
The permgtation invariant representation of SNXG is
2, -

x 7 (sm - xM %=L[x¥(g>]2+ xf<gzg (4. 41c)

the symmetrized portion of p*8D". The carrier space of this represen-
tation also carries an induced representation [2] of SU(dr); the sym-

metrized D'®D' can be regarded as a subgroup representation.

(2) 0= 210N, A = ), -1y (AL, d > 2):

(2, 1121 “ ] |
x\F 6y ) % X (n )X () (4e42a)
1% yoke=1 J

(1-5

i

({d3m)) < o) .
1

29}

= ¥, 2
0) X (ﬁk>

- (1=b
507y

with the same alternate form as (4.39b) except the dz term has the oppo-

site sign. The permutation Invariant representation of SNXG is

2 2 {
xEH D (myy - x M (o) %«[Lx#(g)}zw Xr<gzi (4e42b)

the antisymmetrized portion of D'®D". This representation can be

regarded as a subgroup of the representation [12} of SU(dr)e
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(3) Q= {r,r*, T2} (rér’ réI, v°#1), A = {[1],[1], [N~2]}:

(r,r”) . = - -
X ({dsmy) = (1 §i10><1 Sdll) (4.43a)
dy
- I.o.x5 1 r, 1.,v% 1
S [xf(« VX () + X (m)X (e >]
j>k=1 kT J :
with the alternate form
(r,r") [N-2, 1%] [N=2, 2]
T ((smyy = [x ATy + x N2 2 () 4
ax =1 ey + X[N]((d})] (1m§d10)(lm6d191) (4.43b)
o
- 1., 1 v, 1.,r5 1
3 [xf<w X5 (nl) + X (a)X (m )]
j>k=1 k J ] k
The permutation invariant representation of SNXG is
x5 (my = 1M () E ()5 () (42 43c)

the character of D'®D° . This representation can be regarded as a sub~-

group representation of SU(dr)XSU(dry)e

(@A) (@A™

(Q5A™) (@A)

representation carried by a 2-particle tensor operator, are obtained

is an irreducible

The CG coefficients C , where D

with the use of (4.33b) and (4.33¢c), analagous to (4.40).
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S S
. up i . PO
c@ADY L LT L fopyhxB pbx Tt
«Hon o M, W% =1
> {B} PypyP
1 B2 [ 1.2 1,1 £y i] Pory Fyo4g
- - C C : o blia
2 iil (Crri) Bl(gj b+ Zcrrigz + i%?“l Y, rr,Bigl (4o hta)
(@A) A TS PUINE NN CO e
¢, " &t S oo =35 P odmhxMprnx T
(r%, (17D (Q,N) {B}l T (pyP 1=1
1 B [ Y1.2,4,.1 £y 1] A A .
S 2 (c )R (B-1) = 2C + 5 C__C° BB (4o b))
2 121 rry El BJ rriﬁz 149=1 rr, rrj i¥1
(2.A") Ly Lo P TSP TN LS
) = ——35 " ...o—=—3 P ogodphxMdprhx T
(rr”) (Q,N\) w, | ! ! 1e1
{B} (¥
P r Y, , D r, Y. PR
z cfi Cr}r ﬁi(ﬁim]_) + E Cri Crgr )pé:ﬁ:i (4644C>
i=1 Ty TRyt 1#9=1 “*4 i

Evaluation of sums of the type

S , (By=n+1) 1 (B, =m+1) 12"
.ol cw [A) (A7) 1 2 4. 45a
w " d 0PI CBNI TUBY ey (449

have been discussed by Hammermesh369 and the results can be stated

graphically with Young diagrams. The factors Com G830 also be solved for
iteratively using the completeness of the simple characters, equation

(4.40), and
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C

S & B
= s upnxM apnx® ey p, (4. 45b)

0,1 ()

(8§ )
SEA][A’][ kil@(Ai”?“Ai+1) - 6AiAi+l kilg(gi+1mlﬁAi+z) ]

w

+ 2 nmé .. 5. 8,
k#n=1 mék,1 AmAm Ak%kgz An}‘n+2
z 1 x>0
8(x) = L 0 x < 0} Ai =0, i>w (4.45¢)

4.4 Comparisons with Independent Particle Models

The structure and representation theory of FN determines the pro-
perties of possible effective Hamiltonians on subspaces that carry

p (@A)

represéntations Physical wavefunctions must be symmetric or
antisymmetrié with respect to permutations of the particles, so effec~
tive Hamiltonians are restricted to the portion of the carrier space of
D(Q“A) that also carries representations of SNXG with the appropriate
symmetry. The antisymmetric subspaces are considered in (4.4.1) and
compared with configurations of Slater determinants, the 1= and 2-

electron operators are discussed in (4.4.2), and some general observa~

tions about atomic structure are made in (4:4.3).

bobo]l W-Electron Wavefunctions

Q,\)

The subspace of the carrier space of a representation D that

carries the antisymmetric representation of SN also carries an induced

representation [N]'8 ...B[N]P of SU(d, )X ...XSU(d_ ) (the partitions
1 p

of Wy, Wy, eoes u% conjugate to [A]l, ceesy [}\]p)5 as was noted in the
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discussion of the subgroup branching FN 3 SNXGe In the case of non-

relativistic atomic Hamiltonians, the group G is SU(Z)XO+(3) with
i

1
representations D /z&D , and the N-electron wavefunctions can be con-

structed in the following fashion:

An antisymmetric wavefunction results from a marriage of a set of
radial wavefunctions {Pg(rlgeeeer) ] F%YA} that carry the drreducible

representation DA of S%a

{A;%:A)(élﬁi,eoa,éNGﬁ) ! ﬁéfﬂg %éWA}g that carxy rvepresentations of

and a set of spin~angle wavefunctions

S§XSU(4§1+2)X ee@xSU(4§P+2), denoted by the partitions [A] = {{X}lg

coss [NIP} of the integers {uﬁsggagu%}e The spin-angle funcitions are
Fqd
(Al

fifi

o

product functions {A } that carry the representations [X]i of

SQLXSU(4§1+2), constructed from l-electron spin-angle wavefunctiouns
i

{¥ (@9¢)XP(67 b=y

[ Sms by p= 4m=yz}e The basis vectors of

ﬁim
representations [N] of SU(4§+2) can be represented by Weyl tableaux

téW[A}, Young diagrams of the pattern [A\] filled with ordered pairs

(m,p) as pictured in flgure (4e2)36’599 The functions {AP,@?} are

labeled by p-tuples of Weyl and Young tableaus.

Products of the radial and spin-angle functions are antisym~

k1
metrized. This 1s equivalent to constructing the representation [l "]x

e 1
coo Il Prx 51 M LLax (NP of sﬁxsm@éﬁz)x -+ +xSU(4] +2) and then

antisymmetrdizing with respect to the permutations Qéﬂgz
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Figure (4.2)

Weyl tableau describing a basis vector of the irreducible
representation UK of S%; the representation carried by the

wavefunctions {A(Q”A)(é G ye00,8 0) | ﬁéYAg “téWR}.
?’t 171 N™N
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{11 =Y -
Fra B eenxy) = dy 2 ?\ (4+463)
pé

@A (e

Pm(rlgeeang)A 16199609§N6h)

P P
! eootnr !
@gét(xlsmoest) = [ l — P ] ]7/2 S‘Q’(wl)(’ (Lo b6D)
feL

1My
e T EpyreoFpan)?

In principle these wavefunctions can be transformed from the Weyl basis
of SU(4§1+2)X QS@XSU(4QP+2) into an SLJ basis by finding subgroup
representations of the same chains as discussed in chapter II. In prac-
tice, however, this can be difficult because the coefficients of frac-
tional parentage for general representations [A] of SU(4§+2) are

largely unknown.

Slater Determinants

A fairly simple relationship exists between basis vectors con=
structed by the above method and the Slater determinants of a given con=-
figuration. The radial wavefunctions {Pg I p%YA} can be constructed
from products of l-electron radial wavefunctions in the same manner as

the spin-angle wavefunctions were constructed. The functions {Pg ]

i i
p%YA} become products of functions {PéA] | riéy[A] } constructed from
i

Gimtype l=electron radial wavefunctions {RnéisRn;Qiss@aanuéi}e in

many cases there are only N distinct l-electron wavefunctions that can

be constructed with a specilfied set of (mgp) values from the l-electron
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radial and spin-—angle wavefunctions available to a configuration. In
such a situation, only one linearly independent N-electron wavefunction

can be constructed by any method, essentially a Slater determinant.

For simplicity, consider a configuration G of w {~electrons of the

i M2 oy
form {nlé . nzé 5000y nq@ The spin-angle wavefunctions A§ can
t

Yy
}a

be constructed for any representations X1 of §A§SU(4§+2) as long as
st 0 1f k& > 4{§+2. The basis functions must be antisymmetric with
respect to subsets of coordinates with as many members as there are
boxes in each column of a Young diagram36; any wavefunction constructed
from a set of 4}+2 l-particle functions cannot be antisymmetric with

respect to more than 4§42 coordinates.

The products of w radial wavefunctions {Rn et Rn @} carry a

representation of S@fSU(q) under permutations of the radial coordinates
and unitary transformations on the set of radial wavefunctions. The
representation reduces into irreducible representations [A], but because
[A] must be conjugate to a representation {X]9 carried by the spin-angle
functions, Ak*i 4§+2. Also Akg 0 if k > g, because there are only q-
radial wavefunctions, thus the possible Young diagrams are limited to
rows no longer than 4§42, and columns no longer than g. In addition,
the number of each type of radial wavefunction nié is fixed at Wi and

if Wy 2 W, > el > wq, the number of columns of length ¢ must be 22qu

Unless w = Wo= oo = Wyl = 4§+2, there 1s more than one possible

representation [A] that meets these constraints. In general, the 1-

2

electron radial and spin-angle wavefunctions G can carry several

a™

representations D of F  that reduce to antisymmetric
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representations under gm'j S@fSU(Z)XO+(3)e The simplest example is a
2-electron configuration {nf,n"§} with n # n’, so the radial functions

can be symmetric [2] or antisymmetric ilzjo There are two irreducible
(rz)

representations of FZ that can be constructed; the representations D

(2, 11%])

and D ,2with the characters given by (4.41a) and (4.42a) respec-

tively. The 2-electron configuration néz carries only the representa-

(rz)

tion D o

The extension to a general configuration 1s made by constructing
1 P
SN

N 1 P
. N W . e
the Weyl tableau basis vectors, {?Rﬁ:l wEW '}, are generally not ident-

the radial functions {Pg I P%Yﬁ} from products Pg However,

ical to single Slater determinants. Conslder the determinants of the
configuration @ as antisymmetrized products of wiselectron subsghell

wavefunctions with radial dependence given by Rn
i

Q<rl) ee@RniQ(rwi)a

W
; , : - 1
The determinants of the configuration @i carry a representation [l "]%

W
ceo x[1 97 of [SU4E+2)19 = SULI+2)% oo SU(4E42) (g times).

Since § is the same for all subshells, the reduction SU(4§+2) &
SU(4§+2)q can be made, and the resulting sum of irreducible representa=-
tions is block diagonalized with the basis {?%ﬁ:! 6%%WR}G Except in
the case W= 4§i+2§ i#q, the representation of [SU(é§+2}]q reduces to
several irreducible representations of SU(4{§+2) and the Slater deter-
minants are generally linear combinations of Weyl tableau basis vectorse
In the exceptional case, however, the representation of {SU(4§+2)}q is
composed of at most one non-trivial (identity) representation of

SU(QQi+2) and the Weyl tableau basis vectors are identical to Slater
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determinants.

b4.4.2 n-Electron Operators

On a linear span of Slater determinants that is closed under rota-
tions, the n-electron operators can be expanded as integral operators
with kernels constructed from l-electron wavefunctions. The set of I~
electron wavefunctions is composed of subsets that carry irreducible
representations Dysz0 of SU(Z)XO+(3)9 and each subset can be induced
to carry a representatlon of SU(4{+2). The set of all symmetric

integral operators that maps a configuration with p-subshells into

. W W
itself carries a representation [1 "]B[1 1

1*8 ...011 P18 (1 P1* of
SU(461+2)X eeeXSU(4§p+2)9 reducible to a direct sum of irreducible
representations given by (2.108a). Thus this vector space of operators
carries p-fold direct products of Ilrreducible representations of various

links in the chain of subgroups SU(4§i+2) 3 Sp(4§i+2) 3

o*(s)xo+(2§i+1) = ot(3)x07(3), and 0, for each n , subshell.

Within a configuratlon where the number of each type of l-electron

wavefunction is conserved, the restricted n-electron operators carry

v v

\) )

% #

representations [1 1]@[1 13 B ...8[1 p]@[l p] of SU(461+Z)X
@anSU(é§P+2), V1+ soe +ng n, and the possible representations of this

type are limited, since usually, n=1,2. Each representation

Y v

[1 i]@[1 i]ﬁg is reduced to a direct sum of irreducible representations
of SU(40,+2) given by (2.108b), and the basis of each irreducible
representation can be chosen to display the rcduction via the same chain
of subgroups headed by SU(46i+2) and terminated with 0+(3)XO+(3)9 Only

the scalar representations of the taill subgroup 0+(3)X0+(3) are
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important for the effective Hamlltonians.

If a configuration has only one unfilled subshell for each § (i.e.
wizééi+2 except for perhaps one n{-subshell of each {-type), it can be
considered the antisymmetric subspace of the carriler space of a single

WA o5 g

irreducible representation D The algebraic propertiles of

N
the operators that map this subspace into itself are identical whether
or not the radial dependence of the wavefunctions spanning this subspace
is given explicitly by l-electron radial wavefunctions. This suggests
that for configurations of thils type at least, that the parameterization
of effective Hamiltonians is essentially the same if the radial depen-
dence 1s given by products of l-electron radial wavefunctions or more
general radial wavefunctions, i.e. arbitrary functions of the radial

coordinates, and the parameters are not limited to linear combinations

of integrals invelving l-electron radial wavefunctions.

To explore this idea further, consider the rvestriction to the

(@A)

antisymmetric subspace of the carrier space of D This subspace
carries the irreducible representation A of SU(451+2)X oo e SU(é§p+2)
_N
when spanned by the Weyl tableau basis vectors, {%K%}, defined by
(2.46ab). The operators that map this subspace into itself are invari=
ant with respect to permutations and are characterized by the represen=
% %
tation ({X]lﬁiXJI )% ooo x([N1PO[NIP7). Again, each representation
i i% , .
[X] ﬁ[X] reduces to a direct sum of 1rreducible representations of

SU(461+2)9 and the same chain of subgroups and their representations

occurs as for the linear span of Slater determinants.

Also, by construction, the relationship of this symmetry adapted
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basis set of operators to the physical transformations on the subspace
(e.g. rotations) is the same in either case. This can be seen by com-
paring the actions of the generators (4.18) with those generators (2.66)
on their respective subspaces. Of course the restrictions of 1- and 2~
electron operators to subspaces spanned by configurations of Slater

determinants and carrier spaces of representations of F, need to be

N
examined in greater detail, but it is evident that semi-empirical
theories can legitimately account for correlations beyond the indepen-
dent particle models from which they are derived. Some of the

subtleties of the algebraic properties of the restricted operators can

be illustrated with the l-electron operators.

Consider the l-electron operators on a carrier space of an irredu~

cible representation of F These operators carry representations

-
DCKXk) of FN induced from (ﬁKXDk)X(DOKDO)X eeeX(DOXDO) of

ot (3)x07(3)1N.  From (4.404),

(A - 1 [ )] (he47)

o) @ T2 G, pxp (PY 2 R

and there are my (xxk) linearly independent operator representations for
each Zéi > k, X € 1, where m, is the number of distinct Akys in the
partition [A]ie Each of these operator representations maps the carrier

(Q.N\)

space of D into itself, but not all of these representations are
diagonal with respect to permutation symmetry of the particles. Thus,
although a l-electron operator can be resolved into tensor components

for the group FNg not all irreducilble representations of the type car-

ried by l-particle operators can correspond to physical operations.
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On the other hand, consider the restriction of the l-particle
operators to the smaller subspace (of the carrier space of the represen-
tation of FN) with antisymmetric permutation symmetry. Now the 1-
electron operators can be expressed as linear combinations of the gen-
erators {Einb,} (4.18) with r=( széi)e The generators carry the

1 0, 1 §.*%
representation D[N}x [(D /ZXD l)@ (D /Z*XD + 3] of SNXO+(3)XO+(3} CF.,
§.*

i ) .
}1 reduces to the direct

and the representation [(D 1/ZXDQi)@ (D'yZ*XD
sum of ifreducible representations {D[NJX ﬁKXDk s K = 0,1

k = O,lgeee,ZQi}a Now suppose this subspace 1s spanned by a basls set
of Slater determinants. For a given Oi = {§, the reduction of the gen~
erators {} to irreducible representations of O+(3)XO+(3) and their
actions on the basis vectors can be expressed in the form:

(sx) - kk{ K, WX e S ]
E = + eee + E
o " E g W) W Ea” ) ne (0| (4.48)

The coefficients {c?é} are the same as in (2.53b) and the operators
{ﬁzz(né)} are as in (2.79b). Since the operators {ﬁgk(né)} vanish for
non-zero (X,k) if (nf) is a filled subshell, the analysis of the 1-
electron operators agrees with the analysis in section (2.3) when there
is only one unfilled subshell of a given {§-type. When there 1s more
than one unfilled subshell of {§-electrons, however, it 1s obvious that

the situation becomes more complicated, as the correspondence given by

(4.48) 1is no longer one to one.

4-4.3 FEunergy Spectrum of Atomic Hamiltonian Operators

An interesting observation can now be made about the low-lying

bound states of the non-relativistic atomic Hamiltonian, E09 given by
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(2.3%9a). 1If the electron-electron Coulomb term is expanded in the usual
Legendre polynomial expansion with only the lowest order term retained,
the resulting operator HO fits the symmetry prescription for FN with the
¢ = ot (3)x0t(3):

N N
B = 3 [pz - EEJ + 3 g”?“gwﬁﬂ? (4.49)
1 k>j=1 "> TreTy

Adding this largest contribution to the electron-electron potential
energy to the Neelectron hydrogenic central field Hamiltonian breaks
some configuration degeneracy and results in new degenerate subspaces
characterized by irreducible representations of the semi-direct product
of SN and [SU{Z)XO+(3)]N9 The configuration character of the energy
spectrum is nearly preserved, however, (at least for configurations with
only one unfilled subshell of a given {), and it is plausible that the
remainder of the electron-electron interaction i1s a small encugh pertur-
bation so that many of the lowest eigenenergies of H, can be identified

0

with central field configurations.

Another interesting observatlion 1s that the 1/'1'12 potential is

bounded between two potentials with complete rotational symmetry, i.e.

1 1 1
< < Cho50)
Iy, T lzy-r,1

With considerations given to domain questions for Hamiltonian operators
with these inter-electron potentlals, rigorous statements might be made
about the bound states of HOSZS For example, the ground state energy of
HO should lie between ground state energies of the Hamiltonians with the
corresponding smaller and larger electron-electron potentials. Although

these bounds might be poor numerically, especially for the heavier
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atoms, they could support the shell model of the atom and the periodic
table of the elements from first principles, without resorting to Slater

determinants.
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V. Applications to Spectral Analyses

The usefulness of any mathematical model lies in how the model com-
paves with nature. If a model deviates from nature in a well known or
predictable manner, it can be modified to account for this, thereby
increasing its usefulness. Such modifications have been attempted for
independent particle models of free atoms and ions. For example, the
relationship of the single configuration Hartree-Fock (HF) model to the
fully correlated, "true" atomic eigenfunctions and elgenenergies has

15,60

been discussed by several authors In particular, the variation=

perturbation approach to the corrections to HF theory has been studied

60,61

extensively by Sinanoglu Explicit calculations of higher order

corrections to the HF approximation are complicated, bhut their forms

23=25

have been used in developing semi-empirical methods , the approach

taken here.

Section (5.1) begins with some conjectures about "accurate® approx-—
imate atomic wavefunctions that differ from say, HF wavefunctions, but
are basically consistent with semi-~empirical Slater-Condon theory. The
qualitative effects of the differences on the estimates of atomic energy
levels are discussed and suggestions for adjusting ab-initio spectros-
copic parameters are presented. Combined with a study of the calculated
{(via the HXR approximation) and observed energy levels of the K I ions,
these 1deas are used to develop a strategy for adjusting the agb-initio

bt and Cr5+ ions in section (5.2). These

adjustments are then extrapolated to T13+9 Mn6+9 and Fe7+e Section

spectroscopic parameters of V

{5-3) describes a variation on the analysis problem; the energy levels

of an ion in a crystal lattice at a site with a local symmetry.



=1593-

5.1 Parameter Strategies

A single configuration Slater-Condon effective Hamiltonian (He of
(2.40), restricted to a single configuration) can, in principle, be sta-
tistically fit to experimental energy levels. The number of free param-
eters does not exceed the number of levels, but single configuration
effective Hamiltonians are not always good descriptions and must be
amended to include configuration interaction. Regardless of how confi-
guration'interaction is dintroduced into the effective Hamiltonian, the
number of free’parameters will increase relative to the number of energy
levels. Also, in the early course of analyzing a spectrum, only a few
experimentél levels for a given configuration might be known, which in
turn may be derived from only a few of the parameters. These factors
contribute to the usual situation where the effective Hamiltonlan has
more independent free parameters than experimental data associated with

its

Generally, the number of parameters is reduced by adding con-
straints. One method used to reduce the number of degrees of freedom is
to assume that empirically determined parameters such as Fk(nOn’Oé) and
Gk(nOn’O') are proportional to their counterparts computed from hydro-
genic radial wavefunctions. With increased availability of ab-initio
calculations, however, the integrals computed from the gb-initio radial
wavefunctions have replaced the hydrogenic ones. Scaling the ab-initio
parameters is perhaps the simplest way of using theoretical calculations
in the analysis of spectra, (aside from the initial estimates). Cowan *

distinguishes five classes of parameters and routinely scales them to

obtain better agreement with the observed energy levels.
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Perhaps the best justification of the scaling of predicted parame-
ters is its simplicity. This technique is likely to be successful in
many cases because only a few parameters are dominant in determining the
eigenvalues of the effective Hamiltonian matrix. Some ideas about the
validity of linear constraints derived from ab-initioc parameters are
discussed in this section, and extrapolation of corrections to gb-initio

parameters along an isoelectronic series is also discussed.

5.1.1 Conceptual Strategies

A scenario for describing atoms and ions with considerable inter-
electron correlation that is basically consistent with semi-empirical
Slater~Condon theory is presented in this section. The emphasis is on
radial correlations, as developed in chapter IV, but an argument con-
sistent with the semi-empirical parameterization is made in favor of
more general correlations among electrons localized near the nucleus.
In addition, correlations described by explicit configuration interac-
tion are considered, but the actual magnitudes of these parameters in
the context of the more general atomic wavefunctions differ from the

Hartree-Fock estimates.

Radial Correlations

The qualitative effects of allowing an atomic wavefunction to have
radial correlations can be investigated with a simplified version of
Sinanoglu’s analysis of the corrections to a single determinant

Hartree-Fock atomic wavefunction. For simplicity, consider a single

w
configuration Q = {le 9eeegnp0pp} with p distinct §°s (51% Oj;

1

i»j=1,2,000,p)s A Slater determinant belonging to this configuration



can be written in the form

N .
@Qy(xl,xzsosasxﬂ) = (5.1a)

[

| p

]
i |
\WiA< T Iy (Bu,: nsBurs & (Gys o) - >
N! i=1 dgl leld \)(lad) V(lsd) Fl(;‘( \)(19d) Iloea .E'N J
1-1
Vi) = o+ 2 uy (5.1b)
k=1
L,
0 ) Bonoeo ) (5.1¢)
P (r geoeayl = T . e
01 N o] e bV

, , . , . i - .
where AN is the antisymmetrization projection operator, Y «[m’im(?\;ld |
i=lyee05p 5 d:lggeaguﬁ} denotes a determinant belonging to the configura-

tion, and Pi(r) = Pn i (r). The average enevrgy of configuration can be
iYdi

written 1in the form

HF ® 0 0
E, = gdrlneedrNPQz(rl,Me,rN)Hav(rpeae,rN)PQ(rlga@eer) (5.2a)
where
p i o, o, 0, (1;+1)
Hav(rl,eewrN) = iil dil[ﬂd /dr\)(igd) +TW+ (5.2b)
V(i)

VC(rV(isd))} + Vc(rlgeee,rN)

Vc(r) is a central potential (e.g. =2Z/r) and VC is the configuration

averaged Coulomb potential:
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P mi 1,1
V(T yeoesly) = 3 s (r , T (5.2¢)
¢l N 151 o(>p=1 NEREATENIY
i, ul,
P i7]
z : 2 V (r T
i>j=1 q=1p=1 V(i,d) \)(JQB)
[ 12
ii I 261+1 . 161 « 61!
Vo™ = 2] Ug(eie™) - gy 1 kiO!LO 0 Oj U (r5r (5.24d)
19 ] {Qi - oj?’z
Vor (x5e ™= 21 U (x5r™) - 5 s | U (ese™) e, o | (5:20)
C 2 kzOL 0 0 OJ k r’r

The operator ., . tramsposes the coordinates rsr” of the function on

the right, and Uk(r’gr”) is given by equation (3.3f).

Including radial correlations in the atomic wavefunction for a con-
figuration of this type is equivalent to veplacing the radial wavefunc=

tion ?O with a radial wavefunction that satisfies

Q

(flseeaer) (r19°°°er) = EavPQa(rls"‘”er) (5"3)

with suitable boundary conditions on gg and the additional constraint
that P (rlge@eer) be invariant with respect to permutations of the 5ubw
sets of coordinates Wi = {l,Z,eseguﬁ}, WZ = {uﬁ+15e@e,mi%ui}s cony Wp =
{Nmmlﬁlse“gN}a If equation (5.3) is solved perturbatively, an indepen-
dent particle (i.e. separable) zero-order Hamiltonian, Hgvs is chosen

so that ?5 is an eigenstate with the eigenvalue ﬁge The first order

correction to the wavefunction satisfies:

0 o). 1 1 13,0
{H&V - E,QJ?,Q = «»[Hav - Eav]Pg (5.4a)



H - HO = Hl
av av av
T
v = Eav - EQ
ul,
0 P2
H = S S h.(r.,. )
av 1=1 o=1 1 \)(19d)
P
0 5
E = 2 uL €,
R T
[hi(r) o éi]Pi(r) = 0
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(5. 4b)

(5.4¢)

(5.4d)

(5. 4e)

(5.48)

Equation (5.4) is ideally suited to Sinanoglu’s method for finding

the first order corrections to Hartree-Fock wavefunction for a confi-

guration consisting of a single determinant (MET)élu The solution to

(5.4) can be written in the form

1

S0
Pga(rlse“er) A(rl,aea,rN>Pg(r19e»eng)

L,

P 1 . (Tywya sTyvy s )
Arppeenr) = 2 (50, ) 5 3 %i »(19§; (§<195) )
i=1 SR ¢ B R VE FEORE R VERY 1)
p MYy 85 Ty T B))
+ 5 5 3 pAuE L

1>3=1 o(=1p=1 "1V, 75N,

z "% 14 13 $
where aii(z ,r'") and aij(r ,¥") satisfy

i

[hi(r’) - &y + hi(r") - éi]aii(r’,r")

~[Vé(r’gr") SV () = v () - %éi]Pi(r)Pi(r)

(5.5a)

(5.5b)
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’ "wy Rl - :
[hi(r ) - < hj(r ) éj]aij(r 5T ) (5.6b)

w[Vj(ei,j(‘r’sxi"') = vy (eT) = v (2 - %j]Pi(ri)Pj(f")

( 12
i . 20 ,+1 [0 k0 .
< = F(i,i) - — 5 | PY(i,1i) (5.6c)
C é§i+1 k>OL 0 0 0}
r@. k 0,12
i 0 L il
0 = P -3 Eot 0 0 O! G (1,3) (5.6d)
=0 J
and the operators vij satisfy (5.4b) and
w 14
« & 11} rd ¢ i1 4
_ é;ar dr Pi(r )Pj(r”)[VC (r’,c") = Vij(r ) = (5.6e)
113 ij s ¥4 .
Vji(r ) e %C ]Pi(r )Pj(r Yy = 0

Equation (5.4) separates into a set of p(p+l)/2 equations for the
pair functions {aij(rir") | 1 < j=1,000,p}, where the single subshell
pair functions {aii(rjr“)} must be symmetric wiﬁh respect to an inter-
change of their arguments. Because of the assumption that the confi-
guration O has no two subshells with the same {§ quantum number, there
are no permutation symmetry restrictions on the pair functions
{aij(rir”)}a However, the pair functions must satisfy the formal ortho-

gonality conditions,

%ﬁhfdr" aij(r;r“)Pi(r’)Pj(r") = 0 (5-7a)

but because the expectation value of Hav is stationary with respect to

variations of the functions Pno(r)9 Brillouin”s62 theorem leads to the
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condition of strong orthogonality:

@
2 3_n PR e = 5 o
gdr dr aij(rsr )Pi(r y = 0 (5.7b)

(s}
$drrdr" 8,y (rsrP, (") = 0 (5.7¢)
0

The stronger orthogonality conditions, (5.7bc), greatly simplify
the corrections to the radially correlated configuration average energy-.
The second order correction to the energy is obtained by making the sub-

stitutions:

1]

X, K R
s PR I 11 V11 L 3] ¢ it [ o
F(i,3) Fr(i,i) + 4%@ dr ay (xir YU (r5r™)P, (x )P (r ) (5.8a)

e
G (i, 1)

i

a
¢ (1,5) + 4§droar" a_ (rir™U (rir")P, (r*)P, (") (5.8b)
0 ij k i

3

(E’denotes the adjusted value of the gb-initio parameter p). The third
order corrections are also easily obtained, and include l-body terms as

well as the 2-body terms.

Internal Correlations

Radially correlated atomic wavefunctions cannot hope to account for
all the discrepancies between Slater-Condon theory and experimental
observations. Parameterization of effective Hamiltonlans is preserved
nearly intact with this generalization, so predictions of ratios of
relative energy separations for levels within a multiplet are unchanged
from Slater-Condon thecry, but are often at variance with experimental

observations. These deviations are usually explained by configuration
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interaction (CI), but in many cases a very large number of configura=-
tions are required to correct the discrepancies in an ab-initio calcula-

tion15’63e

An effective Hamiltonian, however, can reproduce a set of experi-
mental levels manifesting such discrepancies quite well by adding only a

23-\-259 or

few interacting configurations, a few semi-empirical parameters
both. Apparently, a large number of configuratious are needed as
corrections to the core (closed subshell) portion of the wavefunc—

259269 If trial wavefunctions were used consisting of antisym-

tion
metrized products of a fully correlated, rotationally invariant ionic
core wavefunction, and Slater determinants describing only the outer

(open subshell) valence ele rons, many configurations needed for an

accurate CI calculation might already be included.

The choice of a rotationally invariant, closed shell core wavefunc-
tion is suggested by large ionizatlon energies of atoms and ions with
this ground state configuration, which indicates tight binding and a
small ionic radius. Some theoretical support of this conjecture has
recently been presented for a non-relativistic Shroedinger atomic

64

model” "« The charge density has been shown to have the assymptotic pro-

perty

p(r) < krzBegzdr; r > Z/< (5.9a)

B = (Z-N)/d - 1 o = \2< (5.9b)

where <€ is the ionization energy of the state of interest and the upper

bound is rigorous for some positive k. If a valence wavefunction mainly
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represents electrons in high angular momentum states, it will have small
amplitude at small radii because of the centerfugal potential. In this
case, an antisymmetrized product wavefunction should be a good approxi-
mation to the true wavefunction. "Internally"” correlated wavefunctions

take the form

. "
§§(Xlgeae9xN) = [g] /ZANl??(xl,,ga,xv)§g(xv+lgseang] (5.10)

as given by equation (2.10)- @; is a V-electron Slater determinant

, C .
wavefunction, and @O is a C~electron core wavefunction.

Average energies calculated with wavefunctions given by (5.8)
differ in form as well as in value from their simple determinant coun-
terparts. This difference is reflected in the n-electron density
matrices, which can be obtained from equation (2.15). A wavefunction @;
is not in general strictly orthogonal to §g9 so the l- and 2-electron
density matrices have corrections arising from the overlap of the core
and valence wavefunctions. Assuming normalized component wavefunctions,
corrections to the l-electron transition matrices are given by (5.1la),

and corrections to the 2~-electron transition matrices are given by

{(5-.11b):

(
l P — N '““2 N “52 1 oy © 1 0ar?
FYOY’O(XSX ) = ”@)/” ”@ya” <L ﬁyyﬂ (ng ) + FE‘OO{XBX )

-y@yﬁ%dkwﬁ%&ymﬂ-+F%ﬁmwﬁ%xywﬂ] (5.11a)

1

- Sade[PéO<x923x;y)F;y,(y;Z) + F%Y,(xsz;X§y)FéO(y;Z)} + oeoe >
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where each expression is the beginning of a series of overlap correc- -
tions with the number of contracted coordinates taken as the expansion
parameter. If there is only a single valence electron, then (5.11la) and
(5.11b) are exact if the terms with valence n-electron transition

natrices with n>1 are omitted.

