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Techniques for applying calculations to the is o:f atomic 

spectra are investigated, along with the relationship between the semi~ 

empirical and ab-~n:i.tio forms of Slater~Condon theory. Slater~Condon 

theory is reviewed with a focus on the essential features that lead to 

the effect:i.ve Ham:i.ltonians associated with the semi~empirical form of 

the theory. spectroscopic are calculated from 

wavefunctions obtained via self~consistent field methods, while multi·-

configuration Hamiltonian matrices are constructed and with 

computer codes written 

tory. Group theoretical 

Robert CovJan of Los Alamos Scientific Labora·-

is demonstrates that wavefunctions more 

general than Slater determinants (i.e. wavefunctions with radial corre~ 

the same lations between electrons) lead to 

of effective Hamiltonians. In the of this 

~~-"'"""~~ values of the spec is developed for adjus 

ters, reproducing parameters obtained by fit the 

tion 

par arne~ 



effective Hamiltonian. Secondary parameters are used to "screen" the 

calculated (primary) spectroscopic parameters, their values determined 

by least squares. Extrapolations of the secondary parameters determined 

from analyzed spectra are attempted to correct calculations of atoms and 

ions without experimental levels. The adjustment strategy and extrapo-

0+ 7+ lations are tested on the K I sequence from K through Fe , fitting to 

experimental levels for v4+, and cr 5+; unobserved levels and spectra are 

predicted for several members of the sequence. A related problem is 

also discussed: Energy levels of the Uranium hexahalide complexes, 

(UX
6

) 2- for X~ F, Cl, Br, and I, are fit to an effective Hamiltonian 

(the f 2 configuration in Oh symmetry) with corrections proposed by Brian 

Judd. 
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I. Introduction 

Since the birth of quantum mechanics, the theory of electronic 

structure for atoms and ioris has progressed significantly in terms of 

the number of phenomena explained and the sophistication of calcula~ 

tions. The basic theory relevant to the classification of atomic states 

and spectral transitions was outlined by Slater 1 in 1929, and expanded 

2 in the classic text by Condon and Shortley a few years later. The evo~ 

lution of this ~heory, referred to here as Slater~Condon theory~ has 

been influenced by the parallel development of mathematical and computa~ 

tional tools. 

The analysis of optical spectra from atoms and ions amounts to the 

application of the Rydberg principle in a manner appropriate to the 

observed spectra. The wavelength of every spectral line is inversely 

proportional to the energy difference of the pair of levels involved, 

but even in theory, transition3 between all pairs of levels are not 

observable. A typical emission spectrum obtained from an excited sample 

of atoms and a grating spectrometer motivates the need for heuristics in 

the analysis. Line spectra are usually contaminated with emissions from 

impurity a toms, and the instrument is limited to finite windmv of 

observable wavelengths. Determining the relative scheme of energy lev~ 

els is complicated by superposition of impurity spectra and the absence 

of many of connecting transitions. Analysis of a line spectrum with no 

predictable patterns \vould be difficult and unreliable; the collection 

and interpretation of these is Slater~Condon theory. 



The Slater-Condon theory of atomic structure predicts the general 

distribution of the low lying energy levels of an atom or ion. Ortho­

normal atomic wavefunctions constructed from Slater determinants, 

antisymmmetrized products of N !-electron wavefunctions possessing 

definite rotational symmetry, are used to approximate the eigenstates of 

the atom or ion. Upon restriction of the atomic Hamiltonian operator to 

a subspace spanned by a finite set of these wavefunctions, the spectral 

decomposition of the resulting matrix is a variational estimate of a 

portion of the energy spectrum of the atom. The basis vectors can be 

transformed to the linear combinations of Slater determinants with 

definite N-electron rotational symmetry. Then the Hamiltonian matrix 

becomes block diagonal and the rotational degeneracy can be eliminated. 

The classic version of the theory assumes the !-electron wavefunc­

tions are products of spin, angular, and radial functions~the eigen­

functions of a non-relativistic, rotationally invariant !-electron Ham­

iltonian operator. Atomic wavefunctions are grouped according to confi­

gurations, or sets of Slater determinants constructed from a fixed set 

of radial wavefunctions. For an optimal choice of the radial wavefunc~ 

tions, the eigenvalues and envectors of the restricted Hamiltonian 

operator are expected to be good approximations to actual atomic ener­

gies and eigenstates. Specifying a scheme for calculating the radial 

wavefunctions, using them to calculate the integrals needed to construct 

the Hamiltonian matrix, and using the eigenvalues and eigenvectors of 

this matrix to obtain atomic properties is the form of 

Slater-Condon theory. As an optimal set radial wavefunctions 



exists and parameterizing the dependence of atomic properties on them is 

the semi~empirical form. 

Semi~empirical Slater-Condon Theory 

Application of the theory to spectral analysis in its early days 

was largely limited to the semi~empirical form. The Hamiltonian opera~, 

tor is resolved into components with definite l~electron rotational sym~ 

metry. Because the atomic wavefunctions are constructed from 1-electron 

central field wavefunctions, the dependence of the Hamiltonian matrix on 

the spin-angle wavefunctions can be separated from the radial wavefunc-~ 

tions. The Hamiltonian matrix becomes a superposition of matrices with 

coefficients that depend on integrals involving the radial wavefunc~ 

tions. The semi-empirical theory treats these coefficients as free 

parameters, creating an effective Hamiltonian description of an N~ 

electron system. 

P~alyses of spectra are accomplished by the interplay of two opera~ 

tions: The trial and error assignments of hypothetical energy levels 

according to configuration and symmetry type, and the adjustment of the 

free parameters until the best agreement is obtained between the eigen~ 

values of the Hamiltonian matrix and the experimental levels. The 

analysis is complete when a self~consistent agreement is reached between 

experimental and calculated levels, with parameter values that are 

acceptable on physical grounds. 

The semi-empirical method of analysis has become highly developed. 

Its successes and limitations are presented by Edlen7• Although the 

method was prescribed by Condon and Sh.ortley 2 in 1935, significant 



advances in the analysis of complex spectra were made by applying group 

theory to the general problem of finding linear combinations of deter~ 

minant wavefunctions with definite N~electron rotation symmetry, and to 

8 the calculation of matrix elements of tensor operators • 

Ab~initio Slater-Condon Theory 

Calculation of atomic wavefunctions and energy levels from first 

principles requires some method of obtaining the radial wavefunctions. 

Then the Hamiltonian matrix is simply diagonalized to obtain variational 

estimates of the energies and eigenstates. 4 5 A1 though Hartree, Fock, 

Slater, 6 and others proposed schemes for calculating the radial 

wavefunctions a,1.d the integrals necessary for constructing the Hamil~ 

tonian matrix, few of these calculations were performed initially 

because of the labor involved. 

Ab-j.nitio calculations became feasible on a large scale with the 

advent of digital computers; many computer calculations began appearing 

in the late 1950's and early 1960's. For example, a program employing 

numerical integration of the self-consistent-field (SCF) equations, and 

the results for many atoms were published by Herman and Skillman in 

19639• These cal<:ulations required experience and an investment in com~ 

puter time that discouraged their use non-experts. As a result, the 

use of ab-lJ:lltio calculations as an aid in solving experimental problems 

was limited to already published calculations, or collaborations between 

experimenters and the authors of computer codes. 

the non~relativist~c SCF calculations have become fairly trivial" A 



sophisticated, fast, and convenient series of computer codes has been 

10 11 12 developed by Robert Cowan of Los Alamos • • • In addition, Cowan has 

developed codes that construct and diagonalize the Hamiltonian matrix 

employing the radial integrals obtained from the the SCF codes. These 

codes can also calculate a theoretical spectrum arising from transitions 

13 between pairs of ~~~initio energy levels • 

Cowanus codes and the current computer technology make it possible 

to implement a~-initio Slater~Condon theory with a relatively small 

investment of time and expense. The values of the semi~empirical param~ 

eters calculated from integrals involving the radial wavefunctions, how~ 

ever, are found to deviate from the parameters obtained by the semi~ 

empirical analysis of the spectra to the extent that caution must be 

exercised when using the calculations as a tool for analyzing spectra. 

Typically, the predicted levels and spectra are qualitatively the 

same as the experimental observations, but the calculations are of abso~ 

lute energies and cannot hope overall to be as precise as the experimen-

tal observations of relative energies, since the albeit small correla~ 

tion effects are comparable to the differences between the approximate 

energy levels. Even within configurations, however, where observed and 

predicted relative energies should be of comparable precision, sys~ 

14 tematic differences are apparent o This work attempts to develop a 

better understanding of these differences and develop a hybrid of the 

semi~empirical and forms of Slater~Condon theory to make the 

best use of available calculations in the problem of spectral analysis o 



1.2 Applications of Ab-Initio Slater~Condon Theory 

Finding strategies for applying ab~initio calculations of atoms and 

ions to spectral analysis can be likened to developing the heuristics of 

semi-empirical Slater~Condon theory. Because the calculation of radial 

wavefunctions is so difficult without computers, a semi~empirical theory 

was needed to parameterize the dependence of atomic properties on them. 

With computers available, the ab~Jnitio Slater-Condon theory becomes 

readily available to non~experts, By the same token, more sophisticated 

(and perhaps hypothetical) approximate atomic theories are possible 15 

that account for more correlation among electrons. These calculations, 

however, are again beyond the reach of non-experts. This suggests that 

ne\v semi-empirical theories might be developed that parameterize the 

discrepancies between _§lb~.~niti£ Slater-Condon theory and a more sophis­

ticated approximation. 

A number of interconnected problems emerge in this context. 

Because of the success of the semi-empirical theory, it is desirable to 

remain within this general framework. Then the the nature of the rela­

tionship between ab~initio and semi-empirical spectroscopic parameters, 

or how correlations might be included in the semi~empirical description 

becomes of interest. Insight into this question can help in th(~ task of 

finding a new set of parameters that can be used to map the predicted 

spectroscopic parameters into their empirically determined values. The 

dependence of this mapping on the nuclear charge Z and the number of 

electrons N is of interest in order to extrapolate the adjustments of 

analyzed ions or atoms to unknown or partially analyzed cases. 

Chapter II reviews the ri.ptive features of Slater~Condon theory 



and leads naturally to Chapter III, a review of the computer calcula­

tions. Density matrices and effective operators are employed to isolate 

the features of Slater-Condon theory leading to the semi-empirical 

theory and parameterization of effective Hamiltonians. The effective 

operator formalism and its group theoretical analysis are developed in 

some detail for the discussion in Chapter IV. Chapter III discusses the 

SCF method for solving the configuration-averaged non-relativistic 

Hartree-Fock equations, Cowan's HX approximation, relativistic and 

correlation corrections, the construction of the Hamiltonian matrix, 

predicted spectra, and least squares minimization. 

Chapter IV explores the possibility of wavefunctions more general 

than Slater determinants allowing more correlations among electrons, but 

lead essentially to the same semi-empirical parameterization The 

parameterization of effective Hamiltonians from symmetry properties is 

considered, focusing on representations of symmetry groups for unper~ 

turbed Hamiltonians. The irreducible representations of these groups 

are examined, representations of other groups induced from them, and 

their branching properties under restrictions to various subgroups. 

These considerations are used in part to estimate the qualitative 

effects of additional correlations on the spectroscopic parameters exam~ 

ined in Chapter V. 

Chapter V contains the applications of the calculations 

to spectral analysis. The first section, (5.1), explains the methods 

used to select and adjust the spectroscopic parameters with a secondary 

set of free parameters to bring the ab-initio results into the best 

agreement ~vi th experimental levels using least squares. Methods for 



agreement with experimental levels using least squares. Methods for 

extrapolating adjustments to other atoms and ions are considered, 

including isoelectronic extrapolation from formal 1/Z perturbation 

theory. 

Section (5.2) is a study of the K I isoelectronic sequence from KO+ 

to Fe 7+. The adjustment and isoelectronic extrapolation strategies are 

combined and applied to the 3p 53d2, 3p 53d4f, 3p 53d4s • and the Rydberg 

3p 6nO configurations. Section (5.3) is a discussion of a modified 

~ 2 strategy used on U • Energy levels of the f configuration in Oh sym-

2~ 
metry are modeled and fit to data on the hexahalide complexes, (UX6) 

where (X= F,Cl,Br,I), using a model proposed by Brian Judd. The 

results of chapter V are reviewed in the summary, chapter VI, in the 

context of the preceding chapters, followed by appendices containing 

tables of energy levels, spectra, and listings of computer programs. 



II· Descriptions of N-Electron Systems and Slater~Condon Theor~ 

A discussion of the descriptions of N-electron systems with rota~ 

tional symmetry and Slater-Condon theory is presented here. Determinant 

wavefunctions and density matrices are discussed in section (2.1)? 

including many density matrix expressions relevant to antisymmetrized 

product wavefunctions. Elements of Slater-Condon theory are reviewed in 

section (2.2), including atomic Hamiltonians, spherical tensor opera-

tors, effective operators, and SLJ-coupled basis vectors and their 

matrix elements. The parameterization of effective Hamiltonians on fin-

ite dimensional subspaces spanned by determinant wavefunctions are dis-

cussed in section (2.3); this discussion complements material in section 

(2.2). 

Density matrices and effective operators descriptions are employed 

here as a framework for calculations involving determinant wavefunc-

tions, and as a means of isolating the independent parameters associated 

with semi-empirical Slater-Condon theory. The effective operator 

methods are generalized in chapter IV to show that semi-empirical 

Slater-Condon theory is consistent with N-electron atomic wavefunctions 

constructed from !-electron angular momentum eigenfunctions and arbi-

trary N-dimensional radial wavefunctions. 

2.1 

Ignoring corrections to the same order as hyperfine interactions 

and isotope shifts, an atom or ion can be described by a 2N (or 4N rela-

3N tivistic) rank spinor-valued, square-integrable (over R ), N=electron 

wavefunc tion. The i th electron coordinates are denoted here by 
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In general, anN-electron Hamiltonian is invariant with respect to 

permutations of the sets of electron coordinates and a group of spatial 

symmetry transformations. A free atom or ion is invariant with respect 

to simultaneous identical rotations and reflections of the electron 

coordinates, but permutation symmetry is perhaps the most rigorous sym-

metry for any N-electron system. Only wavefunctions that carry the 

totally antisymtnetric irreducible representation of SN' the symmetric 

group of order N!, can represent physical states of such a system. 

Nature has been kind by allowing only the one-dimensional representa-

tions of SN for identical particles, and perhaps has been kinder still 

by choosing the antisymmetric rather than the symmetric representation 

for electrons, as this also reduces the complexity of spectra somewhat. 

1 
In any case, Slater naturally used antisymmetrized products N 1-

electron ·wavefunctions to generate N-electron wavefunctions for atoms. 

An arbitrary antisymmetrized N-elec tron product wavefunctions with 



definite rotation and reflection symmetry is conceptually awkward, but 

1~electron wavefunctions that carry irreducible representations of 

SU(2), the quantum mechanical rotation group, are well known. Slater 

reduced the problem to finding the irreducible representations of the 

rotation group that can be reduced from linear combinations of this 

type. 

2.1.1 Determinant Wavefunctions 
--~- .._,., 

A determinant wavefunction is the antisymmetrized product of N 1~ 

electron wavefunctions. Consider a set A~ {¢~.9~·····¢~} of N linearly 

independent 1-electron wavefunctions, and define the matrix valued func-

(2.2) 

TheN-electron determinant wavefunction ~~is defined: 

(2.3) 

Uniqueness 

A determinant wavefunction does not uniquely determine a set of 1-

electron wavefunctions. Let Ap be the set obtained from A by a non-

singular linear transformation T: 

(2.4) 

Since the determinant of the product of two matrices is equal to the 

product of their determinants, the relationship between the determinant 

N N 
wavefunctions <fA and <fA' is given by: 



(2.5) 

In particular, a normalized determinant wavefunction constructed from an 

arbitrary set of N linearly independent l~electron wavefunctions is~up 

to a phase factor--equal to the determinant wavefunction constructed 

from an orthonormal set of l~electron wavefunctions that span the same 

subspace of the l~electron Hilbert space. A given N-electron deter~ 

minant wavefunction is uniquely related to an N~dimensional subspace of 

the l~electron Hilbert space. This property is obvious when a density 

matrix description is used in place of N~electron determinant wavefunc~ 

tions. 

Matrix Elements and Density J1at~ 

16 The density matrix description was formalized by von Neumann to 

help explain the statistical nature of quantum mechanics. Dirac 17 

pioneered a density matrix description of the atom to justify theoreti-

cally the semi-classical Thomas-Fermi model, and his techniques were 

quickly applied to the Hartree-Fock equations for determinant wavefunc-

. 18 t10ns • Lowdin 19 expanded and generalized this framework for work with 

superpositions of Slater determinants. 

Table (2.1) is a list of definitions used to develop a density 

matrix description of the N-electron Hilbert space with a certain set of 

state vectors in mind. Instead of oying only reduced density 

matrices in this approach, an object called the n-electron transition 

matrix is defined. This object is unnecessary for a physical theory, as 



all physical properties can be obtained from the n~el.ectron reduced den~ 

sity matrices. but it is a useful component in a hybrid description 

involving density matrices and a specified set of N-el.ectron wavefunc~ 

tions (e.g. the Slater determinant wavefunctions). Then-electron 

reduced density matrices are referred to here as simply n~electron den~ 

sity matrices, the lower~case "n" indicating the reduced density matrix 

as opposed to the "N"-electron density matrix. 

The n-electron transition matrices can perhaps be best described as 

kernels of bounded integral operators on an n-particle Hilbert space, 

while the n-electron density matrices comprise the convex linear hull of 

the non-negative definite • sel.f-adj oint operators of trace class. 

Alternately, the n-electron transition matrices can be obtained by 

extending the set of density matrices to a vector space over the complex 

field. 

Matrix Elements 

The n~electron transition matrices allow the matrix elements of the 

symmetric n-electron operators to be formally expressed as: 

(2.8a) 

r 1 h - l < e t q act on x • t en set ~ =x > ( 2 Sb) 

1and sum/integrate over x~(r .~)I • 
~ ' 

If ~a is the integral operator with the corresponding n-electron tran-

sition matrix as its kernel, (2.8a) can formally be rewritten as a trace 



Table ( 2. 1) 

Components of a Density Matrix Basis Set Description 

1,2, ••. } 

Basis Set 

any set of N-electron 
wavefunctions of interest 

n-Electron Operators 

N-n+l 
~ 

i 1 "'1 

an n-electron operator that 
acts on the electron coordi­
nates with indices (i 1, ••• ,i ) 
and is invariant with respec~ 
to permutations of these in­
dices 

n-Electron Kernels 

n-electron transition matrices: 

~b (x 1, •• ,x ;x1', ••• ,x') a _ n ~ n [~] [11 rJ!~IIII !~!=II ]-1 
5dyn+l • • .dyN 

( \f: (xp • • ,xn,yn+l' • • • ,yN) 

n-electron matrix o:E 

r"n(xl, ••• ,x ;x'l, ••• ,x) a n n 

general n-electron density matrices: 

1} 

(2.6) 

( 2. 7a) 

( 2. 7b) 

(2.7c) 

(2.7d) 

(2.7e) 



over any complete orthonormal basis of the n-particle Hilbert space: 

1
- r;: .;PJ(x

1
, ••• ,x ) _ oa n (2.9a) 

sdy1 ••• dyn~a(x1, ••• ,xn;y1' ••• ,yn)·yP(yl' ••• ,yn) 

( 2. 9b) 

Expressing formally the matrix elements of n-electron operators 

using n-electron transition matrices is of little value unless the tran~ 

sition matrices can be given in more detail. This is possible for 

determinant wavefunctions, and proves useful for examining the symmetry 

properties of transition arrays of determinant wavefunctions. 

l·l·1 Antisxmmetrized Product Wavefunctions 

Before examining in detail the components of a density matrix~ 

determinant wavefunction description of an atom or ion, it is useful to 

consider antisymmetrized product wavefunctions in general. v Let <I and a 
c <lb be V- and C~electron antisymmetrized wavefunctions where C+V ~ N. 

Then the N~electron wavefunction <INb is defined: 
a 

( 2 0 1 0) 

~ is the projection operator for the antisymmetric representation of SN 

and the binomial coefficient factor (~] ~2 is convenient for normaliza~ 
tion. B mV C 

ecause ~a and ~bare both antisymmetric, (2.10) can be rewritten 

in the form of a sum over all distinct V~element ordered subsets of the 

index set Z(N) {1,2, ••• ,N}: 



S(I) (i 1) + (t 

i2 i3 N 
-V 

~ ~ ~ ;;;;: 

I (:Z (N) il"'l z>il 1v>iv~l 

and are the electron coordinates labeled by the sets I = 

{i
1

, ••• ,i }and I ,z(N) ~ I n. Z(N) the 
n 

of I in Z(N). 
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( 2. lla) 

(2.llb) 

(2.llc) 

Equation (2.11) can be used to obtain an expression for theN-

electron transition matrix between two product wavefunctions ifN and -ab 

N , 
~cd' 

I 

~v 
J 

cd (~] - 1 

(-l)S(I-.J) rV (X 
ac r' 

II ~:1111 ~~1111 ~~1111 ~~II 
-~---~--=~~--~~-~-·~=.--==.,;~~~~,=~> ( 2. 12b) 

II 1111 II 

( 2. 12c) 

and X~ are defined as in (2.11). 
'-' 

The sum over the index t however, in ( 2" 12) can be rev:rritten 

in form that is relative to the sum over the index set I. This is 

to over partitions of z ) into four d oint sub-

sets: L, where I 'F '\ J L and J K .L f' 



and L have o elements, K has V~o elements, while L has C~o elements; 

O~o~V (without loss of generality it has been assumed that V~C): 

D (~)-1 ~ (-l)o 
abed o=O IC:Z(N) 

( 2. 13) 

The factor (-1) 0 is the parity of the permutation that brings the parti~ 

tion { K,L,L} to the form {K,L,K,L}. 

TheN-electron transition matrix expression (2.13) leads to the 

expressions for the overlaps and norms of the product wavefunctions in 

terms of then-electron transition matrices (O~n~V): 

( 2. 14a) 

( 2. 14b) 

Expressions for the n~electron transition matrices between two N-

N N electron product wavefunctions ~ab and ~cd can be obtained from (2.13) 

by contracting over the pairs of coordinates { (x. ,x~) I i=n+l,n+2, ••• ,N} 
1 1. 

and multiplying by [~). This process is somewhat awkward, however, 

because it involves a sum over all distributions of the index set Z(n) 

{l,Z, ••• ,n} among the subsets K, K, L, and However, if the coordi~ 

nates x with indices in Z(n) are summed over all distributions between 

v /lie d v ila' ~b an similarly for the corresponding xp coordinates between ilc' 



c 
~d' and then the coordinates are summed over all possible dis-· 

tributions in a manner similar to ( 2. 13), an expression for the n-~ 

electron transition matrix is emerges: 

9 • • 

min(n, V) 
~ 

r S dZdY 
'( 00) 

min(V~v>, 

~ 
e::::O 

( 2" 15a) 

·y, , Z)lAt 
' ; x.-' + 1' " · • • x n' J n 

min ( v , v' ) ; v > max ( v , v ' ) ; r +e ( 2' 15b) 

The x and x' coordinates are antisyrmnetrized with r and A , and the 
n 

integrations with respect to dZ and dY are over e~m and e+m dummy sets 

of electrcn coordinates respectively unless either e~m or e+m is zero. 

The special case of strict or h '1 • t 20 b h ort .ogona.1.1. y etween t .e 

two components of an anti t wavefunction is worth men.-· 

tioning. The usual notion of can be generalized for any 

of wavefunctions v and by s that v and c are 011C11 

fo c.onven:i.ence if 

0 (2o 16) 

This is equivalent to the usual notion of or onal 

'\vavefunc tions 0 onal if the 



(2.17a) 

has a norm of 0. This is equivalent to 

0 (2.17b) 

The probability statement implied by (2.17) is~ of course~ stronger 

than (2.16). (2.17) is equivalent to saying that the probability of 

finding any electron of the V electrons described by ~V and any electron 
a 

of the C electrons described by ~~ in the same 1~electron state or orbit 

is zero. Classically, this is equivalent to saying that the distribu~ 

tion functions describing the two systems have no overlap in phase 

space. 

The expression for the n-electron transition matrix between the 

N N states ~ab and ~cd is much simpler, however~ when the pairs of wavefunc~ 

tions ~~~ ~~and~~.~~ are strictly orthogonal. (2.15) reduces to a 

single sum: 

min(n,V) (] 
V

n 
Dabcd ~ 

V""max( 0, n-C) 
( 2. 18a) 

A lr rv ( X 1 ~ •••• X ; X lp • n ac v 

For the strictly orthogonal ~:and ~~. the n-electron density matrix for 

N 
<tab becomes: 
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min(n, V) ( ] 
~ ~ ( 2. 18b) 

V""max(O,n~C) 

2.1. 4 

essions for n~electron transition matrices involving deter~ 

minant wavefunctions can be obtained from the Laplace expansion of the 

determinant of a matrix, and contrac over the (N~n) unused coordi-

nates. It is not ahvays possible or desirable to assume the 1-electron 

wavefunctions are orthonormal, so table ( 2. 2) contains definitions for 

components used in these expressions involving the overlap integrals 

between l~electron wavefunctions. Table (2.3) contains the general 

expressions for the n~electron transition and density matrices. 

Except for some notational changes, the expressions in table (2. 

are identical to those of Lowdin 19 • Equation (2.29) shows explic 

that all of the n-electron density matrices for a single Slater deter-

minant are uniquely determined by the 1-electron d matrix. The 

N-dimensional subspace of the 1-electron Hilbert space thus all 

cal properties of a determinant wavefunction can be obtained from this 

operator. 

For two arbitrary sets of N I.-electron wavefunctions A and B, 

independent unitary linear transformations can be performed on the sets 

A and B so that any function of th_e t:ransforrned set A_& wfll be 



Table (2. 2) 

!-Electron Wavefunction Expressions 

Overlap Matrix Functions 

overlap matrix function for 

O(AB)ij 

O(A) 

il~ and t~: 
(" A* B J dx¢. (x)¢. (x) 

(oo) ~ J 

O(AA) 

(N-r)-ranked submatrices of O(AB): 

I,J 

O(A-B-) 
I I 

{il< ••• <ir}. {jl< ••• <jr}; r­
element ordered subsets of 
{1,2, ••• ,N} 

the sub matrix of O(AB) ob~ 

tained by deleting the rows 
labeled by the set I, and the 
columns labeled by J 

{N~r)-ranked normalized co~minors of O(AB): 

m(AyBj) 

d(AyBj) 

S(I,J) 

m(AB) 

d(AB) "" 0: 

r-ranked subkernels: 

YB ~I (x;x') 

(-l)S(I,J)d(L-B-)/~d(A)d(B) 
I J 

i •• +i +j 1+ ••• +j p p 

d(AB) ~ det!O(AB) I 

Primitive Kernels 

N 
- B( A* ( ~ ( -1 ~ ¢. x)¢. x )O AB) .. 

i,j=l ~ J J~ 

YAA(x;x') 

(2.19) 

( 2. 20a) 

(2.20b) 

(2.2la) 

(2.2lb) 

(2.2lc) 

(2.22a) 

( 2. 22b) 

(2.23) 



Table ( 2. 3) 

Density Matrix Expressions for Determinant Wavefunctions 

overlaps: 

I <IN I illN) 
\ A B 

norms: 

Inner Products 

d(AB) 

d(A) 

n~Electron Transition l1atrices 

n~electron sub determinant form: 

primitive kernel determinant from: 

( 2. 24) 

(2.25) 

(2.26b) 

(2.26c) 

I 
det I GB (x;x') I ( 2. 27a) 

(N)J'{:Z(N) JAI 

[ GB A (X; X' ) ] .. 
. J I lJ 

non~zero overlap form (dAB~O): 

~A (xl' ••• 

[ GB A (X; X R ) ] 

n~electron density matrix: 

f1<x 1, ••• ,x ;x'
1

, ••• ,x') 
n n 

(x;x')] .. 
1] 

m(AyBj') /n! 

YB A (x. ;x~) 
JL'1.l l J 

) 

(2.27b) 

(2.28a) 

(2.28b) 

(2.29a) 

(2.29b) 



orthogonal to all but at most o~e of the functions of the transformed 

set B'. This follows from the fact that the overlap matrix O(AB) can 

always be written in polar form, thus there exists a unitary transforma~ 

tion that can be applied to the set A so that O(A'B) is Hermitian sym~ 

metric, and another unitary transformation that can be applied to both 

A' and B so that O(A"B') diagonal. Without loss of generality then. the 

2N !~electron wavefunctions of the sets A and B can be assumed to 

satisfy the orthogonality relations: 

A 
6 .. 11 !6ill l.J 

i>r 

( 2. 30a) 

( 2. 30b) 

( 2. 1 Oc) 

where r is a non-negative integer and (N~r) is the rank of the matrix 

O(AB). 

The expressions for the n-electron transition matrices between two 

determinant wavefunctions ~! and ~~ are of course simplified when the 

sets A and Bare orthonormal with respect to each other. Unfortunately, 

the linear transformations required to bring two arbitrary sets of N 1~ 

electron wavefunctions to this form is not in general uniquely or simply 

defined. An exceptional case occurs when the overlap matrix O(AB) is 

non-singular; then-electron transition matrices are completely deter-

mined by the primitive kernel YBA(x defined by equation (2.22a) of 

table (2.2). In this case the orthonormalizing transformation is 



-1 
generated by the matrix O(AB) applied to the set A as in equation 

(2.4). If A=B, O(A) is the Gram matrix, and is a positive definite Her~ 

mitian symmetric matrix for non-vanishing ~~. and the set of functions A 

~ 1;2 
is orthonormalized by the matrix O(A) • 

N N 
The n~electron transition matrices between ~A and ~B for sets A and 

B that satisfy (2.30) are conveniently expressed in terms of the r~ 

r r ( electron transition matrices between ~B' and ~A' and the n-r)~electron 

between 
n~r 

and 
n~r 

where A' A A B' transition matrices ~B" <I A" "' {¢1' • • • •¢r}' = 

{ B B} A" {91;+1' •••• ¢t}. and B" B B 
This is the ¢1·····¢r' "" "' {¢r+l' • • '•¢N} • 

strict orthogonality case of the general expression for the n-electron 

transition matrix between N~electron wavefunctions construe ted antisym~ 

metrizing the product of a r-electron and an (N~r)-electron wavefunc~ 

tion, equation (2.18b). 

(2.31) 

B'A' and ~;;~ .. are conveniently calculated using expressions from table 

If the sets A and B of N l~electron >vavefunctions are taken from a 

single set of orthonormal l~electron wavefunctions, th.e orthogonal 

conditions (2.30) may be satisfied after one of the sets A or B is per~ 

muted so that the l~electron wavefunctions common to A and B will have 

the same index. Only relative permutations need be considered, if the 



identical permutation is applied to both sets, the n~electron transition 

matrices are unaffected. If s(A,B)fSN is any permutation that accom~ 

plishes the desired change of relative orderings, the n-electron transi~ 

tion matrices are multiplied by (-1)S(A,B) • the parity of the relative 

permutation. Explicit expressions for the 1 and 2-electron transition 

matrices become: 

( -1) S (A, B) lj 2 r 5 
LAB 

+ ( same expression with 1~2; 2~1 ) 1 
J 

(2.32) 

(2.33) 



2.2 Slater-Condon The~ 

A method of deducing the occurrence and approximate energy inter~ 

vals of groups of atomic energy levels was introduced by Slater
1 

in 

1929, and was expanded a few years later into a comprehensive theory of 

electronic structure and spectra in the classic text by Condon and 

Shortley2 • Cowan3 uses the phrase "Slater~Condon theory11 to describe 

Slater's method of approximating groups of atomic states with linear 

combinations from a finite set of determinant wavefunctions. Briefly, 

the theory has three main features: 

( 1) A model N-electron atomic Hamiltonian is chosen, and the matrix 

representation of the Hamiltonian restricted to a subspace spanned 

by determinant wavefunctions is analyzed for its eigenvalues and 

eigenvectors. 

(2) The l~electron wavefunctions used to construct the determinant 

wavefunctions have definite rotation symmetry, and the determinant 

wavefunctions are chosen so that the subspace spanned is invariant 

with respect to simultaneous identical rotations of all N elec~ 

trons. 

(3) Because of the rotational symmetry of the atomic HamHton:Lan, a 

major task of the theory is to reduce the subspace with respect to 

irreducible representations of the quantum~Amechanical rotation 

group in order remove complexity of the Hamiltonian matrix 

from the associated degeneracies. 

Several features of Slater~Condon theory are highlighted in this 



section. Configurations. the subspaces of determinant wavefunctions are 

discussed in (2.2.1). The empirical form of Slater~Condon theory is 

distinguished from the ab-initio form of the theory in (2.2.2), while 

the atomic Hamiltonians used in the theory are discussed in (2.2.3). 

Spherical tensor operators and matrix elements are developed in (2.2.4). 

and effective operators unit tensor expansions are discussed in (2.2.5). 

The construction of basis vectors that carry irreducible representations 

of SU(2) and their matrix elements is sketched in (2.2.6). but some 

additional details concerning the actual construction of Hamiltonian 

matrices and matrix elements of other operators is presented in chapter 

III within the context of Cowanus computer codes. 