2 s e Ny =2y LN =2 2 e
r%)/O)/"Obil9X2§7’X§19X2) = ”@y“ “@ys” Azz lﬁy)/f (XIBXZ,Xl,AZ)
+ My G xPlgglrg %) + Mgl x5 foxy)
-2 §dz |y Gz oo (ey52) + My Gepny sxj2)lgg(zsxy)
=2 de[riyg(xl;y)PéO(xz,y;xixi) + ﬁ;Y,(Y;XZ)?éo(xlngxéy)J
3 .o 1 . 1 o3 .o
-3 Saydz[PYY’(X19X29Z;X1X2’y)FOO<y’Z) + ﬁyy;(Y:Z)ﬁoo(xlxzszgxlxzsy)]

) 2 L, 2 L2 3
+ dedz[Pyya(xlgxz,YSZ)roo(Y9zleXZ) + Fyyﬂ(Y9ZSX19x2)FOO(X1X29Y9Z)]

2 g 2 4 1
=8 Sade[POO(xl’zgxl’Y)rYY’<x2’y;X2’z)] +ooe >A§

J

Equation (5.11b)

The major effect of assuming a correlated core wavefunction is a

change in the configuration average energy, but terms of the form
3 .o
gdydz rQ)/)/’ <X19X2923X19XZSY)r§é(y;Z)

. . =k -k ,
contribute corrections to the ¥ and G parameters, while terms of the

form
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dedz F‘iy,(xl,xzs ;ySZW‘O(YSZ;xngZ)

can contribute to the empirical configuration interaction parameters

26

°

Core Polarization

It is difficult to make any specific observations about the effects
of including internal correlations; perturbation calculations have shown
there can be many nearly canceling terms in the sum over corrections due

269279 In cases where theve is

to correlations of the core electrons
little overlap between the core and valence wavefunctions, a core polar-
ization model can describe the correction to the average energy. This
technique has been used mainly with excited single valence electrons in

7,28,65-67 Considering only the dipole polariza-

non-penetrating orbits
bility, the change in energy due to polarization of the core by a highly

excited valence electron is given by
o= 84 o
AE = ofr >n0 (5.12)

where <rm4>n6 indicates the average of rmé over the valence (nf) slec-

tron charge density.

The relative energies of a Rydberg series calculated via the
Hartree-Fock approximation should be fairly accurate up to the ovder of
the dipole polarization. This suggests that the polarizability might be
used as a free parameter in an adjustment scheme for the configuration
average energies. More generally, the polarizability of an internally
correlated core wavefunction could be parameterized and interpreted as

the dipole polarizability of the parent ion in its ground state that has
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been allowed to relax in the averaged field of the valence electrons.

External Correlations

In some cases, effective Hamiltonians must explicitly include more
than a single configuration. The additional configurations required in
a given situation will depend on the correlations absorbed inte the sin-
gle configuration wavefunctions. Large numbers of configurations
corresponding to a given type of promotion (e.ge (nlg19 nzcz) -3 (ni@i,
né@é) for many ni, né) are often needed in an ab-initio calculation to
get an accurate approximation of a given atomic state belonging to
zero-order configuration. Many of configurations with important contri-

butions can have average energies that lie above the ionization energy,

making an accurate ab-initio calculation even more difficult.

If configuration interaction is considered in light of radially and
internally correlated single configuration wavefunctions, large numbers
of configurations should not be necessary. With the addition of radial
correlations, all generalized configurations (in the sense of chapter
IV) i.e. all zero-order atomic states that carry the same irreducible
representation of the semi-direct product of SN and [SU(Z)XO+(3)3N are
already included. With many other zero-order configurations included
via core correlations, quite accurate atomic wavefunctions could, in
principle, be obtained by superposition of only a few generalized confi-

gurations.
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5.1.2 Adiustment Strategies

A combination of the ideas discussed in (5.1.1) and the empirical
results of atomic spectroscopy as presented by Edlén7 suggests methods
of adjusting ab-initio parameters using least squares minimization and
linear constraints. The principle parameters are considered in turn,

. ko ok :
roughly in order of importance: Eav; the Slater Integrals ¥ , G, and
k , . .
R7; and the spin-orbit parameters §n0° The empirical parameters d, B,
Y, etc. are considered here as fine adjustments to the effective Hamil-

tonlan that can be determined by least squares optimization when all

possible levels have been assigned.

Configuration Average Energies

The bulk of the detailed correlation effects described in (5.1.1)
will contribute large unknown shifts to the configuration average ener-
gies. The effective Hamiltonian approach describes only relative ener-
gies, so the configuration average energies basically must be treated as
free parameters. An exception 1s a group of highly excited Rydberg con=
figurations, where the core polarization model is applicable. Then, the
ab=initio average energies can be adjusted via a two parameter fit

= _ nf / =4 nl .
Eav h Eav +'d\r >n§ + By (5-13)

nl . s e
where EO is a constant correction needed because of the sensitivity of
the core polarization correction to the ionization energy. The correc-

tlons to the configuration average energies can also, of courge, be

extrapolated along isocelectronic sequences (see section (5¢1.3) below).
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Slater Integrals

The Slater integrals Fk(nOn’é’) and Gk(nén’é’) are the most com-
monly constrained pavrameters. Typically, the adjusted parameters are
taken in the form

=k a k
R (abecd) = %abcdR (abed) (5. 14a)

so that the ratios of the adjusted and ab~initio parameters are the
same, i.e.

§k+2(abcd) - Rk+2(abcd)

R (abed)

(5.14Db)
=k
R (abced)
The dominant corrections to the parameters representing Slater integrals
involving only unfilled subshells, both within and between configura-
tions, probably take the form of (5.8). 1In this context, a simple argu-

ment can be made for linear constraints, (5.14a).

An integral Rk(abcd) is determined mainly by contributions from
regions near r“=r", because the functions Uk(r’gr”) are peaked about
‘=r", with the sharpness increasing with increasing k. If Uk(r’sr”) is

rewritten in the form

~ 2 1=1x k
U (rf,e") = O (r,x) = 2-C=lxD o (5.15a)
k k r (1+1X‘)k+l
I A v S e
r = 5T X = ;7:§W {5.15b)

then the integral takes the form

1l o
R(abed) = 20 dx{arrl (r,00p, (rll4xDp, (cll-x])  (5.16a)
10
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pac(r) = Pa(r)PC(r); Pbd(r) = Pb(r)Pd(r> (5.16b)

If the radial wavefunctions are slowly varying at large radii, (5.16a)

can be expanded

" s
R (abed) = BEkl»SNdrPac(r)Pbd(r) +
0

ao
<X2>l-“gdrrz[P;c(r)Pbd(r) * PR (E)Pgc (r) (5.16¢)

- ZP;C(r)péd(r)] 4 oo O[<x4>k]]

1 k
Ik = de *ii:éﬁzy (5.16d)
0 (14+x)
1 k
<xn>k - Eé»gﬂxxn “ii:§%;? (5.16e)
k O (1+x)

The ratios between Slater dintegrals are roughly determined by the

integrals Ik:

L

{(5.17)
?k(abcd)
The dntegrals Ik for 0 < k < 6, their ratios, <x2>k9 and <x4>k are given
in table (5.1). If the corrections to the Slater parameters (5.8ab) are
fairly small (say about 20%), then a fairly small error is introduced by
adjusting them with the constraint (5.14). Also, if the dominant
corrections are in the form of (5.8) and the functions {aij(rir")} are
much like {Pi(r)Pj(r)} for v =r"=r, then a linear constraint is an even

better approximation.
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Table (5.1)
Integrals of (lmlxl)k/(1+!xf)

== 3

k+1

oo () () nsr, on/r n/i, L/ 1/1,

0 <6931 .2787 .1584 1.0

1 .3069 -1116° <0380 <4427 1.0

2 .1931 .0565 .0123 .2787  .6924 1.0

3 .1402 .0340 0064  .2022 L4569  .7528 1.0

4L .1098 .0216 .0022 1584 <3579  .5686 7833 1.0

5 .0902 .0150 0011 -1301  .2939 .4669 6433 .8213 1.0

6 0765 .0110 .0064 .1103  .2492 .3960 .5456 .6965 8480

Spin~Orbit Paramefers

The spin-orbit parameters are generally less important than the
other parameters in the lighter atoms, and corrections to the ab-initio
estimates can probably be ignored if sufficient data does not exist to
determine them by least squares minimization. In the heavier atoms, the
spin-orbit parametersfficult to predict accurately, and final values
must be determined empirically. In the case of a Rydberg series (n{),
however, emplrical observations lead to a natural constraint for the

. .o ; 7
énﬁ s. The empirical formula for éno is given by

Re(%(z-8)
(%) 2 (1 Yo ) (341)

(5.18a)

St

where n* is the effective quantum number. An ab-initio estimate for
éﬂo will be correct to order Zé, so a constraint for all spin-orbit

parameters of a series is given by

= |Z-8)4
Sng [st] St (5.18b)
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This idea tends to support the use of an overall scale factor with.
groups of spin-orbit parameters. The success of the expression (5.18a)
is due to the sensitivity of énO to small r, while the ab-initio esti-

mates may not be correctly "screened" at small r.

5.1.3 Extrapolations

The behavior of the energy spectrum of atomic Hamiltonians as a
function of nuclear charge Z with the number of electrons N fixed has
been well-studied theoretically and empirically7’55’68ﬁ7le If a8 scale

transformation is made on the non-relativistic atomic Hamiltonian so

that r =» r/Z, then

2 =1 .
H—= 27 [HO + Z VC] (5.19a)
N

- 2 2

HO = ’2 P - T (5.19h)

i=1 i .
Ny

VC = S =S (5:19c¢)

I=1i<j "1j

leading to a new eigenvalue equation

[HO + z’vaJ@N - [E/ZZJQN (5.19d)

This form naturally suggests treating VC as a perturbation with the per-
turbation parameter 271,

The non~relativistic energies and eigenfunctilons take the form

ZZEnEn (5.20a)

Wi g

n=0
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ZEDQN

T
n

(5.20b)
n=0

The zero-order eigenfunctions are Slater determinants of hydgrogenic 1-
electron eigenfunctions, so that all determinants with the same set of
principle (n) quantum numbers are degenerate. All degenerate configura-
tions with the same inversion symmetry belong to a complex. A complex7o
is treated with first order degenerate perturbation theory, hence in the
limit of large Z, the configurations of a complex have a limiting confi-
guration interaction. Configurations of a complex are also considered
likely candidates for multiple configuration effective Hamiltonians,

especially when the differences between their average energies are not

too large.

If the interelectron Coulomb potential is replaced with any approx-
imation as in‘the case of the Hartree-~Fock model, the 1/Z perturbation
expansion can still be made. This implies that the difference in energy
between such a model and the exact non-relativistic energy is a polyno-

mial in Z of the form

E =80 = ZAE +AEy+ 2T ABp + e (5.21a)
and the parameters ?kg Ek, and ik representing the coulomb interaction

differ from the Hartree-Fock values by a polynomial

R - rE = RI({) + z$1R§ Foens (5.21b)

Edléﬁ7 has successfully fit empirically determined values of Fk and Gk

along i1soelectronic sequences with formulae of the form
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—k
F'(ab) = Az + B + o5 (5.22

where z = Z-N+1.

The relativistic version of the 1/Z perturbation theory is consid-

erably more complexm’ns

Many of the contributions to the Z dependence
of the atomic energy levels are simply first order perturbations of the
Pauli atomic Hamiltonian, table (2.4). As discussed in chapter IIT,
some of these corrections can be incorporated into the configuration
average energy calculated with any given independent particle model. If
this is the case, and extrapolations are made for only a few values of Z

in the early stages of ionization, the non-relativistic formula shoud be

adequate. This is the view taken here.

For a fixed Z and N, methods can also be considered for obtaining
corrections to some of the parameters from the adjustments made to oth=-
ers. One example applies to the configuration average energies of a
Rydberg series. For an unperturbed Rydberg series, the average energies

can often be fit very well to the Rydberg formula79

2
T = B.-F = Q»Z%L (5.23a)

0%

with

n* = 0 =d = BTH (5.23b)

The adjustable parameters are the ionizatlon energy EI’ o, and B. With
a perturbed series, an effective Hamiltonian can be used that explicitly
includes the major part of the configuration interaction, so that aver-

age energies for some members of the series can be adjusted to "unper-
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turbed"” values. The adjusted average energies can then be fit to the
Rydberg formula and used to predict new average energies for the rest of

the series.

A brief comment can be made about extrapolating corrections to
other configurations at the same stage of ionization. If the correc-
tions to say, the Fk(nQHO) integrals for a configuration néulare given
by (5.8), the functions {aii(rgr”)} might be fairly insensitive to w as
long as z =(Z-N+1) remains the same. Then the differences between the

ab-initio and empirical Fk’s might be nearly the same for all w.

5.2 K I Isoelectronic Sequence

A substantial amount of analysis has been done on the first several

membeyrs of the KO+ isoelectronic sequence because of their theoretical

simplicity and experimental accessibility72“85; The first few ions are

dominated by the spectrum of a single electron outside a closed core of

0+ bt

elghteen electrons (iscelectronic with Ar~ ). Beginning with Ti"', the

promotion of the 3p-electron from the closed 3p6 shell to another ni

orbiltal becomes favorable at energies low enough to noticeably perturb

the single electron spectrum78$84s Levels assigned to the 3@53d2 and

3p53d43 configurations have been identified for T13+ through Fe7+ with

79,81,82 suggesting that the rela-

the aid of Cowan’s HX calculations,
tionship of the calculated to the observed energy levels might be stu-

died and used to extend the analyses of other ions in the series, par-

: 6+
ticularly Mn®" and Fe/*, we’* 4g probably the highest stage of ioniza-

tion of iron that can be reasonably generated with a sliding spark

source, and 1ts spectra are of astrophysical interest.
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The calculations are described and compared with the known energy
levels along the iscelectronic sequence in (5.2.1). These comparisons
are combined with the ideas discussed in section (5.1) to formulate an

adjustment strategy for the calculated parameters of V4+ and Cr5+ in

(5:2.2). The adjustments are then extrapolated T13+9 Mn6+, and Fe7+a
Then the parameters of the identified configurations for each of these
ions are optimized by least squares. The revised corrections for these
refined pavameters are then extrapolated to the ions where the

corresponding configurations have not been identified (where possible)

in (5:2.3).

5.2.1 Experimental Energies and HXR Calculatiomns

A representative sample of the configurations identified in the

7+

ions KO+ through Fe' was selected for the study, including sixteen even

parity configurations (4s, 5s, 6s, 7s, 8s, 4d, 5d, 6d, 7d, 7i, 8i, and

3p53d4p) and fifteen odd configurations {(4p, 5p, 6p, 7p, &4f, 5f, 6f, 7f,

8f, 9f, 10f, 6h, 7h, 3p53d29 and 3p53d4s)a No levels belonging to the

3p53d4p configuration have been identified for any ion, but it is

suspected that this configuration perturbs the 5g, 6g, and 7g levels as

early as Cr5+9 because of the anomalously large orbit splitting of the

79 7+

5g levels ”. Analysis of the Mn6+

and Fe ions has been difficult to
date, particularly in the case of the excited even parity configura-
tions; most of the classified lines terminate with the 3d ZD levels.
Perhaps the transitions between the 3p53dép configuration and the

53d48 configurations begin to dominate the spectra of Mn6+ and

3p°3d%, 3p
Fe7+, explaining why more of even parity configurations have not been

identified. The spectra of these two ions have been recalculated with
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adjusted parameters and presented in the appendix.

The experimentally observed and calculated energy levels are
displayed in tables (5.2) through (5:.9); the calculated levels are
derived from the "raw"” HXR parameters without any empirical scaling and
including Cowan’s correlation correction (Ec of equation (3.19)). When

scaling factors are applied to the énéﬁs, Rk’s, s and G

14,81,82,84

‘s, however,
the calculated levels reproduce earlier work of Cowan The
energles are compared relative to the 3p6 ground state of the parent ion
(the calculated 3p6 average energy is set equal to the experimentally
determined {onization energy) with zero taken at the observed ground
state energy. For purposes of comparison, the elementary finite nuclear
mass correction has been applied to the calculated levels for all
displayed tables. Although this correction is only a few cmml9 the

inverse of this correction was applied to the observed levels before any

adjustments were made.

The experimentally derived ionization energies, in order from KO+

to Fe!t, are: 35009.77 (x 1)/2°73

, 95751.87 (CaIl)’%, 199677.37
(sexrr) 7> 7%, 348973.7 (ri1v)’7, 526532.0 (v W)'8, 731020 (crvi)’?,
962000 (MnVII)839 1218400 (FeVIII)84e An overall constant discrepancy
between the observed and calculated levels is possible for any ion due
to an error in the experimental ionization energy, but the the ioniza-~

o+ for the pur-

tion energies are quite accurate (< 6 cm al) through Cr
pose of comparing with the calculations. The ground state of the parent
ion is a convenient reference point for isoelectronic comparison because

it is a non-degenerate, closed shell 1SO configuration, and its energy

should vary smoothly with Z.



HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION

BDC25+1)L = 3p2(25+1)L

TABLE (5.28)
K 0+ ODD LEVELS

PARENTAGE -— DD(25+1)L = 3D2( 25+1)L

EXP
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TOTAL —- EIGENVECTOR COMPOSITION PCT

2H11/2

2F
2F
2F
2F
2F
2F
2F

5/2
772
k72
/2
5/2
7/2
5/2

12985,
13043,
24701.

24720.
28128.
28128.
28999,
29008.
30606.
30606.
31070.
31074,
31953.
31953.
31961,
31961.
32765,

32765 .

33291.

33291.
33652.

33652.

INCR  J/My
~1119.9 100.
-1107.3 1.5  100.

-299.0 .5 100
~293.0 1.5  100.
1.3 2.5  100.
1.3 3.5  100.
-127.6 .5 100.
-124.5 1.5 100.
-1.6 2.5 100.
-1.6 3.5 100.
-66.3 .5 100.
-64.6 1.5  100.
-2.5 2.5 100.
-2.5 3.5 100.

8 4.5 100

g8 5.5 100,

-1.4 2.5 100.
-1.4 3.5 100.
-1.0 2.5 100.
-1.0 3.5 100,
-.2 2.5 100,
-.8 3.5 100,
-4 2.5 100,
-4 3.5 100,

2P
2P
2P
2P
2F
2F
2P
2P
2F
2F
2P
2P
2F
2F
2H
2H
2F

. 2F

2F
2F
2F
2F

(
(
(

up
4p
5P
5p
4F
4F
6P
6P
5F
5F
7P
7P
¢F
6F
eH
6H

)
)
)

ABSO

LUTE MEAN DEVIATION =
RMS DEVIATION =



TABLE (5.28)

K O+ EVEN LEVELS

HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
UNCORRECTED WXR PARAMETERS WITH CONFIGURATION INTERACTION

PARENTAGE -- DD( 25+1)L = 3D2(25+1)L
DSC25+10L = (3P5(2P)3D( 2D M 25+ 1)L

DDC25+1)HL = 3D2( 25+1)HL
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GiRREP caLe Exp INCR  J/mU TOTAL -- EIGEMVECTOR COMPOSITION PCT
25 /2 *14730 0. —~1472.5 .5 100, 1060. 25 ¢ A4S ;"“ o
2D 372 20208. 21537. -1328.6 1.5 99. 9%. 20 C 3D )
2D 5/2 20209. 21534, ~1325.9 2.5 99. 99. 2D C 3B )
25 172 20985, 21027 -41.7 .5 100. 100. 25 ¢ 55 )
2D 372 27323. 27398 -T4.7 1.5 100. 100. 2D ¢ 4D )
2D 5/2 27324 27397 -72.7 2.8 1006, 100. 2D ( 4D
25 1/2 27445 27451 -5.4 .5 100. 100. 25 ¢ &S )
2D 3/2 30150 30186 -35.9 1.5 100. 100. 2D ¢ 5D )
2D 5/2 30150. 30185 -34.7 2.5 100. 100. 2D ( 5D )
25 1/2 30274 30274 -.5 .5 100, 100. 256 ¢ 75
26 172 30620 30620 -.1 3.5 100. 100. 26 ¢ 5G
2G 9/2 30620 30620 -.1 4.5 100. 100, 26 ¢ 56 )
20 372 31680, 31696, -16.1 1.5 100, 100, 2B ( &0
2D 5/2 31680. 31696. ~15.4 2.5 100. 100. 2D C 6D
25 1/2 31765 31765 4 .5 100. 100. 25 ¢ &5 )
26 7/2 31961. 31961. .0 3.5 100, 100. 26 ¢ 6G )
2G 9/2 31961 31961 0 4.5 100, 100. 26 ( 66 )
20 372 32591 32598 -7.3 1.5 100. 100. 2D C 70 )
2D 5/2 32591. 32598. ~-7.0 2.5 100. 100. 20 ¢ 7 >
T NO. EXPERIMENTAL LEVELS 9.

ABSOLUTE MEAN DEVIATION 233.65

RMS DEVIATION 548.06




TABLE (5.3m)
CAl+ ODD LEVELS

HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION

PARENTAGE -- DD(25+1)L = 3D2( 25+1)L

DDC2S+10L = 3p2( 2S+1)L

IRREP  CALC EXP INCR  J/MU  TOTAL ~- EIGENVECTOR COMPOSITION PCT
2P /2 23379. 25192, -1812.3 .5 100, 100. 2P ( 4P o
2P 3/2  23645. 25414, -1769.8 1.5  100. 100, 2P ( 4P
2P 172 60241.  60533. -291.6 .5  100. 100. 2P ( 5P
2P 3/2  60339. 60611, -272.6 1.5 100. 100. 2P ( 5P
2F 5/2 67954,  68057. -103.2 2.5 100. 100. 2F ( 4F
2F 7/2  67954.  68057. -103.0 3.5 100. 100. 2F ( uF
2P 172 TH386.  THHES. -99.3 .5  100. 100, 2P ( 6P
2P 3/2  THM32.  TH522.  -90.1 1.5 100. 100. 2P ( 6P
°F 5/2  T7959. T804, -75.9 2.5  100. 100. 2F ( 5F
2F 7/2  T7959. 78034, ~75.7 3.5 100. 100. 2F ( 5F
2P 1/2 81453,  81498. -45.2 .5  100. 100, 2P ( 7P
2P 3/2 81478, @1517. -38.8 1.5 100. 100. 2P ( 7P
2F 5/2 83410,  83458.  -48.4 2.5 100. 100, 2F ( 6F
2F 7/2 83410,  83458.  -48.3 3.5  100. 100. 2F ( 6F
2H 9/2  83557.  83553. 4.5 4.5 100, 100. 2H (  &H
241172 83557, 83553, 4.5 5.5 100, 100. 2H (  &H
°F 5/2  R6696. 86727. -31.5 2.5 100. 100. 2F ( TF
2F 7/2  86696.  86727. -31.4 3.5 100. 100. 2F ( TF
2H 9/2 86792,  BET90. 2.5 4.5 100, 100. 2H ( TH
2HI1/2 86792, 86790, 2.5 5.5  100. 100. 2H ( TH
2F 5/2  88825. 8847, -21.8 2.5  100. 100. 2F ( &F
2F 7/2 88R26.  8884T. -21.8 3.5 100. 100. 2F ( @F
oF 5/2 90284,  90300. -15.6 2.5 100. 100. 2F ( OF
2F 7/2  90284.  90300. -15.6 3.5 100. 100. 2F ( OF
““““““““““““““““““““ NO. EXPERIMENTAL LEVELS = 24
ABSOLUTE MEAN DEVIATION = 20941
RMS DEVIATION = 525.93

DSC25+10L = (3P5(2P)3B( 2D)Y M 25+1)L

)
)
)

=177~
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TABLE (5.3B)

CAl+ EVEN LEVELS
HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
UNTORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION
PARENTAGE -— DD(2S+1)L = 3D2(25+1)L

. _DDC2S+DIL = W2A25+1IL  DS(25+1)L = (IPE(2P)IB(20)N2S+DL
IRREP CALC Exp INCR J/MU  TOTAL -- EIGENVECTOR COMPOSITION PCT
25 172 -2u452. 0. 2451.8 .5 99, 99. 25 ( as >
20 3/2 13334, 13650, -315.9 1.5  99. 99. 2D ( 3D )
20 5/2  134m6. 13711, -265.0 2.5  99. 99. 2D ( 3D )
25 1/2  52262. 52167.  94.7 .5  100. 100. 25 ( 55 )
20 3/2  57025. 56839. 185.6 1.5 100. 100. 2D ( 4D )
2D 5/2  57049. 56858. 190.7 2.5 100. 100. 2D ( 4D )
25 1/2  70747. 70678.  69.5 .5 100. 100. 25 ( 65
2D 3/2 72834, 72722, 111.5 1.5 100. 100. 20 ( 50 )
2D 5/2  Teesn. 72731, 113.3 2.5  100. 100. 2D ( 5D )
26 7/2  T8173. 78165, 8.7 3.5 100. 100. 26 ( 56 )
26 9/2  T8173.  78165. 8.7 4.5 100. 100. 26 ( 5G )
25 1/2  T9490.  794u.  42.0 .5 100. 100. 25 ( 75 )
2D 3/2 80590, 80522.  68.0 1.5 100. 100. 2D ( 6D )
2D 5/2 80595 80526.  68.9 2.5 100. 100. 2D ( 6D
26 7/2  83541.  83540. 8 3.5 100 100. 26 ( 66 )
26 9/2  83541.  83540. 8 4.5 100. 100. 26 ( 66 )
25 1/2 84327. @4301.  25.8 .5 100. 100. 25 ( 85 )
2B 3/2 84978, 84934,  44.4 1.5  100. 100. 20 ( 7D )
oD 5,2 eu98l.  @u936.  45.2 2.5 100. 100. 2D ( 7D )
26 7/2 86780  86781.  ~1.1 3.5 100. 100. 26 ( 76 )
26 9/2  BLTRO. ge78l. ~1.1 4.5% 100, 100. 2G ¢ 7G"~l wwwwwwwwwwwwwwwwww
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ NO. EXPERIMENTAL LEVELS = 21. '
ABSOLUTE MEAN DEVIATION = 19588

RMS DEVIATION = S48.03
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TABLE (5.4A)

SC2+ 0DD LEVELS
HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION

PARENTAGE -- DD(2S+1)L = 3D2(25+1)L
DDC2S+1)L = 3p2( 25+1)L

DSC25+1)L = (3P5( 2P)3D{ 2D) ) 25+

ITRREP CaLc
2P 172 60218
2P 372 60774,
2P 1/2 128028,
2P 3/2 128238.
2F 5/2 136533,
2F T/2 136535,
2P 1/2 158526.
2P 3/2 155627,
2F 5/2 159308,
2F 772 159310.
2P 172 169682.
2P 3/2 169739.
2F 5/2 1717107.
2F 772 171708,
2H 972 172255.
2HI1/2 172255,
2F 572 179175.
2F 772 179176,
2H 972 179533.
2H11/2 179533,

128107,
128283,
136874,
136874,
155490.
155575,
159472,
159472.
169638,
169686.
171788,
171788.
172225.
172225.
179215.
179215.
179508,
179508.

~340.
~338.
36.
51.
~164.
-162.

AT 7 i n U T T 1 T RS 1 i

NQ. EXPERIMENTAL LEVELS

ABSOLUTE MEAN DEVIATION
RMS DEVIATION
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TABLE (5.4B)

SC2+ EVEN LEVELS
HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION
PARENTAGE ~~ DD(2S+1)L = 3D2(25+1)L
DDC25+1)L = 3p2c25+1)L

n{RﬁEP carLe EXP INCR  J/mu
2D°3;£ aaaaa :76 0. -75.8 1.5
2D 5/2 215 198. 17.8 2.5
25 /2 22461. 25539. -3078.5

2D 372 112171, 112258, -86.8 1
20 572 112225. 112303. ~78.4 2
25 1/72 115112, 114862. 250.0

2D 3/2 148300. 148130. 170.0 1
2D 572 148325. 148150. 174.5 2
25 172 149375, 149194, 180.5

26 772 160088, 160072, 15.7 3
26 972 160088. 160072. 15.7 4
2D 3/2 165734. 165593. 141.0 1
20 8/2 165747, 165603. 143.8 2
25 172 166273. 166157, 116.2

26 T/2 172179, 172177. 1.7 3
26 972 172179, 172177. 1.7 4.5
20 3/2 175565, 175457, 108.2 1.5
2D 5/2 175573. 175464, 109.8 2.5
25 1/2 175877. 175796. 80.9 .5
26 772 179481. 179477. 4.0 3.5
26 972 179481, 179477, 4.0 4.5

NG . EXPERIMENTAL LEVELS

ABSOLUTE MEAN DEVIATION

100, 100. 2D C 3D
100. 100, 20 ¢ 3D )
99. 99. 25 ¢ 45 )
99. 99. 2B C 4D )
99. 99. 2D C 4D )
100. 100. 25 ¢ 55 )
100. 100. 2D ¢ 5D
100. 100. 2D C 50 )
100, 100. 25 (¢ &S )
100. 100, 26 ¢ 56 )
100. 100. 26 ¢ 56 )
100, 100. 2B ¢ &0 )
100. 100. 2D C é&D
100. 100. 25 ¢ 7S
100. 100. 26 ¢ 66
100. 100. 26 ¢ 66 )
100. 100. 2B ( 70 )
100. 100. 2D C 70 )
100. 100. 25 ¢ 8BS )
100. 100. 26 ¢ 76 )
100. 100. 26 ¢ 76 )

= n. B

= 231.19

= 680.90




126089,
127037.
230724

2P
2P
2H
2H
Z2H
2H

1/2
372
1172
9/2
1172
9/2

TABLE (5.5A)
T13+ 0DD LEVELS

HAR CALCULATIONS COMPARED WITH LXPERIMENTAL OBSERVATIONS
UNCORRECTED HXR PARAMETERS WITH CONEIGUR%T%ON INTERACTION
D20 25+1)L

PARENTAGE -— DD(25+1)L

DDC25+1)L = 3p2( 25+1)L

231093.
235435 .
235451,
T2THRTO.
275051,
275588.
275660,
280760.

298146
298259.
300176,
300176.
313115.
313115,

127921.
128740,
230609.
230924,
236135,
236142,
274726
274881 .
275847 .
275862 .
274840 .

2980060.
298088,
300159.
300159.
313111,
313111.

-1832.
-1702.
115,
168.
-700.
-691.
143,
169.
~259.
-202.
5920.

146
170.
17.
17.

[o- TR < A s

4

W ™
(S N EEEN AN AN AN D I N A 1

A N A A}

DSC 25+l

100.
99.
99.

100.

100.
95 .
92.
96 .

= (3P5E2P) 3B 2D 25+ 1)L

100.
100.
99.
99.
100.
100.

. 2H

¢ 4P )
¢ 4P )
( 5P )
¢ 5P )
C 4F )
¢ 4 )
( &P )
&P )

C B5F ) &. Z2F A(BDCIGY)

NO. EXPERIMENTAL LEVELS
ABSOLUTE MEAN DEVIATION

RMS DEVIATION

(DBC3F)) 18. 2D (DDCIDY
(DD 3F )

[

« 7"

¢ &H )

¢ 6H )

¢ o)

¢ 7H

46

.59

=181~



TABLE (5.58)

TI3+ EVENLEVELS
HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
UNCORRECTED HXR PARAMETZRS WITH CONFIGURATION INTERACTION
PARENTAGE -~ DD(25+1)L = 3p2(25+1)HL
DDC2S+1L = 3p2A 25+1)HL

=182~

I%Rgﬁ CaLC EXP INCR J/mU TOTAL -— EIGENVECTOR COMPOSITION PCT
2n 372 -110 0. -109.6 1.5 100, 100, 2D ( 30 ) )
2D 572 406. 382. 23.7 2.5 100, 100. 2D ( 3D )

25 /2 T6£823. 80389. -3565.¢6 .5 99. 99. 25 ¢ 45 )
2D 3/2 196578, 196804, -226.0 1.5 99. 99. 2D C 4D
2D 572 196683. 196890. -207.2 2.5 99. 99. 2B ¢ 40 )
25 172 212767. 212407. 359.7 .5 100, 100. 25 ¢ 58S
2D 3/2 259185. 258838, 346.4 1.5 100, 100. 2D ¢ 5D )
2D 572 259234. 258877. 3B56.7 2.5 100. 100. 2D ¢ 5D )
25 172 266106, 265847, 258.6 .5 100. 100. 25 ¢ 65 )

2G T/2 278468, 278511. -43.1 3.5 100, 100, 26 ¢ 5G )
2G 972 278468. 278511. -43.2 4.5 100. 100. 26 ¢ 56 )
2D 3/2 289443, 28918¢6. 256.6 1.5 100. 100. 2B ( &0
2D 5/2 289469. 289207. 262.5 2.5 100. 100. 2D ¢ &D )

25 1/2 293160. 293000. 160.1 .5 100. 100. 25 ¢ 75 )
26 7/2 299999. 300046, -46.7 3.5 100. 100. 26 ¢ &G )
26 9/2 300000. 300046. ~46.6 4.5 100. 100. 26 ¢ &6 )
2D 3/2 306572. 306396. 176.2 1.5 100. 100. 2B ( 7D )
2D 572 306588, 3064508, 179.7 2.5 100. 100. 2D C 7D
25 1/2 308811. 308710. 101.8 .5 100. 100. 25 ¢ 85 )
26 7/2 313001. 313034. -32.8 3.5 100. 100. 26 ¢ 76 )
26 972 313002, 313034 ~32.5 4.5 100. 100. 26 ( 76 )
211172 313139. 313131. 7.8 5.5 100, 100, 21 ¢ 71 )
211172 321537. 321531. 5.4 5.5 100. 100. 21 ¢ 81 ) B ~
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ NE. EXPEg;éENT@LgLEVELS o 23Tw
ABSOLUTE MEAN DEVIATION 297.75
RMS DEVIATION 766 .36




204681 .

2F

2F

2F

2F
2F
2p
2P
2F

2F

2P
2P
2F

2F

2P
2P
2H

7/2

72

5/2

7/2
5/2
17z
3/2
5/2

72

/72
372
572

772

/2
3/2
9/2

ZHI1/2

2F
2F

/2

772

V 4+ 0DD LEVELS
HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS

TABLE (5.6R)

UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION

PARENTAGE -~ DD( 25+1)L

DDC25+1)L = 3p2A 25+1)HL

206136
320647,

322840,

334077,

339572.

349228.
350244,
351845
352434,
406150.

406893,

215685,
415982
429134,

430629.

449708 .
449902 .
450265
450265 .
451968,
452307

206394,
207660.
319106.

320732.

332198.

337013,

349252,
349676 .
351501,
352018,

417699

418188,

415420,
415676,
396135,

397994 .

HH9ERT
4n9773.
450248,
450248,
449371 .
BUIN22.

2108.

2479.

2559 .

-2
FA8.
REEN
415,

11548

~11295.

32635.

121.
129.
16.
17.
2597.
2884,

DN W NN O

ﬁS(?S+1)L

TOTAL

99.

99,

5 95 .
5 92.
97 .

.5 97 .
.5 96 .
5 97.
.5 99,
5 99 .
.5 35
5 96 .
.5 99.
.5 100.
.5 94,
.5 94
99

99

100.

100.

5 91.
) 4.

100.

33.
24 .

28,
25.

99.
99.
100.
100.

= 3DZ(25+1)L
= (3P5(2P)3D( 2D 25+1)L

(D16
(DDCIDY)

(DOCing)

(
(D
(
(
(

(
(

4F
(1
(3
uE
HF
5P
5P
5F

)

)
)
)

(Dﬁ(l”))

(

5F

)

(DDC1G))

(
(
{

&p
&P
5F

)
)
)

(DDCIGY)

(

5F

)

(DDC1GY)

(
(
(
(
{

7P
7P
&H
6H
&F
&F

)
)
)
)
)

3

(DD(3F))

12.
26.

15.

26.
12.

26.
15.

2F
2F

2F
2F

2F
2F

(BBCIDY)Y
(DBCIDY)

- (DDC3F N

(DD 3F )

(DD 3F )
 &F )

(DDC3F))
¢ &F

(DB 163)
(pBeIG»

=183=-



DDC25+1)L = 3D2(25+1)

=184~

TABLE (5.6A) CONTINUED

V 4+ 0DD LEVELS
RXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION
PARENTAGE -— DD(25+1)L = 3D2(25+1)L

DSC25+10L = (3PS(2P)3D( 2D M 25+1)L

hiiﬁEP caLe EXP INCR  J/mu TOTAL -- EIGENVECTOR COMPOSITION PCT

2P 1/2 855313, 438018, 1729%.;‘ .5mn 89. ég. 2P (DS;;;;; 26. 2P (DD(3PY

2P 3/2 457702. 439443, 18259.6 1.5 92. 58, 2P (DS(3P)) 29. 2P (DD( 3P
&. 2P (BDCIDY)

2H 972 4TO4B6. 4T0489. -3.1 4.% 100, 100, 2H C  TH

2H11/72 HTO486. 470489. ~2.6 5.5 100, 100. 24 ¢ 7H )

2F §/2 H70765. 469702, 1063.2 2.5 91. 91. 2F ¢ TF

2F 7/2 470819, 469716, 1102.7 3.5 92. 92. 2F ¢ TF

2D 572 474895, 444154, 30741.6 2.5 96 . 64, 2D (DD(3F)Y) 15. 2D (DDC1DY)
10. 2D (DD(3P)Y)Y 6. 2D (DSC3DN)

2D 372 475274, 444621, 30653.0 1.5 85. 61. 2D (DD(3F)Y) 15. 2D (BDC1ID))
9. 2D (DBC3PY)

2F 1/2 475908. 475531, 377.4 3.5 93. 93. 2F (DSC3F)N)

2F 5/2 479219. 478566, 653.0 2.5 92. 92. 2F (DSC3F))

2F 7/2 483690. 483038, 651.6 3.5 9¢. 96. 2F . 8F )

2F 5/2 483710. 483019, €90.7 2.5 95. 95. 2F ¢ 8F )

2F 7/2 492455. 492202. 253.2 3.5 95. 84, 2F (. 9F ) 1L, 4D {DSC3DD

2F 5/2 492529. 492144, 3844 2.5 97. 97. 2F (. 9F

2F 5/2 500294, 496296. 3998.3 2.5 94. 2. 2F (DSCIF)Y)Y 18, 2F ( 10F )
&. 2D (BSCIDY)Y 5. 4D (DS(3DN

2F 772 501306. 497556 3750.0 3.5 94. 78. 2F (DSCIF)Y)Y 9. 2F ¢ 10F )
8. 4D (DS(3D3)

2D 372 505494, 500117, 5376.7 1.5 96. 91. 2D (DS(3By)y 5. 2D (BDO3F)M

2D 5/2 505874, 500502, 5371.5 2.5 97. Té. 2D (DSC3D)) 8. 2D (DSCIDM
T. 2F (DSCIF)Y)Y 5. 2D (DBBO3FN

””””””””””””””””””” NO. EXPERINENTAL LEVELS =  40. N

ABSOLUTE MEAN DEVIATION = £718.03
RMS DEVIATION = 11252.

31
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TABLE (5 éB)

i V 4+ EVEN LEVELS

HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS

UNCORRECTED WXR_PARAMETERS WITH CONFIGURATION INTERACTION
PARENTAGE -- DD( 25+1)L = 2D2( 25+1)L

oo DUSEOL = W2(2SHL DSOS = (3PBO2PIINZD) NS
IRREP CALC  EXP INCR J/MJ TOTAL - EIGENVECTOR COMPOSITION PCT
0 32 -190. 0. -189.6 1.5 100, 100. 20 ¢ B o
20 572 615, 625. -9.7 2.5 100, 100, 20 ¢ 3D )
25 172 144216, 148143, -3927.8 5 99. 99. 25 ¢ 45 )
20 3/2 293726. 293903, -176.5 1.5 99. 99. 2D ( 4D )
2D 5/2 293908, 294047. -139.8 2.5 99. 99. 200 ( 40 )
25 1/2 328697, 328217. 479.8 5 100. 100. 25 ¢ &85
2D 372 388573. 387977. 595.6 1.5 99. 99. 2D ¢ 50 )
2D 5/2 388459, 388044, 6149 2.5 99. 99. 20 ¢ 5D )
25 172 404214, 403855, 358.7 B 100, 100. 25 ¢ &S )
26 772 116265, 416360, -95.1 3.8 100, 100. 26 ( 56 )
26 9/2 H416267. 116362, -95.2 4.8 100. 100. 2G ¢ 56 )
20 3/2 434701, 434304, 97.0 1.5 99. 99. 20 ( &0 )
2D B/2 434149 438341, 407.9 2.% 99. 99. 2D (6D}
25 1/2 443303, 443075 228.2 .5 00, 100, 25 (¢ 75 )
26 772 449959, 45002%. -65.3 3.% 100. 100. 26 ¢ &G
2G 972 449960, 450025 65,1 4.8 100. 100. 26 ¢ 46 )
2D 3/2 460948, HE069T. 250. 1.5 100. 100, 2D C 7D
2D 572 H609TT. 4e01720. 257.8 2.5 100. 1060. 2D C 7D
25 1/2 H66Z214. Hr6066. 148. 5 100. 100. 25 ¢ 85

7
8
5
26 772 HT0297. 4H#T0333. -36.4 3. 100, 100. 26 ¢ 76 )
5
&

5
26 9/2 470297, 170334, -36. 4.5 100. 100, 26 ¢ 76 )
211172 #70537. 170824, 12.6 5.5 100. 100. 21 ¢ 71 )
211172 483658, 483651. 7.0 5.5 100. 100. 21 ¢ 81 )
T T NO. EXPERIMENTAL LEVELS = 23,
ABSOLUTE MEAN DEVIATION = 373.73

RMS DEVIATION = 863.85
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TABLE (5.74)

CRS+ ODD LEVELS
HAR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS

UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION
PARENTAGE -— DD(25+1)L = 3D2( 25+1)L

34.

31.

18.

21.

13.

15.

45,

43.
27.

. 2F
. 2F

26

2F

2F

2F

2F

2P

2p

. 2D

. 20

2P
2P
2P
2P

(DDC3F))

(DDC3F )

(DDC3F))

(DDC3F N

(DDC3F))

(DDCIGY)

(BDC1GY)

(pDC1ID)

(DDCIDY)

(ppeinn

(obC1n))

6P )
(DSC3P))
(DSC3P))
{ &P )

_ caLe EXP INCR J/MU TOTAL —— EIGENVECTOR COMPOSITION PCT
2P 1/2 294971. 296573. -1602.¢6 .5 99. 99. 2P ¢ 4P )
2P 3/2 297057. 298397. -1340.2 1.5 99. 99. 2P ¢ 4P )
2F 5/2 358498, 356962, 1535.6 2.5 90. 49. 2F (DBC1G))
2F 7/2 361097. 359165. 1932.4 3.5 90. 48, 2F (DDCIG))
2F 7/2 37T4058. 371618, 2440.1 3.5 95. 73. 2F (DDCID Y
2F 572 382104. 378677. 3426.7 2.5 95. 95. 2F (DDC1DM)
2F 572 451960. 440135, 11825.2 2.5 9T. 38, 2F ¢ 4F )
25. 2F (DDCIGY
2F 7/2 454021, 442940. 11080.2 3.5 97. 42. 2F (. HF )
24. 2F (DDCIGY)Y
2P 172 489471. 487589. 1881.5 .5 97. 97. 2P ¢ 5P )
2P 372 490371. 4885462. 1809.1 1.5 97. 87. 2P ¢ 5P )
2F 572 491417. 481956. 9460.8 2.5 97. 61, 2F (. HF )
18. 2F (DDC3F))
2F 7/2 492957. 482517. 10440.0 3.5 97. 57. 2F ( 4F )
19. 2F (DDC3F))
2P 1/2 516195. 493247, 22947.8 .5 94. 70. 2P (DD(3P))
11. 2P (DDC1S))
2P 3/2 B518135. 494911. 23223.9 1.5 95, 71, 2P (DB(3P))
9. 2P (DDC15))
2D 5/2 528368. 496958. 31409.9 2.5 99. 71. 2D (DDC3F))
11. 2D (DDC3P))
2D 3/2 528685, 497495, 31190.0 1.5 99. 71. 2B (DDC3F))
11. 2D (DDC3PY)
2F 5/2 570904, 568957, 1946.7 2.5 97. 97. 2F (. B5F
2F 7/2 571023. 568993. 2029.8 3.5 9r. 97. 2F ¢ 5F
2P 1/2 574064, 578566, —-4502.4 .5 98. 53. 2P (DS(3P))
2P 3/2 575927, 575742 185.0 1.5 99. 73. 2P C &P )
2P 172 579724, 574135, 5589.2 .5 97. 54. 2P (6P )
2P 372 582034. 580697. 1336.9 1.5 96 . 69. 2P (DSC3PY)
uF 7/2 S5R3144. 584371. —-1226.7 3.5 97. 97. 4F (DS(3F))




4D 372
2D 5/2

20 372
2F 5/2

2F 1/2

2F 5/2
2F 772

2H 9/2
2H11/772
20 3/2
20 5/2

2F 5/2
2F T7/2
2H 972
Z2H1l/2
2F 572
2F 7/2
2F 5/2
2F T1/2

CA5+ ODD LEVELS
HAB CALCULATIONS COMPARED WITH EXPERIMFNTAL OBSFRVATIONS

TOBLE (5.7A) CONTINUED

UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION
PARENTAGE -- DD(2S+1)L = 3D2(25+1)L
DDC2S+13L = 3D2( 25+1)L

585198,
591424,
595635 .
610554,
611946 .

612687
615192.

616617
617714,

618361,

620063,
620987,

£21173.
621174,
£23294.

~2H005 .

cUOOTE .
649098,
LEDP9T.
£50297 .
668317,

~6B329.

6R1525

681532,

~187-

586273,
591137.
59492¢.
607615
603631

609166,
614385

611568,
&10497 .

618849

618583,
616079

621163
621163,
618491 .
619419,

648521 .
648533,
650211 .
6E0311.
667973,
667973
481307,
A8130T.

3520.
807.

5049 .
7216.

~487 .

1480 .
4907 .

10.
Hgo?2 .
4586,

m D

oo N O

-~

£

[aS)

o

N0

37

Tt

oW

W

RE 2NN

¥

INCR

TOTAL -- EIGENVECTOR COMPOSITION PCT

96
96.
94 .
99.
97.

98.

90.
9¢ .

100.
100.
9.
76

6.
96 .
94 .
86

8z.
6.

85 .

56,
17.

85 .

100.
100.
98 .
75 .

99.
99.
100.
100,

100.

100

100.
100.

4F
2F
2F
4D

4D
2F

4D
2D
20
2D

2F
2F

2F

. 4D

2F

2F
4D

2H
2H
2D

2D
20

2F

2F

(DSC3FY)
(DSC3F))
(DSC3F)Y S
(DSC30 N

(DSC30))
(DSCIF))

(pSe3D))

(DSC10Y)
(BSe3sbBy)

{ &F )
(psSe3on

¢ &F )

(DSCIFY)
(DSE3D))

C 6H )
¢ &H

-~
o}
oy
S
(™)

~—

)

NN
T
WL
o R )
N
—

—~
Gt {35

13.
22.

13.

» 23,

12.

36

44

15.

2F
2D

2D
2F

4B

2F

(DSCIF N
(pse1Dn

(DSC1ID))
(D5C1E)Y)

(DSC30))

[QINIG Y
(530

(DSCIF )

(DSCIF D)

¢ 6 )

(DSCIF Y
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TABLE (5.7A8) CONTINUED

CR5+ 0DD LEVELS
HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION
PARENTAGE —- DD(25+1)L = 3D2( 25+1)L
DDC2S+1)L = 3p2( 2S+1)L DSC25+10L = (3PB(2P)3D( 2D) W 25+1)L

IRREP  CALC EXP INCR J/my TOTAL -- EIGENVECTOR COMPOSITION PCT
2F 5/2 690973, 690781, 191.8 2.5 100, 100. 2F ( 10F )

2F T/2 690978, 690781. 197.1 3.5 100, 100, 2F ( 10F )

NO. EXPERIMENTAL LEVELS = 49.
ABSOLUTE MEAN DEVIATION

i

4658.09
8768.95

#

RMS DEVIATION
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TABLE (5.7B)

CRE5+ EVEN LEVELS
HAR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION
PARENTAGE ~- DB(25+1)L = 3D2( 25+1)L

””””””””””” BD(2S+1)L = D2 25+1)L DSC25+1)L = ( 3P5( 2P )30C 2D))( 25+ 1)L
CIRREP  CALC EXP INCR J/MU  TOTAL -- EIGENVECTOR COMPOSITION PCT
20 3/2  -305 0. -305.3 1.5 100. 100. 2D ¢ 3D )

2D 5/2 869 . 940, ~71.
25 172 223636, 227858, -4221.

2D 3/2 402639, 402662, ~22. 1.5 99 99. 2D (. 4D )
20 572 #02927. H02889. 38, 2.5 99 99. 2D 4D
25 1/2 461848, 461253 594. .5 100, 100. 25 ¢ 55 )
2D 3/2 535227. 534382, BHE .5 99. 99. 2D ¢ 5D )

=TS B N N« N - R Ot B e T A
et

20 5/2 538366, 534490 276 2.5 9. 99. 20 ¢ 50 )
25 1/2 562527. 562064, B67. .5 100, 100. 25 ¢ 65 )
26 772 572142, BT2272. ~130. 3.5 100, 100. 26 ¢ 5G )
26 9/2 BT2145. BT2274.  -129. 4.5 100. 100. 26 ¢ 5G )
20 772 620718, £2069¢6. 21 3.5 100, 100. 26 ¢ &G )
2G 9/2 620719. 620701, 19. 4.5 100. 100. 26 ¢ &6 )
T ol ExEmImENTAL LEVELS = 13
ABSOL UTE MEAN DEVIATION = 595.30

RMS DEVIATION = 1240.56
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TABLE (5.8M)

fNé+ ODD LEVELS
HAR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION
PARENTAGE -— DD(25+1)L = 3D2( 25+1)L

IBREP  CALC EXP INCR J/mU TOTAL -- EIGENVECTOR COMPOSITION PCY

2P 172 39492%9. 397650. -2720.9 .5 95. 81, 2P ¢ 4P ) 14. 2P (DDCIDM

2P 3/2 399435, 400120. -685.0 1.5 98. 58. 2P (4P ) 27. 2D (DDC1D))
7. 2D (DDC3F)) 6. 4F (DDC3FN)

2F 5/2 508605. 4B89880. 18724.9 2.5 98. 51. 2F (DDC3F)) #42. 2F (DDCIGY)
5. 2F (&

2F 772 513180. 494300, 18880.1 3.5 98. 48. 2F (DD(3F)) 44. 2F (DDC1IGY)
6. 2F (4

20 5/2 579254, 547370. 31884.3 2.5 99. 71, 2D (DDC3F)Y)Y 17, 2B (BDC D))
12. 2D (DBC3PY)

2D 3/2 579542. 547930. 31612.0 1.5 100. 71, 2D (DB(3F)) 17. 2D (DBDCIDY)
11. 2D (DDC3PY)

2F B/2 £619832. 615960. 3871.9 2.5 95. 95. 2F (  4F )

2F T/2 620149, 616100. 4049.0 3.5 94. 94. 2F (. HF )

4P 3/2 691387. 696420, -5032.7 1.5 98. 98. 4P (DS(3P))

2P 1/2 T01607. T700870. 736.6 .5 97. 97. 2P (DSC 3PN

2P 3/2 T06373. 7T05170. 1202.5 1.5 95. 95. 2P (DS(3P))

4F T/2 709483, T09720. -237.0 3.5 9é. 96. 4F (DS(3F N

4F s/2 T11971. 712350, -378.6 2.5 ‘94. 94, 4F (DSC3F))

2F T/72 T18319. 717430, 889.1 3.5 95. 95. 2F (DS(3F M)

2F 572 T23408. 722100, 1307.6 2.5 92. 92. 2F (DSC3F))

4p 7/2 738958, T735510. 3448.0 3.5 100. T2. 4D (DSC3D)Y) 19. 2F (DSCIF)N

9. 2F ¢ BF )

2F 572 T40665. T39770. 895.4 2.5 93. 41, 2F ( B5F ) 38. 4D (DSC3D)MN
18, 2F (DSCIF))

2F 5/2 T41433. 737020. 4413.5 2.5 97 . 46, 2F ¢ BF ) 40. 4D (DS(3D))
11, 2D (DSC1DY)

9. 86. 2F ( 5F ) 13. 4D (DSC3DY)
91. T7. 2F (DSCIF)) 13, 4D (DSC3D))
98. 98. 2D (DS(3B))

97. 73. 20 (DS(3D)) 18, 2F (DSCIFY)
6. 2D (DSCIDMN

2F 5/2 808971. B807760. 1211.2 2.5 100, 100. 2F ( &F )

2E T/2 TH4I1540. 739940. 1600.4 3.
2F T/2 T50610. TH46450. H160.4 3.
20 3/2 753474, T48170. 5304.1 1.
20 5/2 T54570. T49430. 5140.4 2.

L1 SN (RN (BN 1
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TABLE (5.8A) CONTINUED

MN6+ ODD LEVELS
HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
UNCORRECTED HXR PARANMETERS WITH CONFIGURATION INTERACTION
PARENTAGE -= DD(25+1)L = 3D2(25+1)L
DBC2S+1)HL = 3D2( 25+ 1)L DSC25+1)L = (3PB(2P)3D( 2D) 1 25+ D)L

B EXp INCR  J/MU  TOTAL —- EIGENVEETOR CONP mmmmmmmmmmmmmmm
°F /2 B09001. 807760, 12412 3.5 100 100. 2F ( & o

2F 5/2 849733, RUBRS0. 882.
2F 772 849749. R4885(, 898,
2F 5/2 876201. 875530, 671,
2F T/2 876211, B875%30. 680
2F 5/2 B894328. 893740. 588.3 2.5 100, 100. 2F . 9F

2F T/2 894335, 893740, 594.8 3.5 100. 100, 20 ¢ 9% >
""""""""""""""""""" NO. EXPERIMENTAL LEVELS =  30.

ABSOLUTE MEAN DEVIATION = 5131.44

RMS DEVIATION = 9840 .54



MN6+ EVEN LEVELS
HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION

=192~

e DDUZSTDL RSN DS 2R BB )L
e AT INon omT ToTeL L ELGERVECTOR ComrostTIOn Fr
20 3/2°“"”m188v 0. WIBEigm 1.5M IOST 100. 2D ¢ 33 )
20 5/2 1448, 1350. 98.2° 2.5 100. 100. 2D ¢ 3D )
25 1/2 314857. 318734, -3877.2 .5 99. 99. 25 ¢ 45 )
25 1/2 611957, 613934, -1976.8 .5 100. 100. 25 ¢ 55 )
25 1/2 Tu0679. T752144.-11464.5 5 100. 100. 25 ¢ &5 )
wwwwwwwwwwwwwwwwwwww NO . é;PERI;gNTQL LEJELS = 5.

ABSOLUTE MEAN DEVIATION = 3521.02

RMS CEVIATION = 90
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555363,
561515.
£16022.

2P

2D

2D

2F
2F
4p
2P
2P
45
4F
2F
2F
4D
4D

2F
2D
2D

2F
2F
2F
2F

372

72

3/2

5/2
772
3/2
172
3/2
772
572
7/2
5/2
772
572

7z
3/2
5/2

5/2
72
572
72

HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS

TABLE (5.9M)

FE7+ 0DD LEVELS

UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION
PARENTAGE -- DD(25+1) = 3DZ(ZS+1)L
DD(25+1)L = 3DQ(2¢+1)L

£19291.

626672

628885 .

767037,
T6T1246 .
R26741.
836235 .
8u3971.
B46363.
849321.
855775 .
B61893.
B78283.
880681,

AG1431.
8IB49G,
896041 .

F29042.
929121.
1017688.
1017721.

DS(25+10

(3P5(2?)3D(2D))(25+1)L

2p

20

2B

(ODC1IG))

- (DDC1G))

(ppeiby»

(DDCID N

(DpCIBM)

(BDC10Y)

- (DSCIF YD

S {BSCIE N

P
o
(a3
T
o8
[
—

S ARSCIF DD

EXp INCR  J/mi TOTAL -- EIGENVECTOR COMPOSITION PCT
€359£6. 19%36.7nm;f;g Q;f@=§52. 2F (DD(3F))
S81777. 19737.5 3.5 96. 50. 2F (DDC3F )
591973. 24048.7 .5 98. 71. 2P (DDC3P M)

13. 2P (DDCISH

595166, 24125.2 1.5 98. 73. 2P (DDC3PY)
9. 2P (DDCISH

596430, 32242.3 2.5 100. 71. 2D (DDC3F M
12. 2D (DDC3PH

597072. 31813.2 1.5 100. 71, 2B (BDC3F Y
11. 2D (DDC3P))

763789. 3248.3 2.5 98. 98. 2F ( 4F )
763821, 3425.2 3.5 98. 98. 2F (. 4F )
833000. -6259.5 1.5 97. Q7. 4P {DS(3P))
837750. 484 .5 .5 93. 93. 2P (DSC3FY)
842930. 1040.9 1.5 92. 92. 2P (DSC3P))
847250. -~8B6.6 3.5 95 . 95 . HF (DSC3F))
849990. —~6£9.3 2.5 93. 93, 4F (DSC3F N
855190. 584.9 3.5 95. 95. 2F (DSU3F )
860710. 1183.0 2.5 89. 89. 2F (DSC3F))
874770, 3513.5 3.5 100. 80. 4D (DSC3BN
&76810. 3870.8 2.5 93. 73. 4D (DBS(3B)>
9. 2D (DSC1DY)

887320. 4111.1 3.5 93. 76, 2F (DSCIFDY)
889110. 5379.7 1.5 97 97. 2D (DS{3D))
R90810. 5230.9 2.% 96 . 71, 2D (DSC3DY)
7. 20 (DSCID)YY

927025. 2016.8 2.5 99. 99. 2F ( B5F 1}
927053, 2067.9 3.% 99, 99. 2F ( 5F
1016530, 1157.9 2.5 100. 100, 2F ( &éF
1016570, 1150.5 3.5 100, 16D, 2F ( &F )
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TABLE (5.9A) CONTINUED

FE7+ ODD LEVELS
HAR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION
PARENTAGE -- DD(25+1)L = 3D2(25+1)L
““““““ DDC2S+1)L = 3p2( 25+1)L DSC25+1)L = (3P5(2P)3DC 2D W 25+ 1)L

IRREP  CaLC EXP INCR  J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT

2F 5/2 1071311, 1069870, 1441.1 2.5 100. 100, 2F ¢ TF )
2F 772 1071330. 1070030, 1300.1 3.5 100, 100, 2F ¢ T7F )

NO. EXPERIMENTAL LEVELS = 26.
ABSOLUTE MEAN DEVIATION = 7708.70
RMS DEVIATION = 12649 .77
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TABLE (5.98)

FE7+ EVEN LEVELS
HXR CatCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION
PARENTAGE -- DD( 25+1)L = 3D2(25+1)L

N DD 25+1)L = 3020 25+1)L DS(25+1)L = (3P5(2P)3D( 2D) ) 25+1)L
IRREP AL EXP INCR J/mi  TOTAL

032 w5, 0. -a15.1 15 100, 100. 20 ¢ 3 o
20 5/2  1791. 1838, -46.5 2.5 100. 100. 2B ( 3D )

NQ. EXPERIMENTAL LEVELS = 2

ABSOLUTE MEAN DEVIATION = 230.82
RMS DEVIATION = 295.38
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The Hamiltonian matrix reduces to block diagonal matrices of both
parities, with angular momentum values ranging from J=1/2 to J=11/2.

28+1ij via the schemes
S+1s S+l
(13p°(*P)3d(*py1 (%5 L>45(28>}25+1L39

Zs+lfjo The 28+1i parents are used to

The basils vectors are LS coupled to final states

2 98+l 2541s

(3p° (Pp)3a% (P8 28ty and

J’
(1302 (2py3d (201 (X5 Ly ap (2pyy

identify the basis set.

Iscelectronic Comparisons

Considerable configuration mixing occurs with the 3p53d2 and

3p53d45 configurations and some of the odd n{ configurations from CrS%

to Fe7+e As mentioned in the previous section, ab-initic calculations
tend to overestimate the magnitudes of configuration interaction parame-
ters because of correlations absorbed into the average energy. For mild
configuration mixing, the effect of including configuration interaction
is a shift of the configuration average energy that varies weakly with
Z. I1f the mixing configurations are nearly degenerate at some Z along
the iscelectronic sequence, however, strong configuration interaction
can occur, and the effect on the average energies is more dramatic. In
this situation, the effective Hamiltonian is very sensitive to values of

configuration Interaction parameters, and any adjustments to ab-initio:

parameters must be made with this 1n mind.

The strength of the configuration interaction along the KO+

isoelectronic sequence can be determined by plotting the difference

between the observed and calculated configuration average energles
. 6 ; : . .

(relative to the 3p  configuration) for the nl configurations. To

accurately compare the calculated and observed configuration average
¥ 2 8
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energies and possibly extrapolate their differences along the isocelec~-
tronic sequence, however, the correlation correction EC of equation
(3.19) added to the HXR calculation was removed. The difference beiween
the observed and calculated average energies is the correlation energy,
while the behavior of the correlation correction EC as a Z is unknown.
It is interesting to compare EC to the average energy differences as a
function of Z, and this was done graphically for selected levels. The
correlation corrections for the even and odd parity configurations rela-
tive to the correlation energy of the parent 3p6 ion are presented in

table (5.10)-.

The differences between the calculated and observed nl configura-
tion average energies are displayed in figures (5.1) through (5.7).

calc
) are not as

Overall, the single configuration HXR term values (T
large as their experimental counterparts, implying that the valence
electron is more tightly bound than the calculation suggests. For most
configurations the differences are smooth and appear to be asymptoti-

cally linear in Z as expected. To emphasize this observation, the

differences were fitted to a function Q;Z{)(Z)9

T
A’ZO(Z) = atly 4 gl +»§:§ (5.23)

and the function QQO(Z) is plotted with the differences in each figure

(Ané9 Bnos and CnQ are the adjustable parameters).

The strongly perturbed configurations, of course, do not fit well

jis)

to a curve of this type; there are large deviations from z curve of thi
type when strong configuration interaction occurs. It is desirable to

find a QSO(Z) that best represents the differences in the average
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Figure (5.1)

Differences between the calculated and observed average term
energies, plotted as functions of Z. The 3d and 4s confi~-
gurations are shown along with their respective correlation
corrections.
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Figure (5.2)

Differences between the calculated and observed avervage term

energies plotted as functions of Z.

The 58 6s, 78, and 8¢

configurations are shown.
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Figure (5.3)

XBL 805-895

Differences between the calculated and observed average term
energies plotted as functions of Z.
configurations are shown, along with the correlation correc-—

tion EC .

4p

The 4p 5p, 6p, and 7p
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Figure (5.4)

Differences between the calculated and observed average teym
energies plotted as functions of Z. The 4d 5d, 6d, and 7d
configurations are shown.
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Figure (5.5)

Differences between the calculated and observed average term
energies plotted as functions of Z. The 4f 5f, and 6f confi-
gurations are shown along with the correlation correction for
the 4f configuration. Strong configuration interaction is
evident beginning with Z=22.,
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Figure (5.6)

Differences between the calculated and observed average tern

energies plotted as functions of Z. The 7f, 8f, and 9f, con-
figurations are shown. Although the differences are smaller

than for the 4f, 5f, and 6f configurations, the strong confi-
guration interaction is again evident beginning with Z=22.
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Differences between the calculated and observed average term
energies plotted as functions of Z. The 5g, 6g, 7g, 6h, 7h,
71, and 8i, configurations are shown.
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Table (5.10)
Relative Correlation Energies (mel)

0dd Parity n 1 Configurations

Conf\Z 19 20 21 22 23 24 25 26
4p 1228 2637 3557 4195 4673 5047 5350 5602
5p 351 663 909 1117 1305 1467 1632 1778
6p 142 286 399 499 589 670 744 812
7p 74 151 215 271 324 370 413 453
4f 19 291 949 1832 2746 3572 4278 4860
5¢ 13 180 503 835 1098 1293 1450 1592
6f 9 112 292 454 572 657 732 803
7£ 5 74 183 274 338 3867 429 473
8f 4 50 122 179 217 248 275 304
9f 2 36 86 123 148 169 189 209
10f 2 26 61 88 106 121 135 142
6h 0 1 7 24 57 104 166 239
7h 0 1 8 24 55 85 145 201
3p53d3 1826 3617 6921 7404 7693 7890 8027 8153
3p53d45 2662 4207 4747 5125 5423 5667 5873 6051
Even Parity n{ Configurations

4s 2715 3889 4549 4995 5332 5599 5818 6006
58 480 801 1068 1297 1499 1678 1838 1984
6s 177 318 440 546 641 724 788 865
7s 84 160 228 289 342 391 432 472
8s 47 93 135 172 206 237 263 289
3d 690 6158 7238 7609 7829 7983 8101 8196
4d 405 1027 1787 2653 3401 4013 4512 4926
5d 234 421 679 917 1112 1277 1429 1573
6d 142 218 346 455 546 626 739 768
7d 91 129 202 262 314 360 402 L42
S5g 0 20 100 259 486 759 1059 1371
bg 0 18 80 189 327 476 522 760
g 0 13 57 129 216 305 387 462
71 0 0 0 1 4 10 16 19
8i 0 0 0 2 5 12 20 32
3@53d4p 1737 3145 3872 4396 48090 5143 54273 5661
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energies that are not assoclated with strong configuration interactions.
To accomplish this, the Hamiltonian matrices were diagonalized with all
the configuration interaction parameters multiplied by .5 (the factor 5
was used because the correlation correction EC was retained), and the
resulting changes in the energy levels from the single configuration
approximation were used in weighting the fits to AQO(Z)a The result
shows that for most configurations, the configuration mixing appears to
be mild, and the differences fall on smooth curves. There are notable

exceptions, particularly the nf configurations.

The differences between the observed and calculated term values
appear to decrease with increasing n and {§, with the largest differ-
ences occuring for n = 3,4. The differences for the 3d and 4s terms are
shown in figure (5.1). The 4s configuration is the ground configuration
for KO+ and Cal+9 while the 3d configuration is lowest for Sc2+'to Fe7+e
Thus figure (5.1) displays the discrepancy between the experimentally
determined ilonization energy and the values computed by differencing
single HXR configurations. The deviation from the smooth curve for the
3d configuration for Z=26 and Z=27 is perhaps an indication of a possi-
ble error in the experimentally determined ionization energies; the ion~

™+ are determined from the Rydberg for~

83,84

ization energies for Mn6+ and Fe
mula applied to the perturbed nf series The differences for the
4p, 4d, and 4f configurations displayed in figures (5.3), (5.4), and

(5.5), are also quite large, but the 4p seems to become asymptotically

linear very quickly, while the 4f configuration shows the effects of

strong configuration interaction.
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The observed ns, np, nd, nh, and ni configurations displayed in
figures (5.2), (5-.3), (5.4), and (5-7) do not show the effects of strong
configuration interaction, but perhaps many of these levels have not
been identified for ions where strong configuration interaction occurs.

, . o+ .
The large discrepancies in the even parity Mn levels have been ignored
as probable misidentifications. The uncorrected HXR calculation
predicts no significant configuration interaction, and similar identifi-

7

, , + , 84
cations from earlier work on Fe have also been discounted .

The nf configurations displayed in figures (5.53) and (5.6}, bow=
ever, show very definite configuration interaction. At low Z the
differences for the 4f, 53f, and 6f configurations rise above the smooth
curves, indicating the depression of the energies (increases in the term
values) from higher lying perturbing levels. At higher Z, the differ-
ences fall below the smooth curve, indicating the positions of the per=—
turbing levels have fallen below the plotted configurations. The data
for the 7f, 8f, and 9f configurations displayed in figure (5.6), how-
ever, are insufficient to show any real trends., The more mildly pexr-
turbed 4d, 5d, 5g, bg, and 7g levels displayed in figures (5.2) and
(5.7) show indications of configuration intevaction by the scatter about
the ASG(Z) curves. The strength of these perturbations cannot be
estimated accurately enough to properly weight the fits to Q§§{229 80

that definite trends do not emerge.

¢

The correlation correction EC for the 3d, 4s, 4p, and &4 configura-
tions is also shown, and adding EQ is definitely an improvement. The

1
¥

unusual trend of the 3d configuration is followed quite well, with the

sharp rise for the low Z values indicating the collapse of the 3d to the
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ground state configuration. The asymptotic slope of the 3d difference
is relatively small, and perhaps even negative. This indicates that the
differences in the first order corrections to the hydrogenic average
energies of the 3p63d and 3p6 configurations is nearly constant at large
Z, with perhaps a slightly larger linear component for the 3p6 correc-
tion. The best agreement of EC with the observed differences, however,
seems to be a low Z, indicating perhaps that the correlation correction
gets poorer with increasing electron density. Note that Ec is an

overestimate of the difference for 4s and 4p configurations at the low Z

values.