1·1·1 Central Field Model 

A common heuristic used to introduce Slater-Condon theory is the 

central field model. A separable N-electron Hamiltonian with a spheri-

cally symmetric local potential is used to represent the time-averaged 

interaction of each electron with the nucleus and the other N-1 elec~ 

trons. The traditional form is non-relativistic for optical spectra 

analysis, as the wavefunctions of the relevant energy levels are assumed 

to differ significantly only in regions far from the nucleus. The cen-

tral field Hamitonian takes the form (energy is measured in Rydbergs 

throughout this chapter): 

H 
c 

N 2 
~ pi + U (ri) 

i=l c 
(2.34) 

The eigenfunctions of He are products of the eigenfunctions of the 

associated 1-electron Hamiltonian. The particular eigenfunctions of 



interest are the the determinants comprised of N distinct 1-electron 

eigenfunctions 

(2.35a) 

( 2. 35b) 

where the radial wavefunctions are labeled in analogy to the eigenfunc-

tions of the non~relativistic hydrogen atom (this labeling, however, 

refers to an energy spectrum unique to the coulomb potential. 21 ) 

The symmetry group of rotations for a non~relativistic, central~ 

field 1-electron eigenfunction is SU(2)x0+(3), with representations of 

s r + 1;2 s ~ r the form: (u ,u )~ SU(2)xO (3)~ D (u )®D (u ) • This representation 

corresponds to independent rotations with respect to the spin and the 

space coordinates, and the rotations of a 1-electron central field 

wavefunction are given by: 

( 2. 36) 

lfz s 0 r D , (u )D , (u )¢ 11 , p (x) p p m m n 11 p 

A 1-electron central field wavefunction also has reflection symmetry 

with a sign of (-1)0 under reflections. In contrast, relativistic 1·-

electron central field wavefunctions have the rotation s~umetry group 

SU(2), corresponding to simultaneous identical rotations of: the space 

and spin coordinates, and an even or odd reflection symmetry for a given 

representation u~SU(2) ~ ~(u). 



All central field eigenfunctions containing the same set of N 1-

electron radial wavefunctions are degenerate. All determinant central 

field eigenfunctions constructed with the same set of radial wavefunc~ 

tions are said to belong to a configuration ~ denoted by 

wl Wz w 
~=(n 1 0 1 ,n

2
t

2 
, ••• , n 0 P). where m. is the number of R 11 (r) radial 

q q 1 ni vi 

functions and p is the number of distinct radial wavefunctions in the 

set~ (~~+ ••• +.wq=N). A determinant wavefunction must be composed of 

N linearly independent !~electron wavefunctions, so ~ cannot be 

than 40 1+2, the number of !~electron eigenfunctions with a R ( 
nioi 

radial wavefunction. 

The determinant wavefunctions belonging to a single configuration 

span the zero-order degenerate manifolds used in central field perturba-

tion theory. A given member of a configuration ~(Z) corresponds to the 

choices for the sets (z 1.z 2 ••••• zq) of (m,p) quantum numbers (Za 

{m~.p~l~=l,2, ••• ,wa}}. The number of determinants f(~) in a given con~ 

figuration is equal to the number of possibilities for the sets 

f(Q) (2.37) 

The relative phases of the determinants are determined by the ord~ 

convention for the !-electron wavefunctions. The determinant 

wavefunction ~~{Z) obtained from ~(Z) = {¢~(Z) I i=l, •••• N}. has a 

phase determined by the one to one correspondence of the index i to 

(nO 
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The semi~empirical form of Slater~Condon theory assumes that radial 

wavefunctions with the same "0" quantum number are orthonormal, but 

their specific form is arbitrary. The Hamiltonian matrix is resolved 

into a linear combination of Hermitian symmetric matrices with coeffi-

cients determined by integrals involving the radial wavefunctions. The 

Hamiltonian is resolved into a sum of spherical tensor operators, effec~ 

tively separating the action of the Hamiltonian on the angle~spin coor-

dinates from the radial coordinates of each electron. 

The coefficients involving the radial wavefunctions are treated as 

arbitrary parameters. A set of atomic energy levels is classified 

according to one or more configurations if values of these parameters 

exist such that the eigenvalues of the Hamiltonian matrix approximate 

the experimental levels with reasonable accuarcy Some restrictions are 

usually place on the ranges of acceptable values for the parameters as 

an additional test of the validity of a classification. 

The ab~_:;p.iti~ theory specifies a method for obtaining the radial 

wavefunctions. The Hamiltonian matrix is cast in the same form as in 

the semi~empirical theory, but the parameters are now calculated from 

the radial wavefunctions. In general, the parameters differ 

significantly from the optimal values obtained in the semi-empirical 

theory, even when stringent criteria are applied to the ranges of 

acceptable values. Classification of experimental levels belonging to 

even a single configuration is difficu.lt based on pr edict ions 

alone, thus susceptable to error. 



For example, the discrepancy between the parameters obtained by 

least squares fitting to a set of observed levels and parameters calcu~ 

lated from Hartree-Fock radial wavefunctions is well known; the 

Hartree~Fock parameters for the electron~electron Coulomb interaction 

22 tend to be larger than the least squares values • This discrepancy has 

been inv~stigated qualitatively by formally applying second order per­

turbation theory to the central field mode1 23• 24• 25 , and quantitatively 

by applying many-body perturbation techniques to zero-order self­

consistent-field calculations 26 • 27 • 

A reliable ab~initio form of Slater-Condon theory is highly desir-

able because it is much simpler than a separate variational calculations 

for some of the lowest lying energy levels for each irreducible 

representation of the atomic symmetry group. If the successes and limi-

tations of the semi-empirical theory are not simply fortuitous, then the 

significance of the semi-empirical parameters may come from the 

existence of a more general form of approximate atomic wavefunctions 

than the central field determinant wavefunctions consistent with the 

same parameterization. Chapter IV pursues this idea in order to gain 

insight into some possible strategies for analyzing atomic spectra with 

predictions. 

The parameterization of the Hamitonian matrix for a set of one or 

more configurations will depend on the Hamiltonian operator chosen to 

model the atom or ion. For the semi-empirical form of Slater-Condon 

theory, the Hamiltonian operator is usually obtained by selecting vari-



ous terms from the Pauli approximation 28 to the Breit equation that are 

deemed important to the relative level structure. The choice of only a 

mildly relativistic Hamiltonian, even in the case of heavy atoms, is 

justified by the fact that the relative energy separations are deter-

mined only by the radial wavefunctions that tend to be localized in 

regions far from the nucleus. Then the parameterization of the Hamil-

tonian matrix tends to be effectively the same for a fully relativistic 

central field model and the non~relativistic Pauli approximation. 

The terms of the Pauli approximation to the Breit equation are 

given in table (2.4). The important feature of the Pauli Hamiltonian is 

its composition in terms of only 1 and 2~electron operators. Effective 

operators that act on the coordinates of 3 or more electrons are some~ 

times extracted from the second order perturbations of the central 

field, 23 • 24 but basically the parameterization of the Hamiltonian matrix 

is determined from the 1 and 2-electron transition arrays for the deter~ 

minants involved. 

A common approximation is the non-relativistic Hamiltonian H with 
e 

an effective spin~orbit interaction: 

H 
e 

H 
0 

e,( r) 

+ 
N -7' -9 
:i t;(r.) Q .•s. 

i""l :L :L :L 

~dUe (r) 

2r dr 

( 2 e 40a) 

( 2. 40b) 

The operator e,(r) is a 1-electron radial operator characterizing the 

interaction of the spin magnetic moment of the electron in a central 

field derived from U (r). The spin-orbit operator of H leads to the e e 

same parameterization of the Hamiltonian matrix as the operator 
0 

of 



H 

H 
so 

H • so 

H 
m 

Table (2. 4) 

Atomic Hamiltonian-Pauli Approximation 28 

HO + H + H • + H • + H + Hd + H • so so ss m oo 

N 
Zt:f,2~t 

k=l k 

N 
~2 ;a 

k#j=l 

~3 

kjrkj 

(2.38) 

(2.39a) 

( 2. 39b) 

(2.39c) 

(2.39d) 

(2.39e) 

(2.39£) 

(2.39g) 

The term enclosed by [ ]'is to be evaluated by integrating 
the desired matrix element over all space except for a 
sphere of radius ~ centered about the singularity, and then 
taking the limit as ~ -~ Q. 



equation (2.39b) if H is spherically averaged over the coordinates of so 

one of the two electrons (see section 2.3). 

2.2.4 Spherical Tensor OEerators and Reduced Matrix Elements 

For a sufficiently well behaved n~electron operator ~ 9 say one 

with a range and a domain that are invariant under independent rotations 

of the n sets of electronic coordinates, an operator representation of 

sr sr tsr tsr U(u 1,u 1) ... U(u ,u )q U (u
1

,u
1
) ••• u (u ,u ) 

n n n n n 

This representation is reducible to families of operators that carry 

irreducible representations of [0+(3)x0+(3)]n, thus q can be expressed 
n 

as a sum over members of operator families: 

{)<1kl. • .)<nkn} 
qn 

m m 
~ ~ 

)< 1'"'0 k 1 =0 

)<1 

~ 

IT 1 "'-1< 1 

m m {)< 1k 1 ••• )< k } 
~ ~ n n ( 1 ) :Z. ;;:: q • ••• ,n 

)< "'0 k =0 n 
n n 

kl )<n k n 
1 

~ ~ ~ n! ~ 
q "'~k IT "'~)< qn =-k StS 

1 1 n n n ll 

l 
+ • • • I 

J 

( 2. 41a) 

(2.41b) 



The sum over permutations stS guarantees the permutation symmetry of 
n 

. . { {)<k}} { p {)<k}} qn• and only a finite number of operator fam1l1es t(nq) , t (nq) , 

{t"{)<k}}, etc. can occur in the sum (for an atomic Hamiltonian, this 
(nq) 

number is less than or equal to the number of times the identity 

representation occurs in the reduction of 0+(3)C [0+(3)xo+(3)]n). A 

family of operators {t~~~?} transforms under rotations via 

)<1 kl 

~ ~ (2.4lc) 

"i "'~)< 1 q i =~k 1 

Examples of the resolution of the operators taken from the Pauli 

Hamiltonian are given by Judd 29 • The spherical symmetry of atoms 

implies that the spherical tensor components ~k} of the atomic Iw.mil~ 

tonian are invariant with respect to o+(3)C [0+(3)x0+(3)]n. The tensor 

operators that comprise He of ( 2. 40a) take the forms q~0 ( l~body 
0000 11 scalar), q
2 

(2~body scalar), Q
1 

(from the spin~orbit operator), and 

q0
2kOk (from the 1/r .. interaction). The resolution of the coulomb 

1J 

interaction between electrons, 1/r 12 , is given by 

(2.42a) 

r 
l 

(2.42b) 
rz<r1 



(2.42c) 

where the Dk ,(¢,9,+) is the parameterization of the representation Dk 
qq 

30 of SU(2) in terms of the Euler angles • 

Matrix Elements and jJ1e Wigner-Eckart Theorem 

The Wigner-Eckart theorem31 describes the relationships among the 

matrix elements of a families of operators and groups of state vectors 

that all carry irreducible unitary representations of a finite or com­

pact Lie group. For a simply reducible 32 group such as SU(2), this can 

be illustrated with the natrix elements the 1-electron spherical tensor 

k operator {t I q=-k, ••• ,k} between the orthonormal 1-electron wavefunc­
q 

tions {¢a'j'm' I m' ' J. ' } and { n.. I m"- J." J. "} , ••• , - >"a"j"m" -- , ••• , • All pos-

sible matrix elements are determined up to a constant of proportionality 

(a' j 'II t kll a" j ") : 

(2.43) 

Where the 3-j symbols are related to the transformations that reduce 

· f h Dj 1(u)""Dj 2 (u) LSU(2)Z9, 30• 32 representat1ons o t e type u ~- u, : 

j 1 j2 
j 1+j 2 j3 j3 

D , (u)D 11 (u) ~ ~ i (2j3+l) 
m1m1 m2m2 j3=1j1-j2l m3"'-j3 ' m3=-j 3 

r. 
j 31 

p 

j 31 j2 I. I J 1 I J 1 j2 . * 
I , m' I 

J3 
m' I ml D , (u) 

lm1 2 3J lml m2 3J m3m3 

1-Electron Spherical Tensor P2erators 
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By way of proving (2.43), the matrix element on the left~hand~side 

k can be regarded as the trace of the operator t with one of the 1~ q 

electron operators "f 11 ,(a"j'';a'j') that carry the representation mm 

~ {u)0Dj (u) "-- uf.SU(2) (using the equivalence relationship ~ '* (u) 
mlm2 

"fm"m' (a" j" ;a, j,) (2.45a) 

-f:m''m.(a"J'":a'J'') "" I"' ><,~, I 
• • P a" j "m" >"a' j 'm' (2.45b) 

(2.45c) 

The application of (2.44) to (2.45abc) allows the operators 

i" ,(a"j'';a'j') to be related by a real orthogonal transformation to a mm 

set of 1-electron tensor operators that carry irreducible representa~ 

tions of SU(2): 

( 2. 46a) 



( 2. 46b) 

[JJ l;z 
j' 

' ~m 

where [x,y, ••• ,z] is an abbreviation for [(2x+1),(2y+1), ••• ,(2z+1)]. 

The adjoint 1-electron operators are given by 

'+M ~J ( H·n , '') 
w_M a J ;a J 

and in addition to (2.46ab), the relationships 

"'-J ( , • ' I! •II) wM a J ;a J 

j, 

~m 

[JJ 1;2 

' 

(2.47a} 

( 2. 4 7b) 

(2.48a) 

(2.48b) 

are also useful. Comparing 1'fJith (2.43), (2J+l)lj2 is the reduced matrix 

element <a'j'llw~(a'r;a"j")ila"j"> as (2.48b) and the symmetry of the 

3~j 29 • 30 symbols gives: 

<ffi I,...J( •·•, """)lm r , · • ' ·wM a J ,a J r 11 • n n> aJm aJm 

1; . ' # 

[ J ] 2 ( -1) J -m (2.49) 



The matrix element on the left~hand~side of (2.43) can now be 

expressed as trace involving t~ and the unit tensor operator w~. Com~ 

bining equations (2. 49a), and ( 2. 46a) • and exploiting the symmetry of 

the 3~j symbols: 

k 
<¢ ,., ,It I¢""" n> a J m q a J m ~ [JJ l;z 

J,M 

The trace is invariant with respect to identical rotations of both 

(2.50) 

operators. The only non~vanishing contributions to (2.50) take the form 

(applying (2.44) for the special case of ]
3

=0): 

k 
6 6 :i 

J,k M,q q'=-k 

tt [t~,w~T(a'j' ;a"j") J 
( 2k+l) 

Equation (2. 43) is established provided the reduced matrix element 

<a'j'lltklla"j"> is identified as: 

tt [ t ~-.w~r (a' J_~;a" j'') J 
( 2k+l) 

J The spherical unit tensor wM is easily generalized to non~ 

(2.51) 

(2.52) 

relativistic central field electrons with SU(2)X0+(3) symmetry. The 1~ 

electron transition operator i , , 11 11 (n' ¢"' ;n"O") • obtained from a pair p m p m 

of N~electron central field determinant wavefrrnctions can be expanded in 

families of operators tfk ( n' 0' ·n" 11 ") : 
ITq • V 

~ 

"t 11", ,(n"O";n'¢') 
p.mpm 

(2.53a) 



i ( no"o 'X') rllm"r'm' n ,n y 

The matrix elements of a l~electron operator J<k become: 
rvq 

)< 

' ) 0' 
( -1) 0 -m 1 , 

j-m 

k 0 111 
q m"l <n'O'IIIklln"O"> 

' ' 

(2.53b) 

( 2. 54a) 

(2.54b) 

The actions of the operators ~~(n'O';n"O") on the electronic 

coordinates can be factored into spin and space parts via 

where uk(n' ~' ;n" 0 ") is an integral operator with the kernel 
q 

') 

Pn' ~ 'n" 0 n(r ;r') 

(2.55) 

( 2. 56b) 



~~ 0 "(9,¢ ;9# ,Ill') 
0' 0" 0 Q ~ 0 "~q [ k] I; 2 

"" i i (~1) 

m' ""- 0, m""'-0 11 

( 2. 56c) 

r o- 0" kl 
O"+m" I I YO'm'(9,¢) 0"-m"( 9 '•¢') lm' m" -q) 

(-1) 

( 2. 56d) 

(2.56e) 

where P
0
(e·e') is a Legendre polynomial and 

(2.57a) 

* lj ·Hn 11 

X , (6jX "(&') (-1) 2 T 
fl ~ 

I 
r1 ol 
I I 

\f2 lo 1J 
(2.57b) 

(o -11 
"' I I 

lo OJ 
(2.57c) 

r1 0 1 
"' I I 

lo -1 J 
(2.57d) 

ro ol 
I I 
l1 OJ 

(2.57e) 

S is a spherical tensor component of the spin angular momentum q 

operator The identification of the ~ operators with the identity 

"' 
and spin angular momentum operators for a single electron reveals that 
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~ 

the operators "t 11 11 , ,(n"O";n'O') m ppm 
0 "+0' symmetry given by ( ~1) • 

~-Electron ~erical Tensor operators 

Equation (2.43) is easily generalized to n~electron operators. A 

J1.,.J 
matrix element of a tensor operator tM n is expressable in terms of 

1" • .Mn 

a trace with 1-elec tron operators 4: 11 , (n' 0' ;n" 0 "): 
m m 

n j:-m~ 
<{a'r}llt{J}II{a"j"}> n (~1) 1 1 

i=1 

( 2. 58a) 

(2.58b) 

( 2. 58c) 

(2.58d) 



Matrix elements of n~electron tensor operators t {)<q} between pro~ 
(nq) 

ducts of 1-electron central field wavefunctions can be expressed simi-

larly: 

<{n'O'}IIt{)<k}ll{n"O"}> h 
i=1 

<{n' 0 '}II t {)<k}ll {n" 0 "}> 

( 1\' 

I vi 

1-m: 
I 1. 
~ 

If the operator t{)<k} posesses a definite inversion symmetry with 
(nq) 

(2.59a) 

k 

q 

0 ·.·l 1.1 
m'; I 

1.) 

(2.59b) 

0 "+ 0 ~ 
respect to the ith electron's coordinates, it must be (-1) i 1 or the 

matrix element vanishes. 

2.2.5 Unit Tensor~, Effective Operator~, and Tensor Algebr? 

The application of the Wigner-Eckart theorem to the matrix elements 

of a family of operators {t~~~~} as in (2.59ab) demonstrates that the 

matrix elements of any equivalent family of operators {t'~~~?} (one that 

carries the same irreducible representation of [0+(3)x0+(3)]n) are sim-

ply related by the ratios of the reduced matrix elements. This suggests 

that the matrix elements of n-body spherical tensor operators between 

atomic wavefunctions can be reduced to calculating matrix elements for 

certain "unit" tensor families of operators and reduced matrix elements 

as needed. Equivalently, on a given manifold spanned by products of 1-



electron central field wavefunctions, the n~body spherical tensor opera-

tors can be replaced by effective operators~sums over unit tensors mul-

tiplied by parameterized reduced matrix elements. 

For the purpose of calculating matrix elements of n~electron opera~ 

tors on the subspace X, the linear span of all N~electron determinant 

wavefunctions constructed from a setS= {¢~(x) I ~=l, ••• ,d} of ortho~ 

normal l~electron wavfunctions, the n-electron operators can be expanded 

in terms of l~electron integral operators {i~p I ~.P=l, ••• ,d}: 

d d N 
- ~n 
;;:: "t b(il' ••• ,i ) 

1 . a n 
""11 < • • .<in 

(2.60a) 

(2.60b) 

~n 

"tab ( 1 • ••. 'n) i~ r.< (l) ••• i~ p (n) 
P'l n n 

(2.60c) 

i~p(i) is the integral operator with the kernel 

(2.60d) 

( ~n N~l 
l"tab(l, ••• ,n)i• J(xl' ... ,xN) ¢~/x 1 ) ••• ¢~n(xn) (2.60e) 

Sdxl ••• dx~¢~ 1 (xl) •• ·¢~n (x~)i'N (xl • ••• ,x~ ,xn+l' ••• ,xN) 

On the linear span of ~~ possible product wavefunctions con-

~n 

structed from S, the operators 'tab are an orthonormal basis for all n-

body operators that map this linear span into itself. The scalar 



product is the trace over all n~particle product wavefunctions con~ 

s true ted from S • 

(2o61) 

and an operator <lu becomes: 

d d 
t [ int J ~ ~ 

~n (2.62) qn _;r abqn "tab 
c( 1 o .. c(n pl 0 • 0 Pn 

On an N-particle space however, the n-body operators for n<N are linear 

combinations of the N-particle operators. For example 

(2.63) 

where 

""N~n 
I ( n+ 1, • o. • N) I(n+1).o.I(N) (2.64a) 

and the 1-particle identity operator I(i) is an integral operator with 

the kernel: 

I(x.;x~) 
l 1. 

(2.64b) 

The n-body operators of interest are invar:i.ant with respect to per~ 

mutations of the particle coordinates. A symmetric n~body operator ~ 

acting on the N~particle subspace can be expressed in terms of the sym-

n • metric n-body operators Eab' 

d d 



:i 
st-S 

n 
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( 2. 65b) 

(2.65c) 

1 The factor --1 compensates for overcounting, and the sum over st-S indi-
n. n 

cates the symmetrization with respect to to all permutations of the 

arguments. 

n The operators Eab' even for n~N, are not linearly independent. To 

examine some of their properties, first notice that the 1-electron 

1 
operators E~p = Eab' a ~ {~} and b = {p}, have the commutation relations 

(2.66) 

The E~pps are therefore a representation of the Lie algebra of the uni­

tary group U(d) corresponding to unitary transformations of the set s. 

The number operator N defined by 

( 2. 6 7) 

is a scalar invariant with respect to unitary transformations of the set 

S and commutes with all the E~p p s. 

n The operators Eab are expressable as polynomials in the E~pps. 

This can be seen from the recursive relationship 

(2.68) 



where {b-pi+Pn} indicates the subset of S obtained by replacing pi with 

Pn in the set b. For example, when n=2: 

(2.69) 

Equation (2.68) also implies the contraction property 

( 2. 70) 

Restricted Operators 

The properties exhibited in equations (2.66) through (2.70) are 

independent of the permutation symmetry of the space acted on by the n-

body operators. Additional properties result from the specialization to 

the antisymmetric case, as an n-electron operator has non-vanishing 

matrix elements only between determinant wavefunctions that differ by n 

or less 1-electron wavefunctions. To be explicit • if a(:A(:S, b (:B(:S, 

and {b-aOb}flA = ¢, then apart from a factor ±1• E~b transforms ~: into 

N 
~B. A permutation applied to either of the sets a or b of an operator 

E~b is equivalent to a permutation applied to ~: or ~~ respectively. 

The n-electron operators restricted to a subspace spanned by all 

determinant wavefunctions constructed from the set S can be expressed in 

the form (a u-n is used here to indicate that and operator has been res-

tricted to a subspace of antisymmetrized N-electron wavefunctions): 

d d 
n (2.7la) 

(2. 7lb) 
1'4:( oee<c( 

n 



(2.7lc) 

This representation of the n-electron operator ~ is the projection of 

~ onto a space of operators that map the subspace X into itself. How~ 

ever, if a density matrix description of the basis vectors is used, the 

representation of~ in the form of (2.71) is implicit in the calcula~ 

tion of matrix elements. In addition to the commutation relations 

(2.66) the restricted l~electron operators, {E~p I ~.P=1, ••• ,d}, also 

satisfy 

(2.72) 

reflecting the projection of the generators onto the antisymmetric sub~ 

space carrying the representation of the Lie algebra. 

Configuration~ 

In general, atomic wavefunctions are not all possible determinants 

constructed from a single set S, but are grouped into configurations. A 

configuration Q ~ {~·~····•tup} consists of all determinant wavefun­

tions constructed by selecting uu. elements (w. >0) from each of the sets 
1 1 

S. ={¢.~I ~=1, ••• ,d.} of orthonormal 1-electron wavefunctions where 
1 1u. 1 

-n The operators Eab factor into com-

ponents corresponding to each set Si' and the operator expansion (2.71) 

is revised to include all partitions of n consistent with .Q.: 



\)1+ •• ·+\ =n d d 

~ ~ ~ ~ (2.73) 

Restricted to 

where each N. 
l 

0~\)i~~ 19:(1. ••• <d_ 1 n, 
1"'Pl,l< ••• <Pn,l 

d 
:i 

19:(1 < ••• <c( ,p n ,p 

a single configuration, 

has the eigenvalue ~. 

the number operators N. 
l 

- \)i l 
E I 
a.b .J l 1. 

replace 

Inter-configuration operators do 

N 

not factor in the form of (2.73), and must be treated as special cases. 

The integral operator expansions are easily adapted to spherical 

tensor operators. An operator o{J}• constructed from a family of opera~ 
n 

D
J 1., J2 Jn 

tors that carries the irreducible representation "" D ® ••• D of 

[SU(2)]n, where 

Jl J 
J 1" • • Jn J 1" •• J 

o{J} 
n 

~ ~ c t n 
n 

M =-J M =-J Hl. • .Mn Ml. • .Mn 
1 1 n n 

(2.74a) 

has a spherical unit tensor expansion 

(2.74b) 

3
1•••

3
n ~Jl ••• Jn({ '''}·{ 11·11}) 

c wM ,1 aJ ,aJ 
Ml ••• Mn 1••Hn 

where the sums -S ;;:: are over sets of !-electron wavefunctions 
{a'j'} {a"j''} 

Sa' "'{¢a'j'm' I m' ', ••• ,j'} etc. needed to span the subspace x. 

Note that o {J} · t '1 · · t d · f 1 n 1s no necessar1 y 1nvar1.an un er permutat1.ons o t1e 
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electronic coordinates. 

If o {J} has rotational or point group symmetry. the sum over the 
n 

operators w~~? takes the form 

c {J}w{J} ({a' j'} ·{a" j"}) 
01) (M) • 

(2.75) 

S: <C(Q.){j';j"}JMI{j'}(m'){j''}(m")> 'fn(m')(m"({a'j'};{a"j 11
}) 

(m") (:{j "} 

where 'f(m')(m")({a'j'};{a"j''}) is then-electron analog of (2.45a): 

j'}; {a" j''}) 
n 

n 
i=l 

and J = 0 in case of rotational symmetry. The coefficients 

<C(Q.){j';j"}JHI{j'}(m'){j 11 }(m11 )> are the matrix elements of a unitary 

{j'·j''} ji 
transformation C that reduces the representation D • = D 8 

j 1 j' j~ 2 
D @ ••• :®D n:® D of [SU(2)] n carried by the (m') (m") ({a'j'};{a"j''}) 

operators to block diagonal form with blocks of irreducible representa-

tions DJ. The transformation C vlill generally require a parameter or 

parameters 9 to distinguish between multiple occurrences of an irreduci-

J {.'. •II} 
ble representations D in the reduction of D J •3 • 

If n>l, there can be several possible reductions of the representa-

tion D{j' ;j"} of [SU(2)] 2n into irreducible representations DJ. AB a 

result there are several possibilities for the decomposition of then-

electron operators 'f(m')(m11 )({a'j'};{a"j''}) into irreducible operator 

representations of SU(2). For example the two decompositions: 



..;::'n ( { # • P } { II • II } ) 
'-(m')(m") a J ; a J (2.77a) 

"t(m') (m") ({a'j'};{a"j''}) (2. 77b) 

' ~c '<C' (B') {j' ; j" }JM I { j' }( m' ){ j" }( m") >w~' ( 9 ') J ( {a' j' } ; {a" j"}) 

J,M 
Q' M 

where C and C' are two possible unitary transformations or coupling 

schemes that accomplish the reduction of D{j' ;j"}. The two schemes are 

related by the recoupling unitary transformation: 

w~'(B')J({a'j'};{a"j"}) 
M 

~C<C(B){j';j"}JIC'(B'){j';j"}J> w:(B)J({a'j'};{a"f'}) 
Q M 

Relationships of this type simplify expressions for the n~electron 

operators (2.71ab) given in spherical tensor form. 

l-Electron ftffective Operators 

(2.78) 

Consider first the effective 1-electron spherical tensor operators. 

A general 1-electron tensor operator q~k} can be expanded: 
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q{)<
1 

k} = ~s ~s [)<,kJ-lf2 <n'O'IIi<klln"O"> 
n'O' n"O" 

( 2. 79a) 

(2.79a) is the spherical tensor analog of (2.62). The spherical tensor 

analog of (2.65a) is 

( 2. 79b) 

J<k corresponds to ~kin (2.53b) if i is replaced with with 
ITq ITq p"m"p'm' 

E u u 17 ,e 
pmpm 

Examples of operators qfk} are the angular momentum operators 

~ ~ 
~ s.: 

i=l l 

{2.80a) 

il S(n0) 
nO q 

(2.8la) 
nO 

where J<(n0)Uk{n0) =: J<k(n0) ::= J<k(nO·nO) and 't and 
IT q ITq ITq • • 

are given in 

spherical tensor components. 



The operators nfk<nO) I 
wq 

•••• ,)::: ; q""~k, ••• ,k}, for a given sub~ 

shell (n()), are equivalent to Racah's unit tensors8• If 0>0, two rota~ 

tionally invariant operators can be constructed from this set. The 

first, W~~(nO;n()) is invariant with respect to o+(3)x0+(3), and is 

related to the number operator N(n()): 

The other operator is invariant under 0+(3) t: 0+(3)X0+(3): 

1 
~ 

q=~l 

( 2 0 82) 

(2.83) 

W(ll)O{n()) is used to construct the effective spin~orbit operator for a 

given configuration Q: 

~ 
i=l 

Consider now a general 2-electron spherical tensor operator: 

)::: k 
~ ~ 

IT=-)< q""-k 

( 2 0 84) 

(2.85) 

(2.86a) 



where 

_1 
kl 

I 
~ql 

J 

(2,86b) 

{):::lkrzkz} 
q 2 is symmetric with respect to interchanges of the electron 

coordinates as long as 

(2,86c) 

Adapting (2,74ab) to non-relativistic, central-field l~electron 

wavefunctions, and for convenience, ordering the sums over sets SnO 

etc. of 1-electron wavefunctions leads to the equation (2,87). The cou-

~ <):::1krzkz)):::k 
pled 2-electron spherical tensor operators w are obtained by 

ffq 

- {):::1 k rzkz} 
An expression for the effective operator Q

2 
generated from 

{)<lk0zkz} . ~ ()<lk0zkz)}<k 
q

2 
lS obtained by recoupling the operators w Then 

ffq 
2 

the symmetry properties of the E(m'p') (m"~") operators with respect to 

permutations of the 1-electron quantum numbers can be exploited. For 

example, the alternate coupling scheme, c12 , with coefficients of the 

form 



(2.88) 

couples OJ.. 01 to k: 1, Oz• Oz to k: 2, and kl' k: 2 to k, \olhile the parallel 

scheme is used to couple the spins to )<. The C 12 coupling scheme is 

parameterized by the intermediate angular momenta 9 = OC 1k: 1~ 2k 2 ) and a 

typical recoupling takes the form: 

r liz liz 1 ( 0 p 0" l 
0 1 ~ 0 2 +k 2 ~k 2-* 2 -1< 2 

)< ll I 1 2 kll 

I 1; lf2 )<I 'o" 0 p 
I (-1) < 2 2> < 1 2 k2> (2.89) 

I I I I 
1}\ )( Rl lkl k2 kl 
l 

2 J l J 

C (B ))<k 
w 12 

(n'O"n"O'·n"O"n"O") 
rrq 1 1 2 2 • 2 2 1 1 

where the recoupling coefficients are expressed in terms of the 9~j sym~ 

29 bols and phase factors are added as needed (cf. the SL coupling case, 

_ C l2 (B ))<k 
equation (2.94) below). The operators W are defined by replac~ 

rrq 

· th _n 's with the E 2 " · th t f t · lng e ._ (m'p') (m"jli") (m'p") (m"jU") s ln e rans orma lon 

~ c12 (B))<k, 
that yields the w s, and satisfy the relationships 

ffq 

(2.90) 



fl 
(n" 0 ")<(n" 0 ") 1 1 2 2 

~
~ (K k )< k ))<k F ()< k f k ))<k ~ 1 1 2 2 

(n'O'n'O'·n"O"n"O") + (~1) 12 w 2 1 1 (n'Vn'~'·n"O"n"O") 
rtq 2 2 1 1 • 2 2 1 1 rtq 1 1 2 2 ' 1 1 . 2 2 

.,! 

)<k)<k 
+ <n'O'n'ij'llt 

1 12 2
11n"O"n"O"> • 1122 2211 

1 1 2 2 (n'O'n'~'·n 11 0"n"0") + (~1) 12 w 2 1 1 
(n'O'n'O'·n"O"n"O")I E

~ ()< k )< k ))<k F ()< kf k ))<k 1 

rrq 1 1 2 2 ' 2 2 1 1 rvq 2 2 1 1 • 1 1 2 2 j 

~ ()< k )< k ))<k F ()< k f k ))<k 
L_, 1 1 2 2 (n'O'n'O';n"O"n"O") + (~1) 12 w 2 1 1 (n'O'n'O'·n"O 1: rtq rtq ' 

)< 1-* 2~)<+k 1 +k2-k 
(~1) 

Equation (2.87) 

l 
I 



2 
because of the antisymmetry of the operators E(m'f')(m"p") with respect 

to permutations of the 1-electron quantum numbers, and the factorization 

of E2 given by (2.69) is transformed to (G ~ 
(m'f')(m"p") 

C (G ))<k 
W 12 

( n' 0 'n' ~ ' ·n 11 0 "n 11 0 ") fl'q "1122'1122 

(2.91) 

' ' ' 
lJ2 II 0' o·' r 1;2 )<1 k1 II 1 21 

W<k(n' 0' ;n~' ~ ") < >< > l'l'q 1 1 2 2 
1)<2 1/2 )< llk 2 0" kl 
l J l 

2 
J 

where ( ))<k indicates the coupling of (2.86b). The expression for the 
fl'q 

- {)< 1 k t:2k2} 
effective 2-electron operator q

2 
restricted to a single confi~ 

guration, is given by equation (2.92), the spherical tensor analog of 

(2. 7la). 

Applications 

The effective operator expansions of operators Q{)<k} and 
1 

- {)< 1 k t:zk2} 
Q

2 
have useful applications. For example, effective operator 

expansions can be used to find particular types of contributions of the 

Pauli Hamiltonian (table 2.4) when restricted to a single configuration. 

An overall constant energy can be found by inspection when the Pauli 

_{)<lkt:zkz} 
Hamiltonianis expanded in components Q2 • The operators 

w00 (n0;n0) are equivalent to uun0/~(40+2) , so collecting all terms com~ 

posed only of operators of this type gives a contribution proportional 
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r 1;2 
l ' ' 

1/2 I 0, 0" I 
~ 6- ~ 6- )( ll I kll 

J!< 1 k 1 k 1 t 2 k 2k 2 - - - - 1/2 I 1 1;2 >< I I 0, 0" I . --- + D<Pkl')(2,kzl < /z k2> 
,I D< 1 • k 1 .>< 2 • k z] 

2> < 
I I I I 
lx 1 )<2 Rl I k 1 k2 kl 
l J l J 

lf2l r 0 
> < 

)< I lk 2 
J l 

Equation (2.92) 

to the identity matrix. 

Contributions the restricted Pauli tfumiltonian in the form of the 

spin-orbit operator, (2.83), are also of interest for constructing the 

effective Hamiltonian given by (2. 40a). This was accomplished by Blume 

and Watson33 for a configuration with a single unfilled sub shell (nO), 

by first resolving the Pauli Hamiltonian into components of the form of 



{)< 1 k rzk2} 
q 2 and then inspecting the matrix elements with determinant 

wavefunctions for all contributions proportional to ~nO if'· . 

Alternately, the component operators can be expanded in the form of 

_{)<1kJ!'zk2} 
Q

2 
• Then, using (2.91) all terms proportional to 

w(ll)O{n0;n0) or w00(n'O';n"0') • w(ll)O(n0;n0) can be found. The 

terms of this type have matrix elements proportional to those of ~nO· 

w< 11 ) 0 (n0;n0). In this way, an expression for ~nO can be obtained 

involving integrals over radial wavefunctions, without an explict opera~ 

tor ~(r), or assuming a configuration with only a single unfilled sub~ 

shell. 

SL Coupling 

Another recoupling of the 2~electron tensor operators, connected 

with the 2~electron SL basis functions, is related to the C 12 scheme via 

( 
liz 

l ( 0" l 
I 1

iz )<II I 1 0" kll 1 C (S'VS"L"))<k I I I I 
< lfz lf2 )< <02 0" k2> W SL (n'~'n"O'·n"O"n"O") 

2 rrq 1 1 · 2 2 • 1 1 2 2 
I I I I 
I S' S" 

_, 
lv L" 1{1 

l )<I l J ' 

and the inverse tr ansfo rma tion 



C (S '1 'S"1"))<k 
W 81 

( n' 0 'n' 0 ' • n 11 0 "n 11 0 ") 
-~-~- 1 1 2 2 > 1 1 2 2 

\1 [ S' , 1' , S" , 1'1f 

r 
1;2 

1 ( l 
1 

1
/z )< 11 I 0 i 0" k11 1 c ()< k )< k ))<k 

I lf I I I 
1;2 )<z> d 2 0" k2> w 12 112 2 ( 'O'·'O'· no" "O") < 2 2 rrq n 1 1 n 2 2 'n 1 1 n 2 2 

I I I I 
I s, S" 

_, 
I 1' 1" II 

I )<I I J ~ ' ' 

The alternate coupling scheme, CS1' is parameterized by the intermediate 

angular momenta (S'L'S"1"), and factorizes like the c12 scheme into 

pairs of coefficients <C1 (1'1")kql0imi···02m2> and 

1', and 1" to k, while the parallel scheme is used to couple the spins 

to )<. 

e" new scheme, c
81

, results. From the properties of the 3-j or vector cou-

1 . ff' . 29,30 p ~ng coe 1c1ents, 
e" 

this c
51 

is related to by a change in phase: 

( 2. 94) 

A similar relation applies to the spins, so that 



(2.95) 

_ c81 (B))<k 
As in the c12 coupling case, the W"q operators are related to the 

-n 
E(m'p,) (m"p") ,s by the same linear transformation that connects the 

c81 (B ))<k 
w"q 's and the i7m'p') (m"p") 's, so the antisymmetry of the 

-n 
E(m'jli')(m"jU")'s with respect to permutations of the 1~electron quantum 

numbers implies: 

C (B ))<k 
W 81 

(n'O'n'O'·n"O"n"O") 
llq 1 1 2 2 • 2 2 1 1 

c (9 ))<k 
-W 81 

( n' 0 'n' ~ ' · n" 0 "n" 0 ") 
"q 1 1 2 2 ' 1 1 2 2 

(2.96) 

Combined with (2.95), (2.96) implies that if (nl~l) = (nzOz), then 

S"+1" must be even or the operator vanishes, and similarly, 8'+1' must 

The S1~coupled 2-electron spherical tensor operators are sym-

metrized integral operators with kernels that can be expressed in terms 

of 2~electron wavefunctions: 

C (S '1 'S"1"))<k 
W 

81 
( n' 0 'n' ~ ' · n 11 0 "n" ij ") rrq 1 1 2 2 ' 1 1 2 2 (2.98a) 



L' L" 
:i :i 

t\',.,~1 p ML"=-111 

1 ( 
)< S" I 1' ~M , I 1' 

( ~1) 1 
IT Mill I_:M, 

s J l 1 

If the coefficients BKk take the form 
ITq 

S' 
:i 

MS'=-S' 

1 
k 111 I 

IT ML"I 
J 

-J 
B 

M 

S" 
i 

MS"=~S" 

(2.98b) 

then the sum over the 51-coupled spherical tensor effective operators 

becomes 

- C (B))<k 
:iBKk W SL (n'O'n'~'·n"O"n"O") 

ffq ffq 1 1 2 2 ' 1 1 2 2 
ffq 

( z. 100) 

_c
81

(S)<k)J 
and the operators W can be expressed by recoupling 

M 



(2 101) 

r l 
Is- S" -, 

O<kJ' J"J lj2 
I )<I c (Q.J' J") J 

~ L" 1(> W SLJ (n' 0 'n' 0' ;n" 0 "n" ~ ") 
J'J" I I ~ 1 1 2 2 1 1 2 2 

I J' J" 11 
l J 

c (Q.J'J")J 
where W SLJ is an integral operator related to the 2~electron 

M 

SLJ~coupled wavefunctions in the same manner as in (2.98). In the spe~ 

cial case where J ~ 0: 

l·l·~ SLJ-Coupled Basis yectors 

J 
~ 

M=-J 

( 2. 1 02a) 

( 2. 102b) 

Although the N~electron determinant wavefunctions employed in 

Slater~Condon theory are constructed from 1-electron wavefunctions that 

carry irreducible representations of SU(2)X0+(3). in general, a subspace 

spanned by one or more configurations cannot be invariant with respect 

to the independent rotations of the spin and space coordinates of all N 



SL-Coupled Operator Expansion £1 1/r 12 

co r 
"" ~ I ~ ~ ~ 

rl2 k""O I sL<niOi)<<n202) (n" 0 ") <(n" ~ ") 1 1 2 2 
l 

[ U "+I' +i+k 
r o, 0" kl 
I 1 1 I 

<n' 0 'II cklln" O"><n"' 0 'II cklln" 0"> (-1) 1 2 < > 
IO" 0' 11 11 11 22 22 

l 2 2 
J Rk ( n"' 0 'n' 0 ' • n" 0 "n" 0 ") 1 1 2 2' 1 1 2 2 

r o-
~ 

o "+0 '+s+k 
0" kl 

I 1 2 I 
+ (-1) 1 2 < > <n' i'IICklln" l"><n' I 'llcklln" I">] 

I o " 0"' II 1 1 2 2 2 2 1 1 

l 1 2 
J Rk ( n' 0 'n' 0 ' • n" 0 "n" 0 ") 

1 1 2 2' 2 2 1 1 

+ ~ (-l)O'+O"+k+L<n'O'IICklln"0"> 2 Rk(n'O'n'O';n"O"n"O") 
(n' 0 '):#(n" 0 ") 

0" kl C (SLSL)OO l 
> W SL (n'O'n'O';n"O"n"O"): 

0' IJ J 

co co 2 
Sdrr2 Sdss R , 11 ,{r)R "x"(r)R , 11 ,(s)R n 1111 (s)uk(r;s) 
0 0 nl 11 1 nl 11 1 n2 11 2 n2 11 2 

Equation (2.97) 

An example of the LS recoupling scheme: The effective 
operator expansion of 1/r 12 in SL~coupled spherical 
unit tensors. 



electrons because of the antisymmetry requirement. Atomic Hamiltonians 

are invariant with respect to identical rotations applied to all elec~ 

tronic coordinates, although many components of an atomic Hamiltonian 

are spin independent. For this reason it is convenient to transform the 

N-electron central field determinant wavefunctions into a set of basis 

vectors that carry irreducible representations DJ of SU(2)C 

[SU(2)X0+(3)], making the Hamiltonian matrix block diagonal, and remov~ 

ing of the (2J+l)~dimensional degeneracy associated with each DJ. 

The effective operators L(n0) , S(n0) • and J(n0) = L(n0) + q q q q 

S(n0) defined through (2.81) and (2.82) commute with permutations of 
q 

electrons, commute with their equivalents for any (nPOP) ~ (nO). and 

are a representation of the Lie algebra for the simultaneous rotations 

of all !~electron wavefunctions {¢nomp 1 r=±Yz; m=-o •••• ,O} on any 

subspace spanned by products of !~electron wavefunctions of this type. 

The existence of these operators implies that the determinant basis vee~ 

tors of a configuration Q = {w1, ••• ,LUP} can be transformed to a set of 

antisymmetrized products of wavefunctions il::~Jce 1s 1L 1MiN~] .... , 
S L 

irreducible representations D 
1
0 D 

1
0 ••• 

[SU(2)x0+(3)]P, where the c(."s are indices used to distin~ 
l 

S. L. 
guish among any identical representations D 

1
® D 

1 
that may occur. 

These antisymmetrized product wavefunctions can be reduced by any 

coupling scheme to irreducible representations DJ under the restriction 

SU{2) C [SU(2)X0+(3)]p. A common choice is successively couple the S"s 

- - -and the L"s in the form s 1, s2 to s2, then s
2

, s3 to s
3

, and so on until 



1, SP are coupled to SP, while a parallel coupling scheme is used on 

the 1ps to couple to 1 • 
p 

-Then S and 1 are coupled to J. 
p p 

This reduc~ 

tion, S1J coupling, is often used when Hamiltonian matrices are expli~ 

citly constructed and diagonalized. The difficult part of this scheme 

is the construction of the antisymmetrized wavefunctions <~w(c(su18H1] • 

because the individual rotations of electrons described by one of these 

wavefunctions do not commute with permutations. A coupling scheme or 

pairwise reduction of representations of [SU(2)xo+(3)]wof urproducts of 

(nO) electrons cannot guarantee the resulting wavefunctions are 

anti symmetric. 

Fractional Parentage 

Racah8 found an iterative solution to the problem of constructing 

the wavefunctions ~~0 (c(s1M8M1]. using an earlier concept of fractional 

parentage. The solutions took the form 

i ( our1c(1S Hwc(S1) tw( otu-lc(SL. 0 ;c(SL11SM1] 

c(SL 

-1 ~ ( __ 
s- 12 +M +1-0+H 1 s 

(-1) s 1 
JM~ 
l s 

l 
s I 

MJ s; 

(2.103a) 

( 2. 1 03b) 

l 
1 I 

-M I 
1j 

url::r. 
where (0 ~L~~Owc(S1) is a coefficient of fractional parentage, or cfp. 

Standard conventions have been adopted for phases and the selection of 

states (0uuc(S1) when several states with the same S1 occur 34• These 



choices can be related to a chain of irreducible representations carried 

on the supspace of urelectron determinant wavefunctions constructed from 

the {¢ x } wavefunctions 8 • 29 • The chain of subgroups begins with the 
nv!!f 

antisymmetric representation of the unitary group U(m) induced from the 

representation D ~20DO carried by each electron and ends with represen~ 

tations n80n1 

The matrix elements of the l~electron spherical unit tensors 

WKk(n0) (the standard cfp's are real) are given by: 
ffq 

k 

q 

~2 )<'I (o 0 kl 
> < > 

S" Sj lL' L" 
( 2 0 104b) 

Standard cfps, (Ouu~SL) states, and the reduced matrix elements of 

the unit tensor operators Uk(nO) = \i2 w0k(n0) and vk 1(n0) = 
\l(20+IT w10 (n0) have been tabulated by Nielsen and Koster 34• With this 

information, the matrix elements of a 2~electron unit tensor can be cal~ 

culated via 



r l r 
1):: ):: ):: I I k 

[}( ,k] 1;2 ( ~l) S '+)<+S"+L '+k+L" 
< 2 2> < 2 

~ IS' s S" I IL' 
<(SL I J l ~ 

L" l 
I 

~"J 

l 
k k I 

1> 

L L" I 
J 

(2.105a) 

( 2. 105b) 

With (2.91), effective operator expansions, and the above expressions 

for reduced matrix elements, all matrix elements of the 1~ and 2-

electron operators can be calculated between (OUl<(SL) wavefunctions. 

With suitable recouplings, all intra~configuration matrix elements can 

be calculated with these expressions, and with these same principles, 

the inter~configuration matrix elements as well. Calculation of matrix 

elements by these techniques are discussed in detail by Cowan, 3 and a 

few more comments on this subject are made in chapter III. 

Parameterization Effective Hamiltonians 
~-~ . ~ 

Consider a subspace X of the N-electron Hilbert space spanned by 

N the set of orthonormal N-electron wavefunctions U = {t I a=l •••• ,f}. a 

Since X has dimension f, upon restriction to X, an operator Q with a 



domain D(Q):::J X will have an fxf matrix representation H(Q) given 

H(Q) ab (2.106) 

Equivalently, the operator Q can be replaced on the N-electron HLLbert 

space by the effective operator (a n-n is used here to denote the res~ 

triction of an operator to X): 

-Q 

Following equation (2.9), 

f 
i H(Q) ab ~b 

a ,b""l 

The matrix elements H(Q)ab are also given by: 

H(Q) ab 

(2.107a) 

(2.107b) 

( 2. 107c) 

In principle, there are £
2 linearly independent equivalent operators on 

X, but if the operators considered have any additional symmetry proper~ 

ties, this number is reduced (e.g. Q self-adjoint, QT ~ Q, Q can have 

only f(f-1) linearly independent components). This section discusses 

the relationship of the independent components of an effective operator 

to its symmetry properties, particularly in the case of the N~electron 

Hamiltonian. 

The symmetry properties of H, the Hamiltonian for an N~electron 

system, and the structure of the subspace X determine the possible set 

-of linearly independent operators that can be used to represent H. If H 
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has a group of invariant symmetry transformations G, then assume X car-

ries or is minimally extended to carry a unitary representation of G. 

The representation of G carried by X is a subset of the unitary 

transformations on the basis vectors Q; an irreducible representation of 

the £~dimensional unitary group U(f). The operators ~bare the 

representation of the Lie Algebra for U(f) on X, and as such carry the 

reducible representation U(f)®U(f)*.Z9, 3S,36,37 

The operators ~b can be transformed into families of operators 

that carry irreducible representations U(f) via the vector coupling 

* matrix that reduces the representation U(f)®U(f) • The symmetry 

transformations of G on X are a subgroup of U(f), so on restriction to 

this subgroup, irreducible representations of U(f) become reducible into 

irreducible representations of G. Since H is invariant under the 

transformations of G, H is a linear combination of the operators that 

carry identity representations of G. 

For a suitable choice for X, the number of independent components 

of the effective Hamiltonian operator H is often less than the number of 

distinct eigenvalues of the matrix ~I(H). In this case, H can be con~ 

sidered a vector in the space spanned by its component operators, and 

its coefficients treated as free parameters (within constraints such as 

Hermiticity of M(H) and physical considerations). The optimal set of 

parameters give the best agreement between a set of observed energy lev~ 

els and the eigenvalues of M(l-I). This parameterization is implied w'nen 

"effective Hamiltonian" is referred to here in the context of a semi-

empirical theory. 



A major simplification in the parameterization of effective opera~ 

tors on X occurs if X is spanned by determinant wavefunc.tions. For sim~~ 

plicity, let .Q. be the set of all N-electron determinant wavefunctions 

constructed from S "'{¢<:{I c(=l, ••• ,d}, a set of orthonormal 1-electron 

wavefunctions; ll {~~ I At:. S}, and X has dimension f "' [~] • S is 

chosen so that one or more irreducible representations of the symmetry 

group G of the Hamiltonian are carried by subsets of s. The trans forma~ 

tions of the group G can regarded as subgroup of U(d), the set of uni~ 

tary transformations on s. In the case of atoms, G = SU(2) and the 

wavefunctions of Scarry representations of SU(2)X0+(3). 

The first step toward finding the linearly independent operators on 

X is the reduction of representations of U(f) carried by the operators 

upon restriction to U(d). TheN-electron determinants .Q. carry the 

irreducible representation [lN] of U(d), 35• 36 • 37 where (lN] is an abbre-

viation for the set of non-negative integers [A •••Ad~O] that specify a 

Weyl 36 tableau representation of U(d). The set of all linear operators 

acting on the basis set W carries the represent~tion [lN]~[lN]* of 

U(d), which is equivalent to [lN]~ [ld-N]~ (ld] * and can be reduced to 

the direct sum of irreducible representations: 

( 
I [OJ + 

1 d '/;; 
lti~ [1 ] (2.108a) 

l J 

Each representation on the right-hand-side of (2.108a) is irreducible 

and occurs only once. The reduction is perhaps simpler \vl th the res"~ 

triction SU(d)CU(d): [rd] for any integer r becomes the identity ([0]) 



representation (if r<O, [rd] 

Because Hamiltonian operators generally act on the coordinates of 

only one or two electrons, it is convenient to expand them in operators 

-n ( Eab' n=1,2, as in 2.65). These n-body operators can also be reduced 

according to their transformation properties under U(d) 38 • It is clear 

-n from (2.70) that the operators Eab are contractions of the operators 

{~B I A,B cs} that span the space of all operators on X, and this 

-n relationship also implies that the operators Eab carry the representa-

n n * tion [1 ]®[1] of SU(d). TI1is representation is equivalent to 

[ln]®[ld-n] and reduces to a direct sum of irreducible representations 

( 2. 108b) 

Again, each irreducible representation in the sum occurs only once, but 

the reductions for the n-,(d~n)-body operators are identical. The 

dimension of a representation [A] of U(d) or SU(d) 29 • 37 is 

d j 

n 
l=i<j 

(2.109) 

but the number of independent components an n~body operators is related 

to the number of identity representations contained in the reduction of 

SU(d) restricted to the symmmetry group of the operator involved (e.g. 

0+(3) or some point symmetry group). 

In the common situation where n .,:: min(N ,d~N), the n~electron opera-~ 

tors that carry various irreducible representations of SU(d) can be 

recognized by their trace properties. It follows from the contraction 

property, (2.70), that the traceless n~electron operators 20, (i.e.~ 



such that 

d 
~ 6 m( q ) r~ 

r~ ct_.p. n <~1 ... ct_ ><P1···P > O· • i,j""1,2, ••• ,n (2.110) 
~i'Pf"1 1 J n n 

. n d~2n 
and m(~)ab as in(2.60b) ) must carry the representat1on [2 1 ] of 

SU(d). For example, when n=1: 

( 2. llla) 

(2.1llb) 

(2.11lc) 

Conf igur.a~t ions 

Wavefunctions belonging to a configuration carry the antisym~ 

ill Wz ill 
metrized irreducible representation { [1 1J. [1 ] ••••• [1 P]} of the 

direct product of unitary groups U(d 1)xU(d2)x ••• xu(dp) The direct pro~ 

duet representation can of course be regarded as a subgroup of 

-n The operators Eab factor into components correspond 

to each representation of U(di) as expressed by equation (2 63), and the 

n~electron operators can be resolved with respe.c t to irreducible 

representations of the unitary groups U(d.). Within a configuration, 
1 

this can sometimes be accomplished by resolving the matrices m(qn) b a 

into components that are traceless or proportional to the traces with 

respect to pairs of indices corresponding to the same set S .• 
1 

Inter~configuration operators can be resolved by considering situa~ 
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tions such as (w. ,w4 ) ~ (w. l,w.+1) as a new configuration carrying a 
1 J 1 J 

representation of U(d.+d.) X n X U(dk)' merging the sets Si and S .• 
1 J k+i ,j J 

However, not all operator representations of U(d.+d.) will occur, 
1 J 

because of the restriction on the number of elements allowed from S. and 
1 

S. used to construct the determinant wavefunctions. Usually inter­
J 

configuration operators are resolved into 2-electron operators E~b with 

no common indices that can be contracted, and as such are linearly 

independent of all the intra-configuration operators. 

1·1·1 Subgroup Decomposition £I ~-Electron QE~rators 

A method for resolving the n-electron operators into linearly 

independent components is to consider the reductions into irreducible 

representations of the operators on restriction of U(d) to its various 

subgroups. Judd 29 has studied the properties of the operators under 

various symmetries, and in a second-quantized creation and destruction 

f 1
. 39,40 operator orma 1sm • There are two basic choices for the chains of 

subgroups: SU(4H2) :::J SU(2)xSU(2Q+l) :::J SU(2)x0+(20+1) :::J SU(2)x0+(3) 

and SU(4~+2) :::J Sp(4Q+2) :::J SU(2)X0+(2~+1) :::J SU(2)X0+(3), where 

Sp(4Q+2) is the symplectic group of 40+2 dimensions generated by the 

unit tensors WKk(n0) for X+k odd. For f electrons (0 = 3), an addi­

tional link in the chain can be added with the group C(2); 0+(7) :::J 

The representations of SU(2)X0+(3) carried by the 1-electron ten­

sors {WKk(nO) I X =0,1; k=O,l, ••• ,20} are self-evident, but their rela­

tionships to the other groups are not. w00 (n0) becomes the identity 

representation and the others carry the representation [21 4 ~] of 



SU(40+2). [21. 4 0] branches to the irreducible representations (20 ••• 0) 

and (110 ••• 0) of Sp(40+2) (the representations of Sp(2\)) are given by\) 

non-negative integers (~1 , •••• ~\)) ), carried by the tensors WKk(nO) 

36 with )<+k odd and even respectively • Then the tensors with k even (and 

0-1 
a fixed projection "for)< ~1) carry the representation (20 ) of 

0+(20+1) while the the tensors with k odd carry the representation 

(110~-2 ) 29 • 40 • If 0 ~ 3, the unit tensors with {kg 2,4,6}, {k = 1,5}, 

and {k "'3}, carry the respective representations (20), (11), and (10) of 

G(2). 

The reduction of the 2-electron unit. tensors into chains of sub-

group representations is considerably more complex. The tensors 

C (S 'L '8 11 1 11
) 

{W SL }, S'+L' and S"+L" even, must carry the operator 

representations of SU(4ij+2) on the antisymmetric subspace of w, (nO) 

electrons when 2 < w < 4 0. These operators can be coupled, recoupled, 

and expanded via: 

(S 'L 'S"L"))<k 
(n0n0;n0n0) 

\l[S' ,L' ,S",L"] 

( 
lf2 

1 r l 
I 1;2 )< 1l I 0 0 kll -
I I I k2~ 1 [ 

)<k )<k ~ 

< liz lf2 )< z> < o 0 W 1 1(n0)W 2 2(n0)])<k (2.112) 
"q 

I I I I -
I s, S" )< I I L p L" II 
t I I J 

p ' 

p 

(-ll+k: 
11;2 )<1 1;2 l r 0 

k1 ol 
+ < I I I (nQ)] 

1)<2 1;2 
- > < 
)< I I k 0 I l J I 2 J ' 
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C (S ?VS 11 L11 ))<k 
Linear combinations of the W SL unit tensors can be used to 

find tensor operators that carry the irreducible representations of 

SU(40+2). For example, the trace over all 2~electron operators E;b' 

equivalent to 

1 20 
;;;: ;;;: ;;;: 

SL )<=0 k=O 

must correspond to the identity representation [0]. The reduction of 

the effective Coulomb operator, has been carried out by Racah8 and 
rl2 

29 also presented by Judd • 



III. Computer Calculations 

This chapter is a review of the ab-initio calculations performed by 

Cowan's computer codes, and least squares fitting the eigenvalues of a 

parmeterized matrix to a set of experimental energy levels. Section 

( 3. 1) reviews the self consistent field calculations controlled by the 

codes RCN and HF(mod7), while section (3.2) briefly reviews th.e con~ 

struction of the Hamiltonian matrix and ancillary calculations involving 

the eigenvectors (gyromagnetic ratios, line strengths, lifetimes, etc.) 

performed by the computer code RCG. Detailed accounts of these calcula~ 

. . 1 wh 3,10~13,43-45 1 b if tl' . . t:Lons are g1ven e se ere, so on y a r _ e ou 1ne 1s g1ven 

here with a·few additional comments. Section (3.3) is the review of 

least squares minimization. 

3.1 SCF Calculations 

Most schemes for obtaining radial wavefunctions for the 

form of Slater-Condon theory involve the solution of a set of coupled 

integra-differential equations by an iterative procedure known as the 

self consistent field or SCF method. These equations are arrived at by 

assuming that a matrix element or linear combination of matrix elements 

of the atomic Hamiltonian operator between central field determinant 

wavefunctions is stationary with respect to variations of the radial 

wav ef unctions • 

Usually, a set of radial wavefunctions is found for each configura~ 

tion. For a single configuration consisting only of closed subshells 

(lLlt 40i.+2; i"'1, ••• ,q), there is only one determinant wavefunction in 

the configuration, so equations for the radial wavefunctions can be 
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found by variation of average energy (the diagonal matrix element) of 

this state. For an arbitrary configuration, Slater 41 purposed that the 

average energy of configuration 

E av (3. 1) 

should be stationary with respect to variation of any of the radial 

wavefunctions, as a zero order Hamiltonian used in a Slater-Condon 

theory perturbation scheme will be degenerate with respect to all the 

determinant states belonging to the same configuration. 

For the non~relativistic Hamiltonian 

H ( 3. 2) 

the average energy of configuration becomes (a spin-orbit interaction of 

the type e,(r) f • does not contribute): 

E 
av 

Where 

+ 

I(i) 
OJ r 
5' drP. (r) I~, 
0 1 l 

Rk( .... ) 
1,];1,] 

k 

0 

k 

0 

0 lz 
j I k J 

O J G ( i ;j) 

0 lz 
il k .. ] 
ojF(1;1) 

( 3. 3a) 

( 3. 3b) 

(3. 3c) 



Rk(. . .. ) 1,] ;] ,1 (3.3d) 

(X) (X) 
k R (a,c;b,d) S drS d s P ( r) P ( s) Uk ( r ; s) Pb ( r) Pd ( s) ( 3. 3e) 

0 0 a c . 

and 

( 
I 
I sk+l 

r<s 

< 
IL 

( 3. 3f) 

I k+l 
l r 

r>s 

3.1.1 Hartree~Fock Equations 

Requiring the quantity 

E av 

q (X) 2 q (X) 

~ :i w. ~ . .$' d r I Pi ( r) I + :i w. w. ~ .. .$' d r P. ( r) P . ( r) 
i"'l 1 1 0 i;&j l J 1J 0 1 J 

to be stationary with respect to variations of the radial wavefunctions 

leads to the configuration average Hartree-Fock or HF equations given in 

table (3.1). The 'sand the ~ .. 's are Lagrange multipliers(~ .. ~ 
1] IJ 

and~ .. = 0 if 0. ;& 0.) used to preserve the orthonormality of the 
lJ 1 J 

radial wavefunctions. These equations are solved numerically by 

HF(mod7), a modified version of a Froese-Fischer42 • 43 code. Griffin44 

explains in detail the method of solution and the numerical procedures 

used by the computer code, so only a few highlights are given here. 

SCF Procedure 

The first step in the solving these equations is the selection of 

some initial estimates for the radial wavefunctions (screened hydro-

genic, solutions to some central potential model, etc.). Then these 

i 



Table (3. 1) 

Configuration Averaged Hartree-Fock Equations 

( 2 
I - + _;:;;:.___,.;:::;__.._ 
I dr 2 

r
2 

' 

Y. (r) 
l 

Y(r) 

yi(r) 

p. (0) 
~ 

0 

(r)) 

r 

l 
~""·I P4 (r) 

~J ... 
2 +-X. (r) - ~ w~""i.P.(r) 
r ~ j~i J J J 

lim 
r....;.m 

P. (r) 
l 

Y(r) - yi(r) 

:! 0 . . ;;:: w.Y (J,J;r) 
j =1 J 

m 

0 

0 1 2 
j I k .. 

0 
I Y {l,J;r) 

J 

2~ .+1 
~ 

S d s Pi ( s) r uk ( r ; s ) P j ( s) 
0 

Lagrange multipliers (see text) 

estimates are used to calculate Yi(r) and Xi(r), the potential and 

( 3. 4a) 

(3. 4b) 

( 3. Sa) 

(3. Sb) 

( 3. 5c) 

(3.5d) 

( 3. Se) 

exchange functions, and the off diagonal energy parameters or ""ij's. 

The ""··'s satisfy 
1J 



·~81~ 

? 

I ro 2 ( ~ 

""·. i 6 < S dr - Y. (r) Y/r) J (r)Pj(r) 
:LJ 0. 0. w.~ w. l 0 r 1 :t J J :t 

ro 1 
+ Sdrfx.(r)P.() - Xj(r)Pi(r)JJ ( 3. 6) 

0 l :t J r 

' ' I k 0 12 
ro I O i il 

~ [ 6ko ~ 4o
1
+2] 6 ~ I ol 0 i 0 j w.~ m k=Ol 0 

0 
J :t J 

where 0 "" 0 . "" 0 . , and can be computed with this expression if w. ~ w. , 
:t J :t J 

If uui = uuj, then the average energy is invariant with respect to any 

real orthogonal transformation applied to P.(r) and P.(r). In this 
1 J 

case, any solution of the configuration average HF equations that has 

linearly independent radial functions with the same "0" and oceupation 

number can be arbitrarily orthogonalized. The off~diagonal energy 

parameters can be estimated with a trial and error procedure, or elim~ 

inated if the SCF technique used to solve the equations leads to 

linearly independent radial wavefunctions. 

The next step is to integrate the resulting differential equations 

to obtain a new or output set of radial wavefuntions. These functions 

are then used to compute potential, exchange, and terms for the next 

iteration or potential cycle. For the remainder of the procedure, the 

previous steps are repeated until the output radial wavefunctions are 

equal to the input radial wavefunctions to within the desired accuracy. 