' : b+ 5+
5.2.2 Least Squares Adjustments to V' and Cr

bt and Crs+ are determined from 91 param-

The odd parity levels of V
eters, while the even parity configurations are determined from 77
parameters. In each case, the number of parameters is roughly twice the
number of observed emnergy levels, so some method of reducing the number
of free parameters with constraints had to be devised. To some extent,
the final decisions on this matter were made by trial and error, but the
constraints used follow the general guidelines described in (5.1).
Because there was no information about the levels belonging to the even
parity 3p5364p configuration, the odd parity parameters were adiusted
first. The adjustments made to the 3p53dés parameters and the confi-
guration intevraction parameters wevre used as vough estimates for their

counterparts associated with the 3p53d4p configuration before the

remaining even parity parameters wevre adjusted.
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0dd Parity Parameters

4t and Cr5+'parameters were nearly

The methods used to adjust the V
identical, so the overall scheme 1s outlined first and the few excep=-
tions are described. Over half the parameters are related to configura-
tion interaction (CI) between the 3p53d2 and 3p53dés configurations and
the nf configurations (f=p,f,h), s0 a means of constraining them had to
be devised. The simplest technique is to scale them all by a single new
free parameter, but this proved unsatisfactory, so the next simplest
idea was used; they were scaled in two groups. A number of other con-
straints were used while the CI parvameters were adjusted in order to
stabilize the least squares optimization, because many energy levels arve
overdetermined in this situation. When the CI parameters were scaled to
satisfactory values, these additional cénstraints were rvelaxed by trial
and error and the optimization continued as long as convergence could be

reached and reasonable values of the parameters were obtained.

Using an overall scale parameter for a large number of (I parame=-

the same set of radial wavefunctions. Because mild configuration
interaction can be absorbed into the configuration average enevrgy, how-
ever, an overall scale parameter can be used to adjust the mosi sensi-
tive CI parameters, and a trade-off will exiet between the less sensi-
tive CI parameters and the average energies. The best method of scaling

CI parameters appeared to be scaling the two groups

e 4 ! Lk
R (naéanbébnsfmdéd) = g fR
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ke .
R (naéanbgbncocndéd) = %otth(naéanbObncOcndOd) (5025b)

where the first group is all CI parameters involving an nf configura-
tion, and the second group contains all the remaining CI parameters.
The motivation for this choice was the relatively stronger configuration

interaction of the nf configurations relative to the other odd parity

4t
s

nl configurations. For V ® . = .8783 and & ih = . 1003, while for

nf

5+ _ _
Cr™ %nf = ,8821 and @oth = .3812.

h

Most of the remaining single configuration parameters were indepen-
dently adjusted, but exceptions are noted: The fine structure of the nf
configurations is small for §>2, s0 the §n1 parameters for {§=f,g,h,1
were left at their HXR values. The énp were all adjusted by a single
scale parameter while the CI parameters were scaled, and then the V4+
values were optimized independently. This constraint had to be main-
tained for Cr5+ because configuration interaction caused the éSp and éép
parameters to have unrealistically large values, and the 7p configura-
tion of Cr5+ is not observed. Initially the 7p average energy was
adjusted by the value of the function whose smooth curve is plotied in
figure (5.3) and labeled 7p. Later, a new value was determined by

3+
a

linear extrapolation from the adjusted 7p average energiles of Ti nd

Véﬁ“e The 10f configuration is not observed for Vé+9 and the Rydberg

formula was also used to obtain an estimate of its average energy from

the 7f£, 8f, and 9f average energies.

The remaining constraints were applied to the parameters of the
3p53dz and BpSBdQS configurations. While the CI parameters weve optim-

ized, the number of free parameters for these configurations were
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reduced via the following constraints:

(0 3p53d2 parameters:

T4(3a,3d) = & Fd,0 ¢ F2(3d, 3d) (5.26a)

Fe (3d 3d)

. 3 .
S(3p,3d) = EOGp3) wlog a4 (5.26b)

¢t (3p,3d)

(2) 3p53d4s parameters:

Tsp,3a) = & M 72 (3p, 3) (5.27a)
72 (3p, 3d)

B (3p,3a) = & 2(30,30) gl (3p, 3d) (5.27)
G (3p, 3d)

- §q
S3a = §3§

§3p (5.27¢)
After the scaling of the CI parameters was completed, all the con=-

straints on the 3p53d2 configuration parameters were removed, but the

constraints (5.27b) and (5.27c) were vretained for the 3p53d43 configura-

tion. The need for these constraints was traced in parf to an erroy in

the published energy level assignments, but the data was still fusufii

4t

cient for both V' and Cr5+ to accurately determine all of the 3@33d48

parameters. After the extrapolations to the neighboring ions in the

isoelectronic sequence, however, the constraint {5.27c) was lifte

the parameters were re-optimized.

The behavior of ihe‘51(3p53§)9‘53(3p§36)§ 3md(§ad parameters for
wd

5 . . .
the 3p~3d4s configuration was ervatic over the course of the



=212=

optimization, until correction of a level misassignment. The
(BD)ZD3/295/2 levels had been assigned with the J=3/2 level lying higher
in energy for both Vé+ and Cr5+e Upon closer inspection of Ekberg’s
work on Cr5+9 however, his assignments were cited as those from an ear-
lier work of Cowan’sgz9 but Cowan had assigned the pair with the 3/2
level lower than the 5/2 level. FEkberg’s published linelist also con-
firmed that the table values were listed in error. The same pair of

levels has also been identified for Mn6+ and Fe7+

83,84

with the 3/2 level

bt

lying lower Apparently Van Deurzen made his assignment of the V

pair by analogy with Ekberg’s published values, unaware of the error.

Even Parity Parameters

Only the n{ single configuration parameters can be adjusted by
least squares minimization because there are no observed levels for the
3p53dép configuration. The 3953dés configuration levels are probably
most sensitive to the 3p-3d interaction, and this should be the case for
the 3p53d4p configuration as well. By thils reasoning, the difference
between the ab-initio and adjusted values of the 3p53dés configuration
average energy was used also as an approximate correction to the SPSSdép
average energy. Also, since the configuration interaction seems to be
mild between this configuration and the even parity n{ configurations,
all the CI parameters were scaled by the %oth constant determined from
the odd parity configurations of the appropriate ion. As a final con-
sideration, the Fk(3p3d) and Gk(BQBd) parameters were adjusted by the
same differences that were found for thelr counterparts in the 3p53dés

bt

configuration for the V' and the Cr5+ ions.
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The remaining nl single configuration parameters were adjusted by
treating them as free parameters in the least squares minimization where
possible. The énﬁ parameters for {§>2 were left alone because the fine
structure splitting of these levels is so small. The parameters belong-
ing to the 6d, 7d, 7s, 8s, 7g, 7i, and 8i configurations of Cr5+ could
not be optimized either, because these levels are not observed.

Instead, the 6d, 7d, 7s, 8s, and 7g configuration average energies were
adjusted by the values of Qgeg and then later refined by extrapolation

3

* and V¥, as described in (5.2.3).

from Ti 4+,

Corrections to the 71 and 81 configurations were ignored, as the
purpose of calculating these configurations was to test the relativs
precisions of the calculations and the measurements. These levels have
nearly the hydrogenic values with z=Z-N+1, and should show very little

discrepancy in the calculated and observed values.

The results of all optimizations are presented in tables (5.11) and
(5.12), including energies and eigenvector compositions for unobserved
levels. The comparison between the calculated and observed energy lev-
els is satisfactory, glven the simple method used to adjust the CI
parameters. C(loser agreement between the calculated and observed levels
could be obtained by adjusting individual CI parameters, but many of the
possible solutions that would give better agreement might not reliably
extrapolate as functions of Z. ZExtrapolations of these corrections,
however, to the ab-initio parameters of neighboring ions should in nest
cases give predictions with comparable accuracy. However, because of
the strong configuration mixing involving some of the configurations,

extrapolation in these cases cannot be velied upon because of the simple



TABLE (5.11a)

V 4+ 0BD LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE -- DD(2S+1)L = 3D2(2S+1)L

BDC25+1)L = 3D2( 25+1)L

IRREP caiLc JEXP INCR  J/mu
2P 1/2 206394. 206394, 0. .5
2P 372 207660. 207660. 0. 1.5
4D 172 291514, - — .5
40 372 292008, - - 1.5
4D 572 292846, - e 2.5
4B 7/2 294078, ——— - 3.5
461172 305899. - --= 5.5
4G 9/2 307044, - - 4.5
4G 772 308339. - ——— 3.5
4G 572 309663. —— ——— 2.5
4P 5/2 312761, — ——— 2.5
4P 3/2  314528. —— - 1.5
4P 1/2 315779, - - .5
4F 3/2  316604. ——— e 1.5
4F 572 316834, —— - 2.5
4F 9/2 317147, —— Rt )
“4F 7/2 3177é1. e ——— 3.5
4F 5/2 319114, 319106, 7. 2.5
2D 5/2 319531, - - 2.5
2D 372 320425. o - 1.5
2F 7/2 320731. 320732. - 3.5
2P 1/2 325619. - ——— .5
26 7/2 328387. —— e 3.5
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100.
100.
100,
99.
99.
99.
100.
95.
98.
95.
99.
98.
99.
98.

94,

93.
91.
92.

94.

96.

6.

100.
100.
82.
81,
78.
75.
100.
95.
92.
90.
99.
98.
99.
70.
40.
10.
93.
86 .

37.
20.

30.
i8.
48.
11.

41.
14,

68.

8r7.

2P
2P
45
4D
4D

4 )
4P )
(B3
(ppe3rFy)
(BDC3F N
{(DDC3F Y
(DDC3F )
{(BDC3F Y
(DDC3FY)
(DDC3F Y
(DDC3PY)
(DDC3P )
(DBC3P))

(DD 3F))
(DBO3F )N

(DDC3F N
(pDE3F N

(DDC3F N
(BBC3FN

(DDC3F))

18.
19.
21.
24,

21.

4D
4D
4D
4D

. OhF
. HF

2D

. 2D
. HG

. 2F
. 2D

2F

. HF

. hF

2P

. 2F

4F

. 2P

(DDC3PY)
(BB 3P))
(DDC3PY)
(DDC3PY)

(DBC3F N

(DDC3F

(DBCIDY)

(DDC3PY)

- (DBDC 1D
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PARENTAGE -~ DD( 25+1)L = 3D2(25+1)L

TABRLE (5.11A) CONTINUED

V 4+ 0DD LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS

DDC25+1) = 3p2(25+1)L

DSC25+1)L = (3P5(2P)3D( 2D) M 25+1)L

IRREP  CALC EXP INCR J/my  TOTAL -- EIGENVECTOR COMPOSITION PCT
2P 3/2 328426.  ~-- —= 1.5 95. 53. 2P (DD(ID)) 21. 2P (DD(3P))
11. 2P (DD(15)) 10. 2D (DD( 1D))
ZH1172  330531. - -== 5.5 100, 100. 2H (DD(16))
26 9/2 331218. - = 4.5 90,  90. 26 (DD(3IF))
2F 7/2 332191. 332198.  -7.6 3.5  92. T4. 2F (DDCID)) 11. 2F (DD(3F))
6. 2F (DDC16))
2H 9/2 335697.  -—- —-= 4.5 98, 98, 2H (DD(16))
2F 5/2 337000. 337013, -12.5 2.5  96. 81. 2F (DDCID)) 9. 2F ( 4F )
6. 2F (DDC3F))
4D 772 344192, —-- —== 3.5 99.  T4. 4D (DDC3P)) 25. 4D (DD(3F))
4D 5/2 345234,  —-- === 2.5 95. T4. 4D (DD(3P)) 21. 4D (DDC3F))
4D 3/2  3UEHT3.  --- -== 1.5 94, Té. 4D (DD(3P)) 18. 4D (DDBC3F))
4D 1/2 347655,  —-- === .5 100.  82. 4D (DD(3P)) 18. 4D (DD 3F))
2F 7/2 349279. 349252.  26.2 3.5  94.  89. 2F ( AF ) 5. 2F (DDC1D))
2F 5/2 34964T. 349676. -28.8 2.5  95. 84 2F ( 4F ) 11. 2F (DDCID))
2P 172 351501. 351501. 0. .5 100. 100. 2P ( 5P )
2P 3/2 352018. 352018, 0. 1.5 100. 100. 2P ( 5P )
2D 3/2 355711, - -== 1.5 92.  84. 2D (DD(3P)) 8. 2D (DDC3F))
2D 5/2 357834,  —-- --= 2.5 92.  84. 20 (DD(3P)) &. 2D (DDC3IF))
26 9/2 362405, - —-= 4.5 95, 95. 26 (DDC16))
26 7/2 363062, - --— 3.5  96.  96. 26 (DD(16))
45 3/2 36435H.  —-- -—— 1.5 99.  99. 45 (DD(3P))
25 1/2 364389.  --- ——= .5 99.  99. 25 (DD(3P))
2P 3/2 379159,  -—- -== 1.5 98. T7. 2P (DD(1S)) 21. 2P (DD(1D))
2P 1/2 384402.  —-- -—= .5 96, 78. 2P (DD(1S)) 18. 2P (DDC1D))
2F 5/2 396249. 396135.  113.6 2.5  92. 35. ZF ( 5F ) 30. 2F (DDCIF))
27. 2F (DDC16))
2F 7/2 397887. 397994. ~-106.2 3.5  93. Hl. 2F ( 5F ) 26. 2F (DUCIF))
26. 2F (DDC16))
2P 1/2  415420. 0. .5 100. 100. 2P ( 6P )

415420,
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TABLE (5.11A) CONTINUED
V 4+ 0DD LEVELS

CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS

PARENTAGE —— DD(25+1)L = 3D2(25+1)L

D25+ = 22SHIL_DS(2SHIL = (BRI
CIRREP CALC | EXP  INGR J/M)  TOTAL - EIGENVECTOR COMPOSITION PCT
2P 372 4156T6. 4154676, 0. 1.5 106. 100, 2P ¢ 6P ) N
2F 5/2 417436. 417699. -263.4 2.5 95. 4. 2F ( 5F ) 16. 2F (DDCIGH
15. 2F (DDC3F M
2F F/2 418486. H418188. 298.7 3.5 94, 58. 2F ( 5F ) 19. 2F (DDCIGMH
17. 2F (DDBC3F)N)
2P 1/2 438067. 438018, 48.3 .5 97. 71. 2P (DD(3P)Y) 13. 2P (BDC1D))
13. 2P (DDCIS))
2P 3/2 439384, 439443, ~58.4 1.5 98. 73. 2P (DDC3P)) 15. 2P (DDCID))
10. 2P (BDC1ISH
2D 5/2 444171. 444154, 17.8 2.5 99. TO. 2D (DDC3F)) 18. 2B (DDC1D)Y)
11, 2D (DDC3PY
2D 372 444590, 444621. ~30.6 1.5 99. 71. 2D (DDC3F)Y) 18. 2D (BDCIDY)
11. 2B (DBC3P))
2F 5/2 H449338. 449371. -33.1 2.5 95 . 95. 2F . 6F )
2F T/2 449453, 449422. 30.2 3.5 95. 95. 2F (. &F )
TP 172 449587, 449587, -.0 .5 100, 100. 2P ¢ 7P )
2P 3/2 449773, 449773. .0 1.5 100. 100. 2P ¢ 7P
2H 972 450248. 450248. -.3 4.5 100, 100. 2H ( &H )
ZH11/2 450248, 450248, .2 5.5 100, 100. 2H ( éH )
4P 172 453682 e o .5 99. 99. 4P (DS(3P))
#p 3/2 H5H992. —— - 1.5 99. 99. 4P (DS(3IPN
4p 5/2 457384, - - 2.5 99. 99. 4P (DS(3P))
2P 1/2 463392 - - .5 97. 97. 2P (DS(3PM
2P 3/2 H466139. = e 1.5 96. 96. 2P (DS(3PY)
4F 972 HEL3TT. - R 4.5 100, 100. 4F (DSO3F))
4F 7/2 H467918. i ——— 3.5 97. 97. 4F (DSC3F))
4F 5/2 469424, o - 2.5 7. 84, 4F (DSC3F))Y 13. 2F ¢ TF )
2F 5/2 HM69T03. #469702. 1.0 2.5 8. 86. 2F ( TF ) 13. 4F (DS(3F )N
2F 7/2 469715. 469716, -1.5 3.5 98. 98. 2F ¢ TF )
2H 9/2 H4TO489. 4T0489. ~-.0 #.5 100 100, 2H ¢ TH




TABLE (5.11A) CONTINUED

V 4+ 0DD LEVELS
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CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND QPTIMIZED PARAMETERS
PARENTAGE -- DD( 25+1)L = 3D2( 25+1)L

DBC2S+1)L = 3D2(25+1)L

21172

4F
2F
2F
2F
2F
4p
4D
4D
4D
2F
2F
2D

2D
2F

2F

2F
2F
2D
2D
2p

372
772
572
5/72
772
772
572
372
/2
572
7/2
5/2

3/2
572

772

CaLe EXp INCR  J/mu TOTAL -— EIGENVECTOR COMPOSITION PCY
470489, 470489, .5 ”gT;hG“;SO. ;68f=2H { W;;— ) I
470873, - —— 1.5 98. 98. 47 (DSC3IF N
475532. 475531, .7 3.8 97. 97. 2F (DS(3F )N
BT8565. 478566, -.7 2.5 95. 95. 2F (DSC3F )N
483023. 483019, 4.4 2.5 99. 99. 2F ¢ 8F )

483033. 483038, -4.7 3.5 99. 99. 2F (. 8F

489560, - —— 3.5 99. 90. 4D (DSC3D)YY 9. 2F (BSCIFY
490491 . - e 2.5 94 86. 4D (DS(3D)) B. 2D (DSCIDY)
490981 . e - 1.5 98. 89. 4D (DBS(3D)Y) 10. 2D (DSCIDY)
491359, - e .5 99. 99. 4D (DBS(3DY)

H92143. 492144, -1.7 2.5 98. 98. 2F ( 9F )
492203.. 492202. 1.6 3.5 98. 98. 2F (. 9F
493704, - - 2.5 97. Té. 20 (DSCIDY)Y 2. 20 (DS(3DY)
7. 2F (DSCIF))Y 5. 4D (DS(3D))
494155, - m—— 1.5 98. 88. 2D (DSC1D)Y) 10. 4D (DS 3D))
496294, 49629¢. -1.7 2.5 9¢6. 68. 2F (DSCIF)Y)Y 12. 2D (DS(3D))
9. 2D (DSCID)Y)Y 6. 4D (DSC3D))
497557, 497556 1.2 3.5 97. 79. 2F (DSCIF)Y) 10. 2F  10F )
7. 4B (DSC3DY)
498791. —— s 2.5 97. 97. 2F ( 10F )
498932. - - 3.5 98. 89. 2F ( 10F Y 9. 2F (DSCIF))
500117. 500117. -.4 1.5 99. 99. 2B (DSC3DN)
500503. 500502. 1.0 2.5 94 . T5. 2D (DSC3D)y 19. 2F (DSCIFY)
604984 . o —— 1.5 100, 100. 2P (DSC1PM)
604997, - —— 5 100. 100. 2P (bDSCIPYH
””””””””””””””””””””” NO. EXPERIMENTAL LEVELS = 40, '
ABSOLUTE MEAN DEVIATION = 27.63
RMS DEVIATION = £9.57




R

DDC25+1)L = 3p2( 25+1)L

26 772
2G 9/2
211172
211172
4p 172
4p 372
4p 572
4p 1/2

625 .
148143,
293903.
294047 .
328217.
387977.
388044 .
403855 .
416360.
416362,
434304,
834341,
443075 .
450024,
450025.
460697.
460720.
466066,
470333.
470334,
470524,
483651.
509745 .
510510.
511709.
513123.

TABLE (5.118)

V 4+ EVEN LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND QPTIMIZED PARAMETERS
PARENTAGE ~— DD(2S+1)L = 3D2( 25+1)L

Eyp INCR  J/mu
0. 0. 1.5 100,
625 . 0. 2.

148143, 0. .5
293903, 0. 1.5
294047 0. 2.5
328217, 0. .5
387977 0. 1.5
388044 . 0. 2.5
403855 . 0. .5
416360. 3.5
416362, - 4.5
434304 . 0. 1.5
434341, 0. 2.5
443075, 0. .5
450025 . - 3.5
450025 . 4.5
460697 0. 1.5
460720, 0. 2.5
466066, 0. .5
470333, 3.5
470334, 0. 4.5
47024 0. 5.5
483651, 0. 5.5
.5

.5

.5

.5
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100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

a9.

8a,

86.

98.

2D
2D
25
2D
2D
25
2D
2D
25
26

(
(
{

(
(

3D
30
4S
40
4D
55
5D
5D
65
56
56
&D
&0
75
66
&G
I
7D

81

)
)
)

)
)

(DPC3P )
(DPC3P))
(BR3P

(DPC3P))

7.
9.
i1,

4D (DPC3F )
4D (DPC3F Y)Y
40 (DPC3F )
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TABLE (5.11B) CONTINUED

V 4+ EVEN LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE ~- DD(25+1)L = 3D2(25+1)L

peeoo... DDC2S+1IL = 302(25+1)L  DS(25+1)L = ( 3P5(2P)3D( 20) ) 25+1)L

_IRREP  CALC EXP INCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT

4D /2 513296,  -- ~== 3.5 99. " 82. 4D (DP(3P)) 16. 4D (DP(3F))

4P 32 513807, - —== 1.5 91, 91. WP (DP(3P))

4P 5/2 515255  —-- —== 2.5 9. 96. 4P (DP(3P))

2P 1/2 S15411. —-o ~== 5 95.  95. 2P (DP(3P))

2P 3/2 516251, - === 1.5 88. 79. 2P (DP(3P)) 10. 4S5 (DP(3P))

4S 3/2 518527, - ~== 1.5 95,  85. 45 (DP(3P)) 10. 2P (DP(3P))

2D 3/2 522561, - ~== 1.5 91.  85. 2D (DP(3P)) 6. 2P (DP(3P))

20 5/2 522941, - === 2.5 93.  81. 2D (DP(3P)) 6. 2D (DPCIF))
6. 2D (DP(3D))

4G11/2 524260,  --- —== 5.5 100. 100. 46 (DP(3F))

4G 9/2 52476, - —-= 4.5 97.  79. 4G (DP(3F)) 18. HF (DP(3F))

WD /2 524929,  —-- —== 3.5 94,  36. 4D (DPC3F)) 32. 4F (DPCIF))
120 2F (DP(3F)) 9. 4D (DPC3P))
6. 4D (DP(3D))

2F 7/2 525707.  --- ~= 3.5 92, 68. 2F (DP(3F)) 18. 46 (DPC3F))
6. 4D (DP3F))

25 1/2 526033, - ——= .5 97.  97. 25 (DP(3P))

R L — ——= 3.5 92, 70. 46 (DP(3F)) 14. 4D (DP(3F))
8. 2F (DPC3F))

4F 9/2 526130,  ——- ——~ 4.5 9. 79. HF (DPC3F)) 18. 4G (DP(3F))

4D 5/2 526152, - ~== 2.5  96. 46. 4D (DP(IF)) 28. H4F (DPC3F))
9. 4D (DP(30)) 8. 4D (DP(3P))
5. 4G (DP(3F))

4G 5/2 527130  --- —e= 2.5 97.  92. 46 (DPC3F)) 5. 4D (DP(3F))

4D 3/2 527AR0. - ~—~ 1.5 97. B&. 4D (DP(3F)) 20. 4F (DP(3F))
12. 4D (DP(3D)) 8. 4D (DP(3P))

2F 5/2 528389, - - 2.5 91, 62, 2F (DP(3F)) 21. HF (DPC3F))
8. 4D (DPC3F))

WF T/2 528419. - ——~ 3.5 88. 64, 4F (DPC3F)) 17. 4D (DPC3F))
7. 2F (DPCIF))

4D 1/2 528610,  -—- ——= .5 98 T4. 4D (DPC3F)) 15. 4D (DP(3D))

9. 4D (DR3P Yy
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V 4+ EVEN LEVELS

TABLE (5.11B) CONTINUED

CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE -- DD(2S+1). = 3D2( 25+1)L

DSC25+1)L = (3P5( 2P)3D( 2D) X 25+1)HL

DBC25+1)L = 3D2( 25+1)L

_IRREP  CALC EXP INCR TOTAL -- EIGENVECTOR COMPOSITION PCT
uF 572 529974, —— ——— 2.5 88.  45. UF (DP(IF)) 28. 2F (DP(3F))
15. 4D (DP(3F))
4F 3/2 530103. —— = 1.5 92,  T4. 4F (DP(3F)) 18. 4D (DP(3F M)
26 9/2 533645, — —— 4.5 97.  97. 26 (DPL3F))
26 7/2 535852, — ——— 3.5 93.  93. 26 (DP(3F))
20 5/2 536181, —— ——— 2.5 85. 35, 2D (DP(1D)) 33. 2D (DP(3F))
17. 2D (DP(1F))
20 3/2 537000. —— ——— 1.5 94.  #6. 2D (DPCID)) 29. 20 (DPC3F))
13. 2D (DPCIF)) 6. 2D (DP(3D))
4p T/2 546207, — —— 3.5 94, 79, 4D (DP(33)) 10. 4D (DP(3F))
5, 2F (DPCIF))
40 5/2 546829. @ —-— e 2.5 91.  66. 4D (DP(3D)) 10. 4D (DP(3F )
5. 4F (DP(3D)) 5. 20 (DPC3D))
5. 2F (DP(1F))
4D 3/2 B4TBI4. ——— m—— 1.5 87. 75. 4D (DP(3DB)) 13. 40 (DPC3F))
2F 5/2 548238. — —— 2.5 96. 35, 2F (DP(1D)) 18. 2D (DP(3F))
18. 2D (DP(3D)) 13. 2F (DPC1F))
6. HF (DP(3D)) &. 2D (DP(IDY)
4p 1/2 548573 ——— — .5 99.  82. 4D (DP(3D)) 17. 4D (DP(3F))
2F 5/2 548883, — — 2.5 94.  20. 2F (DP(1D)) 20. 2D (DPCIF))
19. 2D (DP(3D)) 15. 40 (DP(3D))
14, 2F (DPCIF)Y 6. 2D (DPCID))
2F 7/2 549546, - —— 3.5 90.  36. 2F (DPC1D)) 31. 4F (DP(3D))
. 15. 2F (DPCIF)) 8. 4D (DPC3D))
4F 972 549756. —— —— 4.5 97. B3, 4F (DP(3D)) 14. 26 (DPCIFM
4F 3/2 550138. — —— 1.5 95. 75, 4F (DPC3D)) 11. 20 (DP(3F))
9. 2D (DP(3DM
4F T/2 550672, — —— 3.5 89.  47. 4F (DP(3D)) 25. 2F (DP(IF))
17. 2F (DPC1D))
4F 5/2 550687. — ——— 2.5 90. 84, 4F (DPC3IDYY 7. 2F (DPUIF))
2D 3/2 550855, —— w15 9%, 34, 20 (DP(3D)) 27. 20 (DPCIFY)
19. 4F (DP(3D)) 9. 40 (DP(3D))
5. 20 (DPCIF))
26 7/2 553592. e ——— 3.5 96.  67. 2G (DPCIF)) 16. 2F (DPC3D))
13. 4F (DP(3D))
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TABLE (5.118) CONTINUED

V 4+ EVEN LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPVIMIZED PARAMETERS
PARENTAGE -- DD(2S+1)L = 3D2(25+1)L

DSC25+1)L = (3PB(2PI3D(2D) X 25+1)L

miﬁREP caLc EXP INCR  J/Mu
2F 5/2 554177, - i ““;f;ﬂ
2G 9/2 555077. - -—= 4.5
2F 7/2 555152, - e 3.8
4P 5/2 555201, ——— 2.5
4P 372 555570, - - 1.5
2P 1/2 556042, - - 5
4P 172 556995. e e .5
2P 3/2 B57331. e —— 1.8
20 3/2 558137. e - 1.5
2D 5/2 558601. e - 2.5
2F 7/2 560411. e == 3.5
2F 5/2 560769. - —e= 2.5
2P 372 560884, - - 1.5
2P 1/2 561836, e —— .5
2D 3/2 576066, - e 1.5
2D 5/2 5T7399. e e 2.5
2P 1/2 661382. e St .5
2P 3/2 661935 e ——— 1.5
2D 3/2 664892, - — 1.5
2D 5/2 665683, - bt 2.5

TOTAL -- EIGENVECTOR COMPOSITION PCT
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TABLE (5.11B) CONTINUED
V 4+ EVEN LEVELS

CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE ~- BD(2S+1)L = 3D2( 25+1)L

DDC25+1)L = 3D2( 25+1)L DSC 2S5+l = (3PS(2P)3DC 2D0) M 25+1)L

EXP

INCR J/mU TOTAL -— EIGENVECTOR COMPOSITION PCT

25 172 667226,

— 5 99. 99. 25 (DPC1IP))

NO. EXPERIMENTAL LEVELS = 23.

ABSOLUTE MEAN DEVIATION = .02

RMS DEVIATION = .04
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TABLE (5.12M)

CR5+ 0DD LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE -—~ DD(2S+1)L = 3D2(25+1)L

DSC2S+1L = (3P5(2P)3D(2D))( 25+ 1)L

IRREP  CALC EXP INCR
2P 1/2 296573. 296573, 0. 5 100
2P 3/2 298397. 298397, -0 1.5 100
4D 172 322022, ——- — 5 100.
80 3/2 322661 — —— 1.5 99,
4D 572 323748, - ——— 2.5 99,
4D 7/2 325362,  ~ee eme 3.5 98
4611/2 338991,  —-- = 5.5  100.
4G 972 340492,  —em — H5 95,
4G 7/2 312193,  ——m ——~ 3.5 98,
4G 5/2 343930,  —-m - 2.5 95,
4P 572 348273, - - 2.5 99,
4P 3/2 350572, @ -m- -~ 1.5 98,
4F 3/2 352133,  ——- —— 1.5 98.
4p 1/2 352208, -~ o 5 99,
4F 5/2 352669, - e 2.5 97
4F 972 352765, _— —e— 4.5 93
4F T7/2 353669, -~ e 3.5 94,
4F 5/2 355880, -~ e 2.5 oy,
2F 5/2 356954, 356962.  -7.7 2.5  90.
20 3/2 357436. S — 1.5 9%
oF 772 359167. 359165, 1.5 3.5 93
2P 1/2 364507.  ——- —— 5 99
20 3/2 368343, - e 1.5 95,
7/2 - e 3.5 9y

369321.