In practice, the convergence is expedited by taking the input 

radial wavefunctions for the (m+l)st cycle as linear combinations of the 
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th input and output radial wavefunctions from the m cycle: 

~~~.(input) 
1 1 

c.Pm K (input) + (l~c.)Pm K (output) 
1 n. 11 • 1 n. 11 • 

1 1 1 1 

( 3. 7) 

The acceleration factors~ {ci I i~l~···~p; O~ci<l}, can be adjusted dur~ 

ing the course of the SCF cycles to speed convergence, and are sometimes 

essential in obtaining any convergence at all. 

Numerical Integration _of _the Radial Wavefunctions 

For each potential cycle of the SCF calculation, the output P.(r)'s 
1 

are solutions of inhomogeneous differential equations of the form: 

f. (r) -
1 

with the boundary conditions: 

0 lim Pi(r) 
r....,.co 

l 
".IP.(r) 1J 1 

0 1 

( 3. 8a) 

( 3. 8b) 

The 's must be chosen so that the Pi(r)'s are normalized, and have 

n.~ 0.-1 nodes. 
l 1 

The radial wavefunctions are represented as values at points on a 

numerical grid. Since the functions oscillate more rapidly near the 

origin~ the density of grid points must be greater as r....,.O. In HF, this 

is accomplished by making the change of variable 

t ln(Zr) 

Pi (t) r(t)-
11

2 Pi (r(t)) ( 3. 9b) 



with the corresponding changes are made in configuration average HF 

equations The P.(t)'s are represented on a numerical grid of typically 
~ 

600 equally spaced points. 

With an asymptotic form for P. (r) as r~O and an estimate for 
~ 

the differential equation for a given P.(r) can be accurately integrated 
~ 

outward to the matching radius, the point vfuere the curvature of P.(r) 
J_ 

changes sign (somewhere afte,: its last node). The asymptotic forms of 

all the P.(r)'s at small rare determined by the 
~ 

"slope" parameters 

's and the initial 

0 i+l 
lim r P. (r) 
r~O ~ 

i=l' 2, ••• ,q (3.10) 

with the convention that the a~'s are always chosen to be positive. 

Cowan's codes obtain the matching radii as well as initial estimates of 

the P.(r)'s, the ~.'s, and the a
0
i's for the first cycle of the SCF pro~ 

~ ~ 

cedure from an approximation to the configuration average HF equations 

that leads to homogenous differential equations (see the HX approxima-, 

tion below-in this case each matching radius corresponds to a classical 

turning point in a potential well). 

Similarly, the asymptotic form for a g~ven radial wavefunction as 

r~m allows (3. 8) to be integrated inward to the matching radius, the 

point where the outward integration is ended. The larger dependence of 

the P.(r)'s is a function of the 
1. 

's and another set of scale factors 

analgous to the a~'s, which can be simply chosen to make the radial 

wavefunctions continuous at the matching radius. The precise asymptotic 

forms of the radial wavefunctions are difficult to obtain because of the 



presence of the exchange and ~ij terms in (3.4), so these are neglected 

and essentially the WKB solutions for the homgeneous differential equa-

tions are used in the large r region. This results in some errors, 

mainly to the wavefunctions localized nearest the nucleus, as the 

exchange and off diagonal terms cause some very small amplitude oscilaa-

tions in the tail region of these wavefunctions. Since the relative 

energies of the low lying atomic levels are most sensitive to the radial 

wavefunctions with the greatest radial extent, this source of error is 

tolerated. 

Then the ~i's and the a6's are adjusted and the integrations 

repeated until the outward P.(r)'s have n.-1.-1 nodes, the derivatives 
1 1 1 

of the radial wavefunctions are continuous at the matching radii, and 

the Pi(r) 's are normalized to unity. In practice, linear combinations 

of the homogenous and inhomogenous integrals are used to obtain con-

tinuity of the derivatives at the matching radius, so that two numerical 

integrations of each radial wavefunction are made and only the 's are 

adjusted until the conditions (3.8b) are obtained. The entire numerical 

integration procedure has been explained in detail by Griffin44 , includ-

ing variations for cases where convergence of the SCF calculation is 

difficult to obtain (e.g. configurations with excited d and f elec-

45 trans ) • 

1. 2 HX !E.Eroximation _!2 the E Hartre~~Fock !9,uations av 

Cowan has developed an approximation to the configuration average 

HF equations resulting in homogenous differential equations for the 

radial wavefunctions. This is equivalent to replacing the off-diagonal 



and exchange terms with a local potential in (3.4), although the local 

potential term used is functionally dependent on the radial wavefunc~ 

tions. Cowan's potential is a semi~empirical improvement over a similar 

46 approximation proposed by Slater • 

Slater replaced the exchange terms by a local potential, expressed 

in terms of the spherically averaged electron number dens 

p (r) 

V (r) 
s 

q 
;i w.p. (r) 

i=l l l 

2 w.P.(r) 
l 1 

p(r): 

(3. lla) 

(3.llb) 

Vs(r) has the same functional dependence on the number density p(r) as 

the exchange contribution per electron to the average energy of a zero 

temperature free electron gas. The radial wavefunctions are found by 

solving the equations: 

Where 

2[Z ~ Y(r)] ~ V (r) 
r s 

~.P.(r) 
l 1 

(3.12a) 

(3. 12b) 

Slater chose« ~ 1, but if the radial wavefunctions are chosen by varia~ 

tion of the average energy of configuration with the exchange terms 

approximated by the volume integral of p(r)Vs(r), « ~ 1 is r by 

« 2/3. In this approximation, all the electrons have the same central 

potential, so the Pi's are automatically orthogonal and no off d 

Lagrange multipliers are required. 
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The radial wavefunctions obtained by Slaterps approximation or HFS 

method are significantly different from the lW radial wavefunctions 

because of the asymptotic behavior of the exchange potential. Cowan 

modified and adjusted the exchange potential to find an approximation in 

better agreement with the J~ results, and arrived at a new local poten-

tial: 

vi (r) (3.13a) 

Where 

(3.13b) 

p' (3. 13c) 

Pi(r) ( 3. 13d) 

and f(r) is a factor that improves the orthogonality of radial wavefunc-

tions with the same 11 011 but different "n" values. Usually, f (r) = 1, 

but in some cases f{r) slightly increases the value of the potential in 

r 
1 I r~r0 

f(r) < (3. 13e) 
I l+k3(1-r/ro) r<r

0 
l 

The point r
0 

is the location of the mth node of Pi (r); where m is the 

number of subshells with 0"' oi and n<ni. kl"' .65, kz ~ .70, and 

k
3 

= .so are Covmn's 12 choices for the three empirically adjustable 



parameters. 

Numerical Solution .£!. the HX Equations 

The SCF calculation of the radial wavefunctions via the HX approxi·~ 

mation is performed by the computer code RCN. RCN evolved from a code 

implementing the HFS method written by Hermann and Skillman. 9 The 

radial wavefunctions are represented on a numerical grid of 640 points 

that are equally spaced values of the radius for blocks of 40 points. 

The step size of each block increases so that the density of points 

increases with decreasing r. The differential equations for each paten·" 

tial cycle are integrated out from the origin and in from the large r 

region to a matching radius that occurs near Vi(r) ~ 

The local potential approximation ( 3. 12a) in place of ( 3. 4) has 

some advantages with respect to the numerical SCF prodedure: The dif~ 

ferential equations are homogeneous, so only the ~.'s are adjusted until 
l 

the P.(r)'s have the correct number of nodes and continuous first 
l 

derivatives at the matching radius. Only one numerical integration of 

each radial wavefunction is required instead of a homogeneous and an 

inhomogeneous integral. This makes convergence of the SCF process much 

easier to obtain. 

Cowan has introduced approximate corrections to the configuration 

averaged energy and the radial wavefunctions due to relativistic and 

correlation effects. As in the spirit of the HX approximation itself, 

these corrections are perhaps best justified by the improvements they 
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make in the agreement between the results of the HF and HX calculations 

with experiment, rather than on rigorous theoretical grounds. 

Th 1 i . . 3' 11 d . d f h 1 b d . e re at v1ty correct1ons are er1ve rom t e - o y terms 1n 

the Pauli reduction of the Breit Hamiltonian 28 • If the radial wavefunc-

tion equations satisfy the local potential equation (3.12), the rela-

tivistic mass-velocity and Darwin terms can be evaluated via: 

ro Q 

S drPi (r) I 
0 ' 

ro r 2 
S drP. (r) 11+ sC'.

4 0 l l 

(3.14) 

These corrections are normally added to the configuration average energy 

by the computer codes (Vi(r) is taken as the local potential of the HX 

approximation for both the HX and HF calculations). If the radial 

wavefunctions are determined variationally with these terms included in 

the configuration average energy, the quantities between the pair of 

Pi(r)ps appear as operators in the radial wave equation for Pi(r) in 

either the HF or HX equations. As an option, Cowan incorporates these 

changes in the radial wavefunction equations in his codes for both the 

HX (HXR) or HF (HFR) methods. 

The correlation correction to the average energy of configuration 

is rather roughly defined as the difference between the HF average 

energy and the experimentally determined average energy after relativis-

tic effects have been added to the HF average energy. Empirically it is 



determined that for heavy atoms the average correlation energy is 

47 roughly ~.08 Ry per electron • 

A number of perturbative calculations of the average correlation 

energy per electron of a zero temperature free electron gas have been 

made48 for both high and low density limits. The correlation energy is 

usually parameterized by rs' the radius of a sphere with volume equal to 

the average volume per electron: 

r 3 1 1!3 
l4rrpJ (3.16) 

The average result of calculations of the correlation energy per elec~ 

tron of a free electron gas in the low density limit takes the form 

- -1 e (r ) = ( L 142r ) • Cowan used an approximate interpolation formula 
c s s 

between the high and low density limits of the form 

e (r ) 
c s 

and computed the correlation energy via 

where 

E 
c 

q . 
- 1 
~ w.E 

i=l l c 

i r (r) 
s 

CD • ' 

S J ~ l 
4rr p '(r)e (r (r))dr 

0 c s 

(3.17) 

(3.18a) 

( 3. 18b) 

Ho\vever this method tends to overestimate the correlation energy of 

the atom, presumably because it tends to count the contribution from a 

strongly correlated pair of electrons twice. In an effort to avoid poor 

counting statistics of an atom of relatively few electrons as opposed to 
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an infinite number of electrons in a free electron gas, the correlation 

energy is also computed by summing over the increments of in the corre-

lation energy as electrons are added to the atom in order from the most 

tightly bound to the least tightly bound. This alternative correlation 

energy is computed via 

where 

E 
c 

q 
:i: 

i=l 

w. 
100 

2 '13 :i: S P. (r) e (r
1 

(r)) 
~=1 0 1 c s 

ll!3 
2 

(w.-p)P. (r) I 
J J J 

(3.19a) 

( 3. 19b) 

This correction improves the theoretical ionization energies com-

puted for various neutral atoms by differencing the average energies of 

configuration, 10 but there is little or no evidence for its usefulness 

with respect to higher stages of ionization. Any user of Cowanps com-

puter codes should be aware that the correlation correction is automati-

cally added to the configuration average energies, because the outputted 

values of various quantities may not be appropriate for any purpose 

other than the ab-initio predictions of the optical spectrum of an atom 

or ion. 

l·l·~ Output Parameters 

The programs RCN and HF produce absolute configuration average 

energies, the Slater integrals Fk and Gk needed for signle configration 

energy matrix calculations, and estimates of the spin orbit parameters 

~nO" The program RCN merely calculates the HX approximation to ~nO' 



~HX 
nO (3.20) 

while the program HF estimates the spin~orbit coupling parameter from 

the Hk integrals as described by Blume and Watson33 • Additional radial 

integrals are needed for the Hamiltonian matrix of several interacting 

configurations, and for calculating the spectra from the resulting 

energy levels. 

The program RCN2 takes radial wavefunctions calculated by either 

RCN or HF (interpolating the logrithmic grid used by HF to the block 

linear grid of RCN) and calculates the Slater integrals Rk between con~ 

figurations of the same parity. In general, only the core wavefunctions 

are assumed identical for all configurations and the spin~orbit interac~ 

tion between configurations is ignored, introducing a small error that 

Cowan argues is within the overall accuracy of the approximation3 
How~ 

ever, the program RCN2 can be used to calculate overlap integrals 

between any pair of radial wavefunctions, and the Rk integral with any 

four radial wavefunctions, so this assumptions can be tested if desired. 

In addition, RCN2 calculates the reduced matrix elements of the 

electric dipole operator between pairs of configurations of opposite 

parity that differ in one radial wavefunction (using the same ortho~ 

gonality assumptions as for the configuration interaction). As an 

option, the electric quadrapole reduced matrix elements can also be cal~ 

culated, supplying all the information needed to calculate electric 

dipole, magnetic dipole, and electric quadrupole transition probabili-· 

ties. 



Hamiltonian matrices are constructed in a straight~forward fashion 

by Cowan's RCG(mods 5,6, 7) computer codes based on Racah's8 techniques. 

The Hamiltonian matrix is diagonalized giving the eigenvalues, eigenvec~ 

tors, and gyromagnetic ratios in the intemediate coupling scheme. If 

the appropriate reduced matrix elements are supplied, the spontaneous 

emission rates and line strength factors for electric dipole, magnetic 

dipole, and electric quadrapole radiation are calculated, as well as 

estimates for the lifetimes. The algorithms used are very well docu~ 

mented 3• 13, so only brief comments are given here. 

As described in section (2.2.6), Racah8 was able to systematically 

attack the problem of constructing Hamiltonian matrices for complex con~ 

w figurations by finding a basis set for (nO) configurations by group~ 

subgroup chains of representations ending in irreducible representations 

n5:®DL of SU(2)xSU(2), and by using recoupling or "tensor algebra" tech~ 

niques. Basis vectors for N-electron configurations with more than one 

subshell become antisymmetrized products of (nOw) basis states, 

+[no'"c(SLM5HL] • and the resulting direct product representations of 

SU(2)xSU(2) are reduced by successive SL coupling to irreducible D50DL 

representations, and finally to representations DJ of 

SU(2) C: SU(2)xSU(2). 

The program RCG represents all configurations of a given parity as 

wl Wz 
q~tuples of the form (0

1 
, ••• ,0

2
) and calculates the matrix elements 

for the Hamiltonian (2.40). The matrix elements are calculated with the 



effective operator techniques described in chapter II; the cfps 

appropriate to each configuration are supplied and all unit tensor 

reduced matrix elements and recoupling coefficients are calculated as 

needed. Considerable recoupling of the SLJ basis vectors must be done 

for the intra~configuration matrix elements if there are several 

unfilled shells 13, and the details of the procedure used by RCG are dis~ 

cussed in chapter twelve of Cowanps text 3• Inter~configuration matrix 

elements can be more complicated, and Cowan has grouped them into eleven 

classes including expansions with the coefficients of fractional 

grandparents (uncoupling of 2~electron states from the Owc(SL states) 

described in detail in chapter thirteen. 

Although the SLJ coupling sheme is used to construct the Hamilc~ 

tonian matrix, transformations to the jj and other schemes are calcu~ 

lated and the eigenvectors given in these basis if desired. Because of 

these transformations, Cowanps code constructs the states (LS)J rather 

than (SL)J. The net result is a phase change: 

(3.2.1) 

This convention has no physical consequences for the energy levels or 

transition probabilities, but is of interest if the matrix elements were 

used to construct a Hamiltonian matrix with lower symmetry (e.g. a cry~· 

stal field problem). 



3.2.2 Calculations Spectra 

If the SCF calculations are made for an atom or ion 1vi th configura~ 

tions of both parities, the program RCN2 that prepares input data for 

RCG calculates the reduced matrix elements of the operator between 

the appropriate radial wavefunctions. As an option, the reduced matrix 

elements of the electric quadrapole operator are also calculated, so 

that transition probabilities for electric dipole, magnetic dipole, and 

electric quadrapole can be calculated by RCG. The transition probabili~ 

ties peraunit time for spontaneous emission by electric and magnetic 

multipole radiation are given by49 : 

N 
~ 

i=1 

( 
A ~1 ~ ~~ 2 7 ~ ] ] A 

C ( e i) ~~ + 1 \1 i + 2s i m 

(3.21a) 

(3.21b) 

(3.22a) 

( 2. 2 2b) 

where a- is the reciprocal wavelength in Rydbergs, the unit of time is 

2 2 
the orbital period of the Bohr atom electron h/d.. me • and <If • (ji are the 

final and initial states. 

The initial and final states are members of J-manifolds, ~f ~ 

relationship between the transition probabilities for all components: 



m 
(3•23) 

(QA is any multipole operator). Symmetries also dictate selection 

rules: ~Mi "' m; Jf, Ji, and A must satisfy the triangle condition; 

and Ji cannot both be zero; and the product of parities of the initial 

and final states must equal the parity of the multipole operator. 

If the light is observed from an isotropic source, the individual 

Zeeman components (Mi .,;;. Hf) are not resolved, and all states of a given 

energy are equally populated. The probability of observing a line asso~· 

ciated with a transition between the pair of J~manifolds from such a 

source is proportional to an average over the initial states and a sum 

over the final states and components of the multipole operator: 

( 3. 24a) 

2J+l ( 3 0 24b) 

(3. 24c) 

SQA <YiJi,YfJf) is the line strength factor for the QA multipole transi~ 

tion between the (YfJf) and (YiJi) J~manifolds, and is symmtric with 

respect to interchange of (YiJi) and <YfJf). The observed rate of spon~ 

taneously emitted radiation for a given line and an isotropic source is 

proportional to the weighted transition probability gA, 

gA ( 3 0 25) 



and is also s~nmetrical with respect to interchange of the initial and 

final J~manifolds. A quantity proportional to the induced emission or 

absorption transitional probability is the weighted oscillator strength 

gf, 

gf (3.26) 

where the oscillator strength is taken as positive for absorption and 

negative for emission. 

The code RCG calculates the electric dipole gA and gf for each 

transition in an array of configurations of both parities. The key 

quantity is sE 1(YfJf,YiJi), the line strength, or its aquare root, 

(YfJfiiP
1
11YiJi). The details of how the code RCG calculates this 

reduced matrix element in the SL basis set are given in chapter fourteen 

of Cowan's text, 3 and when the Hamiltonian matrix is diagonalized, the 

line strength factors are transformed to the eigenvector (intermediate 

coupling) basis. An estimate of the lifetime of a given state is 

obtained from the reciprocal sum of all the transition probabilties to 

lower~lying levels in the transition array. 

G~romagnetic Ratios 

If the light source is placed in a strong magnetic field, the indi~ 

vidual Zeeman components of a line can be resolved. For a '.reak uniform 

magnetic field, the change in the energy of a given (YJ)~level is given 

by 

-) ~ 

< y J I c( ( L +g s ) . 
s IYJ> (3. 27a) 



(3.27b) 

where 1 (in Bohr magnetons) has been taken along the z axis, gYJ is the 

gyromagnetic ratio, and g is the spin gyromagnetic ratio (g =2.0023). 
s s 

In SL coupling gSLJ is given simply: 

1 + (a ~ 1 ) J(J+1) + S(S+1) ~ 1(1+1) 
0 S 2J(J+1) 

(3.28) 

The magnetic field operator is diagonal to first order in the (~SLJ) 

basis (off diagonal elements with states of J' =J±1 are not considered), 

so the gyromagnetic ratio in the intermediate coupling basis is given 

simply by 

so the gyromagnetic ratios for the eigenvectors of the Hamil toni.an 

matrix are easily calculated by RCG. 

so the gyromagnetic ratio in the intermediate coupling basis is given 

simply by 

(3.29) 

The gyromagnetic ratios for the eigenvectors of the Hamiltonian matrix 

are easily calculated by RCG. 

The method of least squares is commonly used to estimate parmneters 

of a theoretical model from experimental data. In this work the spec~ 

troscopic parameters of the semi~empirical Slater~Condon theory and the 



parameters of isoelectronic sequence polynomials are determined by least 

squares. The method is briefly outlined in this section to define the 

quantities used to characterize the least squares fits presented here. 

3.3.1 Statistical Model 

The paradigm for the least squares analysis is one or more experi-

ments with outcomes that are predictable, in principle up to random 

fl . 50,51 uctuat1ons • A set of experimental quantities, x = 

{e 1,e 2, ••• ,eN}' are determined to precisions represented by the error 

estimates {~1 .~2 ••••• ~N}. The experimental quantities are assumed to 

represent a random sample from a multivariate normal distribution for N 

independent random variables centered about the theoretical quantities 

In general the theoretical values ·,re known only as functions of a 

parameter space corresponding to the ideal theoretical quantities, 

terization of the theoretical quantities often includes the measuring 

process of the experiment, as well as the fundamental nature of the sys-

tem under examination. 

Maximum Likelihood Estimates 

A common method of estimating the parameters of a statistical model 

is the maximum likelihood method. Given the above assumptions about the 

experimental data, the probability of having obtained the experimental 

quantities x = {e 1,e 2, ••• ,eN} for a specified set of parameters pis 



~iven by the likelihood function L(x;p): 

L(x;p) 

( 
I 

expl 

l 
(3.30) 

The maximum likelihood estimates for the parameters (p1,p2, ••• ,pm} are 

obtained by maximizing the likelihood function L(x;p) with respect to 

the parameters p· This is equivalent to minimizing the sum of squares 

2 
X Cp): 

(3.31) 

2 ~· 
\vhere the random variable X Cp) has a probability density given by the 

chi-square density function for N degrees of freedom: 

(3.32) 

The maximum likelihood parameters p 
by solving the equations 

0 (3.33a) 

where 

( 3. 33b) 

The random variables {di(x;p) I i=l,2, ••• ,m}, axe normally distr:i·~ 

buted with means of 0 and covariances given by 
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i,j=1,2, •• ,m (3.34) 

If the theoretical quantities are linear functions of the parameters, 

the deviations of the least squares parameters from the "true" parame-

ters (i.e. the quantities {p.-p. I i=1,2, ... ,m} are linearly related to 
l l 

the random variables {di (x ;p) I i=l, 2, ••• ,m}), the least squares parame-

ters can be shown to be unbiased estimates for the parameters p• The 

covariance matrix for the least squares estimates is the inverse of the 

covariance matrix for the d1 (x;p): 

-1 c .. 
l] 

If the theoretical quantities are non-linear functions of the 

(3.35) 

parameters, the least squares estimates for the parameters often have 

the same properties. For experimental data that are sufficiently pre-

cise, a random sample x ""{el'e 2, ••• ,eN} will with high probability be 

very close to the theoretical quantities {t 1,t 2, ••• ,tN} (i.e. 

fJ'k). Barring any pathological behavior of the theoretical 

quantities as functions of the parameters P• the least squares estimates 

should fall within a neighborhood of the parameters p such that the 

theoretical quantities can be approximated as linear functions of the 

parameters p· -1 In this case the matrices C .. and C .. are obtained by 
lJ lJ 

evaluating the right-hand-side of equation (3.34) at the point ~· 

The residual sum of squares x2 (~) is a statistic, distributed 

according to a chi~square probability density with N·-m degrees of free­

dom. Thus x2 (~) is a useful test of the hypothesis that the experimen-

tal data {e 1,e 2 , ••• ,eN} were obtained from the model defined by equation 
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(3.30). 2 
Also, the reduced chi~square, X Cp)/(lil~m), can be used to test 

the relative likelihood of two or more models· The relative probability 

of obtaining the set of experimental data from one model and not another 

can be expressed in terms of the ratio of the reducsd chi-squares for 

the two models. Finally, if the precisions of the experimental data 

represented by the error estimates {0"1'()2 , ••• •cJtJ} are only relative 

error estimates, then the reduced chi~square x2 (p)/(N~m) is an unbiased 

estimate of the ratio of the absolute error estimates to the relative 

error estimates. The expression on the right-hand-side of (3.34) must 

be multiplied by this factor to obtain the best estimates for the 

· c·· d c-1 matr1ces an , . 

For the case of fitting the spectroscopic parameters associated 

with the semi-empirical form of Slater-Condon theory, the experimental 

quantities are the energy levels of an atom and ion, and the theoretical 

quantities are the eigenvalues of a Hamiltonian matrix for the confi-

gurations of interest. If the Zeeman splittings of the spectra deter 

mining the experimental energy levels have been observed, then it is 

possible to fit the experimental gyromagnetic ratios. The gyromagnetic 

ratios are more sensitive to the choice of eigenvectors than the eigen-

values, hut their partial derivatives with repect to the parameters are 

more complicated and take longer to compute, thus they are generally not 

used in the fitting procedure. 
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The Hamiltonian Hatrix 
-~ ~·-----~ ~~~-

The Hamiltonian is a linear combination of the spectroscopic param-

eters times their respective real symmetric coefficient matrices. In 

general H is block diagonal due to the symmetry of the physical situa-

tion (i.e. H is a direct sum of submatrices corresponding to irreduci-

ble representations of SU(2) or some point group), soH takes the form: 

H 
K m 
~ ~ piH(s;i) 

s=l i=l 
(3.36) 

K is the number of block diagonal submatrices of H, and the coefficient 

matrices r1(s;i) can be of higher symmetry than H, sometimes having only 

a small percentage of non-vanishing elements. 

Using symnetry of the N-electron system, the Hamiltonian matrix is 

reduced so that there only accidental degeneracies can occur in the 

eigenvalue spectrum of any submatrix· The eigenvalues of H are holo-

morphic functions of the parameters with exceptional points correspond-

. :i 1 d . 52 ing to accllenta egenerac1es • If the eigenvalues and eigenvectors 

are dentated by {},(s;p)j'~(s;p)jl j=1,2, ••• ,R
8

} with the ordering con-

vention {},(s;p) 1 ~ A(s;p) 2 ~ ••• ~ A(s;p)R}, the eigenvalues 
s 

linearly approximated in the region of the point p 0 (assuming 

an exceptional point) by 

0 ~ "'" 0?_. 
0

) 0 A c s ; p ) J. + :::: ~·~,. iP--- ( p . -p . ) 
. 

1 
up. l l 

l"" l 

can be 

0 p is not 

(3.37a) 

(3.37b) 
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the eigenvectors by 

(3.38a) 

and the gyromagnetic ratios by 

g(s;p). 
J 

(3.39) 

G(s), the gyronagnetic ratio matrix, and the matrices H(s ;i) have been 

taken as real symmetric. 

The chi-square to be minimized is in the form of (3.31); the 

theoretical quantities are eigenvalues of the HaP.Jiltonian matrix and 

gyromagnetic ratios: 

(3.40) 

The Ek's are the experimental energies, the gk's are the experimental g 

values, and s(k), i(k) indicate the assignment of the experimental 
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quantities to the symmetry submatrix and eigenvalue or eigenvector. 

Using the linear approximations to the eigenvalues and g factors, 

the miniPmm can be found iteratively by solving for the minimum of 

DI I-1 
pj - p. 

J J 
( 3. 4la) 

I I-1 + D~ p. pj J J 
( 3. 41b) 

and then diagonalizing the matrix for the new set of parameters pi until 

convergence is reached. This alq,orithm is used in this work via the 

computer program THI written by }1elhorn 53 , modified slightly for present 

purposes. Hodifications include a means of defining a new set of param-

eters by linear transformation, and the assignment of experimental lev-

els to eigenvalues. 

If all energy levels are corresponding to the eigenvalues of a 

given Hamiltonian matrix, the experimental and calculated values can be 

matched by relative energy ordering. The starting values of the parame-

0 ters, p , must he close to the desired set, however, as many local 

minima can exist for chi-square. This problem is compounded when the 

experimental levels are incomplete. Two or more eigenvalues can change 

their relative energy orderings with each iteration, but may retain an 

approximate symmetry or eigenvector charactieristic of some coupling 

scheme. 

If the Hamiltonian matrix is nearly diagonal in SL coupling, for 

example, it is desirable to assign energies on the basis of the largest 

eigenvector component, when rE~lative intensities of the spectral lines 
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') 

might indicate such a preference (see chapter sixteen of Cowan's textJ). 

In addition to assignments based on energy ordering, the program THI was 

modified to assign selected experimental levels by largest eigenvector 

component if the absolute magnitude of the component is greater than a 

predetermined value. Remaining experimental energies are assigned on 

the basis of minimum residuals subject to a requirement that the eigen·~ 

vectors have a specific component greater than some minimum value. 

A number empirical formulas are used to characterize the behavior 

of atomic properties as functions of the nuclear charge Z, with N, the 

number of electrons, fixed. For example, configuration average term 

54 55 energies have been fit to polynomials of the form ' 

E (Z) 
av 

• 1 1 . . . . 55 w1t1 re at1v1st1c correct1ons 

~(Z) 

p 

~ 
p=O 

including term splittings and shifts of the average energy. 

(3.42) 

Since many atomic properties can be interpolated and extrapolated 

by such polynomials, the program SPCFT was written to fit an arbitrary 

polynomial of the form 

+ 0 0 -0 

Because negative powers are desirable, SPCFT was constructed around a 

least squares minimization package VARPRo 56 that allovJS fitting on both 
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linear and non-linear parameters. SPCFT computes the all the statisti~ 

cal parameters mentioned above and is used here whenever a polynomial 

fit is needed for extrapolation or interpolation; a copy of the program 

can be obtained from the author. 
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IV. Effective ~miltonians from Symmetry Considerations 

Portions of the energy spectrum of an N~electron system such as an 

atom or molecule are often related to a set of semi~empirical parameters 

by an effective Hamiltonian description of the system. From Slater~ 

Condon theory, an atomic effective Hamiltonians is obtained by first 

restricting the Hamiltonian operator to a finite dimensional subspace of 

the N~electron Hilbert space. Then a matrix representation of the Ham~ 

iltonian operator on the subspace is found using a basis set of Slater 

determinants constructed from l~electron central field wavefunctions. 

To compute the Hamiltonian matrix, the integrals over angle and sums 

over spin coordinates are done explicitly, while integrals over the 

radial coordinates are treated parametrically. 

Although the spin and angle dependence of the N~electron wavefunc~ 

tions in terms of 1-electron angular momentum eigenfunctions is essen~ 

tial to the Slater~Condon parameterization, a basis set of antisym~ 

metrized products of !~electron central field wavefunctions is not. In 

general, effective Hamiltonians descriptions are useful when portions of 

the spectrum of a Hamiltonian operator can be well approximated by res 

tricting it to finite dimensional subspaces spanned by wavefunctions 

with certain symmetry properties. The optimal set of trial wavefunc~ 

tions can be chosen variationally, via the rnin~max principle, but an 

effective Hamiltonian emerges if the choice is treated empirically: The 

action of the Hamiltonian operator with respect to the unspecified por~ 

tions of the trial wavefunctions is parameterized, with parameters 

chosen to give the best agreement between eigenvalues and a set of 

experimental energy levels. 
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This chapter discusses a paradigm for effective Hamiltonian 

descriptions of systems of N identical particles based on symmetry con­

siderations. Trial wavefunctions are not specifically assumed to be 

linear combinations of products of !-particle wavefunctions, but are 

allowed stronger correlations among coordinates unrelated to the speci­

fied symmetry properties. Section (4.1) outlines how effective Hamil­

tonians are obtained, while sections (4.2) and (4.3) discuss the struc­

ture and representation theory of the relevant symmetry groups. Section 

(4.4) compares this approach with independent particle models, paying 

particular attention to the relevance to atomic structure. 

4.1 Origin~2f Effective Hamiltonians 

Let H = H0 + H1 be the Hamiltonian for N identical particles, where 

H0 is an unperturbed Hamiltonian and H1 is a perturbation. H0 is 

invariant with respect to permutations of the particles, and G; a finite 

or compact Lie group of symmetry transformations on the generalized 

coordinates of any individual particle. Then FN' the covering group of 

all symmetry transformations of H0, is either finite or a product 

(direct, semi-direct, etc.) of a finite and a compact Lie group. The 

representation theory of FN' of its subgroups, and of induced represen~ 

tations of other groups provides the framework for parameterizing effec~ 

tive Hamiltonians. 

H1 must be invariant with respect to permutations of the particles, 

and, if an effective Hamiltonian description is to be used, H1 must have 

lower symmetry than H0• Typically GH' the symmetry group of H (and 

therefore H1). is G or one of its subgroups (identical transformations 



applied to all particles). If H1 must also be reasonably well behaved 

if it is to be restricted to a finite dimensional subspace that carries 

a representation of FN (e.g. f~FN ~ U(f) a unitary operator represen~ 

tation of FN' and fE-FN ~ U(f)H 1uf(f) is well defined). Then H1 can be 

expressed as a linear combination of elements from a vector space of 

operators that carries a (reducible) representation of FN. 

Except for accidental degeneracies, the spectral projections of H0 

generate subspaces that carry irreducible representations of FN. Assum~ 

ing that G is compact implies these representations are finite and are a 

subset of the the unitary transformations that map a given subspace into 

itself. A set of basis vectors can be found to span the subspace and 

carry the representation of FN as one link in a chain of subgroups 

beginning with the unitary transformations on the set of basis vectors 

(i e. the unitary transformations that map the subspace into itself and 

ending with GH' the symmetry group of the Hamiltonian. All operators 

that map the subspace into itself are linear combinations of the genera~ 

tors of the unitary transformations on the basis vectors, and can be 

resolved according to irreducible representations of the same chain of 

subgroups. The operators that are invariant representations of are 

possible components of the effective Hamiltonian. 

Of course, not all possible components of an effective Hamiltonian 

are required, as in Slater-Condon theory (section (2.3) ), only the com-

ponents related to the 1- and 2-electron operators are needed. If G 
c 

FN is a link in the chain of subgroups, H1 and the basis vectors can be 

reduced according to irreducible representations of G • The matrix ele­
c 

ments of the restricted Hamiltonian can be written in the form: 



1 = X 
- ~ q 
2 X X 

Q ,x 

-X + q 
X 

DX(f) is an irreducible representation of G , 
c 
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( 4. la) 

( 4. 1b) 

X X* and D is equivalent to D (His expressed as explicitly self=adjoint). 

The coefficients must make the linear combination a scalar under the 

X subgroup GH; there can be as many distinct operators Q for a given X as 

there are scalar representations in this reduction. 

The Wigner=Eckart theorem applies at any level of the chain, so the 

( X' I XI X") matrix elements '~x' ~ i"x" for any choice of {x',x,x"} are determined 

up to one or more reduced matrix elements: 

X' 
CXx" 
~ (x'(X,X";cO,x'!X,x;X",x") 

ct:= 1 

X' 
dX' is the dimension of the representation D and 

( ~x· 11 Qxll+x")c( 

fx' 
(4.2a) 

( 4. 2b) 

X' 
The Clebsch=Gordon or CG coefficient, CXX'" is the number of times the 

X" JL X" irreducible representation D occurs in the reduction of n-~n , and 

(x'(X,X";c(),x'IX,x;X'',x") is a coefficient of the unitary transformation 

that explicitly displays the reduction. The reduced matrix elements 

provide a natural parameterization for an effective Hamiltonian, subject 

to whatever constraints are necessary to insure Hermiticity of the 



matrix. The effective Hamiltonian must also be physically reasonable 

(e.g. Slater~Condon theory: reasonable values for the radial 

integrals). 

Effective Hamiltonians can be constructed without an icit H
0 

or 

H1, only the algebraic properties of FN and the detailed symmetry pro~ 

perties of H
1 

are essential to the parameterization: The number and 

types of irreducible representations of a subgroup G are determined by c 

the representation of FN carried by the subspace. The construction of 

an effective Hamiltonian might be difficult at an arbitrary level in the 

chain of subgroups because the coupling coefficients to reduce the 

Kronecker product representations of the group are needed. For this 

reason, construction is usually done at the level where a detailed 

knowledge of the representation theory is available (e.g. SU(2) or one 

of its point subgroups). 

The assumption that G is a compact Lie group allows much to be said 

about the algebraic structure of FN, and useful information can be 

obtained from such general knowledge. Tne basic structure of an effec~ 

tive Hamiltonian is determined from the CG coefficients and 

properties of FN and the other links in the chain of subgroups. The 

number of independent component operators available for the effective 

Hamiltonian are determined by these factors. In the next two sections, 

conjugate classes. unitary irreducible representations, simple charac~ 

ters, etc. are related to their counterparts of G and the ic 

(permutation) groups. 
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4.2 The Structure of FN 

The relationship of the structure of FN to the structure of G and 

the symmetric groups is discussed in this section. Some of the proper-

ties of an abstract group FN are revealed in (4.2.1), while the conju-

gate classes of FN are related to the conjugate classes of G and the 

symmetric groups in (4.2.2). This relationship is needed for the dis~ 

cussion of the simple characters, CG coefficients, and branching proper-

ties of FN in section (4.3). 

~·l·l Multiplication Table £f FN 

FN has two major subgroups: the permutation group SN' and the 

group GN ~ GxGx ••• xG (N times). However, the unitary operators 

representing elements of SN and GN acting on N-particle wavefunctions do 

not in general commute. If the elements of FN' {(s;Y) I stSN' YtGN}' 

correspond to the sequential application of a permutation s followed by 

a transformation Y to a set of coordinates (x 1, x 2 , •••• xN)' then the 

natural law of composition becomes (cf. eq. (4.12) below): 

( s ; f) • ( s' ; y' ) (ss';YY;) (4.3a) 

(s; f) (I ; Y) • ( s ; I) (s;I)·(I;Y-) s ( 4. 3b) 

-1 - -1 ( 4 .3c) (s; Y) (s;Y-) 
s 

Where 

-ss I (4.3d) 

y {gl'g2···· ,gN} (4.3e) 

Y·Y' { ' ' '} glgl,g2g2, ••• ,gNgN ( 4. 3f) 

Ys {gs(l) ,gs(2) • •• .,gs{N)} ( 4. 3g) 



~113~ 

(for notational convenience a (7) over a permutation denotes its 

inverse). It is clear from the multiplication law of the group ele~ 

ments, (4.3a), that FN is a semi~direct product of GN with SN. As a 

result, GN is a normal subgroup of FN and the structure of FN is rather 

intimately related to the structure of SN. 

~·1·1 Conjugate Classes of FN 

Just as an element s of SN can be resolved into a product of com-

muting cyclic permutations, an element (s;Y) of FN has a similar resolu-

tion: 

(s; Y) n (\). ;e,.) 
. 1 l 
l 

A typical (\);e,)~FN in this resolution consists of a cyclic permutation 

of length o 

\) 

r 
I vq(i;n,o) 
< 
I k 

l 

q(i;n,o) 1 + (i+n-1) d 1 ( ) mo u o o 

( L; .• 4b) 

(4.4c) 

(4.4d) 

with the convention v 1 ~vi' i•1,2, •••• o. and a corresponding element e, 

( 
I ~y iL\) 
< gi' ' 

I I if?\) 
l 

(4.4e) 
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Conjugation of (~;a) with an arbitrary element (t;Y) of FN takes 

the form 

(4.5a) 

equivalent to conjugation with the permutation (t;I) followed by conju-

gation with (I;Y)· Conjugation of (~;a) with (t;I) results in: 

( 4. 5b) 

(4.5c) 

( 4. 5d) 

t(v) < t(v.) i""1,2, ••• ,o 
p - l. 

(4.5e) 

An element (~t;at) conjugate to (~;a) for a given ttSN consists of 

a cyclic permutation conjugate to ~. and an element of GN corresponding 

to a cyclic permutation of a fixed subset of G indexed by the cycle of 

permuted particles. To be more explicit, let ~ be the a-element ordered 

subset of G defined as a function of (~;~): 

(4.7a) 

c (. . ) q 1.,n,o (4.7b) 
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and in particular, if t 

(4. 7c) 

Conjugation of (~;~) with an element (I;Y) of FN results in 

(4.8a) 

Then 

{ - -~1 -~1 -~J} (4.8b) gv c g • g c g ., • • • • g cv gv -
1 v 1 v o v 2 v 2 v 1 v o o o~l 

Notice that ~ can also be any cyclic permutation of ¢ (e.g. let 

The conjugate elements (~;~) and (~;~) are related to a conjugate 

class of G by their cycle products "•rr~G, where 

The cycle products of any two conjugate cycle elements are in the same 

conjugate class of G. and conversely, if two cycle elements of FN of the 

same length have cycle products in the same conjugate class of G, 

are conjugate elements of FN. This follows from the property that an 

equality between the two products of group elements 

g'lg~ ... g' 
<-. n 
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has a general relationship between individual elements of the form 

where 

h. 
1 

-1 
h. 1g .h. 
1- 1 1 

h 
n 

I 

(4.10b) 

(4.10c) 

(4.10d) 

The cycle product is the link between the conjugate classes of FN and 

the conjugate classes of G and SN. The conjugate classes of FN are 

related to the conjugate classes of G and SN as follows: 

Let s~SN have a cycle resolutions~ ~1 ~2 ••• ~m· Then 

{s;Y)~FN can be characterized by the pairs {(~i'~i) I 

i~l, ••• ,m}, ~i ~ ~(~1 ;Y)· If (s,Y) is also an element of FN 

characterized by the pairs {(~i'rri) l i=l, ••• ,m}, (s;Y) and 

(s;Y) are conjugate elements of FN' if and only if there 

exists a one to one correspondence between the pairs {~.~} 

and the pairs {~,rr} such that each corresponding~.~ and~.~ 

are conjugate elements of SN and G respectively. It follows 

that a conjugate class of FN is characterized by a permuta-

tion cycle structure {~ 1 •••• ,~N} (~i is the number of cycles 

of length i and 1~ 1+ ~2+ .•• ~N= N), with a corresponding 

1 1 
conjugate class K of G for each cycle {K1, ••• , K~, 

1 

2 N K~ , ••• ,K~ }. 
2 N 
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Unitary matrix irreducible representations of FN can be found 

the following method: 

(1) An induced unitary operator representation of FN is obtained 

by allowing the permutation operators to act on an orthonor 

mal set of N-particle wavefunctions that carry an irreducible 

representation of GN. The resulting unitary operator 

representation of FN is carried on a finite dimensional 

space. 

(2) An orthonormal basis for this space can be used to generate a 

unitary matrix representation of FN. 

(3) A finite dimensional unitary representation of FN can be com-

pletely reduced to a direct sum of irreducible represents-

tions. 

Let theN-electron wavefunctions {'f'~p(x 1 , ••• ,xN) I Pf-BR}, BR "" 

{(bl' ••• ,bN) ! l~b 1s_dr , ••• , l<b~d }, carry the irreducible represen-
1 - rN 

tat ion 
r 

8D N(gN); gtG ~ Dr (g) is a 

matrix irreducible representation of G, R • {r 1, ••• ,rN}" and dr is the 

dimension of Dr. The action of the unitary operator representation of 

FN on these wavefunctions is defined by: 



Where 

so that 

R 
s 

(4.12a) 

(4.12b) 

( 4. 12c) 

( 4. 12d) 

( 4. 12e) 

carrier 

space of the induced representation of FN' but generally are not all 

linearly independent. The carrier space of the induced representation 

is, however. composed of orthogonal subspaces that carry inequivalent 

irreducible representations of GN' corresponding to the distinct permu~ 

Representations 

It suffices to consider representations of FN induced from 

0 U1_ w wi 
representations YtGN ~ v<Y) of GN' where .Q. = {r 1 • • • • ,rpp} (ri indi~" 

cates D occurs wi times); w1 + oee+tll 
p If s~ <: is the 
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of all permutations within the subsets of elements W 1 "" { 1, 2,... }, 

W2 "" {~+1, ... ,~~}, ... , Wp {N-wp+l, ••• ,N} (i.e. S~ is isomorphic 

with s~ x ••• xswp) , then the left co sets ~ "' {Ow I wf.Se} of s~ gen~ 

erated by the permutations Lfi = {Of.SN 0(k)<0(j) if k < j and k,j 

for some i=l,2, ••• ,p} in turn generate orthogonal subspaces that carry 

fi 
inequivalent representations D O of GN spanned by the vectors ~ ~ 

{'f~wfio~ = U(Ow;IH~w I wf.Se. ~tBQ} (note: .Q.Ow ""llo)· Under the 

action of the unitary operator representation of FN' these vectors 

transform: 

From equation (4.1~) it appears, perhaps, that the induced carrier 

space of FN carries a reducible representation of GNxs~ as a subgroup of 

FN. In fact, (4.13b) has the correct form for an element of the direct 

product representation of GNxs~ if op "' o, OsO = w, and p~ = P' 

Each linear span of vectors ~ is in 

nal subspaces ~O' spanned by the vectors 

turn a direct sum of orthogo-

each pair (O,p). Any subspace ~O is mapped by a transforma-

tion (permutation) into any other subspace ft -~p. Thus any orthonormal 

basis constructed from the subset ~~ spanning ~~· where ~ is any fixed 

fi element of B , generates an orthonormal basis for the entire carrier 

space of the induced representation of FN. The inner product between 
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.!l .!l .!l 
any pair of vectors in the set {+OwQO~ I O~L • w~SN, ~~B } can be 

expressed: 

( 4. 14) 

Generators and Subgroups 

The operator representations of some of the projections from the 

group ring of GN can be employed to investigate the carrier space of the 

induced representation of FN. Let the operators {E~~,I ~.~-~BR} be 

defined: 

(4.15) 

The integral 

1 

represents the multiple integration with respect to the normalized left 

57 58 invariant Haar measure over the group G • • 

57 58 The translation invariance of the Haar measure • • combined \vith 

the orthogonality of the matrix elements of unitary irreducible 

representations expressed by 

give these operators the properties: 

(4.16a) 



R 
U(s; Y)E~~-

R R 
The operators, {E~~- p,p'~B } for fixed R, are also a 

(4 • .16b) 

(4. 16c) 

(4.16d) 

tion of the Lie algebra for the set of all unitary transformations on 

R R 
the set of N-particle wavefunctions {+Rpl p~B },that carry Y~GN~D (Y) 

R R 
(i.e. Y~GN~D (Y) D (Y) C U(dR), dR = d ••• d ) • The representation 

r 1 rN 

DR is a link in a number of possible chains of subgroups headed by 

A representation of SU(d )XSU(d )X ••• xSU(d ) is generated by 
rl r2 rN 

(r.) 
the operators {eb 11~,(i;R) I b",b' =1,2, ••• ,d } defined by 

ri 

A representation Dr is a subgroup of SU(d ), generated by some subset of 
r 

r the operators {~ 11b,}. If 
ri 

the representations {D I i•l, ••• ,N} are 

faithful representations of the group G, there is a chain of subgroups 

U(dR) :J SU(d )X ••• xSU(d ) :J GN :J G. 
rl rN 

Another chain of subgroups appropriate to the irreducible represen~ 

r 
tat ions of SNXGC FN is generated by the operators o;:;"b' I 

b",b' •1,2, ••• ,d }, defined by 
r 



-122-

(4.18) 

These operators commute with permutations of the particles and generate 

a representation of SU(d )X ••• xSU(d ) on the induced carrier space of 
r 1 rp 

Representations £f S~ 

R 
Another subgroup of U(dR), induced from a representation D of GN' 

is the set of permutations the vectors {yR~ I ~~BR}, distinct from the 

subgroup of permutations of the particles that leaves R invariant. This 

relationship is a key to the representation structure of FN. 

~ bN= bp}, the vectors ~~ = {ylwQ~ I w~S~} carry a representation of S~ 

under w~S~ ~ U(w;I). An equivalent representation of S~ is carried by 

the vectors ~~ for each O~LU, ~~BU, with the equivalence mapping: 

(4.19a) 

( 4. 19b) 

The unitary operators {~(w) I w~S~}, defined by 

pU(w) ( 4. 20a) 
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!l are a representation of SN, and from (4.6d) 

(4.20b) 

implying that 

pfi(w) U(I, Y) ( 4. 20c) 

For completeness, note that the unitary operators, {rfi(w) I 

defined by 

commute with the operators {pfi(w) I wf-S~}, and are also a representation 

0 'w 0 

0 

These operators permute the vectors {+Owo.O.Op I PE-B!l} for fixed 

Also, the combined operators {rfl(w) I wf-S~}, 

~(w)p!l(w) 

are direct sums operators {U(Ow0~ 1 ;I) I wf-S~} restricted to the sub~ 

spaces {o· 

wavefunctions can be found that carries an irreducible representation 

group of a single particle, is the rotation group, the symmetry group 

applies to the radial coordinates: The operators {pfi(w) I wf-S~} permute 

the radial coordinates of the particles that carry the same representa~ 

tion of the rotation group. In general, the N~particle wavefunctions 

have one or more degrees of freedom associated with each particle that 
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are independent of symmetry operations of G, and the operators {~(w) I 

w~S~} permute the coordinates associated with the additional degrees of 

freedom among groups of corresponding to the same irreducible represen-

tation of G. 

The irreducible matrix representations of S~ are Kronecker products 

of the irreducible matrix representations of S , S , ••• , S • An 
~ Ulz wp 

irreducible representation of S is described by a Young diagram, or w 

equivalently a set of integers [A] = [A 1 .:!_ ••• .:!_ >-w.:!. 0]; A1+. • ·+>-w= w. 

The basis vectors of of an irreducible representation of S are labeled w 

by the standard Young tableaux depicted in figure (4.1a). A standard 

Young tableau is simply the Young diagram filled with the integers 

{1,2, .•• ,w} in increasing order from left to right in each row and top 

to bottom in each column. The standard tableaux graphically denote the 

decomposition of an irreducible representation of S into irreducible 
w 

representations of its subgroups via the chain Sw(: Stu-1 (:: • • • (:: S 1• 

Removing the boxes containing the integers w, tu-1, ••• , tu-q+l, from a 

standard tableau of Swleaves a standard tableau of S tu-q 

An irreducible representation o\ of S~ is labeled by p Young 

diagrams or the p sets of integers A= {[A]i I i=l, ••• ,p} where [A]i 

The basis vectors of are 

p-tuples of standard Young tableaux as indicated in figure (4.1b) A 

standard p~tuple p from the set yll consists of p Young diagrams where 

the ith diagram is filled with the integers wi' ordered by increasing 

values with respect to rows and columns. 



p= 

b,, bl2 bl3 . . . 
biAI 

bij E {1,2, ... ,w} 

bj + l,j > b ij 

b21 b22 
. 

. . . . . 
Aw Boxes bwl . . . 

. . b2 A 2 

. 

bw A w 

Figure (4.la) 

b i, j +I b ij 

[ 4,3,2] 
r E y · 

3 4 
r = 2 6 8 

7 9 

Young tableau describing a basis vector of an irreducible 
representation D[A] of S • 

w 

I I I 
b II b 12 

. . . b I AI 
I 

p p 
b II b 12 . . . 

I I 
b 21 

. . . 
b 2 A.' 2 

p p 

b 21 
. . . b 2 Ap 2 

~~ . . . . . . . . . . . . . . 
~~~,------

. . . b
1 

I 
w 1 Aw 

I 

. . . bp A.P 
wp wp j 

Figure (4.lb) 
XBL 805-899 

p~Tuple of Young tableaux describing a basis vector of 

irreducible representation oA of se. the 
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With the above considerations about the reduction of the induced 

representation of FN in terms of representation of GNXS~, a general 

statement about unitary representations of FN can now be made: 

Let {~~~,A) I p~B~. p~yA} be an orthonormal set of N-particle 

wavefunctions that carries the unitary irreducible represen­

tations ~~ of S~GN and under the actions of the operator 

representations Y~GN ~ U(I;Y), w~S~ ~ ~(w): 

~(w) U (I; Y) ij ~~p0) (x 1 , ••• ,xN) (4.23) 

with U(I;Y) and ~(w) defined as above: Then the set of N~ 

particle wavefunctions {~(~.A) U(O;I)~~~p,A) I O~L~, p~B~, 
o Pp r-

p~~> carry an induced unitary representation of FN given by 

(4.24a) 

and the matrices for this representation are given by 

(4.24b) 
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where 

( .Q. 
I 1 wf-SN 

ll 0.\l < (4.24c) (w, SN) 
I wfS.Q. 0 
l N 

Jrreducibilty of D(.Q.,A) 

It is straight forward to show that the unitary representations of 

FN defined by (4.24) are also irreducible. From the orthogonality rela~ 

tion (4.6) it follows that 

(4.26a) 

but 

.Q. 
/l ( 0 as 0 ~ ; SN a ) /l ( 0 (4.26b) 

.Q.a ~ ~ .Q.a 
since (0as0~)~SN implies that (0as0~)= CO~sOa)fSN. Thus (4.26a) is 

.Q. 
non-vanishing only if ob ~ O~w. w~SNa. However, each OtL.Q. generates 

.Q. 
distinct left coset of SNa' so this can only be true if 0£ = 0~ and 

w ~ I. Then from the orthogonality of the unitary matrix elements of 
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(4.26c) 

In the case of a finite or compact Lie group, the orthogonality (4.26c) 

of the matrix representations is equivalent to irreducibilty. 

The character of the irreducible representation D(U,A) is calcu-

lated by summing the diagonal matrix elements given by (4.24b): 

x<A ;a) (s; Y) (4.27) 

The content of this expression becomes clearer if w~sfr is resolved 

into cycle elements. The cycle structure of any w~S~ is comensurate 

with n ~ {~, ... ,uup}' so a given w~sfr can be expressed in the form: 

w 
p n(i) 
n n \Jij (4.28a) 

i=l j=l 

( 4. 28b) 

Combining with (4.27) leads to: 



~ h X[},] \ \)il ••• \)in { i)) 

['fB!l i=l 
(4.29) 

The sum over any cycle of elements {b ~ ••• ,b } is a character of a 
vl vo 

cycle product: 

r r 
~ Db b ( cv ) •. • Db b ( cv ) 

bv =1 v 1 v 1 v v 1 o o o o~ 

0 

The character of ffF ...,)> D(!l,!\) (f) becomes 
N 

i' where rr J ij 'y rr(\) ' ~). 

(4.30) 

(4.31) 

A nonvanishing term in the double sum on the right-hand~side of 

(4.31) means that Ow~= s, or 

is a cyclic permutation of s. 

. . k k 
equivalently that each \)1

J = ~~· where ~ 

i' -k 
It follows that rr(\) J;Y ")and rr(\) ;Y) 

0 ~1 

are conjugate elements of G, and that X(!l,!\)(s;Y) is a function of only 

the cycle structure{~}= {~ 1 .~ 2 •••• ,~N} of s~ and the cycle products 

i !l {n} ""{nj I j=1,2, •••• ~i; i=1,2, ••• ,N}. The permutations OfL map the 

sets of integers wi into all possible~-·~-· •••• Ulp-element, 

ordered, disjoint subsets of {1,2, ••• ,N}. Effectively, (4.30) is a sum 

over all distinct distributions of the cycle 
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top groups with the cycle lengths commensurate with {~·~····•uup}. 

Expressed in terms{~}. {"}• x<a.A){s;Y) becomes 

(4.32a) 

(4.32b) 

r 
I 

rl I 1 < k < ~~ I X 
- - J 

I 
r2 I 1+p~ < k < p~+p~ X 

r[k;(p).] < J- - J J 
X J I (4.32c) 

I 
I r 
I X p ~.~p~+l < k < ~. 
I J - - J 

l 

(4.32d) 

and from the translation invariance of the Haar measure and the ortho~ 

normality of the characters of a finite or compact Lie group, the func~ 

tions yU({p},{~;w}) have orthogonality properties: 
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(4.33a) 

In addition, some other relations useful in determining the CG coeffi~ 

cients of FN are given by: 

(4. 33b) 

( 4. 33c) 

cr", is a CG coefficient for the group G, and k .,; k' in { 4. 33c). 
rr 

Subgroup Branching 

The expression for the character x<u.A) given by (4.32) is espe~ 

cially suited to the branching of FN under the restriction to the sub~ 

group GN. In this case the permutation s ~ I, so ~ N, 

and x<U,A) reduces to 

X (U,A) ( { ~ 1 =N} ; Y) 

reflecting the decomposition of the carrier space into a direct sum of 

uo 
subspaces that carry the representations D of GN. 

o. 
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Representations of FN must decompose into irreducible representa-

tions of SNxG upon restriction to this subgroup. To exhibit this decom­

position of of FN. The function yU({p},{~;"}) can be rewritten as 

(4 35a) 

(4.35b) 

using the completeness of the simple characters in the space of class 

36 valued functions of the symmetric groups • i.e. 

(4.35c) 

and O{{p}) is the number of group elements in the conjugate class {p}. 

The products of characters of the symmetric groups S reduce to 
W. 

l. 

the Clebsch-Gordon series 

(4.36) 

The expression (4.35a) contains a multiple sum of terms of this type, as 

n x[AJ\pi ~) Jl (4.37) i""l 1'@00, y ({p},{~;IT}) 

1 [\)]p p [\)] 1 
i i ~ c [ \)] ~ c n X <Pl·····PN) 1 1 

[\)]P [).]P[fl]p i=l [\)] 1 [}.] [pJ 



The sum over products of simple characters of S ~ 

~ 

N 
n 

J"=l r< 1 1 I"' ••••• 
J 

is a compound character of SN, the character of the outer product 

representation36 obtained from D [\)] 
1

, ••• , D [\)] p. An outer product 
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representation is completely reducible into irreducible representations 

of SN; the rules for the reduction are given graphically using Young 

diagrams by Hammermesh 36 , 

If the reduction of an outer product representation contains the 

symmetric representation of SN (D[Nl), the component representations 

must all be symmetric ([\)]i ~ [w.]), and if it contains the 
~ 

N 
metric representation (D[l 1). the componEnt representations must all be 

UL 

antisymmetric ( [\)) i "' [1 ~]). This places a constraint on the Kronecker 

i i 
product representations D[,~] £1 D[p] • i In the symmetric case 1 [A] must 

conjugate representations (the Young diagram of one representation is 

the transpose of the other). 

Upon restriction of FN to sNxG, zil({[f]},{q;"}) has a clearer 

interpretation. Zfi({[pJ},{q;"}) is the product of characters of the 

ri r. 
representations D £1 ••• l9D ~ (wi times) projected on the permutation 

symmetry [p]i. Equivalently, Zfi({ [p]} 1 {q;w}) is the character of the 
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i direct product representations of [~] of SU(d ) for i=l, •••• p. res-
ri 

tricted to the subgroup representation of Gas discussed in (4.3.1). In 

ri 
particular. if D is a !~dimensional representation of G, the represen-

tation of SU(dr.) is [~] • and [A]i must be [wi] 
1. 

w. 
or [1 

1
] if the 

representation of SNxG is to contain a symmetric or antisymmetric 

representation of SN respectively. 

1-Particle Operators 

Although an evaluation of (4.32) in the general case is formidable, 

the characters of the representations carried on the vector spaces of 

the 1- or 2-particle operators are simple and of practical interest. 

The irreducible representations of FN carried by operators on the N­

particle Hilbert space must contain identity representations of SN on 

restriction of FN to this subgroup. This limits the possible choices 

for A in (U,A). For example, a non-trivial !-particle operator implies 

N-1 U ~ {r,I }, where I is the identity representation and r~I is an arbi-

trary representation of G (if r = I, the operator is a multiple of the 

identity). This implies A= {[l],[N-1)}, and 

x<r)({c(;I'V}) (4.39a) 

The forms relevant to both subgroup branchings • FN :::') GN and FN :::') sNxG, 

are given. The permutation invariant representation in the branching to 

SNxG has the character of D [N]~ Dr: 
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To find the number of times the representation D(U,A') occurs in 

the reduction of D(r)lll!D(U,A) for a general (fl,A) • notice that (4.33a) 

implies 

c(l 

!i Xr(vv~)fl({p},{c(;vv}) 
k""1 

(4.40a) 

the product can be expanded in the orthogonal set of functions 

plied by a coefficient dependent on the CG coefficients for the group G. 

The CG coefficients for FN become 

s s 
c<fl,A') -~ w [ ~ /j Pj] ~ ;?: p 

(r) (fl,A) wl { p} 1 
wt . 

1 
rr. 1 

p {p}P J"' J 

( 4. 40b) 

p 
O({p}i) L.>..J

1 
({p}i)x[A'J

1 
({p}i) n X 

i=l 

s w. 
!i 

1 
!i i 6 = 

cpi+ 2p~+ i 
{ p}i pi > 0 pi > 0 

•.. + N13N) ,wi 

1 - N-

( 4 40c) 



c (fl,/\') 
( r ) (fl,/\) 

p r. 
i c J 

j=l :r:rj 
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( 4. 40d) 

where the last step follows from p
1 

= X[uu]({p}) + X[url,l]({p}) and the 

36 
CG coefficients for the symmetric groups • For simply reducible 

h CG ff h 0 1 d C
(fl,/\) 

groups, t e coe icients are eit er or , an (r)(fl,/\) ~ P· 

2-Particle Operators 

The vector space of 2-particle operators can carry three possible 

non-trivial representations of FN: 

2 N-2 1\ (1) ll = {r ,I } (r~I), {[2],[N-2]}: 

2 
x<r ) ({c(;rv}) ( 4. 41a) 

with an alternate form 
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+ x[NJ ({cO)) 
c(l 

~ xr ( "~) xr ( " ~ ) 
j >k=l J 

The permutation invariant representation of SNxG is 

(4.41c) 

the symmetrized portion of Dr~ Dr. The carrier space of this represen~ 

tation also carries an induced representation [2] of SU(d ); the sym~ 
r 

metrized Dr~Dr can be regarded as a subgroup representation. 

(2) 

2 2 
x<r ,[1 J)({c(;~V}) ( 4. 42a) 

with the same alternate form as (4.39b) except the c( 2 term has the oppo~ 

site sign. The permutation invariant representation of sNxG is 

the antisymmetrized portion of DrSDr. This representation can be 

regarded as a subgroup of the representation [1 2] of SU(d ). 
r 

( 4. 42b) 
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( 3) { [ l ] , [ 1 ] • [N-2] } : 

(4.43a) 

with the alternate form 

(4.43b) 

The permutation invariant representation of SNXG is 

(4.43c) 

the character of Dr~Dr'. This representation can be regarded as a sub-

group representation of SU(d )XSU(d ,). r r 

(fl./\' ) (fli:J\ li) 
The CG coefficients C(flv:J\n) (fl,/\) • where D is an irreducible 

representation carried by a 2-particle tensor operator, are obtained 

with the use of (4.33b) and (4.33c), analagous to (4.40). 



c (il,l\') 

( r 2) (il,l\) 

c<ilJ\') 
(r2, [12]) (il,l\) 

c (il,l\') 
(rr') (il,l\) 

wt 
p" 

w! 
p 

w! 
p 

Evaluation of sums of the type 

c 
nm 
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:h O({p}i)X[)d~{p}i)X[,A']~{p}i) 
i=l 

( 4. 4~-a) 

h O({p}i)xrAJ ~{p}i)xLA' J ~{p}i) 
i=l 

have been discussed by Hammermesh 36 , and the results can be stated 

graphically with Young diagrams. The factors c can also be solved for 
nm 

iteratively using the completeness of the simple characters, equation 

(4.40), and 
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( 4. 45b) 

r 1 X > 0 
Q(x) < 

.Ai = 0 ' i >w 
l 0 X < 0' (4.45c) 

4.4 ComEarisons with Inde:eendent Particle Models 

The structure and representation theory of FN determines the pro-

perties of possible effective Hamiltonians on sub spaces that carry 

representations D(U,A). Physical wavefunctions must be symmetric or 

antisymmetric with respect to permutations of the particles, so effec-

tive Hamiltonians are restricted to the portion of the carrier space of 

D(U.A) that also carries representations of SNXG with the appropriate 

symmetry. The antisymmetric subspaces are considered in (4.4.1) and 

compared with configurations of Slater determinants, the 1- and 2-

electron operators are discussed in (4.4.2), and some general observa~ 

tions about atomic structure are made in (4.4.3). 

4.4.1 N~Electron Wavefunctions ---

The subspace of the carrier space of a representation D(U,A) that 

carries the antisymmetric representation of SN also carries an induced 

- 1 - p representation [,A] S ••• s[,A] of SU(d )X ••• xsu(d ) (the partitions 
r 1 rp 

of wp Wz• ... , wp conjugate to [)d 
1, ••• , [_A]P), as was noted in the 
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discussion of the subgroup branching FN ::J sNxG. In the case of non·~ 

relativistic atomic Hamiltonians, the group G is SU(2)X0+(3) with 

representations D Vz0DO, and theN-electron wavefunctions can be con-

structed in the following fashion: 

An antisymmetric wavefunction results from a marriage of a set of 

radial wavefunctions {1(rl' ••• ,rN) I pE-i\} that carry the irreducible 

representation n\ of ~· and a set of spin~angle wavefunctions 

{A~~/\) (e 1crp ••• ,eNcrN) I pE-.f. "tE-0}, that carry representations of 

s}SU(40 1+2)X ••• xSU(40p+2), denoted by the partitions [/\] ""{fXJ 1
, 

••• ,[A)p} of the integers {~, ••• ,uup}. The spin~angle functions are 

- i 
product functions {A~] } that carry the representations [Ali of 

r i r:i 

S XSU(40.+2), constructed from 1-electron spin-angle wavefunctions uu
1 

1 

{ y 0 i m ( 9 • ¢ ) ~ ( 6} I ~ 0 i .5. m .5. 0 i ; !J = +- ¥2 } • The basis vectors of 

representations [A] of SU(40+2) can be represented by Weyl tableaux 

tE-W[A], Young diagrams of the pattern [A] filled with ordered s 

(m,p) as pictured in figure (4.2) 36 • 59 • are 

labeled by p-tuples of Weyl and Young tableaus. 

Products of the radial and spin-angle functions are 

metrized. This is equivalent to constructing the representation (1 ]x 

antisymmetrizing with respect to the permutations OE-Lu: 
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. . . 
A. 

1 
Boxes 

bll bl2 bl31 

I I 
I 

bl ~ I I bij" bij (m,fL) "2(m+l) +fi-+3/2 

lsbijs91-2 b21 b22 . . . b2 ~2 

. b·:Sb· 1 j+is>::·1 ~2 IJ IJ + . . . . . bij < bi+l,j j::; >;i+l 

-
bwl . . . bw~ w 

Aw Boxes 

XBL 805-898 

Figure (4.2) 

Weyl tableau describing a basis vector of the irreducible 

representation uA of S~; the representatio~ carried by the 

wavefunctions {A~~/\) (e 1s 1, •• • ,eNo-N) I pf:-/', 'tf:-r}}. 
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A( )A(fl,/\) (~ ~ ) P' rl' ... ,rN e 1crl' ••• ,eNcJ'N 
p ~"t 

In principle these wavefunctions can be transformed from the Weyl basis 

of SU(40 
1
+2)X ••• xSU(40p +2) into an SLJ basis by finding subgroup 

representations of the same chains as discussed in chapter II. In prac~ 

tice, however, this can be difficult because the coefficients of frac~ 

tional parentage for general representations [A] of SU(40+2) are 

largely unknown. 

Slater Determinants 

A fairly simple relationship exists between basis vectors con~ 

structed by the above method and the Slater determ:l.nants of a given con-· 

figuration. The radial wavefunctions {~ I p~y\} can be constructed 
p 

from products of 1-electron radial wavefunctions in the same manner as 

the spin-angle wavefunctions were constructed. The functions {~ I 
p 

i 
p~y\} become products of functions {P[A) I 

ri 

i 
ri~y[A] } constructed from 

0 i-type l~electron radial wavefunctions {R 11 ,R , 11 , ••• , R 1111 } • In 
nv i n vi n vi 

many cases there are only N distinct 1-electron wavefunctions that can 

be constructed with a specified set of (m,p) values from the l~elec:tron 
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radial and spin-angle wavefunctions available to a configuration. In 

such a situation, only one linearly independent N~electron wavefunction 

can be constructed by any method, essentially a Slater determinant. 

For simplicity, consider a configuration wof w 0-electrons of the 

The spin-angle wavefunctions A[XJ 
rt 

can 

be constructed for any representations ~] of S xSU(40+2) as long as 
w 

Ak= 0 if k > 40+2. The basis functions must be antisymmetric with 

respect to subsets of coordinates with as many members as there are 

boxes in each column of a Young diagram36 ; any wavefunction constructed 

from a set of 40+2 1-particle functions cannot be antisymmetric with 

respect to more than 40+2 coordinates. 

The products of wradial wavefunctions {R ~····· R A} carry a 
n 1 v nq v 

representation of S xSU(q) under permutations of the radial coordinates 
w 

and unitary transformations on the set of radial wavefunctions. The 

representation reduces into irreducible representations [A], but because 

[A] must be conjugate to a representation [XJ, carried by the spin-angle 

functions, Ak ~ 40+2. Also Ak"" 0 if k > q, because there are only q-

radial wavefunctions, thus the possible Young diagrams are limited to 

rows no longer than 40+2, and columns no longer than q. In addition, 

the number of each type of radial wavefunction niO is fixed at wi, and 

if w1 > w2 > ••• > w , the number of columns of length q must be> w • 
~ - ~ q - q 

Unless w
1
., .., -

w 2"""" 0 I!) 0 "" wq_1 = 40+2, there is more than one possible 

representation [}.] that meets these constraints. In general, the 1-

electron radial and spin-angle wavefunctions w can carry several 

representations D( Ow;[}.]) of F h w t at reduce to antisymmetric 
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+ representations under F :::;) S XSU(2)XO (3). The simplest example is a 
w w 

2~electron configuration {nO~npO} with n ~ n', so the radial functions 

2 can be symmetric [2] or antisymmetric [1 ] • There are two irreducible 

( 2) 
representations of F2 that can be constructed; the representations D r 

2 2 
and D(r ,[l ]) ,with the characters given by (4.4la) and (4.42a) respec~ 

tively. The 2-electron configuration n0 2 carries only the representa~ 
2 

tion D(r )• 

The extension to a general configuration is made by construct 

the radial functions {pA I p~yA} from products 
p 

However, 

the \ITeyl tableau basis vectors, {~A"t I "t~~}, are generally not ident<~ 
ical to single Slater determinants. Consider the determinants of the 

configuration was antisymmetrized products of wi-electron subshell 

wavefunctions with radial dependence given by R h(r 1) ••• R ~(r ). 
niv niv wi 

w 
The determinants of the configuration w carry a representation [1 

1
Jx 

w 
x[l q] of [SU(40+2)]q = SU(40+2)x ••• SU(40+2) (q times). 