26

92.
89,
99.
98.
T4,
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CRS+ 0DD LEVELS

TABLE (5.128) CONTINUED

CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE -- DD(25+1)L = 3B2(25+1)L

DSC25+10L = (3P5( 2P )3R( 2D) ) 25+1)L

WIR%EP caLt EXP INCR J/my)  TOTAL -- EIGENVECTOR COMPOSITION PCT

2H11/2 370572. ——- - 5.5 s';BO, 100, 2H (DDC1G)Y) B )

2F 7/2 3T1656. 371618, 38.5 3.5 94, 67. 2F (DDC1D)Y) 20. 26 (DDC3F )
8. 2F (DDC3F))

26 972 373010, —— -—— 4.5 93. 87. 26 (DD(3F)) &. 26 (DBCIG))

2H 972 377329. e -—= 4.5 9¢. 96. 2H (DDCIGY

2F 5/2 378649, 37B&TT. -28.5 2.5 93. 93. 2F (DDCIDM)

4D 772 385662. ——— -~ 3.5 99. T4. 4D (DDC3P)) 25. 4D (DDC3F )

4D 5/2 387109, - —-—= 2.5 96. 75. 4D (BD(3P)Y) 20. 4D (DD(3F))

4D 372 388780. - - 1.5 95. 77. 4D (DD(3P)) 18. 4D (DDC3FN

4D 172 390286. ——— —— .5 100, 83. 4D (DD(3P)) 17. 4D (DDC3F))

2D 372 402048. ——— —— 1.5 92. 84. 20 (DD(3P))Y 7. 2B (DBDC3F))

2D 5/2 404751. - - 2.5 92. 84. 2D (DD(3P)) 9. 2B (DDL3F)N

2G 972 408268. —— - 8.5 98. 93. 26 (DBC1G)Y)Y 5. 26 (DDC3FY)

26 7/2 408907. —— --= 3.5 95. 95. 26 (DDC16))Y

4S5 3/2 410178. - - 1.5 99. 9. 45 (DD 3P

25 172 410238, - - .5 99. 99. 25 (DD(3P N

2P 372 427799. —— - 1.5 98. 79. 2P (DDC1S)) 19. 2P (DDCIDY)

2P 1/2 434893. —— - .5 6. 80. 2P (DD 1S)) 16. 2P (DDC1IDY)

2F 572 440102, #440135. -33.1 2.5 97. 42, 2F (DDC3F)Y) 34. 2F (DDCIGY)
21, 2F (. H4F )

2F 772 H42949. 4H42940. 8.4 3.5 97. 38. 2F (DDC3F)) 35. 2F (DDCIGY)
24. 2F (. HF )

2F 5/2 481772, 481956. ~-183.8 2.5 99. 7&. 2F ( 4F ) 11. 2F (BDC1G))
10. 2F (DDC3F )

2F 772 u482716. 482517, 198.7 3.5 99. 5. 2F ( 4F ) 13. 2F (DDCIGY)
11, 2F (BDC3F )

2P 1/2 487645, H4BT589. 55.4 .5 97. g6. 2P (5P ) 10. 2P (DD(3P))

2P 3/2 HBB507. H488562. -54.9 1.5 98. 90. 2P ( 5P ) 8. 2P (DD(3P))

2P 172 493286. 493247. 38.5 .5 100. 4. 2P (DDC3P)Y) 14. 2P ( 5P )
11. 2P (DDC1S)Y)Y 11, 2P (DDCID))
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TABLE (5.12A) CONTINUED

CRS+ ODD LEVELS
CALCULATIONS COMPRRED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE -— DD( 25+1). = 3D2(25+1)L

oo DS+l = 3D2(2S+1)L DS(25+1IL = (3PB(2PIID(2DIN2SFIL

_TRREP  CALC EXP INCR J/MJ  TOTAL - EIGENVECTOR COMPOSITION PCT

2P 3/2 4948TH. BONOLL., -37.1 1.5  99. 68 2P (DOC3P)) 13. 2P (DD(ID))
100 2P (5P ) 8. 2P (DD(1S))

2D 5/2 496952, 496958.  -5.7 2.5 100. 70. 2D (DD(IF)) 17. 20 (DDCID))
12. 2D (DB(3P))

20 3/2 497505. 497H95. 9.7 1.5 100. 71. 2D (DDC3F)) 18. 2D (DDCID))
11, 2D (DB(3P))

F 5/2 568939, 568957. -18.4 2.5  98. 98. 2F ( 5F )

2F 7/2 569011. 568993.  18.4 3.5  98. 98. 2F ( GF )

4P 1/2 569285, - ——— 599, 99. 4P (DS(3P))

4P 3/2 5T0505. - —ee 1.5 99, 99. 4P (DS(3P))

4P 5/2 572733,  ~—- — 2.5 99, 99, up (DS(3P))

2P 1/2 574706. ST#135. 571.3 .5 100. 92. 2P ( &P ) 7. 2P (DS(3P))

2P 3/2 575196. 575742, 5464 1.5  97. 97. 2P ( 6P

2P 1/2 578478. 578566, -88.5 .5 99. 92. 2P (DS(3PYy 8. 2P ( &P
2P 3/2 580962. 580697, 264.7 1.5 95. 95. 2P (DS{3R))
4F 9/2 BBR665. ——— e HLE 100. 100, 4F (DS(3F))
4F /2 584404, 584371. 32.8 3.5 98. 98. 4F (DSC3F )N
4F 5/2 586066. 586273, -~206.7 2.5 q7. 97. AF (BSO3FY)
4F 3/2 B8TE07. e e 1.5 98. 98. HF {DS5(3F )
2F 7/2 591032. 591137. -104.9 3.5 95 . 95 . 2F {(DS{3FN
2F 572 594813, 594926, -113.3 2.5 95 . 95. 2F (DS(3F )
4p 7/2 607607. 607615. ~-7.& 2.5 100. 9Z. 40 (DS(30))y B, 2F (DSCIFN
4p 5/2 608650. 608631, 19.3 2.5 95 . 84. 40 (DS(3D)) 11, 2D (DSCIDN
4n 3/2 609267, 609166, 101.0 1.5 98. 86. 4D (DS(3DYy 12, 2D (DSC1D))

u#p 1/2 609713, e e 100. 100, 4D (DSC3D)M

AT

2D 572 610445, 610497, ~52.2 2.5 93. £3. 20 (DSC1Gyy 22, 2D (DS(30))
g. 4D (D5(3D)1

2D 3/2 611649. 611568 80.8 1.5 99. 79. 2D (DSCIDYy 13,0 4D (DS(3D))
7. 20 {DSO305)
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TABLE (5.12A) CONTINUED

CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EATRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE -- DD(25+1)L = 3D2( 25+D)L

e DD 25+1)L = 3D2( 25+1)L DSC25+1)L = (3PS(ZPI3D(2D) N 2S+DL
CIRREP  CALC EXP  INCR J/MU  TOTAL -- EIGENVECTOR COMPOSITION PCT
°F 5/2 614516. 614385. 130.7 2.5  92.  78. 2F (DSCIF)) 7. 2D (DSC1D))
6. 4D (DS(3D))
2F T/2 615996. 616079. =-82.8 3.5  96. T8. 2F (DSCIF)) 11. 2F ( &F )
, 7. 4D (DS(30))
2D 3/2 618514, 618491,  23.1 1.5  99. 91. 20 (DS(3D)) 8. 2D (DSC1ID))
2F 5/2 618585, 618583, 2.3 2.5 95 T8 2F ( &F ) 17. 2D (DS(3D))
2F T/2 618879. 618849.  29.7 3.5  98. 89. 2F ( 6F ) 10. 2F (DSCIF))
2D 5/2 619308. 619419. -111.0 2.5  99. 56. 2B (DS(3D)) 17. 2F ( &F )
: 14, 2F (DSCIF)) 12. 2D (DSC1D))
2H 972 621163, 621163, -3 4.5 100, 100. 2H ( &H )
2H11/2 621164, 621163, .8 5.5 100. 100. 2H ( 6H )
2P 1/2 623485,  ——- ~—~ 5 100. 100. 2P ( TP )
2P 3/2 623698. _— == 1.5 100. 100. 2P ( TP )
2F 5/2 648520. 648521. -9 2.5 100, 100. 2F ( T7F )
2F 7/2 648534, 648533, .9 3.5  100. 100. 2F ( TF )
2H 9/2 650310. 650311, -.3 4.5  100. 100. 2H ( TH )
2H11/2 650311, 650311, .2 5.5 100 100. 2H ( TH )
2F 5/2 667969. 667973.  ~4.1 2.5 100. 100. 2F ( 8&F )
2F 7/2 66T9TT. 667973, 4.1 3.5 100. 100. 2F ( 8F )
2F 5/2 681304. 681307.  -2.6 2.5 100. 100. 2F ( 9F )
2F 7/2 681310, 681307, 2.6 3.5 100. 100. 2F ( 9F )
2F 5/% 690779. 690781.  ~1.9 2.5 100. 100. 2F ( 10F )
2F 7/2 690783, 690781, 1.9 3.5 100. 100. 2F ( 10F )
2P 3/2 T730638. - -== 1.5 100. 100. 2P (DS{1P))
2P 172 730699. —- —e= .5 100. 100. 2P (BS(1P))
R " NO. EXPERIMENTAL LEVELS 49,
ABSOLUTE MEAN DEVIATION 67.92
136.63

RMS DEVIATION
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TABLE (5.12B)

CR5+ EVEN LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND QPTIMIZED PARAMETERS

I%ﬁéﬁ CaLc EXp INCR J/mMU  TOTAL -— EIGENVECTOR COMPOSITION PCT
2D 372 0 0. 0. QTTS IOO.Q—IOO. ZD“:mwgD ) o
2D 5/2 940 . 940. 0. 2.5 100. 100. 2D C 3B )

25 1/2 227858. 227858, 0. .5 100. 100. 25 C 45 )
2D 3/2 402662, 402662, 0. 1.5 100. 100. 2D ¢ 4D )
2D 5/2 402889. 402889, 0. 2.5 100. 100. 2D ¢ 4D )
25 1/2 461253. 461253, 0. .5 100. 100. 25 ¢ 55 )
2D 372 5343827 534382. 0. 1.5 100. 100. 2B ¢ 5D )
2D 5/2 534490. 534490, 0. 2.5 100. 100. 2D ¢ 5D )
25 1/2 562064. 562064, 0. 5 100. 100. 25 ¢ 65
26 T/2 572272, 572272. -.5 3.5 100. 100. 26 ¢ 56 )

2G 9/2 BT2275. 572274. .5 4.5 100. 100. 26 ( 56
2D 3/2 599609. ——— —— 1.5 106. 100. 2D C 6D )
2D 572 59964, ——— -—= 2.8 100. 100. 2D ¢ 6D )

25 1/2 €615165. - - .5 100. 100. 25 ¢ 7S )

2G 772 620698, ¢20696. 1.2 3.5 100. 100, 26 ¢ &G )

26 972 620699, 620701. -1.2 4.5 100. 100. 26 ¢ 66 )

4D 1/2 634895, e —— .5 95. 88. 4D (DP(3P)) 8. 4D (DP(3F))

4D 3/2 635664, - == 1.5 97. 87. 4D (DP(3P)) 9. 4D (DP(3F))

4D 5/2 637311, e -—-= 2.5 96. 83. 4D (DP{3P)) 12. 4D (DP(3F))

2D 3/2 637379. - - 1.5 99. 99. 2 7D

2D 5/2 637420. - - 2.5 98. 98. 2b ( 7D )

4P 1/2 638785, e ——— .5 98. 98. 4P (DP(3P))

4D 7/2 639406. - —_— 3.5 98. 78. 40 (DP(3P)) 20. 4D (DP(3F))

4P 3/2 639747. ——— — 1.5 95. 90. 4P (DP(3P))Y 5. 45 (DP(3P))

2P 1/2 641661, = - .5 93. 93. 2P (DP(3P))

4P 5/2 641692, ——— --= 2.5 95. 95. 4P (DP(3P )

2P 3/2 642608, - == 1.5 1. 73. 2P (DP(3P)3 12. 4S5 (DP(3P))
6. 4P (DPC3P))
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TABLE (5.12B) CONTINUED

CR5+ EVEN LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE ~- DD(2S+1)L = 302 25+1)L

mmmmmmmmmm DD(25+1)L = 3020 25+1)L DS(25+1)L = ( 3P5( 2P )3D( 20) ) 25+1)L )
CIRREP  CALC EXP INCR J/MU  TOTAL -— EIGENVECTOR COMPOSITION PCT
4S 3/2  645HBL.  ——- —-= 1.5 93.  81. 45 (DP(3P)) 11. 2P (DP(3P))

25 172 646600. - —— 100. 100. 25 (¢ 85 )

89. 81. 2D (DP(3P))y 9. 2P (DP(3P))

5
2D 3/2 650068, - - 5
.5 1006, 100. 26 ¢ 76 )
5
5

s

26 7/2 650069. - ——
26 9/2 650070, - _—
2D 5/2 650250, - ——

1006, 100, 26 ¢ 76 )

88, 4. 2D (BP(3P))
T. 2D (BPL3F

[AC T N 08 |

7. 2D (DP(3D))

211172 650384, - ~== 5.5 100. 100, 21 ¢ 71 )

461172 €51070. - -== 5.5 100. 100. 4G (DP(3F))

4D 772 651460. - - 3.5 95. 33. 4D (DP(3F)) 33. 4F (DP(3F))
12. 4D (DP(3P)) 11. 2F (DP(3F))
&. 4D (DPC3DY)

4G 972 651472. - - 4.5 9é. 73. 46 (DP(3F)) 24. 4F (DP(3F))

2F 772 £52519. ——— - 3.5 87. 65, 2F (DP(3F)) 22. 46 (DP(3F)N)

4D 6/2 652921. - e 2.5 88. 42. 4D (DPC3F)) 27. 4F (DPC3F )
10. 4D (DP(3D)) 9. 4D (DP(3P))

4G 7/2 653135. o —— 3.5 89. £5. 4G (DP(3F)) 13. 4D (DP(3F))
12. 2F (DP(3F))

HF 9/2 £B3145. - - 4.5 95. T3. 4F (DPC3F)) 23, 46 (DP(3F M

25 1/2 654120. —— - .5 95. 95. 25 (DP(3P))

4D 3/2 654558, - - 1.5 94, 52. 4D (DP(3F)) 20. 4F (DP(3F))
13. 4D (DPC3D)) 9. 4D (DP(3P))

4G 5/2 EBH5E6T. - -~ 2.5 92. 92. 46 (DP(3FN

BF T/2 656040, - - 3.5 85, 61, 4F (DPC3F)Y) 18. 4D (BPI3F))
6. 2F (DPC3F))

2F 5/2 656043, e o 2.5 88. 59. 2F (DP(3F)) 23. 4F (DP(3F))
7. 4D (DPC3F )

4D 172 656179. - = .5 96. 69. 40 (DPC3F)) 17. 4D (DP(3D))
10. 4D (DPC3P))

4F 5/2 658075. e —— 2.5 82. 40, 4F (DP(3F 25. 2F (DP(3F))

17. 4D (DPC3F
4F 3/2 658258, = - 1.5 89. 70. 4F (DPC3F)) 19. 4D (DP(3F )
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CR5+ EVEN LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE -- DD(2S+1)L = 3D2( 2S+1)L

DDC25+1) = 3p2( 25+1)L

TABLE (5.12B) CONTINUED

ﬁIRPEP _WCQLC EXP INCR J/MU TOTAL -— EIGENVECTOR COMPOSITION PCT
26 9/2 661760, ——— -—— 4.5 96 . 96. 26 (DP(3F))
2D 572 664080, -—- -~ 2.5 87. 33. 20 (DPCIDY) 27. 2D (DPC3F))
17. 2D (DPCIF))Y 9. 2F (DPL3IF )
26 7/2 664590, ——= --- 3.5 91. 91. 26 (DP(3FN
2D 3/2 664853, - - 1.5 95, 46. 2D (DP(1D})) 24. 2D (DP(3F))
13. 2D (DPCIF)Y)Y 7. 2D (DP(3DY)
5. 4F (DPL3F))
2111/2 669278. ——— - 5.5 100, 100. 21 ¢ 81 )
4D T/2 6THTS52. - - 3.5 98. 74, 4D (DPC3D)) 11. 4D (DP(3F)N
T. 2F (DPCUIF))Y 6. 4F (DP(3DN
4D 8/2 675461. —== —--= 2.5 90. 57. 4D (DP(3B)) 10. 4D (DP(3F))
9. 2F (DPCIF))Y 8. HF (DP(3D)M)
6. 2F (DPCID))
4D 372 676895. - - 1.5 88, 69. 4D (DP(3D)) 14. 4D (DPC3F))
5. 4F (DP(3D))
2F 5/2 6TTITé. - - 2.5 88. 43, 2F (DPCID)Y) 17. 2F (DPLIF))
11. 2B (DP(3F)) 10. 2D (DPC3DN
7. 4D (DPC3D))
4p 172 678022. - ——— .5 98. 78. 4D (DP(3D)) 19. 4D (DP(3F )
2D 5/2 678297. - - 2.5 92. 29. 2D (DP(3F)) 26. 2D (DPC3D))
13. 4D (DP(3D)) 9. 2F (DBPLIFY
8. 2F (DRPUID)Y)Y 7. 2D (DPCIDY
2F 7/2 678856, —— == 3.5 89. 31. 2F (DPC1D)Y) 31. AF (DP(3D))
11, 2F (DPCLIF))Y 10. 4D (BP(3D)YH
&. 2G (DBPCIF))
4F 9/2 678876, - == 4.5 97. T7. 4F (DP(3D)) 20. 26 (DPCIF))
4F 3/2 679513. —— - 1.5 90. 84 4F (DP(3D))Y 7. 2D (DPU3F))
4F 772 £80048. - e 3.% 96. 35. 4F (DP(3D)) 29. 2F (BPUIF )Y
18. 2F (DP(IB))Y 9. 26 (DPCIF))
5. 2F (DP(3D))
uF 5/2 680235. - - 2.5 a8, 81. 4F (DP(3D)y 7. 2F (DPCIF )
2D 3/2 680930. —e— - 1.5 91. 38, 2D (DPL3D)) 29. 2D (DPC3F))
10. 4D (DP(3D)) 8. 4F (DP(3DMH
7. 2D (DPCIF))
2G 7/2 €83065. - - 3.5 6. €6. 26 (DPCIF}) 21, 4F (DPL3DMH
10. 2F (DPC3D))
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CR5+ EVEN LEVELS

TABLE (5.12B) CONTINUED

CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE ~- DD(2S+1)L = 3D2( 25+1)L

DSC25+13L = (3P5( 2P)3D( 2D) ) 25+1)L

DDC25+1) = 3D2(25+1)L

IRREP  CALC EXP INCR  J/my
2F 5/2 684016. — —— 2.5
2G 972 685173. — -~ 5.5
4P 5/2 685219. — — 2.5
2F 7/2 685403, — ——= 3.5
4P 3/2 685722, ——— - 1.5
2P 1/2 686320, ——— — .5
4p 172 687551, —— e .5
4p 3/2 6BTITE. — -~ 1.5
2D 3/2 688566. e - 1.5
20 5/2 689278, ——— ——— 2.5
2F 7/2 691312, —— - 3.5
2F 5/2 691712, — w—— 2.5
2P 3/2 692241, ——— - 1.5
2P 172 693264, e _— .5
20 3/2 709580. ——— ——— 1.5
2D 572 T11522. e ——— 2.5
2P 1/2 795932, - — .5
2p 3/2 796751, - -~ 1.8
2D 3/2 800361. e == 1.5
2D 5/2 801531. e ——— 2.5

88,
98.

99.

94,

91.

92.

96.

94,

95.

9é.

99.

98.

99.
97.
96.
99.

37.
22.

79.
87.

31.
26.

50.

53.
12.

66 .
12,

41.
i5.

27.
22.

41.
10.

50.
15.

59.
i8.

£0.
11.

73.

2F
2F

26
4p

2F
2F

ap

2P
2P

4p
2P

4p
2P

2D
2D

2D
2D

2F
2F

2F
2F

2P
2D

2P
. 2D
. 2D
. 2D
. 2D
. 2D
. 2D
. 2P
. 2P
. 2D

2D

(DP(1IF))y 33. 2F

(DPC1ID))
(DPCIF))
(BPC3DY)

(DPCIDM
(DPCIF))

(DPE3D))

(DPCIDY)
(DPC3D))

(DPCIPY)
(BPCLIP M)
(DPCIPY)
(DPCIP )

19.
6.

28.
8,

38.
32.

22.
32.

6.

24,
18.

34,
7.

23.
7.

18.
14,
10.
23.

HF
2D

2F
26

2P
4p

2P
2P

2D

2P
2p

20
4p

2F
26

2F
2D
2D
2P
. 2D
. 2D

. 2D
. 2B

(DPC3D))

(DPC 3D
(DPCID Y

(DPC3D))
(DPCIF D))

(pPCID Y
(pPC3D )

(pPCID )

(DPCID Y
(DPCIF))
(DPC3F N
(prPC1D))

(DPCIF Y
(DPC 3P

o~
oo e}
o~
L) s
T
P
'




=231~

TABLE (5.12B) CONTINUED

CR5+ EVEN LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND QPTIMIZED PARAMETERS
PARENTAGE ~— DD(2S+1)L = 3D2(25+1)L

mmmmmmmmmm DDC2SHIL = 3D 25+ L DS(2S+L)L = (3PSC2P)3D(2D) 25+ 1oL
IRREP CALC EXP fﬁgéﬂ*}7§5m~”?5?§zg::_éf§§§§§5§5§~56§§655§;6§¢;5f:::
25 172 803731, - =5 99. 99,25 (opCtP))
wwwwwwwwwwwwwwwwwww NO. EXPERIMENTAL LEVELS =  13.
ABSOLUTE MEAN DEVIATION = 27
RMS DEVIATION = 52
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Table (5.13a)

lLeast Squares Corrections to Parameters: 0dd Parity Configurations

bt

5+

v Cr (z = Z=18)
Parameter new old new old approx. new=old
Eav 4p 2072660 212661. 298253, 304493, =952 30z=485. 1
& 4p 844 974,  1217.  1404. (mle4580/z+39970/zz)§(01d)
Eav 5p 351856, 354102. 489021. 492968. =1119.50242963. 8
& 5p 345. 384, 490. 565, (&282268/z+8@583/22)§(old)
Fav 6p 415600. 416840. 575273. 578267, ~856.502+2721.5
& 6p 170. 191, 247, 285. (m2e0501/2+7e521/22)§(01d)
Eav 7p 449717, 450510. 623649, 624556, =114.002-223.0
& 7 1240 109.  142. 164 (~8.0960/z+43.794/2°)&(01d)
Eav 4f 351223 352718. 472463, 479453, =5462.162+25815.7
& 4f 3. 3. 6o 6. no change
Eav 5f 409831. 415105. 567180, 569641, 2812.762-19337.9
§ 5f ' 2. 2. 4o be no change
Eav 6f 4476720 449176, 617771. 619005, 224,882-2628.6
& 6f 1. 1. 2, 20 no change
Eav 7f 468913, 469745, 648092. 652315, -3393.672+16139.0
& 7t 1. 1. Lo 1. no change
Fav 8f 482592. 483098. 667713. 668193, 26232637, 5
é 8f 0 0. 1. 1. no change
Eav 9f 491925, 492248, 681137. 681451 10.332-376. 1
& of g. 0. 1. 1. no change
Eav 10f 498572, 498787. 690664, 690924, ~46.532+18.0
& 10f 9. 0. 1. 1. no change
Eav 6h 450253, 450327, 621170, 621284. -39.8824125.2
& 6h 0. 0. 0. 0. no change
Eav 7h 470494, 470546, 650318. 650399, ~29.362+94.9
& 7h 0. 0. 0. 0o no change
Eav 3p°3d%  338614. 350849, 378710. 390514. 438.812-14427.3
F(3d3d) 91146, 91359, 111345. 103733. 3679,
F4(3d34) 43814, 57685. 50828. 65733. «14473.
£ 3p 5062. 506l. 6613. 6426. (96663/2925923/22)§(01d)
§ 3d 306.  322. 382.  466. (a592715/z+259201/zz)§(old)
72 (3p3d) 83464, 95189. 99841. 105385. -8619.
¢ (3p3d) 94477, 117200, 107438. 128426, -21860.
¢>(3p3d) 48579. 72269. 66867. 79905, ~18406.
Fav 3P°3d4s 486431, 493848. 603883. 611357. «69.192-7082.7
§ 3p 4919.  5216. 4906, 6720, {mg985é/2m03/22)§(old)
€ 3a 356. 361, 219,  S5lhe  (=.9863/z-0./2°)€(0ld)
F2(3p3d) 85528. 99383, 92520. 109168. ~15285.
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Table (5.13a)
least Squares Corrections to Parameters: 0dd Parity Configuratlons

vt crot (z = 2-18)
Parameter nev old new old approx. new-old

e (3p3d) 109293. 121400. 116678. 131878. ~14076.
¢3(3p3d) 67951. 75478. 73142, B82671. -8793.
¢t (3p4s) 9648, 9853. 13087. 11242. 1033.
6% (3d4s) 12546. 11917. 5973, 12755. ~3415.
R(3p4p3d3d) 1003, 9732.  4937. 12952. ~8372.
R3(3p4p3d3d)  1032. 10014. 4707, 12349. ~8312.
RY(3php3dés) - 4829. 46866. 20247. 53118, ~37454.
R (3p 4p 48 3d) 958.  9297.  5308. 10554. ~6792.
R (3p5p3d3d) 517.  5019.  2490.  6532. ~4272.
R3(3p 5p3d3d) 494.  4797. 1609.  5893. ~4293.
RY(3pSp3d4s)  1976. 19179.  8091. 21228. ~15170.
R} (3p5p4s 3d) 541.  5246. 2279,  5978. ~4203.
R (3p6p3d3d) 331.  3215. 1585.  4159. ~2728.
R3(3p6p3d3d) 307.  2979. 1392,  3653. ~2466.
RY(3p6p3das)  1206. 11704, 4905, 12868. ~9230.
R (3p6p4s 3d) 363, 3520,  1532.  4020. ~2822.
R (3p7p3d3d) 237.  2303. 1133.  2973. ~1953.
R3(3p 7p 3d3d) 216.  2098.  980. 2571. ~1736.
RY(3p7p3das) 848.  8234.  3441.  9027. ~6486.
R (3p7pss3d) 267.  2589. 1129.  2962. ~2078.
RY(3p4f3d3d) -23223. -26440. -31478. -35684. 3711.
R3(3p4£3d3d) -12020. -13685. ~16867. -19121. 1959.
R3(3p4f3d4s)  6792. 7733.  8305. 9415, ~1025.
RY(3p4fas3d)  1197. 1363.  874. 991, ~141.
RY(3p5£3d3d) <19266. -21935. ~25146. —-28505. 3014,
R (3p5£3d3d) ~10388. <11827. ~14042. ~15918. 1658.
R3(3p5£3d4s)  4550.  5180.  4858.  5507. ~640.
R Y (3p5¢ 4s 3d) 619.  705.  109.  123. ~50.
R1(3p6£3d3d) -15199. ~17305. -19405. -21997. 2349.
R3(3p6£3d3d)  -8356. -9514. —11048. ~12524. 1317.
R3(3p6£3das) 3149, 3585.  3060. 3469, 423,
R*(3p6£ 4s 3d) 328.  374.  -160. -182. ~12.
R(3p7£3d3d) -12178. —13865. ~15373. ~17427. 1871.
R3(3p7£3d3d)  -6769. -7706. -8847. —10029. 1060.
R3(3p7£3d4s)  2318. 2639,  2112.  2394. ~302.
RY(3p7£4s3d) 186, 212. =241, -273. 3,
RY(3p8£3d3d)  ~9987. ~11370. -12531. -14206. 1529.
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Table (5.13a)
Least Squares Corrections to Parameters: Odd Parity Configurations

4t

5+

v Cy (z = Z-18)
Parameter new old new old approx. new=o0ld

R3(3p8£3d3d)  -5588. -6362. ~7259. <8229. 872.
R3(3p8F3d4s)  1794. 2042.  1562.  1770. ~229.

R (3p8f4s3d) 113.  128. -255.  -290. 9.
R1(3p9£3d3d)  -8365. =-9524. ~10477. =11858. 1270.
R¥(3p9£3d3d)  -4701. -5353. -6085. -6898. 732.
R3(3p0radas)  1442.  1642.  1214.  1377. ~181.

R (3p9f4s3d) 71 8l. =246, =279. 12.
R1(3p10£3d3d) ~7133. -8121. -8901. —10090. 1089.
R3(3p10£3d3d) -4021. -4579. -5193. -5887. 625.
R3(3p10£3d4s) 1193. 1359.  980. 1111l. ~148.
®Y(3p 10£ 48 3d) 47. 54, =230. =260, 12.
R3(3p6h3d3d)  -103. ~194. -118. =309. 141.
R3(3p7n3d3d)  -118. -222. <135. =354, 161.
R%(3p3d3p4s)  3520. 6624. 3511. 9212. ~4403.
RY(3p3d4s3p)  5725. 10774.  4935. 12947. ~6530.
R%(3d3d3d4s)  2717. 5112.  3500.  9182. -4039.
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Table (5.13b)
Least Squares Corrections to Parameters: Even Parity Configurations

4t

5+

v Cr (z = 2-18)

Parameter new old new old approx. new~old
Eav 3d 391, 9743. 796. 9979. 277.052-12420.8+8215./z
§ 3d 250 322.  376.  469. (-1.5853/242.362/2°)E(01d)
Eav 4d 294020. 299880. 403300. 410187. =1273,502+671.8
€ 4d 58. 66. 89.  105. (~2.2479/z+8.260/22)€(old)
Eav 5d 388034. 390904. 534693, 538177, =713,002+4+761.0
€ 5d 27. 30. 42 48. (~1.4338/2+4.168/2%)6(old)
Eav 6d 434338, 4£35967. 599824. 601924. ~471.0024726.0
£ 6d 15. 16.  21. 26. (~4.8911/2+22.198/2%)€(01d)
Eav 7d 460721. 461734, 637582. 638504. -20.582+126.9
é 7d 9. 10. 12, i6. (w5e4588/z+25e604/22)§(Old)
Eav 4s 148197. 154487. 228717. 234916, «794,10-2227.1
Eav 5s 328226. 330659. 461355. 464152, «4(9.502-355.2
Fav 6s 403862. 405054. 562118. 563554, =253.0024+79.0
Eav 7s 443081. 443759, 615204. 616046. =151.1024+81.1
Bav 8s 466072. 466496, 646647. 647183. =96, 402462, 4
Eav 5g 416366. 416758. 572280. 572913, =172:.6024437.2
£ 5g 0. 0. i. 1. no change
Eav 6g 450030. 450294, 620706. 621208, =138, 10=24+373.7
£ 6g 0o 0. 0. 0. no change
Eav Tg 470339, 470520. 650078, 650343, =60.002+127.0
& 7g 0. 0. 0. O no change
Eav 71 470533, 470546, 650401. 650401, no change
& 71 0. 0. 0. 0. no change
Eav 841 483661, 483668. 669298. 669298, no change
£ 81 0. 0. 0. 0. no change
Eav 3p53d4p 545165, 552594. 673957. 681456, =69, 702~7080.3
é 3p 4194, 5224, 5623, 6728 (wE9836/ZWa010/22}§(01d)
€ 3d 291, 362, 43l 516. (~.9827/2-.012/2°)E(01d)
& dp 788.  981. 1178.  1409. (=.9820/z-.019/2%)€(0ld)
FZ(BPBd) 85785. 99588. 92492, 109316. -15313.
F2(3pép) 26337. 26337. 30860. 30860. no change
7% (3d4p) 27420. 27420. 31361. 31361. no change
Gl(3p3d) 109640. 121606. 115792, 132017. -14095.
G3(3p3d) 68198, 75641, 72611. 82786, ~8809.
GO(Bpép) 8021. 8021. 9213, 9213, no change
G2(3p4p) 8844. 8844. 10349. 10349. no change
Glf3dép) 9671, 9671. 10882. 10882. no change
Gg(Bdép) 9273, 9273, 10554, 10554, no change




=236-

Table (5.13b)
Least Squares Corrections to Parameters: Even Parity Configurations

4+

5+

v Cr (z = 2-18)
Parameter new old new old approx. new=old

RO(3p3p3p4p)  379.  3756. 1557.  4085. ~2952.
R%(3p3p3php)  1743. 17257. 7149, 18755. ~13560.
RY(3p3d3dép)  1030. 10195. 5201. 13644. ~8804.
R3(3p3d3dap)  1052. 10419.  4896. 12843. ~8657.
RO(3p3d4p3d)  123.  1220.  589. 1544 ~1026.
R%(3p3dép3d) 1532, 15169. 6806, 17854. ~12342,
RU(3p4d3dsp)  3743. 37055. 16871. 44259, ~30350.
R3(3p4d3ddp)  1406. 13923,  6516. 17094. ~11547.
RO(3p4d4p3d)  870.  8610. 3758.  9858. ~6920.
R%(3p4dhp3d)  870.  8615. 3914, 10269. ~7050.
RY(3p5d3ddp)  1912. 18934. 8082. 21201. ~15070.
R3(3p5d3ddp)  878.  8688.  3900. 10231. ~7071.
RO(3p5d4p3d)  534.  5282. 2270.  5956. ~4217.
R%(3p5d4p3d)  563. 5576,  2477.  6498. ~4517.
R(3p6d3dép)  1242. 12300, 5106. 13396. ~9673.
R3(3p6d3dbp)  612. 6060. 2663.  6986. ~4885.
RO(3p6d4p3d)  372.  3687. 1571,  4122. ~2932.
R%(3p6dép3d)  400.  3965. 1739.  4562. ~3193.
Rl(3p7d3d4p)  898.  8894.  3640.  9548. ~6952.
R3(3p7d3dép)  459.  4541. 1973,  5176. ~3643.
RO(3p7d4p3d)  280.  2770. 1176.  3084. ~2200.
R%(3p7d4p3d)  304.  3005. 1309.  3435. “2414.
RY(3p4s3dép)  4743. 46961. 20263. 53155. ~37555.
R%(3p4sdp3d)  925. 9156. 3999, 10491. ~7362.
RY(3p5e3ddp)  1229. 12166.  5428. 14240. ~9874.
R%(3p5s4p3d) 470,  4649.  2075.  5443. ~3774.
R!(3p6s3dip)  703. 6963. 3120.  8184. ~5662.
R%(3p6sip3d)  302. 2993, 1347.  3533. ~2439,
Rl(3p7s3d4p)  48l. 4761. 2138.  5608. ~3875.
R%(3p7stp3d)  218.  2154.  973.  2554. ~1758.
Rl(3p8s3dsp)  359.  3554. 1598.  4193. ~2895.
R%(3p8skp3d)  167. 1652.  749.  1965. ~1351.
R3(3p5g3dhp) 214, ~2118. -1155. =-3030. 1890.
R2(3p5ghp3d)  ~37.  =368. =192.  =504. 321.
R3(3p6g3ddp)  ~198. ~1965. =-1048. =2750. 1734,
R%(3pbghp3d)  =35. =349, =177.  —465. 301.
R3(3p7g3dhp)  -171. =1691. -890. ~-2334. 1482.
R%(3p7ghp3d) =31,  =303. -151.  =397. 259.
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method used to adjust the CI parameters. Also, because of relativistic
effects that become increasingly more important with increasing Z, it
would not be reliable to extrapolate any of these corrections beyond the

neighboring ions in the sequence.

5.2.3 Extrapolations and Predictions

4t and Cr5+ are presented in

The old and new parameter values for V
table (5.13), along with a function that estimates their differences as
a function of z=Z-18. The corrections to the average energies were fit
to a linear function of z, as there are only two ions with corrections.
To this same order in the 1/Z expansion, the corrections to the Slater
integrals are constant, so an average of the corrections to both ions

was found for each parameter. The spin-—orbit parameters, however, were

fit to

- n{

: e
i (Z2~18)

(Zﬁlg)z n{

which is an approximate expansion of (5.18b). The 3p53dés spin-orbit

parameters, éBp and éSdg have a somewhat erratic behavior, so the aver-

age ratio E;Q/éné for V4+ and Cr>" was used to determine the Aﬂ6 term

in these cases, and the BHQ term was omitted.

Applying these formulas with Z=22, 25, and 26, the corrections were

extrapolated to Ti3+9 Mn6+ and Fe7%@ Then the average energies of all

identified configurations for these ilon were optimized by least squares.

In addition, the parameters of the 3p53dés configuration were adjusted

6+ 7+

for Mn and Fe with the constraint (5.27b). The corrections to the

average energies of the even parity nl configurations of T:i,}!ﬁ were
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bt

combined with the corrections to V' and Cr5+ and extrapolated to the -

7s, 8s, 6d, and 7d configurations of Crs+ and all the even configura-

7+

6+ and Fe' . Similarly, the corrections to the average ener-

tions of Mn

6+ 7+

gies of the np configurations were also extrapolated to Mn and Fe' ,

and also the 7p configuration of CrS%o All the extrapolations were
again made with the linear approximation, except for the 3d configura-
tlon; because of its curvature, the function Qsd was used instead. The
nf configurations were too badly perturbed to extrapolate with any con-
fidence, so the predictions for the 6f, 7f, 8f, 9f, and 10f, configura-

tions cannot be taken very seriously. The functions used to extrapolate

all the parameters appear in table (5.13).

The old and new parameters for Ti3+g Mn6+, and Fe7+ are displayed

in table (5.14), while the predicted energy levels and eigenvector com=
positions for all three ions are presented and compared with the identi-
fied levels in tables (5.15) through (5.17). Agreement with the levels
belonging to the 3p53d2 and 3p53dés configurations of Mn6+ and Fe7+ was
improved, even before any additional optimizations of these configura-
tions. After the additional least squares adjustments, the agreement

5+

b and Cr~ '« It is

for the 3p53dés configuration is comparable with V
hoped that predictions for the spectra of the transition array with
these two configurations and the 3p53d4p are improved over the initial

HXR estimates.