Since 0 is the same for all subshells, the reduction SU(40+2) C 

SU(40+2)q can be made~ and the resulting sum of irreducible representa~ 

tions is block diagonalized with the basis <tA"t I "t~~} in 

the case wi~ 40i+2, i~q, the representation of [SU(40+2)]q reduces to 

several irreducible representations of SU(40+2) and the Slater deter~ 

minants are generally linear combinations of Weyl tableau basis vectors. 

In the exceptional case, however, the representation of [SU(40+2)]q is 

composed of at most one non~trivial (identity) representation of 

SU(40 i+2) and the Weyl tableau basis vectors are identical to Slater 
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determinants. 

~·~·1 n-Electron Operators 

On a linear span of Slater determinants that is closed under rota-

tions, the n-electron operators can be expanded as integral operators 

with kernels constructed from 1-electron wavefunctions. The set of 1-

electron wavefunctions is composed of subsets that carry irreducible 

representations DV2xn0 of SU(2)x0+(3), and each subset can be induced 

to carry a representation of SU(40+2). The set of all symmetric 

integral operators that maps a configuration with p-subshells into 

w1 w1 * w w * 
itself carries a representation [1 ]9 [1 ] 9 ••• ® [1 p]9 [1 p of 

SU(40 1+2)x ••• xSU(40p +2), reducible to a direct sum of irreducible 

representations given by (2.108a). Thus this vector space of operators 

carries p-fold direct products of irreducible representations of various 

links in the chain of subgroups SU(40i+2) ::j Sp(40i+2) ::j 

o+(3)xo+(20i+l) :::J o+(3)xo+(3). and Oi for each niOi subshell. 

Within a configuration where the number of each type of 1-electron 

wavefunction is conserved, the restricted n-electron operators carry 

representations 

••• xsu(40 +2), ~ 1+ ••• +~ § n, and the possible representations of this p p 

type are limited, since usually, n=l.2. Each representation 

\)i \)i * 
[1 ]8[1 ] is reduced to a direct sum of irreducible representations 

of SU(40i+2) given by (2.108b), and the basis of each irreducible 

representation can be chosen to display the n .. duction via the same chain 

of subgroups headed by SU(4~.+2) and terminated with 0+(3)x0+(3). Only 
~ 

+ + the scalar representations of the tail subgroup 0 (3)xO (3) are 
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important for the effective Hamiltonians. 

If a configuration has only one unfilled subshell for each 0 (i.e. 

w.""40 .+2 except for perhaps one nO~subshell of each O~type), it can be 
1 1 

considered the antisymmetric subspace of the carrier space of a 

irreducible representation D(~.A) of FN The algebraic of 

the operators that map this subspace into itself are :tdentical whether 

or not the radial dependence of the wavefunctions spanning th:ts subspac 

is given explicitly by !-electron radial wavefunctions. This suggests 

of effective Hamiltonians is essentially the same if the radial 

dence is given by products of !~electron radial wavefunctions or more 

general radial wavefunctions, i.e. arbitrary functions of the radial 

coordinates, and the parameters are not limited to linear combinations 

of integrals involving !-electron radial wavefunctions. 

To explore this idea further, consider the restriction to the 

antisymmetric subspace of the carrier spaee of D(!l,A). This subspace 

carries the irreducible representation A of SU(40 

when spanned by the Weyl tableau basis vectors, 

)X ••• SU(40 +2) 
p 

, defined by 

( 2. 46ab). The operators that map this subspace into itself are invari~ 

ant w:tth respect to permutat:tons and are characterized by the represen~ 

tation ([.AJ 1~[JJ 1 *)x ••• x([JJP~[JJP*). Again~ each representation 

[A] i~ [A) i* reduces to a direct sum of irreducible representations of 

SU(40 1+2), and the same chain of subgroups and their representations 

occurs as for the linear span of Slater determinants. 

Also, by construction, the relationship of this symmetry 
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basis set of operators to the physical transformations on the subspace 

(e.g. rotations) is the same in either case. This can be seen by com-

paring the actions of the generators (4.18) with those generators (2.66) 

on their respective subspaces. Of course the restrictions of 1- and 2-

electron operators to subspaces spanned by configurations of Slater 

determinants and carrier spaces of representations of FN need to be 

examined in greater detail, but it is evident that semi-empirical 

theories can legitimately account for correlations beyond the indepen~ 

dent particle models from which they are derived. Some of the 

subtleties of the algebraic properties of the restricted operators can 

be illustrated with the !-electron operators. 

Consider the !-electron operators on a carrier space of an irredu-

cible representation of FN. These operators carry representations 

DO<Xk) ofF induced from (DKxnk)x(n°xn°)x ••• x(n°xn°) of 
N 

[0+(3)xo+(3)]N. From (4.40d), 

(fl,/\) 
C ()<xk) (fl.,/\) ( 4 4 7) 

and there are m
1 

()<xk) linearly independent operator representations for 

each 20i ~ k, ~ ~ 1, Where mi is the number of distinct At's in the 

partition ~]i. Each of these operator representations maps the carrier 

space of D(fl,/\) into itself, but not all of these representations are 

diagonal with respect to permutation symmetry of the particles. Thus, 

although a l~electron operator can be resolved into tensor components 

for the group FN' not all irreducible representations of the type car­

ried by 1-particle operators can correspond to physical operations. 
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On the other hand, consider the restriction of the l~particle 

operators to the smaller subspace (of the carrier space of the represen~ 

tation of FN) with antisymmetric permutation symmetry. Now the 1~ 

electron operators can be expressed as linear combinations of the gen-

erators {tb"b'} (4.18) with r=(lfzxOi). The generators carry the 

1; o. 1;* o.* 
representation D[N]x [(D 2xn 1

)® (D 2 xD 1 
)] of SNxo+(3)x0+(3) (:FN, 

1j 0 . 1; * 0 . * 
and the representation [ (D 2xn 1 )8 (D 2 xD 

1 
) ] reduces to the direct 

sum of irreducible representations {D[N]x DKxnk I,~= 0,1; 

k "' 0, 1, ••• • 20 i}. Now suppose thi.s subspace is spanned by a basis set 

of Slater determinants. For a given 0. = 0. the reduction of the gen­
l 

erators {} to irreducible representations of 0+(3)xo+(3) and their 

actions on the basis vectors can be expressed in the form: 

(4.48) 

The coefficients {cXk} are the same as in (2.53b) and the operators 
rvq 

{WKk(n0)} are as in (2.79b). Since the operators {WKk(n0)} vanish for 
rrq 

non~zero ~.k) if (nO) is a filled subshell, the analysis of the 1-

electron operators agrees with the analysis in section (2.3) when there 

is only one unfilled subshell of a given O~type. ~1en there is more 

than one unfilled subshell of ¢~electrons~ however, it is obvious that 

the situation becomes more complicated, as the correspondence given by 

(4.48) is no longer one to one. 

~·~·1 Energy Spec~ru~ 

An interesting observation can now be made about the loi!J~lying 

bound states of the non-relativistic atomic H~miltonian, H
0

, given by 
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(2.39a). If the electron~electron Coulomb term is expanded in the usual 

Legendre polynomial expansion with only the lowest order term retained, 

the resulting operator H
0 

fits the symmetry prescription for FN with the 

G "' o+(3)xo+(3): 

H 
0 

(4.49) 

Adding this largest contribution to the electron-electron potential 

energy to the N-electron hydrogenic central field Hamiltonian breaks 

some configuration degeneracy and results in new degenerate subspaces 

characterized by irreducible representations of the semi~direct product 

of SN and [SU(2)x0+(3))N. The configuration character of the energy 

spectrum is nearly preserved, however, (at least for configurations with 

only one unfilled subshell of a given 0), and it is plausible that the 

remainder of the electron-electron interaction is a small enough pertur-

bation so that many of the lowest eigenenergies of H
0 

can be identified 

with central field configurations. 

Another interesting observation is that the l/r 12 potential is 

bounded between two potentials with complete rotational symmetry, i.e. 

r 
(4.50) 

With considerations given to domain questions for Hamiltonian operators 

with these inter-electron potentials, rigorous statements might be made 

about the bound states of H
0

52• For example, the ground state energy of 

H0 should lie between ground state energies of the Hamiltonians with the 

corresponding smaller and larger electron~electron potentials. Although 

these bounds might be poor numerically, especially for the heavier 
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atoms, they could support the shell model of the atom and the ic 

table of the elements from first principles, without resorting to Slater 

determinants. 
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v. Applications!£ Spectral Analyses 

The usefulness of any mathematical model lies in how the model com-

pares with nature. If a model deviates from nature in a well known or 

predictable manner, it can be modified to account for this~ thereby 

increasing its usefulness. Such modifications have been attempted for 

independent particle models of free atoms and ions. For example, the 

relationship of the single configuration Hartree-Fock (HF) model to the 

fully correlated, "true" atomic eigenfunctions and eigenenergies has 

15 60 been discussed by several authors ' • In particular, the variation-

perturbation approach to the corrections to HF theory has been studied 

. 60 61 extensively by Slnanoglu ' • Explicit calculations of higher order 

corrections to the HF approximation are complicated, but their forms 

23-25 have been used in developing semi-empirical methods , the approach 

taken here. 

Section (5.1) begins with some conjectures about "accurate" approx-

imate atomic wavefunctions that differ from say, HF wavefunctions, but 

are basically consistent with semi-empirical Slater-Condon theory. The 

qualitative effects of the differences on the estimates of atomic energy 

levels are discussed and suggestions for adjusting ab-~niti£ spectros~ 

copic parameters are presented. Combined with a study of the calculated 

(via the HXR approximation) and observed energy levels of the K I ions, 

these ideas are used to develop a strategy for adjusting the ab~initio 

spectroscopic parameters of v4+ and Cr 5+ ions in section (5.2). These 

d h 1 d T . 3+ Mn 6+ d F 7+ a justments are t en extrapo ate to 1 , , an e • Section 

(5.3) describes a variation on the analysis problem; the energy levels 

of an ion in a crystal lattice at a site with a local symmetry. 



5.1 Parameter Strategies 

A single configuration Slater-Condon effective Hamiltonian (H of 
e 

(2.40), restricted to a single configuration) can, in principle, be sta-

tistically fit to experimental energy levels. The number of free param-

eters does not exceed the number of levels, but single configuration 

effective Hamiltonians are not always good descriptions and must be 

amended to include configuration interaction. Regardless of how confi-

guration interaction is introduced into the effective Hamiltonian, the 

number of free parameters will increase relative to the number of energy 

levels. Also, in the early course of analyzing a spectrum, only a few 

experimental levels for a given configuration might be known, which in 

turn may be derived from only a few of the parameters. These factors 

contribute to the usual situation where the effective Hamiltonian has 

more independent free parameters than experimental data associated with 

Generally, the number of parameters is reduced by adding con-

straints. One method used to reduce the number of degrees of freedom is 

to assume that empirically determined parameters such as (n0n'0') and 

Gk(n0n'0') are proportional to their counterparts computed from 

genic radial wavefunctions. With increased availability of 

calculations, however. the integrals computed from the radial 

wavefunctions have replaced the hydrogenic ones. Scaling the 

parameters is perhaps the simplest way of using theoretical calculations 

in the analysis of spectra, (aside from the initial estimates). 
1 L, 

Cowan 

distinguishes five classes of parameters and routinely scales them to 

obtain better agreement with the observed energy levels. 
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Perhaps the best justification of the scaling of predicted parame-

ters is its simplicity. This technique is likely to be successful in 

many cases because only a few parameters are dominant in determining the 

eigenvalues of the effective Hamiltonian matrix. Some ideas about the 

discussed in this section, and extrapolation of corrections to ab-initi~ 

parameters along an isoelectronic series is also discussed. 

A scenario for describing atoms and ions with considerable inter-

electron correlation that is basically consistent with semi-empirical 

Slater-Condon theory is presented in this section. The emphasis is on 

radial correlations, as developed in chapter IV, but an argument con-

sistent with the semi-empirical parameterization is rrade in favor of 

more general correlations among electrons localized near the nucleus. 

In addition, correlations described by explicit configuration interac-

tion are considered, but the actual magnitudes of these parameters in 

the context of the more general atomic wavefunctions differ from the 

Hartree-Fock estimates. 

Radial Correlations 

The qualitative effects. of allowing an atomic wavefunction to have 

radial correlations can be investigated with a simplified version of 

Sinanoglups analysis of the corrections to a single determinant 

Hartree-Fock atomic wavefunction. For simplicity, consider a single 

configuration !1 = {n 1 0~1 , ••• ,n Owp} with p distinct 0 's ( 0 .#- 0.; 
p p :1 J 

i>j•1,2, •• ,p). A Slater determinant belonging to this configuration 
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can be written in the form 

( 5" la) 

\)( i ,d) (5. lb) 

( 5. lc) 

where ~ is the antisymmetrization projection operator, Y "' {m:tc{flic( I 

i=l, ••• ,p; c{=l, ••• ,w.} denotes a determinant belonging to the configura~ 
1. 

tion, and P. (r) =: P ~ (r). The average energy of configuration can be 
1. n. v . 

written in the form 

EHF 
av 

where 

l 1. 

Vc(r) is a central potential (e.g. -2Z/r) and VC is the conf 

averaged Coulomb potential: 

( 5. 2a) 

(50 2b) 

at ion 



i]. ( ' c V r y c • -

p 
~ 

i=l 

p 
s: 

i>j=l 
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w. 
:l 

~ (5.2c) 
c(>p=l 

k 

0 
( 5. 2d) 

k 

0 

The operator "t , 11 transposes the coordinates r;r" of the function on r r 

the right, and Uk(r',r") is given by equation (3.3f). 

Including radial correlations in the atonic wavefunction for a con-

figuration of this type is equivalent to replacing the radial wavefunc­

tion Pz with a radial wavefunction that satisfies 

( 5. 3) 

with suitable boundary conditions on PQ and the additional constraint 

that P~(r 1 , ••• ,rN) be invariant with respect to permutations of the sub­

sets of coordinates wl"' {1,2, ••• ,wl}' w2 = {wl+l, •••• ~~}, •••• wp = 

{N~+l, ••• ,N}. If equation (5.3) is solved perturbatively, an indepen~ 
p 

dent particle (i.e. separable) zero-order Hamiltonian, H0 , is chosen av 

so that Pg is an eigenstate with the eigenvalue Eg. The first order 

correction to the wavefunction satisfies: 

(5.4a) 
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H Ho Hl 
av av av 

El E Eo 
av av Q 

( 5. 4c) 

w. 

Ho 
p 1 

~ ~ hi (r'V(i,c()) av i=l c(=l 

Eo 
p 
~ wi.;;i Q i=l 

[hi (r) ~ .;;i]Pi(r) 0 ( 5. 4f) 

Equation (5.4) is ideally suited to Sinanoglu's method for finding 

the first order corrections to Hartree-Fock wavefunction for a confi-

guration consisting of a single determinant (MET) 61 • The solution to 

(5.4) can be written in the form 

where 

p 

+ ~ 
i>j=l 

w. tll, 
l J 
~ ~ 

c(=l~=l 

aij (r'V(i,c() ,r'VLLdu~ 
Pi ( r 'VC i ,c() ) P j ( r '0( j ' ~) ) 

(r' ,r") and a .. (r' ,r") satisfy 
lJ 

+ h . ( r il) L ] ( P 9i) 
1 - ~i aii r ,r 

- [r~-c· ( r' , r") - v .. ( r') - v .. ( r 11
) - .;;cii] P. ( r) ( r) 

11. ll 1. 

(S.Sa) 

( 5. Sb) 

(5.6a) 



(.ij(r' r") v ( ') vJ.i(r")- ""ci·jJPi(r')PJ.(r") - vc ' - ij r - ""' 

k 

F.o<. . ) 1,1 -
0 

k 

0 

and the operators v .. satisfy (5.4b) and 
1] 

0 12 
il k 

0 I F (i,i) 
I 
" 

rdr'dr"P.(r')P.(r")(vcij(r',r")- v .. (r')-
~ 1 J 1] 

0 
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( 5. 6b) 

(5.6c) 

(5.6d) 

(5.6e) 

Equation (5.4) separates into a set of p(p+l)/2 equations for the 

pair functions {a .. (r;r") I i ~ j = 1, ••• ,p}, where the single subshell 
1] 

pair functions {aii(r;r")} must be symmetric with respect to an inter~ 

change of their arguments. Because of the assumption that the confi-

guration ~has no two subshells with the same 0 quantum number, there 

are no permutation symmetry restrictions on the pair functions 

{aij(r~r")}. However, the pair functions must satisfy the formal ortho~ 

gonality conditions, 

Cf dr'dr" a .. (r;r")P. (r')P.(r") i) 1J l J 0 (5.7a) 

but because the expectation 

variations of the functions 

value of H is stationary with respect to av 

P A(r), Brillouin's 62 theorem leads to the 
nv 



condition of strong orthogonality: 

00 

S dr#dr" aij (r;r")Pi (r') 
0 

00 

Sdr'dr" a .. (r;r")P.(r") 
0 lJ J 

0 (5. 7b) 

0 (5.7c) 

The stronger orthogonality conditions, (5. 7bc), greatly s Hy 

the corrections to the radially correlated configuration average energy. 

The second order correction to the energy is obtained by making the sub·~ 

stitutions: 

~(i,j) 

00 

Gk{i,j) + 4Sdr'dr" aij(r;r")Uk(r;r")Pj(r#)P1 (r") (5.8b) 
0 

(p denotes the adjusted value of the ab~initio parameter p). The third 

order corrections are also easily obtained, and include 1-body terms as 

well as the 2-body tenns. 

Internal 

Radially correlated atomic wavefunctions cannot hope to account for 

all the discrepancies between Slater-Condon theory and experimental 

observations. Parameterization of effective Hamiltonians is preserved 

nearly intact with this generalization, so predictions of ratios of 

relative energy separations for levels within a mult let are 

from Slater-Condon theory, but are often at variance with experimental 

observations. These deviations are usually explained by configuration 
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interaction (CI), but in many cases a very large number of configura-

tions are required to correct the discrepancies in an ab-i~itio calcula-

t
. 15,63 wn • 

An effective Hamiltonian, however, can reproduce a set of experi-

mental levels manifesting such discrepancies quite well by adding only a 

few interacting configurations, a few semi-empirical parameters 23- 25 , or 

both. Apparently, a large number of configurations are needed as 

corrections to the core (closed subshell) portion of the wavefunc-

t
. 25,26 wn • If trial wavefunctions were used consisting of antisyrn-

metrized products of a fully correlated, rotationally invariant ionic 

core wavefunction, and Slater determinants describing only the outer 

(open s~shell) valence el~ •ons, many configurations needed for an 

accurate CI calculation might already be included. 

The choice of a rotationally invariant, closed shell core wavefunc-

tion is suggested by large ionization energies of atoms and ions with 

this ground state configuration, which indicates tight binding and a 

small ionic radius. Some theoretical support of this conjecture has 

recently been presented for a non-relativistic Shroedinger atomic 

64 model . The charge density has been shown to have the assyrnptotic pro-

perty 

p(r) < r > Z/~ (5.9a) 

(5.9b) 

where ~ is the ionization energy of the state of interest and the upper 

bound is rigorous for some positive k. If a valence wavefunction mainly 



~161 

represents electrons in high angular momentum states, it will have small 

amplitude at small radii because of the centerfugal potentiaL In this 

case, an antisymmetrized product wavefunction should be a good approxi~ 

mation to the true wavefunction. "Internally" co:rrelated wavefunct:Lons 

take the form 

( 5. 1 0) 

as given by equation (2.10). q~ is a V-electron Slater determinant 

wavefunction, and ~~ is a C-electron core wavefunction. 

Average energies calculated with wavefunctions given by (5.8) 

differ in form as well as in value from their simple determinant coun~~ 

terparts. This difference is reflected in the n-electron density 

matrices, which can be obtained from equation (2.15). A wavefunction 

is not in general strictly orthogonal to ~~. so the 1- and 2-electron 

density matrices have corrections arising from the overlap of the core 

v 
iliy 

and valence wavefunctions. Assuming normalized component wavefunctions, 

corrections to the 1-electron transition matrices are given by (5.1la), 

and corrections to the 2-electron transition matrices are given by 

(S.llb): 

( 5. lla) 
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where each expression is the beginnins of a series of overlap correc-

tions with the number of contracted coordinates taken as the expansion 

parameter. If there is only a single valence electron, then (S.lla) and 

(S.llb) are exact if the terms with valence n-electron transition 

matrices with n>l are o~itted. 

Equation (S.llb) 

The major effect of assuming a correlated core wavefunction is a 

change in the configuration average energy, but terms of the form 

-k -k 
contribute corrections to the F and G parameters, while terms of the 

form 
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23~ can contribute to the empirical configuration interaction parameters 

26 

Core Polarization 

It is difficult to make any specific observations about the effects 

of including internal correlations; perturbation calculations have shown 

there can be many nearly canceling terms in the sum over corrections due 

to correlations of the core electrons 26 • 27 • In cases where there is 

little overlap bet;veen the core and valence wavefunctions, a core polar~ 

ization model can describe the correction to the average energy. This 

technique has been used mainly with excited single valence electrons in 

. b' 7,28,65~67 non-penetrat1ng or 1ts Considering only the dipole polariza-

bility, the change in energy due to polarization of the core by a highly 

excited valence electron is given by 

(5.12) 

where { r ~ 4)nO indicates the average of r - 4 over the valence (nO) elec-· 

tron charge density. 

The relative energies of a Rydberg series calculated via the 

Hartree-Fock approximation should be fairly accurate up to the order of 

the dipole polarization. This suggests that the polarizability might be 

used as a free parameter in an adjustment scheme for the conf at ion 

average energies. More generally, the polarizabili of an internal 

correlated core wavefunction could be parameterized and interpreted as 

the dipole polarizability of the parent ion in its ground state that has 
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been allowed to relax in the averaged field of the valence electrons. 

External Correlations 

In some cases, effective Hamiltonians must explicitly include more 

than a single configuration. The additional configurations required in 

a given situation will depend on the correlations absorbed into the sin­

gle configuration wavefunctions. Large numbers of configurations 

corresponding to a given type of promotion (e.g. (n 101, n 202) ~ (niOi, 

nz02) for many nl, nz) are often needed in an ab-initio calculation to 

get an accurate approximation of a given atomic state belonging to 

zero-order configuration. Many of configurations with important contri­

butions can have average energies that lie above the ionization energy, 

making an accurate ab-initio calculation even more difficult. 

If configuration interaction is considered in light of radially and 

internally correlated single configuration wavefunctions, large numbers 

of configurations should not be necessary. With the addition of radial 

correlations, all generalized configurations (in the sense of chapter 

IV) i.e. all zero-order atomic states that carry the same irreducible 

representation of the semi-direct product of SN and [SU(2)X0+(3)]N are 

already included. With many other zero-order configurations included 

via core correlations, quite accurate atomic wavefunctions could, in 

principle, be obtained by superposition of only a few generalized confi­

gurations. 
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A combination of the ideas discussed in (5.1.1) and the empirical 

results of atomic spectroscopy as presented by Edlen7 suggests methods 

of adjusting ab-initio parameters using least squares minimization and 

linear constraints. The principle parameters are considered in turn, 

roughly in order of importance: E ; the Slater Integrals Fk, Gk, and av 
k 

R; and the spin-orbit parameters Guo· The empirical parameters~. ~. 

Y, etc. are considered here as fine adjustments to the effective Hamil-

tonian that can be determined by least squares optimization when all 

possible levels have been assigned. 

Configuration Average En~rgies 

The bulk of the detailed correlation effects described in (5.1.1) 

will contribute large unknown shifts to the configuration average ener~ 

gies. The effective Hamiltonian approach describes only relative ener~ 

gies, so the configuration average energies basically must be treated as 

free parameters. An exception is a group of highly excited Rydberg con~ 

figurations, where the core polarization model is applicable. Then, the 

ab-initio average energies can be adjusted via a two parameter fit 

(5.13) 

where E~1 is a constant correction needed because of the sensitivity of 

the core polarization correction to the ionization energy. The correc~ 

tions to the configuration average energies can also, of course, be 

extrapolated along isoelectronic sequences (see section (5.1.3) below). 
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Integrals 

The Slater integrals Fk(n0n'0') and Gk(n0n'0') are the most com-

monly constrained parameters. Typically, the adjusted parameters are 

taken in the form 

-k 
R (abed) (5.14a) 

so that the ratios of the adjusted and ab-initio parameters are the 

sa1ae, i.e. 

-k+2( . d) 
L~c-

Rk(abcd) 

Rk+Z(abcd) 

Rk(abcd) 
( 5. 14b) 

The dominant corrections to the parameters representing Slater integrals 

involving only unfilled subshells, both within and between configura-

tions, probably take the form of ( 5. 8). In this context, a simple argu-

ment can be made for linear constraints, (5.14a) • 

. A.n integral Rk(abcd) is deterrdned mainly by contributions from 

regions near r'=r", because the functions Uk(r' ,r") are peaked about 

r'=r", witb the sharpness increasing with increasing k. If Uk(r' ,r") is 

rewritten in the form 

Uk(r' ,r") = Uk(r,x) 2 0-lxl / 
r ( l+lx I )k+l 

then the integral takes 

k 
R (abed) 

r'+r" 
r ---

2 

the form 

1 ro 

X 
r'-r" 
r'+r" 

2S dxS C:rrUk(r ,x)p (r [ l+x] )pbd(r [ 1-x)) 
-1 0 ac 

(5.15a) 

( 5. l5b) 

(5.16a) 
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(5.16b) 

If the radial wavefunctions are slowly varying at large radii, (5.16a) 

can be expanded 

k 
R (abed) 

(5.16c) 

1 k 
Sdx (1-x) ~ 
0 ( l+x) k+l 

(50 l6cl) 

(5.16e) 

The ratios between Slater integrals are roughly determined by the 

integrals Ik: 

Rk+2 (abcd) 

Rk(abcd) 

(5. 17) 

The integrals Ik for 0 < k ~ 6, their ratios, {x
2
)k" and {x

4
)k are given 

in table (5.1). If the corrections to the Slater parameters (5.8ab) are 

fairly small (say about 20%), then a fairly small error is introduced 

adjusting them with the constraint (5.14). Also, if the dominant 

corrections are in the form of (5. 8) and the functions {aij (r; ) } are 

much like {P. (r)P.(r)} for r'""'r"=r, then a linear constraint is an even 
~ J 

better approximation. 
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Table ( 5. 1) 

Integrals of (1-lxl )k/(l+lxl )k+l 
~~~~-~..$:'"~.;~=.~-·~.?;~ ~~~~~~~:c-::;g.~~ 

k Ik (x2) (x 4) Ik/IO Ik/I 1 Ik/I2 Ik/13 Ik/I4 

0 • 6931 .2787 .1584 1.0 

1 .3069 .1116 • 0380 .4427 1.0 

2 • 1931 .0565 .0123 -2787 • 6924 LO 

3 .1402 .0340 .0064 .2022 • 4569 • 7 528 1. 0 

4 .1098 .0216 .0022 .1584 • 3579 .5686 • 7833 1.0 

5 • 0902 .0150 • 0011 .1301 .2939 .4669 .6433 .8213 1.0 

6 .0765 • 0110 .0064 .1103 • 2492 .3960 • 5456 .6965 .8480 

------ ··------~-·=-

.§EiJ:l-.()rbit Parameters 

The spin-orbit parameters are generally less important than the 

other parameters in the lighter atoms, and corrections to the ab-initio 

estimates can probably be ignored if sufficient data does not exist to 

determine them by least squares minimization. In the heavier atoms, the 

spin-orbit parametersfficult to predict accurately, and final values 

must be determined empiri.cally. In the case of a Rydberg series (nO), 

however, empirical observations lead to a natural constraint for the 

7 The empirical formula for ~nO is given by 

Rg2(Z-s)4 

(n*)3( ~+ 1;2) (0+1) 
(5.18a) 

where n* is the effective quantum number. An ab-initio estimate for 

4 ~nO will be correct to order Z • so a constraint for all spin-orbit 

parameters of a series is given by 

[Z-sJ 4 
Z-s ~nO ( 5. 18b) 
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This idea tends to support the use of an overall scale factor with 

groups of spin-orbit parameters. The success of the expression (5.18a) 

is due to the sensitivity of ~nO to small r, while the .ab-Jllitio esti~ 

mates may not be correctly "screened" at small r. 

5.1.3 Extrapolations 

The behavior of the energy spectrum of atomic Hamiltonians as a 

function of nuclear charge Z with the number of electrons N fixed has 

b 11 d . d h . 11 d . . 11 7. 55. 6 8-71 een we ~stu 1e t eoret1ca y an emp1r1ca y • If a scale 

transformation is made on the non~relativistic atomic Hamiltonian so 

that r ~ r/Z, then 

N 
~ 

i=l 

leading to a new eigenvalue equation 

2 p. -
1 r. 

1 

( 5. l9a) 

( 5. 19b) 

(5.19c) 

(50 19d) 

This form naturally suggests treating VC as a perturbation with the per­

-1 turbation parameter Z • 

The non-relativistic energies and eigenfunctions take the form 

E ~ (5.20a) 
n=O 
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m 
~ ( 5. 20b) 

n=O 

The zero-order eigenfunctions are Slater determinants of hydgrogenic 1-

electron eigenfunctions, so that all determinants with the same set of 

principle (n) quantum numbers are degenerate. All degenerate configura-

tions with the same inversion symmetry belong to a ££_mplex. 70 A complex 

is treated with first order degenerate perturbation theory, hence in the 

limit of large Z, the configurations of a complex have a limiting confi-

guration interaction. Configurations of a complex are also considered 

likely candidates for multiple configuration effective Hamiltonians, 

especially when the differences between their average energies are not 

too large. 

If the interelectron Coulomb potential is replaced with any approx-

imation as in the case of the Hartree-Fock model, the 1/Z perturbation 

expansion can still be made. This implies that the difference in energy 

between such a model and the exact non-relativistic energy is a polyno-

mial in Z of the form 

(5.2la) 

.,::k -::k -k 
and the parameters F , G , and R representing the coulomb interaction 

differ from the Hartree-Fock values by a polynomial 

+ e & 0 ( 5. 2lb) 

7 k k Edlen has successfully fit empirically determined values of F and G 

along isoelectronic sequences with formulae of the form 



where z 

Az + B + _c~ 
z+D 
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(5.22) 

The relativistic version of the 1/Z perturbation theory is consid-

70 71 erably more complex ' • Many of the contributions to the Z dependence 

of the atomic energy levels are simply first order perturbations of the 

Pauli atomic Hamiltonian, table (2.4). As discussed in chapter III, 

some of these corrections can be incorporated into the configuration 

average energy calculated with any given independent particle model. If 

this is the case, and extrapolations are made for only a few values of Z 

in the early stages of ionization, the non-relativistic formula shoud be 

adequate. This is the view taken here. 

For a fixed Z and N, methods can also be considered for obt 

corrections to some of the parameters from the adjustments made to oth-

ers. One example applies to the configuration average energies of a 

Rydberg series. For an unperturbed Rydberg series, the average energies 

can often be fit very well to the Rydberg formula 7, 

with 

T 
n 

{5.23a) 

n* ( 5. 23b) 

The adjustable parameters are the ionization energy E
1

, ~. and ~· With 

a perturbed series, an effective Hamiltonian can be used that icit 

includes the major part of the configuration interaction, so that aver~ 

age energies for some members of the series can be adjusted to 
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turbed" values. The adjusted average energies can then be fit to the 

Rydberg formula and used to predict new average ener3ies for the rest of 

the series. 

A brief comment can be made about extrapolating corrections to 

other configurations at the same stage of ionization. If the correc­

tions to say, the Fk(n0n0) integrals for a configuration nOw are given 

by (5. 8), the functions {a .. (r~r")} might be fairly insensitive to was 1.1. 

long as z =(Z-N+l) remains the same. Then the differences between the 

ab-initio and empirical Fk's might be nearly the same for all w. 

5.2 K I Isoelectronic Sequence 

A substantial amount of analysis has been done on the first several 

members of the KO+ isoelectronic sequence because of their theoretical 

. 1' . d . 1 'b'l' 72-85 s1.mp lclty an exper1.menta access1. 1. 1.ty , The first few ions are 

dominated by the spectrum of a single electron outside a closed core of 

eighteen electrons (isoelectronic with Ar 0+). Beginning with Ti 4+, the 

promotion of the 3p-electron from the closed 3p 6 shell to another nO 

orbital becomes favorable at energies low enough to noticeably perturb 

78-84 5 2 the single electron spectrum • Levels assigned to the 3p 3d and 

5 . 3+ 7+ 3p 3d4s configurations have been identified for T1. through Fe with 

h 'd f C ' H 1 1 . 79 • 81 ' 82 ' h h t e a1. o owan s X ca cu at1.ons, suggest1.ng t at t e rela-

tionship of the calculated to the observed energy levels might be stu-

died and used to extend the analyses of other ions in the series, par~ 

ticularly Mn 6+ and Fe7+, 7+ Fe is probably the highest stage of ioniza-

tion of iron that can be reasonably generated with a sliding spark 

source, and its spectra are of astrophysical interest. 



The calculations are described and compared with the known energy 

levels along the isoelectronic sequence in (5.2.1). These comparisons 

are combined with the ideas discussed in section (5.1) to formulate an 

4+ 5+ . adjustment strategy for the calculated parameters of V and Cr ln 

( 5 2 2) Th d . h 1 d T . 3+ "~ 6+ d ·o 7 + • • • e a Justments are t en extrapo ate 1 , ru1 , an re • 

Then the parameters of the identified configurations for each of these 

ions are optimized by least squares. The revised corrections for these 

refined parameters are then extrapolated to the ions where the 

corresponding configurations have not been identified (where possible) 

in (5.2.3). 

5.2.1 Experimental Energies and HXR Calculations 

A representative sample of the configurations identified in the 

0+ 7+ ions K through Fe was selected for the study, including sixteen even 

parity configurations (4s, 5s, 6s, 7s, 8s, 4d, 5d, 6d, 7d, 7i, 8i, and 

3p 53d4p) and fifteen odd configurations (4p, Sp, 6p, 7p, 4f, Sf, 6f, 7f, 

5 2 5 8f, 9f, lOf, 6h, 7h, 3p 3d , and 3p 3d4s). No levels belonging to the 

5 3p 3d4p configuration have been identified for any ion, but it is 

suspected that this configuration perturbs the Sg, 6g, and 7g levels as 

5+ early as Cr • because of the anomalously large orbit splitting of the 

Sg levels 79 • Analysis of the }!n
6+ and Fe 7+ ions has been difficult to 

date, particularly in the case of the excited even par configura~ 

2 tions; most of the classified lines terminate with the 3d D levels. 

Perhaps the transitions between the 3p 53d4p configuration and the 

3p 53d 2, 3p 53d4s configurations begin to dominate the spectra of }!n
6+ and 

Fe 7+, explaining why more of even parity configurations have not been 

identified. The spectra of these two ions have been recalculated with 
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adjusted parameters and presented in the appendix. 

The experimentally observed and calculated energy levels are 

displayed in tables (5.2) through (5.9); the calculated levels are 

derived from the "raw" HXR parameters without any empirical scaling and 

including Cowan's correlation correction (E of equation (3.19)). When 
c 

scaling factors are applied to the ~no's, Rk's, Fk's and Gk's, however, 

the calculated levels reproduce earlier work of Cowan 14• 81 • 82 • 84 • The 

energies are compared relative to the 3p 6 ground state of the parent ion 

(the calculated 3p 6 average energy is set equal to the experimentally 

determined ionization energy) with zero taken at the observed ground 

state energy. For purposes of comparison, the elementary finite nuclear 

mass correction has been applied to the calculated levels for all 

displayed tables. 
-1 Although this correction is only a few em , the 

inverse of this correction was applied to the observed levels before any 

adjustments were made. 

The experimentally derived ionization energies, in order from KO+ 

to Fe 7+, are: 35009.77 (K 1)
72 • 73 , 95751.87 (Caii) 74 , 199677.37 

(Sciii) 75 • 76 , 348973.7 (TiiV) 77 , 526532.0 (V V) 78 , 731020 (CrVI) 79, 

962000 (MnVII) 83 , 1218400 (FeVIII) 84 • An overall constant discrepancy 

between the observed and calculated levels is possible for any ion due 

to an error in the experimental ionization energy, but the the ioniza­

tion energies are quite accurate (~ 6 em ~l) through Cr 5+ for the pur-

pose of comparing with the calculations. The ground state of the parent 

ion is a convenient reference point for isoelectronic comparison because 

it is a non~degenerate, closed shell 1s0 configuration, and its energy 

should vary smoothly with z. 



TABLE < 5. 2A l 

K 0+ ODD LEVELS 
HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION 

PARENTAGE -- DD< 25+1 lL = 3D2< 25+1 lL 
DD<2S+lll = 3D2<2S+l)L DS<2S+l)L:: <3P5<2Pl3D<2DlH2S+llL 
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===============================================================~===~====~====~~ 
IRREP CALC EXP !NCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

-------------------------------------------------------------------------------
2P 1/2 11865 . 

2P 3/2 11936. 

2P l/2 2'1'i02. 

2P 3/2 2-4'127. 

2F 5 I 2 2 812 9 . 

1298'5. -1119.9 .'5 100. 100. 2P 

130-43. -1107.3 1.5 100. 100. 2P 

2-4701. -299.0 . 5 100. l 00. 2P 

2'i720. -293.0 1.5 100. 100. 2P 

28128. 1.3 2.5 100. 100. 2F 

-'IP 

lJP 

5P 

5P 

lJF 

2F 7/2 28129. 28128. 1.3 3.5 100. 100. 2F LfF 

2P 1/2 28872. 28999. -127.6 . 5 100. 100. 2P 6P 

2P 3/2 28883. 29008. -12'1.5 1.5 100. 100. 2P ( 6P 

2F 5/2 3060'1. 30606. -1.6 2.5 100. 100. 2F 5F 

2F 7/2 3060l.J. 30606. -1.6 3.5 100. 100. 2F 5F 

2P 112 3100'-1. 31070. -66.3 .5 100. 100. 2P 7P 

2P 3/2 31010. 3107LJ. -6l.J.6 1.5 100. 100. 2P ( 7P 

2F '5/2 31'61. 31953. -2.5 2.5 100. 100. 2F ( 6F 

2F 7/2 31951. 31953. -2.5 3.5 100. 100. 2F 6F 

2H 9/2 31961. 

2H 1 1/ 2 31 961 . 

2F 5/L' 32763. 

2F 7/2 32763. 

2F r=.;2 33290. 

2F 7/2 33290. 

2F 5/2 33651. 

2F 712 33651. 

2F <;/2 33910. 

2F 7/2 33910. 

31961. 

31961. 

32765. 

32765. 

33291. 

33291. 

33652. 

33652. 

33910. 

33910. 

.8 4.'5 100. 100. 2H ( 6H 

. 8 '5. 5 100. 100. 2H ( 6H 

-1.'-1 2.5 100. 100. 2F 7F 

-l.Lf 3.5 100. 100. 2F ( 7F 

-1.0 2.'5 100. 100. 2F 8F 

-1.0 3.5 100. 100. 2F 8F 

-.8 2.5 100. 100. 2F 9F 

-.8 3.5 100. 100. 2F ( 9F 

-.'-1 2.5 100. 100. 2F 10F 

-.4 3.5 100. 100. 2F ( 10F 

NO. EXPERIMENTAL LEVELS = 
ABSOLUTE MEAN DEVIATION = 

2Lf. 

13'-1.25 

335. 16 RMS DEVIATION = 



TABLE ('5.2Bl 

K 0+ EVEN LEVELS 
HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION 

PARENTAGE -- DD( 2S+l lL = 302( 2S+l lL 
DD<2S+UL = 3D2<2S+llL DS<2S+1)L =<3P'5<2Pl30<20lH2S+llL 
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==========================================~==================================== 
IRREP CALC 

2S 1/2 -l'l73. 

20 3/2 20208. 

20 '512 20209. 

2S 1/2 2098'5. 

2D 3/2 27323. 

20 '5/2 2732'l. 

2S 1/2 274'-1'5. 

20 3/2 301'50. 

20 '5/2 301'50. 

2S 112 3027'-1. 

2G 712 30620. 

2G 9/2 30620. 

20 3/2 31~80. 

20 '5/2 31680. 

2S 1/2 3176<;. 

2G 712 31961 . 

2G 9/2 31961. 

20 3/2 32'591. 

20 '5/2 32591. 

EXP !NCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

0. -1'-172.5 .'5 100. 100. 2S LfS 

3D 

30 

21537. -1328.6 1.'5 99. 99. 20 

2153'-1. -1325.9 2.'5 99. 99. 20 

21027. -'-11.7 .'5 100. 100. 2S ( 55 

27398. -7'-1.7 1.'5 100. 100. 20 l.fD 

27397. 

27'-1'51. 

30186. 

3018'5. 

30274. 

30620. 

-72.7 2.'5 100. 100. 20 

-5.4 .5 100. 100. 2$ 

-35.9 1.5 100. 100. 20 

-3'1. 7 2.'5 100. 100. 20 

-.'5 .5 100. 100. 2S 

40 

6S 

50 

50 

7$ 

-. 1 3. 5 100. 100. 2G < 5G 

30620. -.1 4.5 100. 100. 2G 5G 

31696. -16.1 1.5 100. 100. 20 60 

31696. -15.4 2.5 100. 100. 20 ( 60 

3171"--5. .4 .'5 100. 100. 2$ 8S 

31961. 

31961. 

32598. 

32598. 

. 0 3. 5 1 00. 1 00. 2G 6G 

.0 '-1.5 100. 100. 2G < 6G 

--7.3 1.5 100. 100. 2D ( 70 

-7.0 2.5 100. 100. 20 ( 7D 
-----------------~--------------------------------------------------------------

NO. EXPERIMENTAL LEVELS­

ABSOLUTE MEAN DEVIATION = 

RMS DEVIATION = 

19. 

233.65 

548.06 
-------------------------------------------------------------------------------

~~-----~--~--~---=-----------~-----~----------------------~---------------------



TABLE ( '5. 3A l 

CAl+ ODD LEVELS 
HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION 

PARENTAGE -- 00( 2S+1 )L :::: 302( 25+1 )L 
DO< 2S+1 JL = 302( 2S+1 ll OS< 2S+1 lL = ( 3P5< 2P l3D< 20 l )( 2S+1 JL 

=================================================================~====~====~=~= 
IRREP CALC EXP INCA J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 
-----------------------------------------------------------------------------

2P 1/2 23379. 25192. -1812.3 .5 100. 100. 2P ~p 

2P 3/2 236~5. 25~1~. -1769.8 1.5 100. 100. 2P ~p 

2P 1/2 602'11. 

2P 3/2 60339. 

2F 5/2 6795~. 

2F 7/2 6795~. 

2P 1/2 7~386. 

2P 3/2 7~432. 

2F 5/2 77959. 

60533. -291.6 . '5 

60611. -272.6 1.5 

68057. -103.2 2.5 

100. 100. 2P 

100. 100. 2P 

5P 

5P 

100. 100. 2F < 'IF 

68057. -103.0 3.5 100. 100. 2F ~F 

7~~85. -99. 3 . 5 100. 100. 2P < 6P 

7-4522. -90.1 1.5 100. 100. 2P 6P 

78034. -75.9 2.5 100. 100. 2F 5F 

2F 7/2 77959. 78034. -75.7 3.5 100. 100. 2F 5F 

2P 1/2 81'153. 81~98. -~5 .2 .5 100. 100. 2P 7P 

2P 3/2 81'178. 81517. -38.8 1.5 100. 100. 2P ( 7P 

2F '5/2 83~10. 83~58. --48.~ 2.5 100. 100. 2F < 6F 

2F 7/2 83-410. 83'158. -'18.3 3.5 100. 100. 2F 6F 

2H 9/2 83557. 83553. ~.5 '1.5 100. 100. 2H 6H 

2Hll/2 83'557. 83'553. ~.'5 5.5 100. 100. 2H 6H 

2F 5/2 86696. 86727. -31.5 2.5 100. 100. 2F 7F 

2F 7/2 86696. 86727. -3l.'t 3.5 100. 100. 2F 7F 

2H 9/2 86792. 86790. 2.5 '1.5 100. 100. 2H 7H 

2Hll/2 86792. 86790. 2.5 5.5 100. 100. 2H ( 7H 

2F 5/2 8882'5. 888't7. -21.8 2.5 100. 100. 2F 8F 

2F 7/2 88826. 88847. -21.8 3.5 100. 100. 2F ( 8F 

2F '5/2 9028~. 

2F 7/2 9028'1. 

-15.6 2.5 100. 100. 2F 9F 90300. 

90300. -15.6 3.5 100. 100. 2F ( 9F 

NO. EXPERIMENTAL LEVELS = 

ABSOLUTE MEAN DEVIATION = 

RMS DEVIATION = 

2't. 

209.'t1 

525.93 



TABLE ( 5. 3B l 

CAl+ EVEN LEVELS 
HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 
UN~ORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION 

PARENTAGE-- DD<2S+llL = 3D2<2S+l)L 
DD<2S+1lL = 302(2S+llL DS<2S+l)L::: <3P5<2Pl30(20lH2S+llL 

~178-

============================================~=========~======================== 
IRREP CALC 

25 l/2 -2-4'52. 

20 3/2 1333-4. 

20 5/2 13-4-46. 

EXP INCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

0. -21.J51. 8 . 5 

136'50. -31'5.9 1.'5 

13711. -265.0 2.'5 

99 . 

99. 

99. 

99. 2S 

99. 20 

I.JS 

3D 

99. 20 ( 30 

25 l/2 '52262. '52167. 9'1. 7 . 5 100. 100. 2S ( 55 

20 3/2 57025. 56839. 185. 6 1 . 5 

190.7 2.5 

100. 100. 20 lJD 

20 5/2 570-49. 

25 l/2 707-47. 

20 3/2 7283-4. 

20 5/2 728-4LJ. 

2G 712 78173. 

2G 9/2 78173. 

2S l/2 79'190. 

20 3/2 80':>90. 

20 5/2 80595. 

2G 712 835-41. 

2G 9/2 835'11. 

2S l/2 8'1327. 

20 3/2 8'1978. 

20 5/2 8'1981. 

2G 7/2 86780. 

2G 9/2 86780. 

568'58. 

70678. 

72722. 

72731. 

78165. 

78165. 

79-4'18. 

80522. 

80526. 

835-'lO. 

835'10. 

8'1301. 

8'193-'l. 

8'1936. 

86781. 

86781. 

69.5 . 5 

111.5 1.5 

100. 100. 20 ( '10 

100. 100. 2S 

100. 100. 20 

6S 

50 

113. 3 2. 5 1 00. l 00. 20 50 

8. 7 3.5 100. 100. 2G 5G 

8. 7 .<;. 5 100. 100. 2G ( 5G 

'12.0 .5 100. 100. 25 7S 

68.0 1.'5 100. 100.20 60 

68.9 2.5 100. 100. 20 ( 60 

. 8 3. '5 l 00. 1 00. 2G 6G 

. 8 '1. 5 100. 100. 2G 6G 

25.8 .5 100. 100. 2S < 8S 

ljlj . .<; 1 . 5 l 00. 1 00. 20 ( 7D 

Lf5.2 2.'5 100. 100. 20 ( 7D 

-1.1 3.'5 l 00. 1 00. 2G < 7G 

--1 . 1 .<;. 5 I 00. 1 00. 2G < 7G 
-------------------------------------------------------------------------------

NO. EXPERIMENTAL LEVELS = 

ABSOLUTE MEAN DEVIATION -

RMS DEVIATION :::: 

21. 

19'5. 88 

'5'18.03 
---------------------------------------------------------

--------------------------------------------------------------------------------



TABlE (15.4Al 

SC2+ ODD LEVELS 
HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION 

PARENTAGE -- DO< 2S+1 )L ::: 302( 25+1 lL 
DO< 25+1 lL ::: 302( 2S+l lL OS< 25+1 lL = < 3P'5( 2P l3D< 20) ){ 25+1 lL 

-179-

==================================~===========~================================ IRiiEP CALC EXP !NCR J/MU TOTAL --EIGENVECTOR COMPOSITION PCT 
------~-~-~---------------~----~--------~---~-----~------~~--~-----~-~---------
2P 1/2 60218. 

2P 3/2 6077'-1. 

6210'-1. -1886.2 .5 

62'578. -180'-1.2 1.5 

100. 100. 2P 

100. 100. 2P 

LJP 

LJP 

2P 1/2 128028. 128107. -79.2 .5 100. 100. 2P 5P 

2P 3/2 128238. 128283. -'15.0 1.5 100. 100. 2P 5P 

2F 5/2 136533. 13687'-1. -340.8 2.5 100. 100. 2F '-IF 

2F 7/2 136535. 13687'+. -338.8 3.5 100. 100. 2F l.fF 

2P 1/2 15'5526. 155l.f90. 36.0 .5 100. 100. 2P 6P 

2P 3/2 1'55627. 155575. 51.9 1.5 100. 100. 2P 6P 

2F 5/2 159308. 159'172. -16't.7 2.5 100. 100. 2F 5F 

2F 7/2 159310. 159'172. -162.'-1 3.5 100. 100. 2F 5F 

2P 1/2 169682. 169638. '1'1.3 .5 100. 100. 2P 7P 

2P 3/2 !69739. 169686. '52.9 1.5 !00. 100. 2P 7P 

2F 5/2 171107. 171788. 

2F 7/2 171708. 171788. 

2H 9/2 1722'5'5. 172225. 

2Hil/2 172255. 172225. 

2F 5/2 17917'5. 179215. 

2F 7/2 179176. 179215. 

2H 9/2 179533. 179508. 

2Hll/2 179533. !79508. 

-81.0 2.5 100. 100. 2F < 6F 

-79.'1 3.5 

30. 1 4. 5 

30. 1 5. 5 

-39.7 2.5 

-38.5 3.5 

24.7 '-1.5 

2'-1.7 5.5 

100. 100. 2F C 6F 

100. 100. 2H 6H 

100. 100. 2H ( 6H 

100. 100. 2F 

100. 100. 2F 

100. 100. 2H 

100. 100. 2H 

7F 

7F 

7H 

7H 

NO. EXPERIMENTAL LEVELS = 
ABSOLUTE MEAN DEVIATION = 

20. 

267.74 

597.22 RMS DEVIATION ::: 
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-------------------------------------------------------------------------------
TABLE ( 5 .4B l 

SC2+ EVEN LEVELS 
HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION 

PARENTAGE ·-- DD< 2S+1 lL = 302( 25+1 lL 
DD<2S+1lL = 3D2<2S+1lL 05i2S+IlL = <3P5<2Pl3D<2Dll<2S+lll 

===~=================================~~.:======================================= 
IRREP CALC 

20 312 

20 '5/2 

-76. 

215. 

EXP 

0. 

198. 

!NCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

-75.8 1.5 100. 100. 20 < 3D 

17.8 2.5 100. 100. 20 < 3D 

25 1/2 22461. 25'539. -3078.'5 . 5 99 . 99. 25 

20 3/2 112171. 112258. -86.8 1.5 99. 99. 20 < 40 

20 5/2 112225. 112303. -78.'-1 2.5 99. 99. 20 40 

25 1/2 115112. 114862. 250.0 .5 100. 100. 25 55 

20 3/2 148300. 148130. 170.0 1.5 100. 100. 20 50 

20 5/2 148325. 1'-18150. 17'1.5 2.5 100. 100. 20 ( 50 

25 1/2 149375. 1'-19194. 180.5 .5 100. 100. 25 65 

2G 712 160088. 160072. 15.7 3.5 100. 100. 2G 5G 

2G 9/2 160088. 160072. 

20 3/2 165734. 165593. 

20 5/2 165'147. 16'5603. 

25 1/2 166273. 166157. 

2G 7/2 172179. 172177. 

2G 9/2 172179. 172177. 

20 3/2 175565. 175457. 

20 5/2 175573. 175464. 

2S 1/2 175877. 175796. 

2G 712 179481. 179477. 

2G 9/2 179~81. 179~77. 

15.7 4.5 100. 100. 2G 

14 1 . 0 1 . 5 1 00. l 00. 20 60 

143.5 2.5 100. 100. 20 ( 60 

116.2 .5 100. 100. 2S ( 75 

!.7 3.5 l 00. 1 00. 2G ( 6G 

1 . 7 4. 5 1 00. 100. 2G 6G 

108.2 1.5 100. 100. 20 70 

70 1 09. 8 2. 5 1 00. 1 00. 20 

80.9 .5 100. 100. 25( 8S 

4.0 3.5 

4.0 4.'5 

100. 100. 2G < ·rG 

1 00. 1 00. 2G < 7G 

NO. EXPERIMENTAL LEVELS = 

ABSOLUTE MEAN DEVIATION = 

RMS DEVIATION = 

21. 

231. 19 

680.90 
--~--=-------------~------~-----~---~---------------------------------------~--

-------~--~--------~-------------------------------------------------------~-



TABLE ( '5. '5A l 

T!3+ ODD LEVELS 
HXR CALCULATIONS COMPARED WITH tXPERIMENTAL OBSERVATIONS 
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION 

PARENTAGE -- DO< 2S+l lL ::: 302< 2S+l lL 
00( 2S+l lL = 302( 2S+1 lL OS( 25+1 lL ::: ( 3P'5< 2P )30( 20 l )( 2S+l )L 

IRREP CALC EXP !NCR J/MU TOTAl -- EIGENVECTOR COMPOSITION PCT 
--------------------------------------------------------------------------------
2P 1/2 126089. 127921. -1832.8 .5 

2P 3/2 127037. 1287~0. -1702.9 1.5 

2P 1/2 23072~. 230609. 115. 3 .5 

2P 3/2 231093. 23092'1. 168.2 1. '5 

2F '5/2 235'13'5. 236135. -700.'1 2.5 

2F 7/2 23'5~'51. 2361112. -691.8 3.5 

2P 1/2 '27'1870. 27'1726. 1'13.3 .5 

2P 3/2 2750'51. 27'1881. 169. 'I 1 .5 

2F 5/2 275588. 2758'17 -259.2 2.5 

2F 7/2 27.?660. 275862 ·202.0 3.5 

99. 

99. 

99. 2P 

99. 2P 

100. 100. 2P 

100. 100. 2P 

99. 

99. 

99. 2F 

99. 2F 

100. 100. 2P 

100. 100. 2P 

90. 2F 

qp 

'IP 

5P 

5P 

'IF 

'IF 

6P 

6P 

5F 

92. 2F < 5F 

6 2F < 00( 1 G l l 

'IF 5/2 280760. 27~8'10. 5920.0 2.5 

9'5. 

92. 

96. 73. ~F ( 00( 3F l ) 18 . 20 ( 00( 10 l l 
'i . 20 ( 00( 3F l l 

2P !/2 2981'16. 298000. 146. 1t .5 100. 100. 2P ( 7P 

2P 3/2 298259. 298088. 170. 6 1 . 5 99 99. 2P ( 7P 

2Hll/2 300176. 300159. 17.2 5.5 100. 100. 2H 6H 

2H 9/2 300176. 300159. 1 7. Lf 4. 5 100. l 00. 2H ( 6H 

zH 11 n 313115. 313111 . ~ . 0 '5 . S l 00. 1 00. 2H ( 7H 

2H 9/2 313!15. 313111 4 . 0 Lf • '5 l 00. 1 00. 2H ( 7H 

NO. EXPERIMENTAL lEVELS ::: 17. 

721. '16 

1581.59 

ABSOLUTE MEAN DEVIATION = 

RMS DEVIATION == 

~181~ 
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---------~---------------------------------------------------------------------
TABLE ( 15. 5B l 

Tl3+ EVENLEVELS 
HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 
UNCORRECTED HXR PARAMET:RS WITH CONFIGURATION INTERACTION 

PARENTAGE -- DO< 25+1 lL ::: 302( 25+1 lL 
DD<25+1lL = 302<25+llL DS<25+llL = <3P5<2Pl30(20lH2S+l)L 

=============================================================================== 
IRREP CALC EXP INCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

20 3/2 

20 5/2 

-110. 

!!06. 

0. -109.6 1.'5 

382. 23.7 2.'5 

1 00. 100. 20 ( 30 

1 00. 1 00. 20 ( 30 

2S 1/2 76823. 80389. -3'565.6 . '5 99 . 

99. 

99. 

99. 2S < LIS 

20 3/2 196578. 19680'1. -226.0 1.'5 99. 20 

99. 20 20 5/2 196683. 196890. -207.2 2.5 

2S l/2 212767. 212407. 

20 3/2 2'59185. 258838. 

20 512 259234. 258877. 

2S 1/2 266106. 265847. 

2G 712 278468. 278'511. 

2G 9/2 2781.!68. 278511. 

20 3/2 2891.fl.f3. 289186. 

20 5/2 289469. 289207. 

2S 1/2 293160. 293000. 

2G 712 299999. 3000%. 

2G 9/2 300000. 30001.!6. 

20 3/2 3065 72. 306396. 

20 512 306588. 3061.f08. 

2S l/2 308811. 308710. 

2G 7/2 313001. 313031.f. 

2G 9/2 313002. 313034. 

21!1/2 313139. 313131. 

2! 1 l/2 321'>37. 321531. 

359.7 . '5 100. 100. 2S ( 5S 

3'16.1.! 1.5 100. 100. 20 ( 50 

356.7 2.5 100. 100.20 50 

258.6 .5 100. 100. 2S < 65 

-'13.1 3.5 100. 100. 2G 

-43.2 1.!.5 100. 100. 2G < 5G 

2'56.6 1.'5 100. 100. 20 ( 60 

262.'5 2.'5 100. 100. 20 

160.1 .5 100. 100. 2S 

-46.7 3.5 100. 100. 2G 

60 

7S 

6G 

-46. 6 4 . 5 1 00. 1 00. 2G ( 6G 

176.2 1.5 100. 100. 20 

179.7 2.5 l 00. 100. 20 

7D 

70 

101.8 .5 100. 100. 25 ( 8S 

-32.8 3.'5 !00. 100. 2G 7G 

-·32.5 '!.'? 100. 100. 2G 7G 

7.8 5.5 100. 100. 2I < 7I 

5.1.f 5.'5 100. 100. 2! 81 
----------~----~-~-----------~-------------------------------~~--

NO. EXPERIMENTAL LEVELS = 
ABSOLUTE MEAN DEVIATION = 

RMS DEVIATION = 

23. 

297.75 

766.36 

- ----~------ --~ 

---~------~-------~----~----------------------------------------~--------------

-------------------------------------------------------------------------------



-~=-- .. ~.-.=-~-------------------------------------------------------- ·--------------
TABLE ('5.6Al 

V .tt+ ODD LEVELS 
HXR CALCULATIONS CO~PARED WITH EXPERIMENTAL OBSERVATIONS 
~NCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION 

PARENTAGE -- DD< 2S+l ll = 302( 2S+l ll 
DD< 25+1 lL = 302( 2S+l lL OS< 2S+l lL ::: < 3P'5( 2P l3D< 20 l )( 2S+l ll 

=========~===========================~=~===================~====~===~==~==~==== 
IRREP CALC EXP INCR J/M!! TOTAL -- EIGENVECTOR COMPOSITION PCT 

-----------------------------------------------------··------------------------------
2P 1/2 20.tt681. 20639.tt. -1713.2 .'5 

ZP 3/2 206136. 207660. -152.tt . .tt 1.5 

20 '5/2 3206.tt7. 319106. 15.ttl.2 2.'5 

2F 7/2 3228.tt0. 320732. 2108.9 3.'5 

2F 7/2 33.tt677. 332198. 2479.2 3.'5 

2F '5/2 339572. 337013. 2559 ~ 2.5 

2F 7/2 3.tt9228. 3.tt9252. 2.tt.O 3.5 

2F '5/2 3502.tt.tt. 3496 76. "68.2 2 5 

2P 1/~ 3518.tt5. 351501. Jljlj 3 . '5 

?P 3/2 352434. 352018. qJ?.2 1.5 

2F '5/2 406150 . .tt\7699 -115q8.8 2.5 

2F 7/2 q06893. 418188.-11295.0 3.~ 

2P !/.? '11568'5. .ttl5LJ20. 26'-1 9 . 5 

2P 3/2 415982. 415676. 305.9 1.5 

2F 5/2 q29!3LJ. 396135. 32998.4 2.? 

2F 7/2 430629. 397994. 32~35.2 3.5 

2P 1/2 449708. 449~87. 

2P 3/2 449902. ~49773. 

2H 9/2 ~502fS. 4S0248. 

2Hll/2 4'50?~5. 450248. 

121.7 .5 

1294 1.5 

1& 9 4.5 

17.4 5.5 

2F 'i/2 4'5196fl. 4493/l. 2597.'1 2.10 

?F 71,' 4'52307. 4 119'122. 28811.'? 3.5 

99. 

99. 

9'5. 

92. 

97. 

97. 

96. 

97. 

99. 

9'1. 

9'5. 

96. 

99. 2P 4P 

99. 2P I 4P 

35. 20 (DO( 10 l) 25. 4F ( 00( 3F)) 
16 . 2F ( DO< l G l l 11 . 2F < 00( 3F l l 

8 . 20 ( 00( 3F l l 

49. 2F (00( lGll 38. 2F <00( 3Fll 
6. 2F < 00( l 0 l l 

75 . 2F ( OD< l 0 l l 8. 2G ( DO< 3F l l 
8. 2F ( i.tF l '5 . 2F ( 00( 3F l l 

70. 2F (00( lOll 22. 2F 
5 . 2F ( OD< 3F l l 

LfF 

85. 2F 

71. 2F 

99. 2P 

99. 2P 

4F 

LfF 

?P 

5P 

12. 2F <OO< lOll 

26. 2F ( DOC I 0 l l 

66. 2F < 5F l l 7. 2F (DO< 3F l l 
1 3. 2F ( 00( 1 G l l 

70. 2F ( 5F l 15. 2F ( 00( 3F) l 
1 1 . 2F < DO< l G ) l 

99. 99. 2P 

100. 100. 2P 6P 

94. 

94. 

99. 

99. 

33. 2F ( '5F l 26. 2F ( 00( 3F l l 
24. 2FC00(JGll 12. 2F( 6F l 

28. 2F ( 5F l 26. 2F ( 00( 3F l) 
25. 2F ( 00( l G l l 1 '5 . 2F ( 6F l 

99. 2P 

99. 2P 

100. 100 2H 

7P 

7P 

f.H 

6H 

6F 

100. 100. 2H 

91. 

9q. 

85 2F 5 . 2F < 00( 1 G l l 

8 3. 2F ( fF l f, . ?F ( 00< 1 G l l 
' 2F ( DD< 3F ) l 