The small discrepancy in the agreement between the observed and

6+ 7+

calculated average energies of the 3d configuration for Mn and Fe
reflects the accuracy of the extrapolation of §Bd and also perhaps the

accuracy of the experimentally derived ionization energies. The
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Table (5.14a)

Optimized and Extrapolated Parameter Corrections: Odd Parity
743t M & et
Parameter new old new old new old
Eav 4p 128493, 132675. 400961. 407690.  514019. 522124,
€ 4p 559. 633. 1690. 1936, 2274 2584
Eav Sp 230838, 232546. 643690, 648563.  814663. 820655
& 5p 240, 245, 679, 793. 919, 1074.
Eav 6p 274867. 275732. 754413. 759335.  955654. 959785,
& 6p 115. 120. 348, 404, 476, 553,
Eav 7p 298079. 298578. 818896, 819917. 1035413. 1036548
& 7p 116, 68. 173. 235. 217, 323.
Eav 4f 236897. 238290. 611350. 617630.  759968. 766921,
& 4f 1. Lo 11, 11. 19. 19.
Eav 5f 278168. 278073. 738739. 740986.  925684. 928611,
& 5f 1. 1. 6. 6o 1. 11,
Eav 6f 298026. 299756. 807094. 808500. 1015957. 1017397,
€ 6f 0. 0. b bo 6. 6o
Eav 7f 315400, 312835. . 848491. 849353. 1069628. 1071017.
& 7f 0. 0. 2. 2. b b
Eav 8f 320790. 321323. 875313. 875848. 1105334. 1105762.
& 8f 0. 0. 2. 2. 3. 3.
Eav 9f 326804. 327138. 893598. 893985. 1129234. 1129528,
& 9f 0. 0. Lo 1o 2. 2.
Eav 10f 331129. 331298, 906951, 906929. 1146125. 1146479,
& 10f 0. 0. L L 1. 1.
Eav 6h 300169. 300203. 812099. 812282, 1022791. 1022985.
£ 6h 0. 0. 0. 0. 1. 1o
Eav 7h 313120. 313142. 851771. 851910. 1074605. 1074745
€ 7h 0. 0. 0. 0. 0. 0.
Eav 3p53d2 294293. 310221. 415730. 429505.  454675. 468161,
72 (3d3d) 81789. 78111. 119250. 115572.  130733. 127054.
74 (3d3d) 34599. 49073.  58963. 73436 66436, 80910.
& 3p 3733. 3794. 8452. 8162. 10607, 10223.
€ 3d 263. 209. 493, 648. 641, 872.
F2(3p3d) 75460. 84079. 106425, 115043. 115735, 124354,
Gl(Bde) 82618. 104478. 118392, 138765. 128356, 148529,
G3(3p3d) 45324, 63730.  69465. 86999, 76334, 93737,
Eav 3p53dés 380066, 387425. 731998. 739721.  871404. 878971.
£ 3p 2995, 3974, 8409, 8162. 10160, 10650.
€ 3d 181. 240, 205. 648. 345, 943.
F2(3p3d) 73654 88939. 100879. 118546. 107268, 127651,
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Table (5.14a)

Optimized and Extrapolated Parameter Corrections: 0dd Pardty
743t mn &% Fe
Parameter new old new old new old
el (3p3d) 95776. 109852. 128749, 141695.  138287.  151070.
63 (3p3d) 58836.  67629. 81373,  8945l.  87984.  95954.
¢l (3pss) 9416.  8384.  4806.  12577. 5476.  13871.
c?(3d4s) 7797,  11213.  17612.  13662.  19481.  14607.
R (3p4p3d3d) -2186. 6186,  7563.  15935. 10370,  18742.
®3(3p4p3d3d) ~812.  7500.  6241. 14553, 8345.  16657.
RY(3p43p33dss)  2633.  40087.  21551.  59005.  27175.  64629.
R (3psp s 3d) 1164.  7956.  4958.  11751. 6110.  12903.
r!(3p5p3dad) ~911.  336l.  3668.  7940. 4999, 9271.
R (3p5p3d3d) ~677.  3616.  2635.  6920. 3626. 7919.
R1(3p53p33d4s)  1705.  16874.  7933.  23102. 9681. 24851,
R (3p5p s 3d) 263.  4465.  2473.  6675. 3144. 7346.
R (3p6p3d3d) ~547.  218l.  2310.  5038. 3142. 5870.
R3(3p6p3d3d) ~215.  2252.  1822.  4289. 2430. 4896.
R} (3p6p3das) 1144, 10374. 4684,  13914. 5645.  14876.
R} (3p6plsad) 165.  2988.  1673.  4A495. 2130. 4952,
r}(3p7p3d3d) -382.  1570.  1645.  3598. 2235, 4188.
R3(3p7p3d3d) ~149.  1587.  1280.  3016. 1704. 3441,
R1(3p7p3das) 831.  7317.  3246. 9732 3884,  10370.
R (3p7p4s3d) 115.  2192.  1238.  3316. 1578. 3656.
R1(3p4£3d3d)  ~13988. -17699. 41305, =45017. -50519.  =54230.
3 (3p4f 3d3d) ~6730.  -8689. -22763. =24723. =28377.  -30336.
R3(3p4f3das) 4688.  57l4.  9713. 10739,  10724. 11749.
RY(3p4f4s3d) 1294.  1435. 234. 375. ~564. ~423.
RY(3p5£3d3d)  ~12181. -15195. -31689. -34703. =37512.  =40526.
87 (3p 5£ 3d3d) —6117.  =7775. -18219. <19877.  =22005.  =23663.
R3(3p5£3d4s) 3651.  4290.  4734. 5374 4263. 4903.
R} (3p5£4s3d) 957.  1007.  =70l.  -651.  =1599.  ~1549.
R (3p6£3d3d) ~9944. 12293, «23994. =26343.  =28059.  ~30408.
R (3p6£3d3d) ~5099.  -6416. -14066. ~15383. 16786,  =18103.
R3(3p6£3das) 2786.  3209.  2575.  2997. 1863. 2286.
R (3p6£4s3d) 701. 714.  -884.  -872.  —1656. <1644,
R (3p7£3d3d) ~8139. -10009. <-18853. -20724. -21943.  -23813.
R (3p7£3d3d) <4224, =5283. -11170. =12230.  =13265.  =14325.
R3(3p7£3d4s) 2184,  2486.  1576. 1878. 880. 1182.
R (3p7£4s3d) 534 531.  -856.  -859.  -1503.  -1506.
R 1 (3p8£3d3d) ~6763.  -8292. ~15306. -16835. ~17772.  ~19301.




=241~

Table (5.14a)

Optimized and Extrapolated Parameter Corrections: O0Odd Parity
T 3+ Mn 6+ Fe 7+
Parameter new old new old new old
R3(3p8f3d3d) =3536. ~4408. -9127. =9999. =10812, ~11684,
33(39853648) 1763, 1991. 1054, 1283. 425, 654
Rl(3p8f453d) 423, 414, =778 ~787- =1323. =1332.
R1(399f3d3d) =5720. -6990. ~12756. =14026. =14789. =16059.
R3(3p9f3d3d) =3001. =3733. -7633. =8365. =9029. =3761.
R3(3p9f3dés) 1459. 1640. 753. 934, 195. 376.
R1(3p9f453d)' 345. 333. -694. =705, =1159. «1171.
R1(3p10f3d3d) =4898. -5987. ~-10832. -=11921. =12549. -13638.
R3(3p10f3d3d) =2583. -3208. «6505. -7131. ~7687. ~8312.
R3(3p10f3dés) 1233. 1381. 566. 714. 720 220.
Rl(BPlOfQSSd) 288, 276. =617- =629, =1019. =1031.
R3(3p6h3d3d) 34, =107, =311, =452 =479, =620,
R3(3p7h3d3d) 39. =123, =354, =515, =543, 705,
32(3p3d3pés) =547. 3856. 7255, 11657, 9585, 13988.
R1(3p3d483p) 1986. 8517. 8512. 15043. 10542, 17073.
RZ(BdBdeés) ~3420. 619. 8901. 12940. 12419. 16458,
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Optimized and Extrapolated Parameter Corrections:

Table (5.14b)

Even Parity

T 3+ Mn 6+ Fe 7+

Parameter new old new old new old

Eav 3d 263. 9454, 810, 10118 1102. 10280.
& 3d 155. 206. 538. 654 740, 882,
Eav &4d 196867, 201207. 523377. 531620. 654566. 664082,
& 4d 36. 38. 133. 157. 190. 224,
Eav 5d 258869.  260954. 697261. 702139, 877639. 882582.
§ 5d 16. 17. 63. 72, 91. 103,
Fav 6d 289207.  290365.  785008. 787579, 989512 992554.
& 6d 1l. 9. 29, 39, 41, 55.
Eay 7d 306411.  307117. 835278. 836696.  1054380. 1056018.
& 7d 7. 6. 17. 23, 24. 33.
Eav 4s 80410.  85938. 319504, 326688, 421957, 429633
Eav 5s 212410.  214388. 611040. 614262, 777142, 780783,
Eav 6s 265850. 266780,  739920.  741612. 937410. 938974,
Eav 7s 293003.  293517. 808654. 809660. 1023161. 1024332.
Eav 8s 308713.  309025. 849700. 850348. 1074941. 1075701.
Eav 5g 278514.  278731. 745565,  746395. 935826. 936864 .
& 5g 0. 0. le 1e 2. 2.
Eav 6g 300050,  300193. 811474. 812136,  1021897. 1022738.
§ 6g 0. 0. 1. Lo 2. 2.
Eav Tg 313038.  313135. 851453, 851801l. 1074127. 1074560
& 7g 0. 0. 1o 1. 1. 1.
Eav 71 313134. 313143, 851913. 851913. 1074745.  1074745.
€ 71 0. 0. 0. 0. 0. 0.
Eav 81 321535.  321542. 877635. 877635. 1108348. 1108349.
& 81 0. 0. 0. 0. 0. 0.
Eav 3p 3ddp  42746h. 434480,  B813654.  821574. 964319, 971956.
£ 3p 3000. 3982. 7327. 8527. 9345. 10657.
& 3d 182, 242, 608. 708. 828. 944,
& 4p 484. 642, 1667. 1940, 2268. 2586,
F2(3p3d) 73928.  89241. 103344. 118657 112423, 127737.
P (3php) 21597. 21597, 35226. 35226 39473. 39473.
¥ (3d4p) 23331, 23331, 35190, 35190. 38935. 38935,
Gi(Bde) 96086. 110182. 127697. 141792. 137045, 151141,
¢”(3p3d) 59067.  67876. 80727. 89536, 87209. 96018.
¢®(3php) 6756, 6756, 10358. 10358, 11468. 11468.
62 (3php) 7252 7252. 11790. 11790. 13185, 13185,
¢ (3d4p) 8463, 8463, 12083. 12083, 13269. 13269.
¢ (3dap) 7966, 7966. 11808. 11808, 13039, 13039,
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Table (5.14b)
Optimized and Extrapolated Parameter Corrections: Even Parity

13t " T+
Parameter new old new old new old
RO (3p 3p3psp) 452, 3404. 1449, 4401, 1756. 4708.
R%(3p3p3php)  2077.  15637. 6616.  20175. 7985. 21544.
rl(3p3d3dép)  ~2560. 6245. 7964.  16768. 10860. 19664.
R3(3p3d3dép)  =905. 7752. 6444, 15101. 8583. 17240.
r9(3pa3d) ~167. 859. 816. 1842. 1096. 2122,
R%(3pa3d) ~101.  12242. 8038.  20380. 10451 22793,
RY(3p4d3dép)  -1316.  29034.  20509.  50859. 26659. 57009.
R3(3p4d3dép)  -1042.  10505. 8512. 20059, 11311. 22858.
RO (3p4dap 3d) 389. 7309, 4136.  11057. 5297. 12217.
R%(3phdip3d) =213 6836. 4769.  11819. 6239. 13289.
RY(3p5d3dsp)  891.  15961. 7926. 22997, 9399. 24469.
R3(3p5d3dp)  -199. 6872. 4498,  11569. 5683. 12754,
r9(3p5dsp3d) 335, 4552, 2372. 6589, 2977. 7194.
R%(3p 5d4p 3d) 14. 4531. 2814. 7331. 3582. 8099.
r1(3p6d3dsp) 1034  10707. = 4506.  14179. 5083, 14757.
R3(3p6d3dap) 28. 4913. 2870. 7755, 3527, 8412.
RV (3p6d4p3d) 277. 3210. 1597. 4530. 1989. 4921.
R%(3p 6dsp 3d) 77. 3270. 1899. 5003. 2384, 5578.
rY(3p7d3dbp) 927. 7879. 3025. 9977. 3307. 10259.
R (3p7d3dép) 91. 3734, 2047, 5690. 2474, 6117.
®V(3p 7d4p 3d) 227. 2426. 1181. 3380. 1465. 3665,
R%(3p 7d4p 3d) 87. 2501. 1401. 3814. 1745, 4159.
RY(3p4s3dip)  2729.  40284.  21456.  59011. 27062 64617.
®%(3p4sbp3d) 337, 7698. 4371,  11732. 5542, 12903,
R' (3p583d4p) 124, 9999. 6367. 16242+ 8310. 18185.
R%(3p 58 4p 3d) 29. 3803. 2421, 6195. 3141. 6915.
r L (3p6s3dap) 29. 5691. 3701. 9363. 4846. 10508.
R%(3p6sbp3d) ~16. 2423, 1610. 4048 2105. 4543,
R (3p7s3ddp) 3. 3878, 2550, 6425, 3344, 7219.
R2(3p7sép3d) ~25. 1733, 1178. 2936. 1547, 3305.
R , (3p8s3dip) ~7. 2888, 1914. 4809 2517, 5406.
R%(3p8s bp3d) ~27. 1324. 914, 2265, 1203. 2554,
R (3p5g3ddp) 573. <1317.  <2128.  —4018. ~3164. ~5053.
R%(3p 5g4p 3d) 82. ~239, ~321. ~642. ~456. -777.
R3(3pbg3dip) 486.  ~1248.  -1832.  -3566. ~2651. 4385,
R (3p bghp 3d) 68. ~233. ~274, ~575. ~374. 674,
R (3p7g3dbp) 393.  -1089.  -1499.  -2981. ~2130. ~3612.

R%(3p 7g4p3d) 54. ~205. 2221, ~480. ~291. ~550.
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CALCULATIONS COMPARED WITH EXPERIMFNTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS

PARENTAGE -- DD(25+1)L

_BB25+1)L = 302 25+1)L

3D2(25+L

EIREEP CaLe EXP INCR  J/my  TOTAL ~-— EIGENVECTOR COMPOSITION PCT

2P 172  127911. 127921. ) ~10.3 5 100, 100. ;;_( Q?T“; »»»»» o

2P 372 128750. 128740. 16.3 1.8 100, 100, 2P ( 4P )

2P 1/2 230587. 230609. -21.9 5 100, 100. 2P ¢ 5P )

2P 3/2 230946. 230924, 21.9 1.5 100, 100. 2P C 5P )

2F 5/2 236132, 236135. -3.3 2.5 99. 99. 2F ¢ 4F )

2F 7/2 236186, 236142, 3.4 3.5 99. 99. 2F ( 4F

4D 172 252379. e - 5 100. 82. 4D (DD{ 3F)) 18. 4D (DD(3P))

4D 372 252781. - - 1.5 100. 81. 4D (DDC3F)) 19. 4D (DDI3P))

4D 572 2534690, - - 2.5 99. T9. 4D (DD(3F)) 21. 4D (DDC3P))

4p 772 254445, - - 3.5 99. 7é6. 4D (DDC3F)) 23. 4D (DDC3P))

4G11/2 265393. —— --— 5.5 100. 100. 4G (DDC3FM)

4G 9/2 266266, = ——— 4.5 97. 97. 4G (DDC3F)Y)

4G 772 267226. - - 3.8 95. 95. &5 (DD 3F))

HG 5/2 268193, - --= 2.5 94, 4. 46 (DDC3F))

4p 572 272109. - 2.5 99. 99. 4P (DBDC3P))

4P 372 273422. - ——— 1.5 99. 99. 4P (DD(3P))

4P 172 274341, —— = 5 99. 99. 4P (DD(3P))

2P 1/2 274744, 2T4726. 17.7 5 100. 100. 2P ( &P )

4F 3/2 274750. - - 1.5 98. Ti. 4F (DD(3F)) 21. 20 (DDCIDY)
6. 20 (DD(3F))

4F 572 274770. 2T4840. ~70.3 2.5 89. 34. 4F (DD(3F)Y) 32. 20 (DDCIDY)
9. 2F ( S5F ) 8. 2D (DD(3F)N
&. 2F (DDCIGY)

2P 372 274917. 274881, 35.5 1.5 99. 99. 2P ( &P )

4F 9/2 275334, A - 4.5 95. 95. 4F (DDC3F))

4F 772 275559. e - 3.5 a7r. 62. 4F (DD(3F)Y) 18. 2F (. BF )
8. 2F (DDC1G))

2F 5/2 275736. 275847. ~111.2 2.5 92. ?g: %g :DB??G); %é: ;g Eggﬁg?;;
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TABLE (5.15A) CONTINUED

TI3+ ODD LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE -- DD(2S+1)L = 3D2( 25+1)L
DD(ZSﬁL)L = 3D2025+HL DSC25+1OL = (3PB(2P)H3D( 2D))( 25+ 1)L

IRREP  CalC EXP INCR  J/mu TOTAL -- EIGENVECTOR COMPOSITION PCT

2F T/2 276095, 275862, 232.7 3.8 95. 49. 2F ( 5F ) 31. 4F (DDC3F))
9. 2F (DDC1GYY 5. 2F (DDBC1DY)

2D 5/2 276881, - e 2.5 9. 44, 20 (DDCIDY) 41, HF (DDC3F))
10. 2B (DDC3F))

2D 372 277752, - - 1.5 97. 51. 2D (DBC1D)Y) 28. 4F (DBC3FMN

12. 2D (DDU3F)Y) €. 2P (BDC1DY)

2F 572 279321. - - 2.5 98. 44, 2F (. BF ) 30. 2F (DBU3F))
23. 2F (DDCIGM

2F 7/2 280211, - o 3.5 93. 35. 2F (DD(3F)) 30. 2F (. 5F )
28. 2F (DDCIGN

2P 1/2 282885. - —— .5 99. 68. 2P (DDC1D)) 22. 2P (BD(3P))
9. 2P (DBCISM

2P 3/2 284761, - —— 1.% 97. 57. 2P (DDC1D)) 21. 2P (DBC3P))

12. 2P (DDC1SY)Y 7. 2D (DDCID))Y

26 7/2 285922. - - 3.5 90. 90. 26 (DDC3F )N

2H11/2 287677 ——= -—= 5.5 100, 100. 2H (DD 1G))

26 9/2 288012. - ~e— 45 92. 92. 26 (DDC3F M

2F 7/2 289257. - - 3.5 ag. 81. 2F (DDC1D)Y)Y 6. 2F (DDO3F))
2H 972 291545, - - 4.5 98. 98. 24 (DDC1GY)

2F 5/2 292945, —— -—— 2.5 92. 82. 2F (DDCIDY)Y 10. 2F ¢ &F )
2F 772 297828, - = 3.5 96. 96. 2F ( 6F )

2P 1/2 297957. 298000. -42.7 .5 100, 100. 2P ( 7P

2F 572 298085. - - 2.5 99. 89. 2F ( &6F ) 10. 2F (DDLIB))
2P 3/2 298131. 298088, 42.7 1.5 100. 100. 2P ( TF )

2H 972 300166. 300159. 6.8 4.5 100. 100, 2H ¢ &H )

2H11/2 300166. 300159 6.8 5.5 100. 100, 2H (. &H )

4p 7/2 300317, e = 3.5 99. 76, 4D (DDC3P))Y 24. 4B (DDC3F )
4p 572 301160, - - 2.5 97. Té&. 4D (DDC3P)Y) 21. 4D (BDC3FN)
4p 3/2 302074, —— == 1.5 97. 78. 4D (DDC3P)Y)Y 19. 4B (DDC3F))
4p /2 302853, - ——— .5 100. 82. 4D (DD 3P)) 18. 4D (DDC3F )
2D 3/2 310985. = —— 1.5

94. 86. 2D (DDC3PYY 8. 2D (DDC3F )
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TABLE (5.15A) CONTINUED
TI3+ ODD LEVELS

~246-

CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS

PARENTAGE -- DD(25+1)L = 3D2( 25+1)L

DBC2S+1)L = 3D2(25+1)L

9. 2D (DDC3FN

2P (DDC1DYY

2P (DBDCIDY)

2F (DBCIGH

2F (DDC3F )

QIQREPmkcﬁéLC EXP INCR J/MU  TOTAL ~— EIGENVECTOR COMPOSITION PCT
20 572 312555, - - 2.5 94, 85, 2D (DD(3P)) N
2H 9/2 313116. 313111, 5.5 4.5 100, 100, 2H ¢ 7H )
2HIY1/2  313116. 313111, 5.5 5.5 100, 100, 24 ¢ 7H

2F Tr2 314932. - - 3.5 96. 96. 2F ¢ TF )

2F 5/2 314947, —— == 2.5 97. 97. 2F (. TF )

26 972 31%5891. —— e 95. 95. 26 (DDC1GY)

26 772 316434. e - 3.5 95 . 95. 26 (BDC1GM

4S5 3/2 318456, ——— - 1.5 100. 100. A5 (DD(3P))

25 1/2 318473. - —— .5 100, 100. 25 (DD(3P))

2F 5/2 320438. e - 2.5 98. 98, 2F (. 8F )

2F 772 320457, e - 3.5 98. 98. 2F (. 8F )

2F 5/2 326489, ——— - 2.5 98. 98. 2F (9% )

2F 772 326508. - - 3.5 98. 98. 2F (9 )

2P 372 330074, - - 1.5 99. 78. 2P (DD 1S)) 21.
2F 5/2 330872, - - 2.5 98. 98. 2F ( 10F )

2F 772 330890. e --= 3.5 98. 98. 2F ( 10F )

2P 1/2 333992. - - .5 97. 79. 2P (DD(15)) 18.
4p 1/2 352560. ——— i .5 100. 100. 4P (DS(3P))

up 372 353359. — e 1.5 99. 99. 4P (DSC3P))

2F 5/2 354408, —— - 2.5 92. 46. 2F (DDC3F)) 46.
up 572 354797, - - 2.5 99. 99. 4P (DS(3P))

2F 7/2 356525. - - 3.5 92. 47. 2F (DDC1GY)Y 45.
2P 172 359814, ——— e .5 929. 99. 2P (DS(3P))

2P 372 361504, e - 1.5 8. 98. 2P (DS(3IP M

uF 972 363281. - e ) 100. 100, 4F (DSC3F))

4fF 772 364356. e - 3.5 99. 99. 4F (DSC3F))

u4F 5/2 365348 - w25 928. 98. A4F (DS(3F)Y)




TI13+ 0DD LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE -— DD(25+1)L = 3D2( 25+1)L

=247

) DDC2S+1)L = 3D2025+1)L  DS(25+1)L = (3P5(2P)3D(2D) M 25+1)L

IRREP  CALC EXP INCR J/MmU  TOTAL ~- EIGENVECTOR COMPOSITION PCT

HF 3/2 366182. e ——= 1.5 99.  99. 4F (DS(IF))

26 772 370598, — - 3.5 97.  97. 2F (DSC3FN)

2F 5/2 372754, — —— 2.5 97.  97. 2F (DS(3IF))

2P 1/2 38199y, - - 5 100,  T74. 2P (DD(3P)) 13. 2P (DDC1D))
12. 2P (DDC1S))

4D 7/2 383006, — -—— 3.5 95. 95, 4D (DS(3D))

2P 3/2 383072. e ——— 1.5 99.  75. 2P (DD(3P)) 15. 2P (DDCID))
10. 2P (DBCISH)

40 5/2 383503, — 2.5 96.  89. 4D (DBS(3D)) 7. 2D (DSCIDY)

4D 3/2 383847, — —— 1.5 98.  90. 4D (DS(3D)) 8. 2D (DSCIDY)

4D 172 384100, ——— e .5 100. 100. 4D (DS(3D))

2D 5/2 385130. - — 2.5 96.  59. 2D (DD(3F)) 4. 2D (DOCIDY)
14. 2D (DS(3D)) 10. 2D (DD(3P))

2D 3/2 385173, — ——== 1.5 100. 49. 2D (DBC3F)) 19. 2B (DSC1DY)
12. 2D (DDCID)) 8. 2D (DD(3P))
7. 2D (DS(3D)Y) 5. 4D (DS(3D))

20 5/2 385603, -— — 2.5 97.  80. 2D (DSCID)Y 11. 2D (DBS(3D))
6. 4D (DS(30))

2D 3/2 386288. S— — 1.5 91.  69. 2D (DBSCID)) 11. 20 (DOCIF N
11. 2D (DS{30))

2F 5/2 388639 e —— 2.5 89. 89. 2F (DSCIEM

2F 7/2 389328, — ——— 3.5 93.  93. 2F (DS(IF))

2D 3/2 392159. _— ——— 1.5 92. 82, 2D (DS(3D)) 10. 2B (DDC3F N

20 5/2 392315. _— —— 2.5 96.  73. 2D (DS(3D)) 9. 2D (DB(3IFN
8. 20 (DS(ID))Y 6. 2F (DSCIF))

2P 3/2 484197, —— e 1.5 100. 100. 2P (DS(1P))

2P 172 484220. - — B 100, 100. 2P (DSCIPY)

NO. EXPERIMENTAL LEVELS = 17.
ABSOLUTE MEAN DEVIATION = 38.16
RMS DEVIATION = 6775




26 9/2
211172
2111/2
40 1/2
4p 372
4p 572
4p 7/2
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TABLE (5.158)
TI3+ EVENLEVELS

CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE -~ DD(2S+1)L = 3D2( 25+1)L

DSC25+1)L = (3P5(2P)3D( 2D) W 25+1)HL

ODC2S+1). = 3D2( 25+1)

80389.
196802.
196892,
212407 .
258838.
258877.
265847 .
278511.
278511.
289183.
289210.
293000.
300046.
300046.
306393.
306411,
308710.
313034.
313034.
313131,
321531.
397455 .
397970.
398790.
399909.

EEP INCR  J/mU TOTAL -- EIGENVECTOR COMPOSITION PCT
0. -2.2 ;.5 100. ZBST 2D ¢ 30
382, 2.2 2.5 100, 100. 2D ¢ 30 )
80389. 0. .5 100, 100. 25 ¢ 45 )
196804 -2.0 1.5 160, 100. 2D ¢ 4D )
196890. 2.0 2.5 100, 100. 2B ¢ 4B
212407, 0. .5 100. 100, 25 (¢ BS )
258838. -.3 1.5 100. 100. 20 ¢ 58D )
258877. .3 2.5 100, 100. 2D (. 5D )
265847 . 0. .5 100, 100. 25 (¢ &S )
278511 . -1 3.5 100, 100. 26 ¢ 56 )
278511. -.1 4.5 100, 100. 26 ¢ 56 )
289186. -3.2 1.5 100. 100. 2D ¢ 6D )
289207. 3.2 2.5 100, 100. 2D ¢ 6D )
293000. 0. .5 100, 100. 25 ¢ 7S
300046, -.1 3.5 100, 100. 26 ¢ 66 )
300046, 145 100, 100. 26 ¢ &6
30639¢. -2.4 1.5 100. 100. 2D ( 7D )
306408, 2.4 2.5 100. 100. 2D C 7D
308710. 0. .5 100, 100. 25 (¢ 85 )
313034, -.1 3.5 100, 100. 26 ¢ 76 )
313034. 145 100, 100. 26 ( 76 )
313131. 0. 5.5 100, 100, 21 ¢ 71
321531. 0. 5.% 100, 100, 21 ¢ 81
e R .5 97. 90. 4D (DP(3P))Y 7. 4D (DP(3F )Y
e - 1.5 97. 89. 40 (DP(3P)) 8. 4D (DP(3IF )N
S - 2.5 98. 88, 4D (DP(3P)) 10. 40 (DPC3F )
e - 3.5 99. 85. 4D (DP(3P)) 14. 4D (DP(3F))
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TABLE (5.15B) CONTINUED

TI3+ EVENLEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE -- DD(25+1)L = 3D2(25+1)L

] DDC25+1)L = 3D2( 25+1)L DSC25+1)L = ( 3PS( 2P)3D( 2D))( 25+1)L

_YRREP  CALC EXP INCR J/MU  TOTAL -- EIGENVECTOR COMPOSITION PCT

4P 172 400142, — -== 599 99 4p (DP(3P))

4P 3/2  400602. - === 1.5  93. 93, 4P (DP(3P))

YP 5/2  401615. ——- == 2.5 97.  97. 4P (DP(3P))

2P 1/2 401844, — - 5 96, 96. 2P (DP(3P))

2P 3/2 402549. —— ~== 1.5 91. 84, 2P (DP(3P)) T. 45 (DP(3P))

45 3/2  404369. - == 1.5  96. 89. 45 (DP(3P)) T. 2P (DP(3P))

2D 3/2 407821. —— == 1.5  87. 87. 2D (DP(3P))

2D S/2 408159. ——— == 2.5  95. 83. 2D (DP(3P)) &. 2D (DP(3F))
6. 2D (DP(3D))

4G11/2 409504, - -=~ 5.5 100. 100. 4G (DP(3F))

4G 9/2 410050, -— -== 4.5  98.  86. 45 (DP(3F)) 12. 4F (DP(3F))

4D T/2 410345, — -== 3.5 94, 32, 4D (DP(3F)) 31. 4F (DP(3F))
16. 2F (DP(3F)) 8. 4G (DP(3F))
7. 4D (DP(3P))

25 1/2 410752. — — 5 98.  98. 25 (DP(3P))

2F 7/2  410800. — ——= 3.5  93. 68. 2F (DP(3F)) 16. 4G (DP(3F)
9. 4D (DP(3F))

4G 7/2  410979. — -—= 3.5 88, T1. 4G (DP(3F)) 17. 4D (DP(3F))

4F 9/2 411133. e == 4.5 97.  85. 4F (DP(3F)) 12. 46 (DP(3F))

4D 5/2 411294, — ~—= 2.5 97. 45 4D (DP(3F)) 27. 4F (DP(3F))
11. 46 (DP(3F)) 8. 40 (DP(3D))
7. 4D (DPC3P))

4G 5/2 411766. - ~== 2.5 96, 87. 4G (DP(3F)) 9. 4D (DP(3F))

4p 3/2 412257. — —==~ 1.5 98. 59. 4D (DP(3F)) 20. 4F (DP(3F))
11. 4D (DP(3D)) 8. 4D (DP(3P))

2F 572 412797. - e 2.5 92, 66. 2F (DPC3F)) 19. 4F (DPC3F))
8. 4D (DP(3F))

4F 7/2 412856, - == 3.5  90. 66. 4F (DPC3IF)) 17. 4D (DP(3F))
7. 2F (DP(3F))

4n 172 413070, e —— 599,  76. 4D (DPC3IF)) 14, 4D (DP(3D))
9. 4D (DP(3P))

4F 5/2 413979 - - 2.5 91. 49 4F (DP(3F)) 27. 2F (DPCIF))
15. 4D (DP(3F))




TI3+ EVENLEVELS
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TABLE (5.15B) CONTINUE

CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE -— DD( 25+1)L = 3D2(25+1)L

mmmmmmmm DD(25+1)L = 3D2( 25+ 1)L
IRREP  CALC EXP INCH  J/mu
4F 3/2 414102, —ee — 1.5
26 972 417529, ——— — 45
26 T/2 419126, - — 3.5
2D 5/2 419914, — —— 2.5
2D 3/2 420554, - e 1.5
4D 7/2 428487.  —-- e
4D 5/2 428995, - - 2.5
4D 3/2 U429674. - —em 1.5
4D 1/2 430184, — -— 5
2F 572 430203. _— ——— 2.5
2F 572 430580. — 2.5
2F 7/2 431073, - ——— 3.5
4F 972 #31297.  —em ——- 4.5
4F 3/2 431612. —— — 1.5
4F 5/2 431961, — - 2.5
uF 7/2 431987,  —-- - 3.5
2D 3/2 431995, —— = 1.5
26 7/2 434672. e ——= 3.5
2F 5/2 434972, ——— e 2.5
26 9/2 435663, —— e 4.5
26 7/2 435695, o - 3.5

95.

92.
81.
90.
99.
97.

89.

93.

97.
95.

91.
94.

20.

90.

9.

99.

76.
98.
95.

37.
17.

46,
13,

82.
72.
78.
84.
32.
20.

7.
25.
18.
12.

39.
17,

88.

69.
12.

85.

55.
18.

33.
25.

59.
8.

42.
i8.

90.

30.
21.

4F
26
26

2D
2D

2D
2D

4D
4D
40
4D
2F
2D
4F
2F
2D
4D

2F
2F

4F

4F
2D

4F

4F
2F

2D
2D

26
4F

2F
2F

26

[v)

(DPO3F)YY 17, 4D (DPC3F)N

(DPC3FN
(DPC3F))

(PPCID N
(DPCIF))

(DPCIDY)
(BPCIFD)

(DPC3D))
(DPC 30N
(DPC3DY)
(DPC3D))

)
(DPCIF)
(pPe3DN

(DP(3D))
{DP(3D))

(OPC3D )N

(DP(3DY)
(pPeID )

(BPCIF))

(DPCIF D))
(pPeing

35.

i4.

21.

26.
. 4D

23.

O O e

2D

20

. 2D

4D

. HD
. 4D
. 4D
. 2D
. 2D
. 2D
. 2F

. HF
. 4D

2D

. 2F

2F

4F

2F

. 2F

(DPC3F N
(DP{ 3F))
(DPC3DY)
(DPC3F )
(DPC3F )
(DPC3F )
(DPC3F))

(DPC3D N
(DP(3D))

(BPCIF )
(DPC3F )

(OPCIF N
(DPCIF N

(BP(3D))
(DPC3D))
(DPC3D )
(DPC3D Y)Y

(pPC3D M

- (DPCIF))

(DPC3D))



=251~

TABLE (5.15B) CONTINUED

TI3+ EVENLEVELS

CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE ~- DD(25+1)L = 3D2( 25+1)L

DDC2S+1OL

4P

2P

2D

2D

2F

2P

2F

2P

2D

2D

172

3/2

3/2

5/2

772

3s2

5/2

172

3/2

5/2

435922.
436209,
436549,

437243,

437493,

438465 .

428691,

440283,

440538.

440597

441311,

453764,

HE4H6T2.

529776.
530113.
532686,
533175,
534598,

31.
40.

30.

36.

33.

. 2P

38.

24

10.

20.

2P
4p

2P

Hp

2B

2D

2F

2D

2P

2F

2P

2D

2D

2D
2D

(pPC1ID))
(DPC3D M

(DPCID))
(DPC3D

(DP(
(DP(

(DP(1
(DPCLIF Y
(DPCIF
(P 1D
(DPCIF

(pPCiDY)

(DPCLIF Y
(DPCIDY)

(DPR(

1F)
(DPC3P)

= 302 25+1)L DSC25+1)L = (3P5( 2P)3D( 2D0) W 25+1)L
EXP INCR J/MU TOTAL -- FIGENVECTOR COMPOSITION PCT
—— —~= 2.5 93.  93. 4P (DP(3D))
——— -—- 1.5 93.  62. 4P (DP(3D))
— —— 5 99, 49, 2P (DP(1D))
10. 2P (DP(3D))
— — .5 100, 60. 4P (DP(3D))
10. 2P (DP(3D)N)
— ——— 1.5 99. B4, 2P (DPC1ID))
8. 2P (DP(3D))
—— —— 1~ 93. 35, 2D (pPCIDN)
17. 2P (DP(3D))
—— -—= 2.5 91. 4%, 2D (DPCIF M
9. 2D (DP(3D))
e —— 3.5 93. 52, 2F (DP(3D))
17. 2F (DPCIDMY
e ~—— 1.5 94, 69, 2P (DP(3D))
8. 2D (DP(1DY)
— ——— 2.5 9¢. B8, 2F (DP(3D))
18. 2F (DP(1D))
— ——— .5 98.  T7. 2P (DP(3D))
e ——— 1.5 99.  40. 2D (DP(3D))
14. 2D (DP( 3F))
6. 2D (DPC3P)Y)
—— — 2.5 99.  38. 2D (DP(3D))
16. 20 (DPC3F )
7. 2D (DPC1DY))
—— —— .5 99. 99, 2P (DP(1P))
e — 1.5 99.  99. 2P (DP(1P))
— e 1.5 98. 98, 2D (DR(1P))
S - 2.5 99. 99, 2D (DPC1P))
S ——— .5 99. 99, 25 (DPC1P))
NO. EXPERIMENTAL LEVELS = 23.
ABSOLUTE MEAN DEVIATION = .91
RMS DEVIATION = 1.48



TABLE (5.16A)
MN6+ ODD LEVELS

CALCULATIONS COMPARED WITH EXPERIMENTAL DBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE ~- DD( 25+1)L
DDC2S+10L = 3D2(25+1)HL

3D2( 25+1HL

=252~

DSC2S5+1)L = (3P5( 2P)3D( 2D) M 25+1)L

_IRREP  CALC EXP INCR  J/MU TOTAL -~ EIGENVECTOR COMPOSITION PCT

40 172 354226, - - 100, 83. 4D (DDC3F)) 17. 4D (DD(3P))

4D 3/2 355013, —— - 1.5 99.  81. 4D (DD(3F)) 18. 4D (DD(3P))

40 572 354354, — - 2.5 98.  T8. 4D (DDC3F)) 20. 4D (DD( 3P))

40 7/2  358365. —— - 3.5 98.  73. 4D (DDC3F)) 24. 4D (DD(3P))

4G11/2 372437, - -~ 5.5  100. 100. 46 (DB( 3F )

45 9/2 374154, - - 4.5 99. 93, 4G (DD(3F)) 5. 4F (DDC3F))

4G 7/2 376202 —_— -~ 3.5 97.  89. 4G (DD 3F)) 8. 4F (DD(3F))

4G 5/2 378330, —— e 2.8 92. 84, 46 (DDC3F)) 9. 4F (DDCIF))

4P 5/2 381838 — - 2.5 98.  98. 4P (DD(3P))

4P 3/2 384692, —— — 1.5 97.  97. 4P (DD(3P))

4F 3/2 386641 — — 1.5 97.  70. 4F (DD(3F)) 20. 2D (DB 1DY)
7. 20 (DDC3FY)

4P 1/2 386789. ——— —— .5 98. 98, 4P (DD 3P

4F 5/2 387452. — -—— 2.5 97. 41. 4F (DDC3F)) 38. 2D (DDC1D))
11. 2D (DD(3F)Y) 8. 45 (DDC3F))

4F 9/2 387505. — — 4.5 96.  91. 4F (DD(3F)) 5. 26 (DDCIF))

4F 7/2 388755. ——— e 3.5 90.  83. 4F (DD(3F)) 7. 45 (DD(3F))

4F S/2 391357, — -— 2.5 86.  48. 4F (DD(3F)) 32. 20 (DDCIBY)Y
7. 2D (DD 3F))

2F 5/2  392109. —— — 2.5 96. M4 2F (DDC1G)Y) 38. 2F (DD(3F))
7. 4G (DDC3F)Y) 7. 20 (DBCID)Y)

2D 3/2 392913. — — 1.5 93. 44, 2D (DD(1D)) 28. 4 (DD(IF))
11. 2P (DDCID)Y) 10. 2D (DB( 3F))

2F T/2  394672. - —— 3.5 95. 42, 2F (DD(1G6)) 38. 2F (DPD(3F))
10. 2F (DDCIBY) 5. 4F (BB 3F))

20 1/2 397152. 397450. -498.1 .5 96. 5. PP (4P ) 25. 2P (DD(1D))
6. 2P (DDC3PY)

26 3/2 400501. 400120, 380.5 1.5 90. 84, 2P ( HP )} &. 2P (DDC1D))

2P 172 401406, - — .5 95, 44, 2P (DDCIDY) 35. 2P ( &P )
15. 2P (DDC 3P ))

26 T/2 404709, - —— 3.5 92. T1. 26 (DB(3F)Y) 21. 2F (DD 1DY)




T e 0 5 5 5 5 T 5 S o e

PARENTAGE

DDC2S+1)L = 3p2(2S+1)L
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TABLE (5.16A) CONTINUED

MNé+ 0DD LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS

== DDC25S+1)L = 3D2(25+1)L

_ caLe EXp INCR  J/mu TOTAL -- EIGENVEC%DR ComMpPOSITION PCT

2H11/2 405890. —_— -—= 5.5 100, 100. 2H (DDC1G)Y)

2P 3/2 405920. - e 1.5 95. 45. 2P (DD(1D)) 18. 2P (DD( 3P))
T4, 2P C 4P ) 10. 2D (DDCIDN)
8. 2P (DDC 1S

2F 7/2 407819, - e 3.5 98. 7. 2F (DDCIDY)Y 17. 26 (BDC3F))
8. 2F (DBC3F)) 5. 2F (DBDC1G))

26 9/2 409388, - - 4.5 91. 85. 26 (DD(3F)) 6. 26 (DDBCIGH

2H 972 1414349, - ~—= 4.5 94. 4. 2H (BDCIGH)

2F 5/2 416950. - == 2.5 93. 93. 2F (BDCIDN

40 772 422046. - - 3.5 98. 73. 4D (DD(3P)) 26. 4D (DD(3F)Y)

4D 5/2 423637. — -—= 2.5 99. 73. 4D (DDC3P)) 21. 4D (DDL3FY)
$. 2D (DBC3P))

4p 372 425711, e ——— 1.5 99. 75. 4D (DD(3P)) 17. 4D (DDC3F))
6. 2D (DD 3PN

4p 172 427831. - - .5 99. 83. 4D (DDC3P))Y 16, 4D (DDC3F Y}

2D 3/2 439219. ——— - 1.5 95 . 82. 2D (DDC3PY) 7. 20 {(DDC3FM
6. 4D (DDC3PY

2D 5/2 442715. —— 2.5 90. 82. 2D (DD(3P)) 8. 2D {(DD(3F))

2G 9/2 A"47104. A St 81 92. 92. 26 (DD(16))

26 7/2 447798, - - 3.5 95. 95. 26 (DBC1GYM

45 3/2 448373. - —— 1.5 99. 99. 45 (DR3P

25 1/2 448452, ——— - .5 99. 99. 25 (DD 3P))

2P 3/2 468545, —— - 1.5 98. T8. 2P (DBBC15)) 20. 2P (DBBCID)Y)

2P 1/2 477527, - —— .5 95 . 79. 2P (DBDC1S)) 1é6. 2P (DB 1D

2F 5/2 489817. 489880. -62.9 2.5 95 . 50. 2F (DBDC3F)) 45, 2F (DDL1GY)

2F T/72 494645. 494300, 345.4 3.5 94. AY. 2F (BDCIGY)Y 47, 2F (DD 3F )

2P 172 541046, e e .5 99. 73, 2P (DD(3P)Y)y 14, 2P (DDCISNH
13. 2P (DDC1D))

2P 3/2 543160. - - 1.5 99. 75. 2P (DDC3PY)Y 15. 2P (DDCIDM)
10. 2P (DDC 1S

20 5/2 B47212. BHT370. -158.3 2.5 100. 70. 2D (DDC3FY) 17, 2D (DDC DY
12. 2B (DB 3P))
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TABLE (5.16A) CONTINUED
MNé+ ODD LEVELS

CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS

PARENTAGE —- DD(25+1)L = 3D2(2S+1)L

DDC 25+ = 3B2( 25+1)HL

DSC25+10L = (3P5( 2P)3D( 2Dy M 25+1)L

IRREP caLc EXP INCR  J/mU
ED 3/2 57935, 547930. 5.4 1.5
2F 5/2 615914, 615960. -46.0 2.5
2F T/72 616136. 616100. 36.2 3.5
2P 1/2 642961. - o .5
2P 3/2 643985. - - 1.5
4P 1/2 693227.. = - .5
4P 372 695053, £95420. -1367.1 1.5
4P B5/2 985064, —— - 2.5
2P 1/2 T01987. T00870. 111é6.8 .5
2P 3/2 T05897. T05170. 726.8 1.5
4F 9/2 7107599 —— -—= 4.5
4F 7/2 T10064. T709720. 343.5 3.%
4F 572 T12861. T12350. 511.4 2.5
4F 3/2 Ti5702. - - 1.5
2F 7/2 T16984. T17430. -445.8 3.5
2F 5/2 721412, 722100. -688.0 2.5
ap 7/2 735283, 735510. -~226.7 3.5
4D 5/2 T37295. 737020. 275.5 2.5
4p 3/2 T38508. e - 1.5
up 1/2 739549, o = .5
2F B/2 739741, T39770. -29.1 2.5
2F 7/2 T39%48. 739940. 7.7 3.5
2D 372 741019, - St 1.5
20 5/2 741830, —— —e- 2.5

100.
100.
99.
97.
98.
98.
96.
100.
98.
96.
95.
98.
91.
97.
93.

92.
99.
94,

93.
98.

96 .

71.
11.

96.
96.
100.
100.
99.
97.
98.
98.
9.
100.
S

2D
2D

2F
2F
2P
2P
4p
4p
Hp
2P
2p
AF

. HF
. HF
. 2F
. 2F
. 4D

. 4D
. 2D

. 4b
. 4B
. 2F

2D

. 2F

. 2D
. 2D

.20
. 2F

(DBC3F)) 18. 2B (DDCIDN
(DDC3P N

(
(
(
(

4F
4F
5P
5p

)
)
)
)

(DSC3P )
(DSC3FN
(DS 3P))
(DSC3P )

(DSC3PY)
(DSC3F )
(DSC3FN
(DSC3F )
(DSC3F))
(DSC3FN
(DSC3F )
(DS(30))

(DS(3D))
(DSC1n)

(DS(3D))
(DS(3D))

(

5F

)

(DSC1D M

(

5F

)

{DSC1D))
(DS 3D))

(

(pSC1bn
5F

)

3é.

o~

. 2F

. HF
. HF
. 2F

2D

. 2F
. 2D

. 2F

40

. 4D
. 2F

(DSC3F Y
(DSC3F))

(DSC3IF N
(DSC3F))
(DSCIF N

(DS(30))
(DSCIF Y

(Dseiny

(DSCIFY)

(pse3ny

PN
fwe R}
PGSy
et (i
]
Nt
-




PARENTAGE -~ DR(2S+1)L = 3D2(25+1)L
BB gS_:ﬂl_)L = 3D2( 2S+1)L

TABLE (5.16A) CONTINUED

MNé+ ODD LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND QPTIMIZED PARAMETERS

IRREP  CALC EXP
20 5/2 Tu28Te. -
2F T/2 THE6H9.  THEHS0.
2D 3/2 TH8362. TH4B1TO.
2F 5/2  T49300. T49430.
2P 1/2 756039,  -—-
2P 3/2 T56559. -
2F 5/2 807748. 80T760.
2F 7/2 8OTT7T2. 807760.
2H 9/2 812090.  ——-
2H11/2  812092.  —=-
2P 172 818670, =
2P 3/2 818928.
2F 5/2 84BB43. B48E50.
2F 7/2 8u8B5T. 84B850.
2H 9/2 851762.  ~--
2H11/2 851763,  -—=
2P 1/2 872176,  ~--
2P 3/2 ar2258. -
2F 5/2 875526. 875530,
2F 7/2 875534, 875530,
2F 5/2 893737. 893740.
2F 7/2 893743. 893740.
2F 5/2 907046, -~
2F 7/2 907050, ==

199.0
192.3
-129.7

-4.3
4.2
-2.9
2.8

-255=

DS 25+1)L = (3P5( 2P)3D( 20) ) 25+1)L

wiooE W N

[y

(VAN S A

O W N
RV G SN TR N SN N S RS T S

W W ™ W N

WV W

.5

WPt

96.

92.

98.

92.
160.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

44,
19.

80.

83.

50.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

2D
4D

2F
2D
2F
2P
2P
2F
2F
2H
2H
2r
2P
2F
2F
2H
2H
2p
2P
2r
2F
2F
2F
2F
2F

(DSC3DY) 22.

(D530
(DSCIF))
(DSC30))

(DSCIF D))

(
(

(
{

&P
6P
6F
&F
&H
6H
P
7
TF
T
7
TH

)
)
)

)
)

(BSCIPY)
(BSCIPY)

(
(
{
(
(
{

8r
8F
9F
9F
10F
10F

)
)
)

13.
15.
“42.

2F (BSCIFY)
26 ¢ 5F )

4D (DSC3D))
2D (DSCIDY)
2D (DSC3D))



TABLE (5.16A) CONTINUED

mMN6+ 0DD LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE -— DD(2S+1)L = 3DB2( 25+1)L

BD(2S+L = 3p2A2S+IIL DS(25+1)L = (3P5(2P)3D(2D))(25+1)L
NO. EXPERIMENTAL LEVELS = 30.
ABSOLUTE MEAN DEVIATION = 261.49

RMS DEVIATION = 426.72

=256-
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TABLE (5.16B)

MN6+ EVEN LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE ~= DDB(2S+1)L = 3D2(25+1)L

BDC2S+1HL = 3D202S+1)L

DSC25+1)L = (3P5(2P)30( 2D X 25+ 1)L

45

2D
2D
20

3/2

3/2
572
5/2

318636.
522536.
522873.
610900,
696875 .
£97037.
739831,
745551 .
745557
768832.
770288,
772510.
773817.
775129.
775242,
TT7394.
T77672.
778396.

781967,

784389,
784542,
7arz2ge.

787366

1350.
318734,

1

5
5
5
5
5
5
5
5
5
.5
5
5
5
5
5
5
5
5
5

.5

95.

96 .
99.
83.

¢ 3
¢ 3 )

( 4S5 )

¢ 56 )
¢ 56 )
(DPC3PY)
(DP(3P))
(DPC3P))
(DPC3P))
(DP(3P))
(DPC3P))
(DPC3P))
(DPC3P))

(DPC3PY))
(DPL3P))

(DPC3PY)
(DPL3PY)

. 4D
. 4D
. 4D

(DPC3F)Y)
(DPC3F )
(DPC3FY)

(DPC3P Y
(DPC3F))

(DPC3PY)
(DPC3PY)

(OPL3P Y

(DPC3PY)
(APC3P )

(DPC3DY)
¢ 6D )

( &0
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TABLE (5.16B) CONTINUED

N MNé+ EVEN LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE — DD(25+1)L = 302025+l

N DDC2S+1)L = 302025+1)L  DS(25+1)L = (3P5(2P)3D(2D))(25+1)L

CTRREP  CALC EXP  INCR J/MU  TOTAL —- EIGENVECTOR COMPOSITION PCT_

461172 T8T969. - ——= 5.5 100. 100. 46 (DP(3F))

WF T/2 T88010. - ~—~ 3.5 95. 33. 4F (DP(F)) 31. 4D (DPC3F))
13, 4D (DP(3P)) 11. 2F (DPC3F))
6. 4D (DP(3D))

46 9/2 788138, - —~ 4.5 95.  68. 46 (DP(3F)) 28. 4F (DP(3IF))

2F /2 789366. - ——~ 3.5 88. 60. 2F (DP(3F)) 28. 4G (DPCIF))

4D 5/2 TR9TTZ. - —~ 2.5 83. 38. 4D (DPC3F)) 27. HF (DPC3F))
9. 4D (DPC3D)) 9. 4D (DP(3P))

WF 972 790295, - —— 4.5 95. 68. 4F (DPCIF)) 26. 46 (DP(3F))

4G T/2 790324, - ——~ 3.5 88, 57. 46 (DP(3F)) 17. 2F (DPC3F))
14 4D (DPC3F))

25 1/2 791623, == ——- 5 93. 93. 25 (DP(3P))

4D 3/2 T91866. - —e= 1.5 92. 49. 4D (DP(3F)) 21. 4F (DPCIF))
13, 4D (DP(3D)) 8. 4D (DPC3P))

4 572 792142, - = 2.5 91, 91. 46 (DPC3IFD)

oF 5/2 793831,  --- = 2.5  92. 56. 2F (DP(3F)) 23. 4F (DP(3F))
7. 4D (DPC3F)) 6. 20 (DP(3P))

4F T/2 T93BHE. - —e~ 3.5 88, 59, 4F (DP(3F)) 18. 4D (DPC3F))
6. 4G (DPC3F)) 5. 2F (DPCIFD)

4D 172 TOHOTE. == eee 5 95. 7. 4D (DP(3F)) 18. 4D (DP(3D))
10 4D (DPC3P))

4F 572 T96416.  —=- —w 2.5 82. 36. 4F (DPC3F)) 22. 2F (DPC3F))
Ta. 4D (DP(3F)) 4. 2D (DPCIDY)

4F 372 T96697.  —=- —~ 1.5 87. 6. HF (DP(3F)) 20. 4D (DPC3F))

26 9s2 799924,  --- e~ 4.5 9. 9. 26 (DPC3F))

20 5/2 802756. == —= 2.5 90. 29. 2D (DP(1D)) 26. 2D (DPC3F))
170 2D (DPCIF)) 12. 2F (DPC3F))
6. 4F (DPCIFD)

26 7/2 803516.  —-- - 3.5 88. 88. 26 (DPC3F))

20 3/2 803656.  —-- = 1.5 9. 4. 2D (DP(ID)) 23. 2D (DPC3F))
13. 2D (DPCIF)) 8. 4F (DPC3F))
7. 20 (DPC3D))

25 1/2 80R629. - w5 100, 100. 25 C 75 )

26 /2 BLI4HT.  —-- —~ 3.5 100. 100. 26 ( 66 )
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TABLE (5.16B) CONTINUED

MNé+ EVEN LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE -- DD(25+1)L = 3D2(25+1)L

DS 25+1)L = (3P5(2P)3DC2D))( 25+1)L

iﬁREi CaLe EXP INCR J/mu TOTAL - EIGE.NVECTOR COMPOSITION PCT
26 972 811453, - --— 4.5 106, 100. 26 ¢ &G )
4D 772 814301. ——— - 3.5 98. 72. 40 (DP(3D)) 11. 4B (DPC3F))
§. 2F (DPCIF)Y) 7. 4F (DPC3D))
40 5/2 815046, - - 2.5 as. 52. HD (DP(3D)) 11. 2F (DP(IF))
10. 4D (DP(3F))Y 9. 4F (DP(3D))
7. 2F (DPC1ID))
4D 3/2 816988, - —— 1.5 97. 65. 4D (DP(3D)Y) 13. 4B (DP(3F))
4. 2D (DP(3D)Y) 6. 4F (BP(3D))
6. 2D (DPCIF))
2F 5/2 817115, e - 2.5 8é. 36. 2F (DPCID)Y)Y 17, 20 (DPC3F))
15. 2D (DPC3D)Y)Y 11. 2F (DPCIF))
‘ 6. 4D (DPL3D))
40 1/2 818528. - - .5 96. 76. 4D (DP(3D)) 20. 4D (DPC3F))
2D 5/2 818549. o - 2.5 91. 23. 2D (DPC3F)Y) 20. 2D (DPC30)Y)
17. 4D (DPC3D)) 13. 2F (DPC1D))
12. 2F (DPCIF)) 6. 2B (DPCID))
4F 9/2 819127, —— - 4.5 97. 73. 4F (DPC3D)) 24, 2G (DPCIF))
4F 7/2 819343. e ——= 3.5 8é. 37. 4F (DPC3D)) 21. 2F (DRCIDY)
12. 26 (DPCIF)Y)Y 11, 4D (DPC3DY)
&. 2F (BPC3D))
4F 3/2 819901. - - 1.5 aa. 80. 4F (DP(3D)Y) 8. 2D (DPU3F )
2F 772 820754, - —— 3.5 G4 35. 2F (DPCIT)Y)Y 27. 2F (DPCIDN)
18. 4F (DPC3DY)Y 9. 26 (BPUIF))
&. 2F (DP(3D))
4F 572 821011. ——— - 2.5 87. 78. 4F (DPC3D)Y 9. 2F {DPCIF))
20 3/2 821837. —— - 1.5 ag. 34. 20 (DP(3D)) 25. 2D (DPL3F))
13. 4D (DP(3D)) 10. 4F (DPPC3DN)
6. 2D (DPCIF))
26 772 B24001. ity - 3.5 94. 59. 26 (DP(1F)) 28. H4F (DP(3D))
7. 2F (BPC3D))
2F 5/2 825183, - ——— 2.5 90. 36. 2F (DPCIF)Y)Y 32. 2F (DP(3D))
21. 2F (DPCID)Y
4p 572 B826407. —— ——— 2.5 91. 83. 4P (DP(3D))y 7. 20 (DPLID))
26 9/2 826976. e —— 4.5 96 . Th. 26 (DPCIF)) 22. 4F (DPC3D)M)
ap 3/2 827055. o —— 1.5 85. 45, 4P (DPC3DY) 40. 2P (DPCIDY)



PARENTAG
mmmmmmmm DD 25+1)L = 3D2025+1)L
IRREP  CALC EXP INCR  J/MU
2F 7/2 827114, - 3
2P 1/2 B27BOT.  ——- a5
4P 1/2 829343,  —-- — 5
2P 3/2 829698,  -—- — 15
2P 3/2 830289,  —-- e 1.5
20 5/2 831314, - — 2.5
oF 7/2 833603,  ——- 3.5
2F 5/2 833959. - —— 2.5
on 3/2 B34198. - —— 1.5
op 5/2 835181,  ——- — 2.5
oD 3/2 835793, - — 1.5
0P 172 835997.  —— — 5
25 1/2 849663,  —=- — 5
20 7/2 851448,  ——- 3.5
26 9/2 851451. - e 4.5
2111/2 851904, == e 5.5
op 372 @53588. - — 1.5
op 5/2 856168,  —- e 2.5
sIll/2 B8TT627. - e 5.5
op 172 9uTE29. === e 5

~=260=

TABLE (5.16B) CONTINUED

M6+ EVEN LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS

E —- DD(2S+1)L = 3D2(25+D)L
1)L = (3P5(2P)3D(2D) 1 25+ 1)L

99.

89.

93.

88.

95 .

92.

92.

96.

98.

95.
100.
100.
100.
100.

97.

97.

32.
23.

55 .
12.

68.
13.

31.
i8.

48,
iz2.

36.
12.

48,
14.

57.
17.

n2.
6.

9.

2F
2F

2p
2p

4p
2P

2p
2D

2P
2D

2D
2D

2F
2F

2F
2F

2D
2D

2D
2D

. 2D
. 2D
2P
100.
100.
100.
100

. 2D
. 2D

25
2G
26
21

2D

. 2D
. 2B
. 2D
100.

. 2P

21

(DPC1D))
(DPCLIF D))

(DPC1ID))
(DPC3D))

( 70 )
(DPC3F))

« 7
¢ T
(DPCIF))
(DP( 3F))
(DPC3D))

« 85

(DPCIP))

29.

5.
30.
18.
22.

17.

26.
7.

32.
8.

23.
9.

i7.

25.

2F

26
4p
2P
4p

2D

4p
2D

20
4p

2F
26

2F

2P
2D

2P
2D

2P

28
20

20
20

(DP(3D))
(DPCIFY)
(DPC3D))

(DPC 1B

(DPCLDY)
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DDC 2541 = 3D2( 25+1)L

TABLE (5.16B) CONTINUED

MN6+ EVEN LEVELS

CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE -- DD( 25+1)L = 3D2( 25+1)L

DS(25+1HL = (3P5(2P)3D(20))(25+31£ﬂ

CaLC EXP INCR  J/mU TOTAL —- EIGENVECTOR COMPOSITION PCT
EP 3/2 948777, - o 1.5 95. 95. 2P (DPCIPY)
2D 3/2 952740. - ——= 1.5 94, 94, 2D (DPCIP))
20 572 954364, - —e= 2.5 99. 99. 2D (DPCIPM
25 1/2 956619, - - .5 98. 98. 25 (DPCIPY)
) NO. EXPERIMENTAL LEVELS = 5.
ABSOLUTE MEAN DEVIATION = 3164.00

RMS DEVIATION

"

5672.51
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CaLcy

BRC2S+1L = 3D2( 25+1)HL

<262

TABLE (5.17p)

FET7+ ODD LEVELS

LATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE -- DD 25+1)L = 3D2( 25+1)L

DSC2S+1)L = (3P5(2P)3D( 2D ) ) 25+1)L

TOTAL —— EIGENVECTOR COMPOSITION PCT

4n

/2

4G11/2

4p
4p
HE

4p
2D

4F
4F

4F

2F

2D

2F

2P

26

972
T/2
572

572
372
3/2

1/2
5/2

9/2
7/2

5/2

5/2

3/2

7/2

172

7/2

2H11/2

387014,
387990.
389651.
392163.
406913.
408845,
411263,
413787,

417179,
420655 .
422496

423296.
423688,

423710.
425329.

428435 .

429175.

430193.

432159.

437336.

H426T79.
443597 .

INCR

J/my

5
5
5
5
.5
5
5
5

M oW T W N

S
Iy

[9%4
i

100.
99.
98.
97.
100.
98.
96.
95.

98.
96.
96

97.
97.

95 .
94 .

50.

97.

93.

94.

98.

92.
160.

84.
81,
7.
72.
100.

4D
4D
4D
4D
46

. 4G
.46
. 4G

2F

. 4P
. 4P

. HF
. 2D

. 4P

. 2D
. 2D

. HF
. OHF

. 26

. 4F
. 2F

.2
. 46
. uF

. 2D
. 2P

. 2F
. 2F

. 2P

2p
26

. 2H

(DDC3F)Y)
(DDC3F N
(DDC3F )N
(DDC3F )
(DDC3F )
(DDC3F )
(DDC3FY)

(DDC3F))
(BB 3F))

(B3P
(DD 3P

(DB 3F )
(DDC 3F))

(DDC3PY)

(DDC1DY)
(DDC3F))

(DDC3F Y

(DD{ 3F))
{(DDC3F

(DDC3F))
(DDC1GM

16.
18.
20.
25.

21.

4D
4D
4D
4D

. HF
10.
it.

4F
4F

2D

. HF
. 2D

. 2F
. uF

. 2P

. 2F

(DD 3P))
(DBC3P))
(DBC3P))
(DDC3P))

(DB 3F))
(BDL3F )
(DDC3F N

(DDCID Y

(DDC3F Y
(DBC3F )

(DDC3F )
(DDC3F N

(DD 3PYY

(DDC 1D




v s o

DOD(25+1)L = 3D2(25+1)L
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TABLE (5.174) CONTINUED

FET7+ 0ODD LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE ~- DD(25+1)L = 3D2( 25+1)L

DSE25+1)L = (3PBI2P)AB( 2D) ) 25+1)L

aiﬁﬁEP CaLe EXP INCR  J/mu TOTAL -~ EIGENVECTOR COMPOSITION PCT
2P 3/2 444253, - o 1.5 92. 49, 2P (DDC1ID))Y 19. 2P (DD(3P))
15. 2D (DDCID)Y)Y 10. 2P (DDCISY)
2F T/2 446058, - - 3.5 97. 56. 2F (DDC1DY) 27. 26 (DDO3F )
8. 2F (DD(3F)) 6. 2F (DDC1GN)
26 9/2 448757, —— == 4.5 88. 81. 26 (DDC3FY)Y 7. 2G (DDCIG))
20 972 454039. - -—= 4.5 98. 92. 2H (DDC1G)Y)Y 5. 26 (DBC3F))
2F 5/2 457388. e et 2.5 93. 93. 2F (DDBCIDY)
4p 772 461176, - - 3.5 98. 71. 4D (DDC3P)Y) 27. 4D (DBC3F )
40 5/2 462931, - - 2.5 98. 71. 4D (DD(3P)) 20. 4D (DDC3F))
6. 2D (DBD(3P))
4D 372 465455 . - e 1.5 98. 73. 4D (DDC3P)Y) 17. 4D (DDC3F))
9. 2D (DDC3P Y
40 172 468305, - ——— .5 99. 83, 4D (DD 3P)Y) 16. 4D (DDC3F))
20 3/2 480347. e - 1.% 95 . 80. 20 (DD(3P)) 8. 4D (DDC3PM)
7. 2D (DBC3FY)
2D 5/2 484754, - - 2.5 95. 1. 2D (DD(3P)) 8. 2D (BDC3F N
6. 4D (BDC3P))
2G 972 489320. - —-—= 4.5 91. 91. 26 (DDC1GY)
26 772 489968, e - 3.5 94. 94. 2G (DD 16
45 3/2 490102, - e 1.5 98. 98. 45 (DD(3P))
25 1/2 490217. e o .5 99. 99. 25 (DDC3PY)
2P 172 510415. - —— .5 98. 98. 2P (. 4P )
2P 3/2 511604, e - 1.5 100. 57. 2P (DD(1S)) 29. 2P ( 4P )
4. 2P (DDC1IDY)
2P 3/2 514906. - Bl 1.5 98. 70. 2P (4P ) 21. 2P (DDC1ISY
6. 2P (DDCIDY)
2P 1/2 523955. e Rt .5 99. T7. 2P (PDC1S)) 16. 2P (BBCID))
&. 2P (DDC3PY
2F 5/2 536181. 535926. 255. 2.5 97. 51. 2F (DD(3F)Y) 46. 2F (DDCIGY)
2F T/2 542516, 541777. 739.2 3.5 96. 49, 2F (DDBC1GY)Y 48, 2F (DDO3F )
2P 172 590976. 591973, -997. .5 929. 72. 2P (BD(3P)) 15. 2P (DDBC1I5Y)
12. 2P (DDC1DY)




2D

2F
2F
2p
2P
yp
4p
4p
2P
2p
4
4
4F
4F
2F
2F
4p
4D

4p

3/2

5/2
772
172
3/2
/72
3/2
5/2
172
3/2
972
772
572
3/2
7/2
5/2
772
5/2

3/2

172
3/2
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TABLE (5.17A) CONTINUED

FE7+ 0ODD LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE —— DD(25+1)L = 3D2( 25+1)L

cmemrzmmmne 2ot 2 BDA25HIIL  BS(25+IIL = (3RS 2R D 2D S L
Ccoae EXP  INCR J/MU  TOTAL -- EIGENVECTOR COMPOSITION PCT
593618. 595166. -1548.3 1.5  98.  T4. 2P (DD(3P)) 15. 2P (DD(1D))
| 100 2P (DD(15))
597093. 596430. 662.5 2.5 100.  70. 20 (DD(3F)) 17. 2D (DD(1D))
| 12. 2D (DD(3P))
597T945. 597072. 873.3 1.5 100.  71. 2D (DD(3F)) 18. 2D (DD(1D))
11. 2D (BD(3P))
763711. 763789. -77.9 2.5  98. 98. 2F ( 4F )
763884, 763821.  62.8 3.5 9. 98. 2F ( 4F )
813521,  -—- ——= 5 99 99. 2P ( 5P )
14928, - ——= 1.5 99, 99, 2P ( 5P )
829166,  ——- ——= 5 99, 99. 4P (DS(3P))
831387. 833000. -1612.9 1.5  97.  97. 4P (DS(3P))
835614, - ——— 2.5 97. 97. 4P (DS(3P)
839127. 837750. 1377.3 .5  97.  97. 2P (DS(3P))
843877. 842930. 947.5 1.5  95.  95. 2P (DS(3P))
auueRT. - ——— 4.5 100. 100. 4F (DSC3F))
847454, 847250, 203.8 3.5  98.  89. 4F (DS(IF)) 8. 2F (DSC(3F))
850638. 849990. 648.2 2.5  94.  88. 4F (DS(3F)) 7. 2F (DSC3F))
T P ——~ 1.5 93, 93. 4F (DS(3IF))
855176, 855190. -13.6 3.5  97. 90. 2F (DS(3F)) 7. 4F (DSC3F))
860243, 860710. -467.2 2 5  B88. 82. 2F (DS(3F)) 6. 4F (DSCIF))
74439, @7T4TTO. -331.1 3.5  98.  82. 4D (DS(3D)) 17. 2F (DSCIF))
876867, 876810.  56.9 2.5  93. 5. 4D (DS(3D)) 11. 2D (DSC30))
9. 2D (DS(1D)) 9. 2F (DSCIF))
878204,  ——- —e— 1.5 96. 58. 4D (DS(3D)) 32. 2D (DSC1D))
6. HF (DSC3F))
879355.  ——- ——— 5 99 99. 4D (DS(3D))
ge1161. - - 1.5 97. 47. 2D (DSCID)) 38. 4D (DS(3D))
120 2D (DS(3D))
ga1712. - 2.5 96. 2. 2D (DS(IDY) 20. 2F (DSCIF))
14, 2D (DS(3D)




~265=-

2F
2F
2p
2P
2F
2F
2p
2P
24

5/2
/2
72
3/2
572
12
1/72
3/2
9/2

2H11/2

2P
2P
2F
2F
2H

172
3/2
5/2
17/2
9/2

2H11/2

2F 5/2

2F

72

2F 5/2
2F 772
2F 5/2
2F 7/2

TABLE (5.17A) CONTINUED
FE7+ ODD LEVELS

CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND QPTIMIZED PARAMETERS

DDC25+1)L =

883095 .

BR7538,
889398,
890796 .

927006.
927071.
955065 .
955774,
1016535,
1016565,
1022094,
1022196,
1022779.
1022783,
1035516.

1035843,
1069941 .
1069959.

1074593,

1074595.
1105521,
1105533,
1129355,
1129363.
1146207.
1146213,

PARENTAGE -~ DD(2S+1)L = 3D2(25+1)L

INCR

887320.
889110.
890810.

927025,
927053.

1016530.
1016570.

1069870,
1070030,

218.2
288.0
-14.4

-19.1
18.2

70.8
-71.3

1

R N B I N N R N N N N . N S O A A A S

DSC2S+1M = (3PB(2P)3D( 2D ) 1 25+ 1)L

>

99.

99.
100.
100.
100.
100.

97.

7.
100.
100.

98.

98.
100.
100.
100.
100.
100.
100.
106.
1900.
100.
100.

100.
100,
100.
100,

97.

9T.
100.
100.

98.

98.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

(DSC3D)
(DSCIDY)Y

(DSCIF N
{(DSC3D))

(DSCIFY)
(DSC3F))

{
(
(
(
¢
(

5F
5F
&P
6P
&F
6F

)
)
)
)
)
)

(DSCIP M
(DSCIP Y)Y

{
(

(
(

&H
éH
P
7P
¥
TF
TH
™
ar
8F
9F
9F
10F
10F

)
)
)

2F (DSCIF))

. 4D (DSC3D))

2D (DSC1D N
2D (DSC3DY)

. 4D (DSE3DN



TABLE (5.17A) CONTINUED

FET7+ ODD LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS

PARENTAGE -- DD(25+1)L = 3D2(25+1)L
_BD(2S+1)L = 3D2A2S+1)L

NO. EXPERIMENTAL LEVELS = 26.
ABSOLUTE MEAN DEVIATION =

RMS DEVIATION = 666.38

=266



TABLE (5.17B)

FE7+ EVEN LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE ~— DD(25+1)L = 3D2(25+1)L

1RREP CaLe EXP INCR  J/Mu
;D 3/2 ~254 O.ma:253.8 1.5
2D 5/2 1596 1838, -241.9 2.5
25 1/2 419796, - e 5
2D 3/2 653279. - e 1.5
2D 5/2 653763 - - 2.5
25 1/2 776901. - - .5
2D 3/2 B8T6960. ——= - 1.5
2D 5/2 877198, - -=— 2.5
4D 172 914337. —— - .5
4D 372 916261. - - 1.5
40 5/2 919169. e - 2.5
4p 172 920187. - - .5
4P 3/2 921935. e - 1.5
4D 772 922608. - ——— 3.5
2P 172 924549. ——— - .5
4P 5/2 925156. - —-— 2.5
2P 3/2 925575. - - 1.5
45 3/2 929990. - - 1.5
2D 5/2 935354. ——= - 2.5
2D 372 935618. = - 1.5
4F 772 935718, - - 3.5
26 7/2 935792 - R 3.5
26 9/2 935799. - - 4.5
4G 972 935932. - R )

95.
93.
9.
90.
92.
93.

95.

86,

8¢6.
95.

100.

=267=

2D

. 2D

25
20
2D

. 25

2D
20

. 4p
74D
. 4D

4p

. HP
. 4D

2P

. 4P

2P

. 4P
. 45

2D
2D

. 2F

2D
2D

(G
¢ 30
¢ 45 )
¢ 4D )
¢ 4 )
¢ 55 )
( 50
¢ 50 9
(DPC3P))
(DPC3PY)
(DP(3P))
(DPC3P))
(DPC3P Y
(DPC 3P
(DPC3P )
(DPC3PN

(DPC3P))
(DPC3P )

(DP(3P))
(DP( 3F

)
(DP( 3P )
(DPC 3D

26.

i4.

i1.

15.

28.
i2.

4D
. 4D
. 4D

. 45
4p

45
. 2D

2p
. 2D
. 4D
2F

41
2F

(BP(3F))
(DP(3F))
(DPC3F )N

(DPC3P )
(BPC3F )N

(DP{3P))
(DPE3PY)

CDP(3P))

(DPL3PY)

(BPO3F Y
(DP3F))

- (DPCSF D)
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TABLE (5.

FE7+ EVEN LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND QPTIMIZED PARAMETERS
PARENTAGE ~- DD(25+1)L = 3D2( 25+1)L

= (3P5(2P)3D( 2Dy 25+ 1)L

B¢ ZSil W= 3B2(25+1L

DSC 25+

178) CONTINUED

TOTAL —-- EIGENVECTOR COMPOSITION PCT

4G11/2

aF
4G

4D

46
25
2F

4F

4D

uF

4F

26
2D

2D

26
4D

172
7/2
5/2

9/2

7/2

3/2

5/2
1/2
5/2

7/2

1/72

3/2
9/2
5/2

3/2

772
7/2

INCR

J/my

936133,
936905
927296
937758.

938679.

938745,

940362.

940986 .
941048,
942841 .

942919.

943332.

346019,

946525 .

949300.
952665 .

9535686 .

95369¢.
964637 .

5

5
.5
5

.5

100,
99.
ar.
80.

94 .

86.

ag.

89,
89.
g1.

8s.

90.

8z.

84,
93.
91.

93.

8s.
97.

100,
91.
55.
33.
9.
6.
65 .

50.
14.

45,
4.

89.
ai.

54,
8.

57.
6.

62.
10.

31.
i7.

5.
62.

93.

ot IS et %)
g P ~D oW

85 .
69,

46
25
2F
4D
4D
2D
4F

46
4D

4D
4D

45
25

2F
25
4F
4G

4D
4B

4F
2F
20
aF
26
. 2D
. 2F
AF
2D
2D
2D

26

4D
. 2F

(DPC3FY)
{ 65 )
(DPC3F )
(DPC3F))
(DPC3P))
(DP(3P))
(DPC3F))

(DPC3FY)
(oPC3rF

(DPC3F))
(BPC3D))

(DP{3F))
(DPC3P))

(DP(3F))
(DPC3P))

(DPC3F )
(DPC3F))

(DPC3F))
(BP3F))
(OpPe3r )
(DPC1DY)
(DPCIF D))
(DPL3D))

(DPC3F))

(BP(3D))
(DPCIF))

8.
32.
25.

8.

29.
21.

18.
. 4D

i8.

22.

24.
16.

4G
2F

. HF
. 4D

. 25

23.
. 4D

4F

4D

4n

.o4b
. 2D«

4D

2D
2B

. 2D
. HF

.4p
. HF

(DPC3P)

G (DPC3FN

(DPC3F))
(DPC3D))

(DPC3F))
(DPC3F))

(DPC3D))

DP(3F)
DPC 1D

(DPC3F))




2F

4D

4D

4D

4F

H4F

4F

2F

4F

2D

26

2F

4p

2P

5/2

3/2

572

172

9/2

/2

3/2

772

5/2

3/2

7/2

5/2

5/2

3/2
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TABLE (5.17B) CONTINUED

FE7+ EVEN LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS
PARENTAGE ~- DD(2S+1)L = 3D2(25+1)L

wwwwwwwwww DDC2S+1)L = 3D2(25+1)L DSC25+1)L = (3P5( 2P)3D( 2D) ) 25+1)L
caLe EXP INCR J/MU  TOTAL ~- EIGENVECTOR COMPOSITION PCT
965371, -—- -=- 2.5 86. HT. 4D (DP(3D)) 12. 2F (DP(1F))
10. 4F (DP(3D)) 9. 4D (DP(3F))
8. 2F (DPC1D))
967887.  -—- --- 2.5 83, 31. 2F (DP(1D)) 21. 2D (DP(3F))
18. 2D (DP(3D)) 7. 2F (DPCIF))
5. 4D (DP(3D))
967959,  -—- -== 1.5 96. 61. 4D (DP(3D)) 13. 4D (DP(3F))
8. 2D (DP(3D)) 8. 2D (DP(1F))
T. 4F (DP(3D))
969791,  —-n —== 2.5 90. 20. 4D (DP(3D)) 19. 2D (DP(3F))
' 17. 2F (DP(1D)) 15. 20 (DP(3D))
4. 2F (DPCIF)) 6. 2D (DPC1D))
970013,  ~=- ---= .5 94. 74 4D (DP(3D)) 21. 4D (DP(3F))
970114,  --- “== 4.5 97.  68. 4F (DP(3D)) 29. 26 (DPCIF))
970580, -~ --— 3.5 90.  37. 4F (DP(3D)) 21. 26 (DP(IF))
11. 2F (DP(30)) I1. 4D (DP(3D))
11. 2F (DP(1D))
971123,  -—- ~-= 1.5 92 T7. 4F (DP(3D)) 9. 2D (DPC3F))
5. 2D (DP(3D))
972473, -—- ~-= 3.5 94,  37. 2F (DP(IF)) 35. 2F (DP(1D))
7. 26 (DPCIF)) 5. 2F (DP(3D))
5. 4F (DPC3D)) 5. 2F (DP(3F))
972724, - --= 2.5 85. 75. 4F (DP(3D)) 10. 2F (DPCIF))
973741, - ---= 1.5 91. 29. 2D (DP(3D)) 21. 2D (DP(3F))
16. 4D (DP(3D)) 1. 4F (DP(3D))
7. 4P (DP(3D)) 6. 20 (DPC1IF))
975862,  --- ~—- 3.5 91. 50. 26 (DP(IF)) 35. 4F (DP(3D))
5. 2F (DPCIF))
977230,  ~-- === 2.5 92. 35. 2F (DPCIF)) 30. 2F (DP(3D))
21. 2F (DPCID)) 5. 4F (DP(3D))
97854, - --= 2.5 94.  80. 4P (DP(3D)) 9. 20 (DP(1D))
5. 2D (DPCIF))
979331.  --- -== 1.5 96. 41. 2P (DP(1B)) 38. 4P (DP(3D))
6. 2D (DPC3F)) 5. 2P (DP(3D))
5. 2D (DP(3D))
979871. - ~-- 4.5 95, £9. 26 (DPCIF)) 26. 4F (DP(3D))
979875.  --- ~-= 3.5 90.  34. 2F (DPCID)) 29. 2F (DP(3D))
20. 2F (DPCIF)) 7. 4F (DPC3D))




P
DDC25+1)L =

TABLE (5.17B) CONTINUED

FE7+ EVEN LEVELS
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOLATED AND OPTIMIZED PARAMETERS

ARENTAGE -- DD(25+1)L = 3D2( 25+1)L
3p2 25+ )L

=270~

DSC2S5+10L = (3P5( 2P)3D( 2D) M 25+1)L

(DP(3D))
(DPC1DY)
(DP(3DY)
(DPC 1D

(DPC3D M
(DPUID )
(DPC3DY)
(DPCLF )
(DPCIF )Y

(DPCIDM)

o~
o Row]
—~
ot Ln)
oW
o
P—

(DPCLID Y

(DPC3BY)
(DPC3F )Y

o~ -~
fw R
o~
o) b
i utl
-t
—

o~ -
o R}
—~
Cad bt
avinsl
[
o

w,IRF%EP caLc EXP INCR  J/MU TOTAL ~~ EIGENVECTOR COMPOSITION PCT
2P 172 980230, e e 5 95. 55. 2P (DPC1D)) 28. 4P
12. 2P (DP(3D))
2P 372 982013. - - 1.5 92. 36. 2P (DP(3D)) 25. 2D
21. 2D (DPLIF))Y 9. 4P
4P 172 982058, - = .5 98. 69. 4P (DP(3D)) 15. 2P
14, 2P (DP(3D))
2P 3/2 983244, —— o 1.5 92. 50. 2P (DP(1ID)) 42. 4P
2D 5/2 984379. - == 2.5 89. 31. 2D (DPCIF)Y) 30. 2D
13. 20 (DP(3D)) 9. 4P
5. 2F (DP(3D M
2F T/2 986922, - - 3.5 93. 47. 2F (DP(3D)) 23. 2F
13. 2F (DPCIDY) 10. 26
2F 5/2 987176. — = 2.5 89. 56. 2F (DP(3D))Y 17. 2F
16. 2F (DPCIF )
2D 372 987368 - - 1.% 93. 41, 2D ( 6D ) 38. 2P
T. 2D (DPC3F)Y) é. 2D
2D 5/2 989201. ——— - 2.5 92. 92. 2D ( €D )
2P 1/2 989811, - - .5 93. 66. 2P (DP(3D)) 27. 2P
20 3/2 990294. - ——— 1.5 97. 51. 2D ( éD ) 17. 2P
16. 2D (DP(IF)Y) 6. 2D
6. 2B (DPCID))
2D 3/2 1008533, e - 1.5 94. 38. 2D (DP(3D)) 29. 2D
15. 2D (DP(3F))Y 7. 2D
é&. 2D (BPCIDY)
2D 5/2 1011876. - - 2.5 94, 35. 2D (DP(3B)) 27. 2D
18. 2D (DP(3F)) B. 2D
T. 2D (DPCID))
26 7/2 1021892, - - 3.5 100. 100, 26 ( &6 )
2G 9/2 1021899, - R 100. 100. 26 ¢ &G )
25 172 1023045, - ——— -5 100, 100. 25 ¢ 75
2D 372 1054527. - - 1.5 100. 100. 20 (C 7D
2D 5/2 1054597, - -~ 2.5 99. 99. 2D C 7D )
26 772 1074117, - - 3.5 100, 100. 26 ¢ 76
26 972 1074121, - -—- BB 100, 100, 26 ¢ 76
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TABLE (5.17B) CONTINUED

FE7+ EVEN LEVELS

CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS
EXTRAPOCLATED AND OPTIMIZED PARAMETERS
PARENTAGE -- DD(25+1)L = 3D2( 25+1)L

DDC25+1L = 3D2(25+1)HL

DSC25+10L = (3P5(2P)3D 2D))( 25+1)L

IRREP CALC EXP INCR  J/mu TOTAL -— EIGENVECTOR COMPOSITION PCT
5111/5@;67%734. - — 5.5 IOB?mq;OO. 21 ¢ 71 R
25 1/2 1074792. ——— —— 5 100. 100. 25 ¢ 85 )
2P 1/2 1107447, e - 5 98. 98. 2P (DPCIP))

211172 1108337. - - 5.5 100. 100. 21 ¢ 81 )

2P 3/2 1108974, - = 1.5 100. 92. 2P (DPCIPY)Y 7. 2B (DPCIP))

2D 3/2 1113426. - ——= 1.5 99. 91. 2B (DPCIP)Y 7. 2P (DPCIP))

2D 572 1115584, - -~ 2.5 99. 99. 2D (DPC1IP))

25 1/2 1118319. - - 5 97. 97. 25 (DPCIP)) ~

) o ND . EXPERINEN;AL L§VELS ..
ABSOLUTE MEAN DEVIATION 247.88

RMS DEV

IATION

247.95




=272

relative energies, of course, are unaffected by an error in the ioniza-
tion energy. The 58 and 6s configurations cited fox Mn6+ are probably
misidentifications because the discrepancies are so large, and the pred-

6+
a

ictions for most of the even parity configurations for both Mn nd

Fe7+ should be fairly good (less than 1000 cmwl)e The predicted inten-
sities may be even more useful for identifying many expected transitions
for these ioms, but the long lists of relative intensities of the elec-
tric dipole transitions between pairs of levels are given in the appen-

dix. These were calculated by Cowan’s RCG code with the reduced matrix

elements for the dipole operator obtained from the HXR calculation.
5.3 (Uxé)z“’ Complexes (X=F,Cl,Br,I)

Features of the spectra of certain crystals containing metal ions
can be interpreted as electronic transitions of free ions perturbed by
the presence of the crystal lattice. Bethe86 first described the effect
of a crystal lattice on an ion as a homogeneous electric field derived
from a potential with the local symmetry at the ion’s lattice site. The
rare earth ions (i.e. d1ons with a single unfilled shell of f-electrons)
have been treated by Wybourneg7e This section discusses the electromnic

structure of Ué+ ions in crystals with octahedral (actually Oh) site

symmetry.

5.3.1 Effective Hamiltonians and Experimental Analyses

The effective Hamiltonian for an ion with an (nf)mlconfiguration in

the presence of a perturbing field with O_ symmetry takes the form

h

- L (110 4 6 o
He = B, tH,+ énf\zla W (nf) + HC(BWBO) (5.28a)
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where Eav is a constant energy, H, is the traceless portion of the

effective Coulomb interaction between the nf electrons,

16 S+L 1. Caq (SLSL)00
H, = 5 5 AR m(3D)15,D) f2y SL (nf,nf;nf,nf)  (5.28b)
§=0 L=0 :
BGL) = £,(DF (afnf) + £, (DF (nfnf) + £ (DIF°(nfnf) (5.28¢)
ﬁ£3 3 k,l , [3 « 37’2
£.0) = | 49(=1) 53 LT[l o o (5.284)

and Hc is the crystal field Hami'tonian:

4 o6y _ o 4{28)Yy [ 04 w77 [y 04 04, .1
H (Bg,Bg) = Bo[»ﬂ-] [WOO(nf) + \B71& | Wo', (of) + w%(nfﬂ (5.28¢)

6 10 (14)Y5 [ 06 =" 06 06
- Bo‘f§ Egg] z[WOO(nf) - \7/2 Ewgﬁé(nf) + Woé(nfi ]

The parameters Bé and Bg are derived empirically from the observed elec-

tronic transitions.

States Qg_Oh Symmetry

The representations of DJ of O+(3) reduce to direct sums of irredu-
cible representations of Oh upon restriction to this subgroup. The Hau~
iltonlan matrix for a configuration £ becomes block dlagonal with

respect to a basis that carries the irreducible representations of the

subgroup. The configuration fz9 with SLJ states lSO s SPQ 1.2 iD? .
i 9 i
3 i 3 1
Fé;BSZ s G@ s H695;4 R 16 s decomposgses into the irreducible
representations of Oh’
1 3 1 -
SO @ PO = (2) Fl (5.292)
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391 - 3F4 (5.29b)
v, 010,00, > (07T, 0 (17 (5.29¢)
N (5.29d)
1,0 le, 0%, > DT 0 T, e DT, e (37 (5.29¢)
B, - e (7, 0 (5.29£)
oo, > M e T, 0 e @7, 0 0y (5.299)

for a total of thirty-nine energy levels (dF} denotes the representation
fg with dimension d). The irreducible representations of Oh can alter-

. 1 1 2 3 -
nately be designated Alg ﬁl’ Azg ﬁzs E = ﬁB’ le Pég and sz %“59

Experimental Analvyses

Extensive analyses of the absorption spectra of crystals of CSZUClé

and CSZUBr6 enabled Satten and c0mworkersg8“91 to identify twenty=-one

electronic energy levels relative to the ground state of each of the
2= and (UBr ) 2-,

were able to identlfy eleven relative levels of(UI6)2@ and twentye-

complexes (UClé) Aided by these efforts, Edelstein et

a192

one relative levels of (UFé)Zm from absorption spectra of (NEt4)2U16 and

(NEté)ZUFé cerystals.

Using empirically darivedgg constraints Fé(Sfo) = 674F2(555f) and
#O(5£56) = 0.55F2(5£5f), Edelstein fitted the parameters of the effec-
tive Hamiltonian for each of the four complexes. The results of the

least squares fits are given in table (5.18) and the relationship of the
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Table (5.18)

(Uxé)zm Parameters (cm ') X = F, Cl, Br, I

Parameter UF6 U816 UBr6 UI6
72 (5¢5¢) 49699 43170 40867 38188
§s¢ 1970 1774 1756 1724
By 10067 7463 6946 6338
Bg 22 992 999 941
d@g2>a 67 168 176 188
(|a]) | 39 76 95 106

a . e
rms deviation

b absolute mean deviation

calculated to observed levels is displayed in figure (5.8). 7The results
are typical of the effective Hamiltonian (5.28ab). In other cases,
additional parameterized effective operators have been added to the cry-
stal field Hamiltonian to reduce the rms deviation (reduced chi-square)

=1 94

to about twenty-five cm Two such corrections suggested by Judd

are described and tested here on the tetravalent uranium hexahalide com-

plexesggggéa

5.3.2 Correlated Crystal Fields

One method suggested for improving the agreement between the effec-
tive Hamiltonian description and the observed electronic transitions is

the inclusion of 2«~electromn operators in the crystal field Hamiltonian

9598

inspired by a variety of physical mechanisns The major obstacle
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Figure (5.8)
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transitions for the (UX

complexes.

The calculated ener-

)
gies are derived from tge effective Hamiltonian He given by

equation (5.28).
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in testing this hypothesis for f-electrons is the large number of addi-
tional parameters required for a purely empirical model; the lowest sym=
metry case requires 637 parameters, and even in octahedral symmetry 41

95,1 judd

parameters are needed for empirical crystal field Hamiltonian
has proposed models of the correlated crystal field derived from physi-
cal assumptions that substantially reduce the number of additional
paraneters, and two of these models were tested for the (UX6)2* com~

plexesgs’gﬁe

Electron Delocalization Model

The first model tested was derived from the assumption that the 5f
electrons are not as closely localized to the ilon center in a crystal
lattice as say, the 4f electrons, and tend to drift over to the ligand

95

atoms” . A 5f-electron wavefunction is replaced with a superposition of

itself and a ligand localized function,
r - T T
%%P(x) er¢bP(X) +’ArAbp(X) (5.30)

where ¢§ carries an irreducilble representation of Oh with respect to
3. .1, T2 T3
symmetry operations on the space coordinates (D" 2 D + D "+ D 7, Ty=

Ags To= Ty, Tg= Ty):

1 1 1
gy (x) = — ¢ (x) == 9. _, (x) (5.31a)
I 7 5t Lp 7 SEa-2p
2 L
¢1P(x) = ¢5§,0’P(x) (5.31b)
¢§P(x) = \5/8 Poe, 5,00 + w§7§)¢5fsﬁlsp(x) (5.31c)
¢§P(X) = \5/8 Pt ,-3,n (0 * \378 5e,1,p() (5.31d)
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¢1P(x) - »{}«% FEMOR é s, -2, () (5.31e)
¢§P<x) - T8 g5g 5,0 = BT gy 00 (5.31)
¢§P(X) = \3/8 a3, - \578 s, 1,0 (5.31g)

Judd then argues that the Coulomb interaction between electrons is the
largest contribution to the effective Hamiltonlan and that the integrals
involving the ligand wavefunctilons, e.g.

& (4

1 g2 2,0 )
S‘dx 195dy (x,)4, P2( ) o= ZPE(Xl)/\bZPE(XZ) (5.32a)

can be neglected with respect to the integrals

& 4

5 riﬁ rZ* Iy Ty

dx,dx,¢ )¢ (x,) ¢ ArN6 L (%) (5.32b)
2o ) 0% 0, 2 Dypy 1 hopy 2

owing to the fact that the 5f-electron has a small overlap with the

ligand, and that the terms of the type represented by (5.32a) are larg-

est for the monopole component (“2/r2) and contribute to the effective

l=electron crystal field Hamiltonian.

The end result is to replace ¢§P with %r¢§P when evaluating the
Coulomb operator. For w 5f-electrons, this can be accomplished by
inserting the Coulomb operator between a pair of operators ﬁm%@lgezggg)

constructed from the l-electron projection cperators:
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" _ : S5
P (91592993) = ml g 6 o6 g (3@3.&>

rlgbl rmPuA

8 ... B e (1) sco &
rl rui rlblrlbl ruPuE@ﬁg

(u)

The l-electron projection operators can be rewritten in terms of the

unit tensors,

Crbrb *9’;)(555! = bg\lﬁﬁoe(nf) +h (B,Y) (5. 34a)

where hC is identical to the effective crystal field Hamiltonian Hc with
Ok Ok
qu(nf) replaced by ﬁoq(nf)g and

@l+ 392+ 393

— AR

‘bo = 7 (5. 34b)

B = 2 (30,- 6, 20.) (5.34c)

5 (38, 4= 26 (5. 34c)

Y = 52 (464 58.- 96.) (5. 34d)
580 (40T 09y~ 984

Judd then argues that 81= 1 from molecular orbital theory, and that
92 and 93 must be nearly equal to 1, so that B and Y are small.

ﬁm(919@2993) can be approximated by linear expansion in B and Y
1 , ,
(b)™ + (b ™ " B (B, (5.35)
To this order, the effective Coulomb operator is replaced by

H, = (b

)ﬁg
C 0

H, + (1;30)2@”3“’1 [Hc(ﬁsY)Hc + HCHC(ﬁyY)] (5.36)

For two electrons, the effective Coulomb operator is diagonal in the

SLJIM basis set, with matrix elements given by

5. .68

(suam|ug|soroams) = 8.8 .6 L8, B(SLD) (5.37)
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the replacement (5.37) can be written in matrix form:

(1] H,

S°L°3M7) - (vbO)éé <SLJM]HC S7LIN) + (5.38)

[E(SL) + E(S”L’)](SLJMiHc(pSY) $7L M)

Test of the Electron Delocalizatilon Model

The correction to the effective Hamiltonian, given in matrix form
by (5.38), wés easily incorporated into a least squares fitting program.
The renormalized Coulomb parameters ?k(nfnf) = (bo)éFk(nfmf), along with
the conmstraints F*(5£5f) = .74F%(5£5F) and FO(SE5f) = .55F%(5£5F), lead

to the correction matrix H (S,T), where

(sLm|n” (s, 1) S’LfJ’M’> - <SLJM1HC(59T) S’L’J’M’> . (5.39)

[fZ(SL) + £2(5°L7) + .74 EEZ(SL) + f4<SfL’3 + .55 [56<SL) + f6(S’L’)]]

(€21
i

=2
(B/by)F*(5£5¢€) (5.39b)

-3
i

(Y/b o) F (5 56) (5.39¢)

The watrices multiplied by the parameters 5 and T were constructed from
the matrix elements multiplied by Bég ng FZ(SESf)9 Fé(Sf.Sf)5 and

FO (558 .

In the actual fitting, 8§, T, and ?Z(Sfo) were treated as free
parameters. Direct fitting treating 92 and 93 as free parameters
(@lz 1) was attempted with constraints 0 < 6, <1 and 0 < 85 < 1, but

the eigenvalues were not linear enough locally in these parameters to

obtain counvergence with the fitting algorithm used. The values of @Zg
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@3, and bO were vecovered with the equations

1+ 28/[11?2(5f5f)] - lOOT/[429§2(5f5£)]

92 5 5 (5.40a)
1 = 45/ [LIF“(5£5€)1 + 280T/[143F°(5£5¢)]
1 - ZS/[BBFZ(Sfif)] - 60T/[429§2(5f55)]

% 5 — (5.40b)
1 = 48/ [LIF“(5£5£)] + 280T/[143F“(5£5F)]

i

bO = =7 =2 (SSQOC)

1 = 48/ [11F(5£5£)] + 280T/[143F"(5£5£)1
assuming that € = 1. The parameters obtained by this method are

1

presented and compared with the uncorrected model in table (5.19).

The uncor£ected effective Hamiltonian was refitted to the data,
taking some care to properly weight the observed levels, which might
explain the small discrepancies with Edelstein’s work (table (5.18)).
From the reducéd chi-gquares, one can conclude that the correction has
little or no correlation with the observed data. In most cases, the
inclusion of the extra parameters tended to cause the deviations between

the observed and calculated levels to become more uniformly distributed.

Judd suggested that the constraints on Fé(Sfo) and F6(5f5f) might
be too severe, so the fit was repeated with the constralnt removed. The
implementation was the same as before, but the ratios .74 and .55 were
replaced with the cowmputed ratios Fé(Sfo)/FZ(SfSE) and
F6(5f5£)/F2(5fo) computed from the previous iteration. The fitted
parameters for this case along with the parameters for the effective
Hamiltonian without the correction terms are presented in table (5.20).
The results did not show any significant improvement except perhaps in

the case of the iodide. The small number of observed levels made con-
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Table (5.19)

Electron Delocalization Model Parameters (F4 = s7éF29 ¥ o= QESFZ)

Parameter Uié UBr6 UCZL6 UF

6
éSf 1742 1731 1767 1798 1804 1811 1973 1974
fz 38459 38396 40888 40457 41851 41732 49856 50443
Bg 6608 6331 6399 6030 7142 6748 10081 10272
Bg 849 880 1605 1560 1486 1703 41 125
8 0 =1741 0 3449 0 3492 0 1076
T .0 620 0 1089 0 1119 0 263
boxlO5 100000 95411 100000 97875 100000 97839 100000 99755
@2x105 100000 94266 100000 98778 100000 98716 100000 100002

e xlOS 100000 95027 100000 96263 100000 96242 100000 938408

av 11804 11984 12471 12419 12803 12746 14844 14894

(]QJ) 106 105 201 189 169 160 36 39
D.F. 7 5 16 14 16 14 12 10
\x%/p. 7. 173 198 283 262 235 233 57 61

vergence of this case difficult, however, and it should not be taken too
seriously. The details of calculated levels and the eigenvector compo-
sitions have been omitted, since there is little change from the previ-

ous results.
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Table (5.20)

Electron Delocalization Model Parameters (Free Fés Fé)

Parameter U1 UBr6 UC16 UF

éSf 1707 1717 1789 1785 1782 1789 1980 1983
fz 36417 36145 41098 40519 42712 42236 49582 50570
?4 32201 30834 37709 38052 37940 38375 35468 35062
?6 17888 17263 29078 28081 30304 29564 25233 25879
Bg 6839 6440 6572 6573 7215 7242 9969 1011
Bg 928 870 1124 1165 1353 1400 56 221
8 0 =3446 0 1361 0 921 0 692
T 0 144 0 293 0 460 0 1034
bOXll.O5 100000 95925 100000 99806 100000 98676 100000 96614
ezxiOS 100000 94174 100000 100025 100000 99020 100000 96394
QBXIOS 100000 96319 100000 99300 100000 98095 100000 95075

av 12250 11920 12508 12491 12826 12807 14769 14827
(]AD 98 94 141 140 102 100 31 32
D.F. 5 3 14 12 14 12 10 8
\}XZ/DSF° 192 234 202 216 155 166 53 53

Spin Dependent Correlated Crystal Field Model
Judd96 proposed another correlated crystal field model for the

lanthanides based on the notion that a pair of electroms with parallel

spins experience stronger "exchange" forces than a pailr with antiparal=-

lel spins and would tend to be more localized on the metal ion than near

the ligands. This means the parallel spin pair would feel the crystal
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field forces more strongly than an antiparallel pair. TFor two elec-

trons, this suggests a substitution

Bk o Bk[1+c
q q k

(4-41)

2

as the crystal field operator commutes with the spin operators.

Although the effect may not be relevant to actinides because of
their relatively stronger interaction with the crystal field, the model
was tested because of its simplicity 1o the case of the uranium hex-

4 and 36 were simply replicated,

ahalide complexes. The matrices for BO 0

removing all matrix elements between the singlet (8 = 0) basis vectors.
These matrices were then multiplied by two new free parameters and fit-

ted to the observed levels.

The results obtained with and without the extra parameters are
presented in table (5.21). The iodide, however, is something of a
pathological case. Because of difficulty in obtaining convergence, the
constraints on FQ(SESE) and F6(5f5£) were used. Even then the Bg param=
eter changed sign and the two new parameters were larger than expected.
Overall there seems to be little or no improvement with the addition of
the two new parameters, and in particular the iodide result cannot be
taken very seriously. Agailn, the details of the calculated energies and
eigenvector compositions have been omitted because the model had such

little success.
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Table (5.21)

Spin Dependent Crystal Field Model

Parameter Ul UBr Ucl UF

6 6 6 6
§s 1707 1746 1770 1793 1783 1794 1980 1987
72 36417 38998 41098 39788 42712 41680 49582 50038
7 32201 29059t 37709 37235 37940 37987 35468 35223
70 17888 22449+ 29078 26039 30304 28219 25233 25802
B 6839 1721 6572 7354 7215 7768 9969 10271
B 928  -1496 1124 1658 1353 1749 56 284
¢ x10" 0 27970 0 -1260 0 =713 0 -305
cx10” 0 -14620 0 -4019 0 -2815 0 -9228
B 12250 12042 12508 12460 12826 12795 14769 14797
(A 98 76 141 124 102 95 31 27
D.F. 5 5 14 12 14 12 10 8
\x2/p.5. 192 163 202 202 155 157 53 49

Tel(5e58) = 74P2(5656); FO(SESE) = .55F2(5E5¢8) .
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V1. Concluding Comments

Although there were no new spectra actually analyzed during the
course of this work, a loglcal next step is to use the predictions for
Ti3+s V4+, Crs+9 Mn6+9 and Fe7+‘to attempt to extend the analyses for
these ions. The author feels he has learned a great deal about semi-
enpirical theories, however, and hopes to continue investigations in
this direction in the course of some experimental work also. This work
is somewhat like a research notebook because many of the ideas are only
partially developed, there is much material to build upon in the future.
The ideas about systematic incorporation of correlations in semi~-
empirical theéries discussed in chapter IV are perhaps the most

interesting, because some practical new techniques for effective Hamil-

tonian descriptions of quantum mechanical systems can come out of them.
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Appendix. Predicted Energies, Figenvectors, and Spectra
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