--------- ··-·--------------------· --------------------------- -----------------------------

~183~ 
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---------------------------------------------------------------------------------
TABLE 15.6Al CONTINUED 

V 'I+ ODD LEVELS 
HXA CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION 

PARENTAGE -- DO< 2S+l lL = 3D2< 25+1 lL 
DD<2S+l)L = 3D2<2S+llL DSI2S+llL = 13P5<2Pl3DI2DlH2S+llL 

=========~==========~=========~====~=====~===~======~========================== 
I RREP CALC EXP INCA J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

2P 112 '!55313. '!38018. 1729l!.9 .5 

2P 3/2 '!57702. '!39'!Ll3. 18259.6 1.5 

2H 9/2 Ll70'!86. Ll70Ll89. 

2H1l/2 'i70L!86. l!70Ll89. 

-3. 1 Ll. 5 

-2.6 5.5 

2F '5/2 '170765. %9702. 1063.2 2.5 

2F 7/2 '!70819. '!69716. 1102.7 3.'5 

20 5/2 '17'!895. '!'!'11'5'!. 307Lfl.6 2.5 

20 3/2 '!7527'1. '!Ll4e21. 30653.0 1.5 

2F 7/2 475908. 47'5531. 377.4 3.5 

2F 5/2 l.f79219. '!78566. 653.0 2.'5 

2F 7/2 l.f83690. 483038. 

2F 5/2 483710. 483019. 

2F 7/2 Ll9245'5. '!92202. 

2F '5/2 492'529. 4921'!4. 

651 . e 3. 5 

690.7 2.'5 

2'53.2 3.5 

38/.f.Lf 2.'5 

2F '5/2 '500294. 496296. 3998.3 2.5 

2F 7/2 '501306. 4975'56 3750.0 3.'5 

20 3/2 '505'194. '500117. '5376.7 1.5 

20 '5/2 '505874. 500'502. '5371.'5 2.5 

89. 63. 2P (05<3Pll 26. 2P (00(3Pll 

92. 58. 2P IDS( 3Pll 29. 2P 100( 3Pll 
6. 2P I DO( 10ll 

100. !00. 2H ( 7H 

l 00. 1 00. 2H ( 7H 

91. 

92. 

96. 

91. 2F 

92. 2F 

7F 

7F 

61.f. 2D (00( 3Fll 15. 20 (00( lOll 
I 0. 20 ( DO< 3P l l 6. 20 <OS< 3D l l 

85. 61. 20 100( 3Fll 1'5. 20 <DD< lOll 
9 . 20 ( DO< 3P l l 

93. 

92. 

96. 

95. 

95. 

97. 

93. 2F (OS( 3F l l 

92. 2F (OS( 3F l l 

96. 2F ( 8F 

95. 2F 

8'!. 2F 

97. 2F 

SF 

9F l 11. l.fD ( OS< 30 l l 

9F 

91.f. 62. 2F <OS( lFll 18. 2F ( lOF l 

94. 

96. 

97. 

8. 20 <DS< lOll '5. 40 <DS< 30)) 

78. 2F (OS< !F l l 9. 2F ( 1 OF 
8. 40 < DS< 30) l 

91. 20 CDS( 3Dll '5. 20 <DD< 3Fll 

76. 20 <OS< 30 > l 8. 20 <OS< 10 l l 
7. 2F <DS< JFll '5. 20 (00{ 3Fll 

------~--~~-----~------------------------~--~-------~----------~---------------

NO. EXPERIMENTAL LEVELS= lfO. 

ABSOLUTE MEAN DEVIATION = 5718.03 

RMS DEVIATION= 11252.31 
-------------------------------------------------------------------------------

--------------------------------------------------------------------------------
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-·-----·---------------- --------------·----------------------------------------------
TABLE ( 5 .6B l 

V ~+ FVEN LEVELS 
HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION 

PARENTAGE -- 00( 2S+1 lL ::: ?02( 2S+1 lL 
DD(2S+l)L::: 3D2<2S+llL OS(2S+llL = <3P5<2Pl30(20l)(2S+lll 

~=~=~=:=====~---=-:=====~==~======~=~~===~~~==~=================~======~========= 
IRREP CALC EXP !NCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

0. ·189 6 \ ., 100. 100. 20 ( 30 20 3/2 

20 '5/2 615. 625. -9.7 2.5 100. 100. 20 30 

2S 1/2 ~~~216. 1~8!03. -3927.8 5 99. 99. 2S 

20 3/2 293726. 293903. -17& 5 5 99. 99. 20 < ~0 

20 5/2 293908. 294047. -139.8 2.5 99. 99. 20 40 

2S 1/2 328697. 328217. ~79.8 .5 100. 100 2S 55 

20 3/2 388573. 38'1977. 595.6 1.5 99. 99. 20 ( 50 

20 5/2 388659. 38804 11. 614 9 2.5 99. 99. 2D 50 

25 l/2 404214. 403855. 358.7 h 100 100. 25 65 

2G 7/2 '116265. 416360. ·95. L5 100. 100. 2G 5(; 

2G 9/2 416267. 416362. -95 2 4.5 100. 100. 2G 5G 

20 3/2 ~3~701. '134304. ?97.0 .5 99. 99. 2D ( 60 

20 5/2 434149 434341. 407.9 2 5 99. 99. 20 60 

2S 1/2 443303. 443075 228 2 .5 .oo. 100. 25 75 

2G 712 449959. 45002S. · 65. 3 3. 5 l 00. l 00. 2G 6G 

2G 9/2 449960 '150025. 6'5. 1 '1. 5 1 00. 100 2G < 6G 

2D 3/2 11609118. ~,<60697 250.7 1.5 100. 100. 2D ( 7D 

2D 5/2 460977. 410120. 257.P. 2.5 100. 100. 2D ( 7D 

25 1/2 4662J.IJ. Lfl,606f>. 148 5 .5 100. 100. 25 ( 85 

2G 712 ~70297. 470333. -36. 4 3. 5 100. 100. 2G 7G 

2G 9/2 470297. ii7033LI. -36.5 4.5 100. 100 2G 7G 

2Ill/2 1-17053'1. 1t70'52 1L 12.6 5.5 100. 100. 21 71 

2I1!/2 1183f>58. 483651. 7.0 5.5 100. 100. 21 81 

NO. EXPERIMENTAL LEVELS = 23. 

ABSOI.UTE MEAN DEVIATION = 

RMS DEVIATION = 

373.73 

863.8'5 
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--------------------------------------------------------------------------------
TABLE ( 5. 7A l 

CR5+ ODD LEVELS 
HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION 

PARENTAGE -- DD< 2S+l lL ::: 302< 2S+l H. 
DD<2S+lll = 3D2<2S+l)L DS<2S+l)L::: <3P5<2Pl3D(20lH2S+l)L 

=============================================================================== 
IRREP CALC !NCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

2P 1/2 29LJ971. 296573. -1602.6 .5 

2P 3/2 297057. 298397. -13LJ0.2 1.5 

2F 5/2 358LJ98. 356962. 1'535.6 2.5 

2F 7/2 361097. 35916'5. 1932./.j 3.5 

2F 7/2 37LJ0'58. 371618. 2'1'-tO.l 3.5 

2F '5/2 38210'1. 378677. 3'126.7 2.'5 

2F '5/2 't'51960. 1HO 135. 11825. 2 2. 5 

2F 7/2 l.jl)l.j02l. 'll.j29't0. 11080.2 3.5 

2P 1/2 't891.j7l. i.j87'589. 1881.5 .5 

2P 3/2 '190371. l.j88%2. 1809.1 1.5 

2F 5/2 l.j91LJ17. 't81956. 9LJ60.8 2.5 

2F 7/2 '-192957. '182517. 10'-t'-10.0 3.5 

2P 1/2 516195. '-1932'-17. 22947.8 . '5 

2P 3/2 518135. l.j949ll. 23223.9 1.5 

20 5/2 528368. 496958. 31409.9 2.5 

20 3/2 528685. 't97495. 31190.0 1.5 

2F 5/2 570904. 568957. !9LJ6.7 2.5 

2F 7/2 571023. 568993. 2029.8 3.5 

2P 1/2 57't06'1. 578566. -l.j502.4 

2P 3/2 '575927. '57'5742. 185.0 

. 5 

1.'5 

2P !12 57972LJ. 574135. '5'589.2 .5 

2P 3/2 58203'-t. 580697. 1336.9 1.'5 

qF 712 583Jqq_ 58'-1371. -1226.7 3.'5 

99. 

99. 

99. 2P 

99. 2P 

90. 49. 2F \00( lGll qQ. 2F <OO< 3Fll 

90. 48. 2F <00( lGJl 42. 2F (00< 3F)l 

9'5. 73. 2F < 00( 10 l l 22. 2G ( 00( 3F> l 

95. 95. 2F ( 00( 10 J l 

97. 38. 2F ( l.jF l 34. 2F ( 00( 3F l l 
2'5. 2F < 00( lG J l 

97. q2. 2F ( qF l 31. 2F (00( 3Fll 
24. 2F < 00( lG l l 

97. 

97. 

97. 2P 

97. 2P 

5P 

'5P 

97. 61. 2F ( LJF ) 18. 2F <00( IGJJ 
18. 2F < 00( 3F l l 

97. 57. 2F ( 'IF l 21. 2F (00( 1Gll 
1 9. 2F ( 00( 3F l J 

9LJ . 

9'5. 

99. 

99. 

97. 

97. 

98 . 

99. 

97. 

70. 2P < 00( 3P J l 13. 2P ( 00( lD l l 
1 l. 2P ( DO< 1 S l l 

71. 2P (00( 3P)) 1'5. 2P (00( lOll 
9 . 2P ( 00( 1 S ) ) 

71. 20 ( DO< 3F l ) 17. 2D ( DD< lD l l 
11 . 20 ( 00( 3P ) ) 

71 . 2D < 00( 3F l l 1 7. 20 ( 00( 10 J l 
1 1 . 20 < 00( 3P l l 

97. 2F ( '5F 

97. 2F \ '5F 

'53. 2P (OS< 3P l l q'). 2P < 6P 

73. 2P 

'5'1. 2P 

6P 2P (OS< 3P l l 

6P l LJ3. 2P (OS< 3Pll 

96. 69. 2P <OS( 3PJJ 27. 2P 6P 

97. 97. 'tF (05<3Fll 

---------------------------------------------------------------------------
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------------------------------------------------ ____________ y __ _ 

TABLE (5. 7Al CONTINUED 

CR5+ ODD LEVELS 
HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION 

PARENTAGE -~~ 00( 2S+l lL = 302( 2S+l lL 
DO< 2S+l )L = 302( 2S+l lL OS( 2S+l lL ::: ( 3P5( 2P )JIJ( 20 l )( 25+1 )L 

======================-================~~==============~======================= 
IRREP CALC EXP INCA J!Ml! TOTAL ~- EIGENVECTOR COMPOSITION PCT 

----------------·-----------------------------------------------------------------
'IF "i/2 '58'5198. '586273. -107'1.6 2.'5 

2F 7 I 2 '5 91 '4 2il . '5 91 13 7. 2 8 7 . 0 3 '5 

2F '5/2 '595635. '59il926. 709 il 2.'5 

qo 712 6J055q_ 607615. 2939.0 3 5 

'40 '5/2 6119q6_ 608631. 33lil.9 2.~ 

qo 3/2 612687 609166. 3520.9 1.s 

20 5/2 615192. 6lqJ85. 807.0 2.5 

20 3/2 61661 7 . 611568. 50'49.3 1.5 

2F '5/2 6117lil. 610'1'i7. 7216.7 2.5 

2F 7/2 618361. 618849 '487.6 3.5 

2F 5/2 620063. 618'583. 1480 2 2.5 

2F 7/2 6209?.7. 616079. '4907.7 3.5 

2H 9/2 621173. 621163. 

2Hll/? 62117'4. 621163. 

9.8 4 5 

10.9 5.5 

21) 3/2 ~2329l.J. 618'191. '1802 8 

?0 S/2 0?'l005. ~!9l.Jl9. 058~.4 2.5 

2F 5/2 649076. 648521. 

2F 7/2 649098. 648533. 

2H 9/2 '":1297. 0'!0'11. 

2Hll/2 f50?9:. ~~0311. 

?F 5/2 668317. 6~7973 

2F 7/2 f.f--8329. 6~-of973. 

2F 5/2 681525 681307. 

2F 7!2 681532. f81307. 

55'5.0 2.5 

·)4. 0 'i. 5 

13.5 55 

30'4.2 2 5 

355. 9 3. '; 

217.9 2 5 

225.2 3.5 

9~. 

96. 

99. 

97. 

98. 

94. 

')8. 

98. 

98. 

90. 

96. 

96. qF < OS( 3F l l 

96. 2F ( IJS( 3F l J 

94 . 2F ( 0 S< 3F l ) 

86. 40 <OS( 3DJJ 14. 2F (fJS( !FJJ 

82. 40 <OS( 30JJ 9. 20 <OS( lOll 
6. 2F (OS< lF J l 

85 . '10 < D Sl 30 ) l 1 3. 20 < 0 S< 1 D l l 

56. 20 (rJ:,( lOll 22. 2F <OS< !Fll 
1 7. 20 < lJ S< :;D l l 

85. 2D \OS( lOll 13. liD \OS< 3Dll 

41. 2F <OS< lFll 23. 20 <OS( \Dll 
21 . 2F < 6F l 12 40 < D S< 30 l l 

55. 2F 6F J 36. 2F ( 05( JF J l 
8. 00 < OS< 3D J l 

75. 2F 6F 1 '5 . 2F ( D S< 1 F l l 

47. 2F <DS<lFll ti 1l ?F 
5 . '10 ( 0 S< 3D J l 

100. 100. 2H 

100. 100. 2H 

6H 

~H 

99 

99. 

100 

98 20 \OS( 3D l J 

75 20 <DS<3Dll 1'5. 2F <DS< !Fll 
6. 20 ( DS< Jii) l 

99. 2F 

99. 2F 

IF 

7F 

100 2H ( 7H 

l 00. 100 2H 7H 

100. !00 2F 8F 

l 00. J 00 ?F ( 8F 

!00 !00. 2F 

l 00. l 00. 2F 

9F 

9F 



TABLE 15.7Al CONTINUED 

CR5+ ODD LEVELS 
HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION 

PARENTAGE -- OD< 25+1 lL = 302( 2S+1 lL 
DDI2S+llL = 30212S+llL DSI2S+lll = 13P512Pl30(20lH2S+llL 

IRREP CALC EXP !NCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

2F 5/2 690973. 690781. 

2F 7/2 690978. 690781. 

191 . 8 2. 5 100. 100. 2F ( 1 OF 

197.1 3.5 100. 100. 2F ( !OF 

NO. EXPERIMENTAL LEVELS= 

ABSOLUTE MEAN DEVIATION = 

RMS DEVIATION = 

I.J9. 

'-1658.09 

8768.95 

~188-

-------------------------------------------------------------------------------
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-~-=----=-------------------------------------------------------------------------
TABLE ( '5. 7B) 

CR5+ EVEN LEVELS 
HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION 

PARENTAGE -- 00( 25+1 )L :::: 302< 25+1 lL 
00( 2S+l lL ::: 302( 25+1 lL 05( 25+1 lL :: ( 3P'5< 2P )30( 20) )( 25+1 )L 

=========~==========~====~=================~========~===============~=~====7.==~ 
IRREP CALC EXP INCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

------------------------------------·---------------------------------------------
20 312 -305. 0. ··30'5. 3 1.'5 100. 100. 20 30 

20 5/2 8b9. 9'10. -71 .'-1 2.'5 100. 100. 20 30 

25 l/2 223b36. 22 78'58 -'-1221. b .5 99. 99. 2S LJS 

20 3/2 '102639. 't026b2. -22. 7 1 .'5 99 99. 20 'tO 

20 '512 '102927. '102889. 38. 3 ?.'5 99. 99. 2D ( 'tO 

2S 1/? %1848. It(, 1253. 59'1. 7 .'5 100. 100. 2S ( 5S 

20 312 53'5227. I) 3'1 382. 81{1-) .3 1.5 99. 99. 20 ( :)D 

2D S/? '53'53f,b 53'1'190 t<76.'t 2 ') 99. 99. 20 50 

25 112 ?62527. 56201,1f. '16?.6 5 100. 100. 25 ( 65 

2G 712 '572llf2. '572272. -130.6 3 5 100. 100. 2G ( 5G 

2G 9/2 '5721'-15. 57227'1. 129.6 '-1.5 100. 100. 2G 15G 

2G 712 620Tl8. 620696. 21.'5 3.'5 100. 100. ?G ( 6G 

2G 9/2 620fl9. 620701. 19.0 Ll 1 5 100. 100. 2G 6G 
-----·~~-----~- -------~-- -~--------------------------------·---

NO. EXPERIMEN1AL LEVEl 5 .. 13. 

ABSOlUTE MEAN DEVIATION .. 59'5.30 

RM5 DEVIATION .. 12lf0. 56 
---------------------------- ------------------------------------------------ --~~-~--~-~-~ 

---------------------------------- -··-· ·--------------------------- ---------~------~------------"--
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--------------------------------------------------------------------------
TABLE ( 5. SAl 

1"1N6+ ODD LEVELS 
HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION 

PARENTAGE ··- DO< 2S+l lL = 302( 2S+l )L 
00(2S+l)L = 302<2S+llL OS<2S+llL = <3P5<2Pl30<2DlH2S+llL 

=================================~==========~===========================~===~== 
IRREP CALC EXP !NCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

2P 112 391!929. 397650. -2720.9 .5 

2P 3/2 3991.!35. 1!00120. -68?.0 1.5 

95. 

98. 

81. 2P 14. 2P <DO< !Dll 

58. 2P( 'lP l 27. 20(00(10)) 
7. 20 ( 00( 3F l ) 6. 4F ( DO< 3F ) ) 

2F 5/2 508605. 1.!89880. 18721.!.9 2.5 98. 51. 2F <DO( 3Fll 42. 2F <DO< !Gll 

2F 712 513180. 'l9'l300. 18880.1 3.5 98. 

20 5/2 57925'1. 5'17370. 31881.!.3 2.5 99. 

20 3/2 579542. 547930. 31612.0 1.5 100. 

2F 5/2 619832. 615960. 3871.9 2.5 

2F 7/2 6201'19. 616100. Lt01.!9.0 3.5 

'-!P 3/2 691387. 696'!20. -'5032.7 1.5 

2P 1/2 701607. 700870. 736.6 .5 

2P 3/2 706373. 705170. 1202.5 1.5 

'JF 7/2 709'-183. 709720. -237. 0 3. 5 

I.!F '5/2 711971. 712350. -378.6 2.5 

2F 7/2 718319. 717430. 889.1 3.5 

2F 5/2 723408. 722100. 1307.6 2.5 

9'5. 

91.!. 

98. 

97. 

95. 

96. 

94. 

95. 

92. 

5. 2F < 4F l 

'18. 2F (00(3Fll 'II.!. 2F (00( !Gll 
6. 2F < 'IF l 

71. 20 (00( 3Fll 17. 20 (iJO( lOll 
12. 20 ( OD< 3P ) ) 

71. 20 ( DO< 3F ) l l 7. 20 ( 00( lD ) l 
11 . 20 ( DO< 3P l l 

9'i. 2F 

9'-1. 2F 

98. 'iP (OS< 3P l) 

97. 2P <OS< 3P l l 

9'5. 2P < DS< 3P) l 

96. 'iF (OS< 3F l l 

9'l. I.!F ( DS< 3F) l 

95. 2F ( 05( 3F J J 

92. 2F ( 05< 3F l l 

40 712 738958. 73'5'5!0. 34'18.0 3.5 100. 72. 40 <DS< 3Dll 19. 2F <DS< lFll 
9. 2F ( 5F ) 

2F 5/2 7'10665. 739770. 89'5.4 2.5 93. 'll. 2F ( 5F l 38. 'iD (0SC3Dll 
1'1. 2F <DS<lFll 

2F 5/2 71.!1'133. 737020. 1.!'-113.5 2.'5 

2F 7/2 7'11'540. 739940. 1600.'! 3.5 

2F 7/2 750610. 7461.!50. 4160.4 3.5 

20 3/2 753'174. 748170. 530'1.1 1.'5 

2D 5/2 7'54'570. 749'i30. 5l'i0.1.! 2.5 

97. 

99. 

91. 

98. 

97. 

116. 2F ( 5F ) 40. 'iD (05(30)) 
ll. 20 ( 05( 1D)) 

86. 2F 5F 13. 40 <DS( 3Dll 

77. 2F CDS< lFll 13. liD (05( 3Dll 

98. 20 <OS< 3D) l 

73. 20 <DS< 3Dll 18. 2F <DS< 1Fll 
b. 20 (05( 10)) 

2F 5/2 808971. 807760. 1211.2 2.5 ---~~~.:..--~~~.:..-~:-~--~: ____________________ _ -------------------------------------
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-------------------------~---------------------------- ----------------------------
TABLE ('5.8Al CONTINUED 

MN6+ ODD LEVELS 
HXR CALCULATIONS COMPARED WI rH EXPERIMENTAL OBSERVATIONS 
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION 

PARENTAGE -- DO< 2S+l lL :::: 302( 25+1 )L 
00(2S+l)L = 3D2(2S+l)L DS<2S+llL = (3P'5(2Pl3D\2DlH2:;+l)L 

------============~===~=~==========~====================~===~===~~=:~=·===~: 
IRREP CALC EXP !NCR J 11'1U TOTAL -- EIGENVECTOR C'OMPW,ITION PCT 

--------------------------------------~------------
__________ 0 _____ 

-·-···-------~---------

2F 712 809001. 807760. 12'1 1 . 2 3.'5 100. 100. ?F 6F 

2F 5/2 8'19733. f11J88'50. 882.8 2.5 100. 100. 2F 7F 

2F 712 81197'19. 81J88'50. 898.6 3.5 100 100 2F /F 

2F '51 2 876201. 87'?5'30. 671 0 2 5 100. 100 2F 8F 

2F 712 876211. 87'5730. 680.7 3.5 100. 100. 2F 8F 

2F '512 89'-13?8 8937'10. '588.3 2.'? 100. 100. t'F ( Qc ,, 
2F 712 89'133'5. 8937'-10. '59 11. 8 3 '5 100. 100. 2F ( 9F 
-----~------- D-- ---------~-~-- ---------~------- ~----- --------------------------------

NO EXPERIMENTAl lEVELS - 30. 

ABSOLUTE MEAN DEVIATION -" ') 131 ljl.f 

RMS DEVIATION ::: 98Li0. ')'f 



TABLE ( 5. 8B) 

MN6+ EVEN LEVELS 
HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION 

PARENTAGE-- 00( 2S+1)L = 302( 25 llL 
00( 2S+ 1 lL = 302( 25+1 )L OS< 25+ 1 )L ::: ( 3P5( 2P) 30( 20 l )( 2S+ 1 lL 

~192~ 

================================================================~===~=~======== 
IRREP CALC EXP !NCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

20 3/2 

20 '5/2 

-188. 

l"ll.f8. 

0. -188.3 1.5 100. 100. 2D ( 3D 

13'50. 98.2. 2.'5 

25 1/2 31'1857. 318731.f. -3877.2 

25 l/2 611957. 61393'1. -1976.8 

25 1/2 7'10679. 7521'14.-11'16'1.5 

.5 

.5 

. 5 

100. 100. 20 

99. 99. 25 

100. 100. 2S 

100. 100. 25 

NO. EXPERIMENTAL LEVELS = 

ABSOLUTE MEAN DEVIATION = 

RM5 CEVIATION ::: 

5. 

3521.02 

5'18'!.90 

3D 

55 

bS 

------~-=-----=-~-~-------------~----------------------------------------------
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-------------------------------------------------------------------------------
TABLE ( 5. 9A l 

FE7+ ODD LEVELS 
HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION 

PARENTAGE-- DD( 2S+l lL = 302( 2S+llL 
DD(2S+lll = 3D2<2S+llL DS<2S+llL = <3P5<2Pl3D<2DlH2S+llL 

IRREP CALC EXP INCA J/1'1!! TOTAL -- EIGENVECTOR COMPOSITION PCT 

2F 5/2 5'55363. 53'5926. 19'136.7 2.'5 

2F 71 2 56 15 1 '5 . '5 '11 77 7 . 1 9 73 7 . 5 3 . '5 

2P 1/2 ~16022. 591973. 2'10'18.7 .5 

2P 3/2 619291. 595166. 2'1125.2 1.5 

97. 52. 2F < DD( 3F l l 4'1. 2F ( 00( !G l l 

96. 50. 2F (00( 3Fll tt7. 2F <DO< !Gll 

98. 71. 2P (00( 3Pll 13 2P (00( lOll 
1 3 . 2P ( 00( 1 S ) l 

98. 73. 2P (00( 3Pll 15. 2P (0[1( 10)) 
9 . ?P < OD( 1 S l l 

zo r;;2 ~->26672. 596'130. 32242.3 2.5 100. Tl . 2D (DO( 3F l J 17. 20 ( DO< lD l l 
12. 20 ( 00( 3P J J 

2D 3/2 628885. 597072. 31813.2 1.5 100. 

2F 5/2 76 7037. 763789. 3248. 3 2. 5 

2F 712 7672'16. 76:3821. 3'12'5.2 3.5 

4P 3/2 8267'11. 833000. -6259.5 1.5 

2P 1/2 836235. 837750. '184.5 .5 

2P 3/2 843~71. 842930. 1040.9 1.5 

'IF 712 tl'J6363. 8472?0. -886.6 3.'5 

'IF 512 

2F 7/2 

2F 5/2 

'10 7/2 

4D 5/2 

849321. 

855775. 

8H 893. 

878283. 

88Dt·81 . 

849990. 

855190. 

8607! 0. 

874770. 

876810. 

58'1.9 

1183.0 

3'513.5 

3870.8 

2.5 

3.5 

2.5 

3.'5 

2 h . ' 

2F 7 I 2 8 9 l 4 3 1 . 8 8 7 J 2 0 '11 l 1 . l 3 . 5 

20 3/2 894'190. 889110 5379.7 1.5 

20 5/2 896041. «90810. 5230.9 2 " . ' 

2F 5/2 929042. 927025. 2016.8 2.5 

2F 7/2 929121. 927053. 2067.9 3 r.; 

98. 

98. 

97. 

93. 

92. 

95 

93. 

95. 

89. 

100. 

93. 

o-• 
7J, 

97. 

96. 

99. 

71. 2D < OD< 3F J l 1 7. 2D ( DD< lD l l 
11 . 2D < DD< 3P l l 

98. 2F ( 1iF 

98. 2F ( 'IF 

97. 'IP < DS< 3P) l 

93. 2P ([15(3Pll 

92. 2P <OS< 3Pll 

95. 'IF ( DS< 3F l l 

93. '-IF <nS<3Fll 

95 . 2F ( 0 S< 3F ) l 

89. 2F <DS< 3Fll 

80. 'iD ( DS< 3D l l 19. 2F < DS< lF l l 

n. 'iD ( DS< 30 l l 11. 2F ( DS< JF J J 
9. 20 (05( lD)) 

76. 2F <OS< !Fll lL 'iO (IJS( 3D)) 

97. 2D < DS< 3D l l 

71. ?D <DS< 30ll 19. 2F (IJS( lFll 
7 . 2D ( D S( lD l ) 

99. 2F 

99. 2F '5F 

2F 5/2 1017688. !0Jb'i'30 11~7.9 2? 100. 100. 2F 6F 

2F 7/2 !017721. 1016'570. 1150.5 1.'5 100. 100. ?F 6F 

---------------------------------------------------------------------------------------
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-------------------------------------------------------------------------------
TABLE <5.9Al CONTINUED 

FE7+ ODD LEVELS 
HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 
1JNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION 

PARENTAGE -- 00( 2S+l lL :: 302( 2S+l lL 
DD< 2S+llL ::: 302( 2S+l lL OS( 2S+l lL ::: ( 3P5< 2P )30( 20 l )( 2S+l lL 

=============================================================================== 
IRREP CALC EXP !NCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

2F '512 1071311. 1069870. li!Lfl.l 2.5 100. 100. 2F ( 7F 

2F 712 1071330. 1070030. 1300.1 3.'5 100. 100. 2F < 7F 

NO. EXPERIMENTAL LEVELS = 26. 

ABSOLUTE MEAN DEVIATION= 7708.70 

RMS DEVIATION= 126Lf9.77 

--------------------------------------------------------------------------------
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----------------------------------------------------------------·---------------
TABLE (5.9Bl 

FE7+ EVEN LEVELS 
HXR CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 
UNCORRECTED HXR PARAMETERS WITH CONFIGURATION INTERACTION 

PARENTAGE -- DD( 2S+l lL :: 3D2( 2S+1 lL 
DO( 25+1 lL ::: 3D2( 2S+l )L DS< 2S+l )L ::: ( 3P5( 2P l30( 2D l )( 2S+l )L 

=======~=========================~====~===~===========~==~~=======~~==~~-------
IRREP CALC EXP INCR JIM!! TOTAL -- EIGENVECTOR COMPOSITION PCT 

----------~----------------------------------------------------------------- -------· 
20 3/2 

20 '5/2 

-lj 1 '5 • 

1791. 

0. -iJ\'5.1 1.'5 100. 100. 2D ( 3D 

1838. -iJ6.'5 2.5 100. 100. 2D ( 3D 
~----·--·----·----------·--··----------------------------------------------------------------·---

"=--- --~- ---------··--

NO. EXPERIMENTAL lEVELS = 

ABSOLUTE MEAN DEVIATION :::: 

RMS DEVIATION = 

----------------------- -----------------------

2. 

230.82 

295.38 
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The Hamiltonian matrix reduces to block diagonal matrices of both 

parities, with angular momentum values ranging from J'"'1/2 to J"'ll/2. 

28+1- . The basis vectors are LS coupled to final states LJ v1a the schemes 

{3ps(zP)3d2(2S+lL)}2S+l1J, {[3p5(2P)3d(2D)](2S+lL)4s(2s)}2s+l1J, and 

{[3p 5( 2P)3d( 2D)]( 2S+lL)4p{ 2P)} 2S+lLJ. The ZS+lL parents are used to 

identify the basis set. 

Isoelectronic ~~mparisons 

Considerable configuration mixing occurs with the 3p 53d 2 and 

5 5+ 3p 3d4s configurations and some of the odd nO configurations from Cr 

7+ to Fe , As mentioned in the previous section, §.b"'·initio calculations 

tend to overestimate the magnitudes of configuration interaction parame·~ 

ten; because of correlations absorbed into the average energy. For mild 

configuration mixing, the effect of including configuration interaction 

is a shift of the configuration average energy that varies weakly with 

z. If the mixing configurations are nearly degenerate at some Z along 

the isoelectronic sequence, however, strong configuration interaction 

can occur, and the effect on the average energies is more dramatic. In 

this situation, the effective Hamiltonian is very sensitive to values of 

configuration interaction parameters, and any adjustments to 

parameters must be made with this in mind. 

The strength of the configuration interaction along the KO+ 

isoelectronic sequence can be determined by plotting the difference 

between the observed and calculated configuration average energies 

(relative to the 3p 6 configuration) for the nO configurations. To 

accurately compare the calculated and observed configuration average 



~197~ 

energies and possibly extrapolate their differences along the isoelec-

tronic sequence, however, the correlation correction Ec of 

(3.19) added to the HXR calculation was removed. The difference between 

the observed and calculated average energies ~ the correlation energy, 

while the behavior of the correlation correction E as a Z is unknown. 
c 

It is interesting to compare E to the average energy differences as a 
c 

function of Z, and this was done graphically for selected levels. The 

correlation corrections for the even and odd parity configurations rela­

tive to the correlation energy of the parent 3p 6 ion are presented in 

table (5.10). 

The differences between the calculated and observed 110 conf a-

tion average energies are displayed in figures (5.1) through (5. 

Overall, the single configuration H}~ term values (Teal are not as 

large as their experimental counterparts, implying that the valence 

electron is more tightly bound than the calculation suggests. For most 

configurations the differences are smooth and appear to be as~nptoti~ 

cally linear in Z as expected. To emphasize this observation, the 

differences were fitted to a function ~O(Z), 

lf:_o (z) 

and the function lf:_O (Z) is plotted with the differences in each e 

(AnO • BnO ~ and cnO are the adjustable parameters). 

The strongly perturbed configurations, of course, do not fi.t >vcll 

to a curve of this type; there are large deviations from a curve of this 

type when strong configuration interaction occurs. It is deEd.rab to 

find a lf:_O (Z) that best represents the differences in the average 
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Figure (5.1) 

Differences between the calculated and observed average term 
energies, plotted as functions of z. The 3d and 4s confi~ 
gurations are shown along with their respective correlation 
corrections. 
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Figure ( 5. 2) 

Differences between the calculated and observed average term 
energies plotted as functions of z. The 5s 6s 7s, and Bs 
configurations are shown. 



8000 

6000 

5000 'E 
() 

w 4000 
<J 

2000 

1000 

0 

-200-

T obs _ T calc nl = 4 p Sp 
nl nl 1 
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z 
XBL 805-895 

Figure (5.3) 

Differences between the calculated and observed average term 
energies plotted as functions of z. The 4p 5p, 6p, and 7p 
configurations are shown, along with the correlation correc~ 

. Ec tlOn 4p. 
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Differences between the calculated and observed average tenn 
energies plotted as functions of z, The 4d 5d, 6d, and 7d 
configurations are shown. 
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Figure (5.5) 

Differences between the calculated and observed average term 
energies plotted as functions of z. The 4f Sf, and 6£ confi­
gurations are shown along with the correlation correction for 
the 4f configuration. Strong configuration interaction is 
evident beginning with Z=22., 
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Figure (5. 6) 

Differences between the calculated and observed average term 
energies plotted as functions of Z The 7f, 8f, and 9£, con~ 
figurations are shown. Although the differences arc smaller 
than for the 4f, Sf, and 6f configurations, the s confi-
guration interaction is evident with Z=22. 
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Figure ( 5. 7) 
XBL 805-891 

Differences between the calculated and observed average term 
energies plotted as functions of z. The Sg, 6g, 7g, 6h, 7h, 
71, and 8i, configurations are shown. 
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Table (5. 10) 

Relative Correlation Energies (em ~l) 

--
Odd Parity n 1 Configurations 

Conf\Z 19 20 21 22 23 24 25 26 

4p 1228 2637 3557 4195 4673 5047 5350 5602 
5p 351 663 909 1117 1305 1467 1632 1778 
6p 142 286 399 499 589 670 744 812 

7p 74 151 215 271 324 370 413 453 
4f 19 291 949 1832 2746 3572 4278 4860 
Sf 13 180 503 835 1098 1293 1450 1592 
6f 9 112 292 454 572 657 732 803 

7f 5 74 183 274 338 3867 429 473 
8f 4 50 122 179 217 248 275 304 
9f 2 36 86 123 148 169 189 209 
lOf 2 26 61 88 106 121 135 142 
6h 0 1 7 24 57 104 166 239 
7h 0 1 8 24 55 95 145 201 

3p 53d3 1826 3617 6921 7404 7693 7890 8037 8153 
3p 53d4s 2662 4207 4747 5125 5423 5667 5873 6051 

Even Parity nO Configurations 

4s 2715 3889 4549 4995 5332 5599 5818 6006 
5s 480 801 1068 1297 1499 16 78 1838 1984 
6s 177 318 440 546 641 724 798 865 
7s 84 160 228 289 342 391 432 472 
Bs 47 93 135 172 206 237 263 289 
3d 690 6158 7238 7609 7829 7983 8101 8196 
4d 405 1027 1787 2653 3401 4013 4512 L>926 
5d 234 421 679 917 1112 1277 1Lf29 1573 

6d 142 218 346 455 5!+6 626 739 768 
7d 91 129 202 262 314 360 L.,Q2 L}L:.2 

Sg 0 20 100 259 486 759 1059 371 
6g 0 18 80 189 327 !+ 76 622 760 

7g 0 13 57 129 216 305 387 462 

7i 0 0 0 1 4 10 16 19 
8i 0 0 0 2 5 12 20 32 

5 3p 3d4p 1737 3145 3872 4396 48090 5143 51t23 566 
-~~-------~ ~-~~-·~~-~~~~-·•-=---z=~~~----~~~~"~~·~~~-~~.~,,~-~~~-,____,~~~~-='-=-~-=~,~--,~--~-~'- ~-~-~~~~--~<·=--~~~ 
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energies that are not associated with strong configuration interactions. 

To accomplish this, the Hamiltonian matrices were diagonalized with all 

the configuration interaction parameters multiplied by .s (the factor .5 

was used because the correlation correction E was retained), and the 
c 

resulting changes in the energy levels from the single configuration 

approximation were used in weighting the fits to ~O(z). The result 

shows that for most configurations, the configuration mixing appears to 

be mild, and the differences fall on smooth curves. There are notable 

exceptions, particularly the nf configurations. 

The differences between the observed and calculated term values 

appear to decrease with increasing nand 0. with the largest differ~ 

ences occuring for n = 3,4. The differences for the 3d and 4s terms are 

shown in figure (5.1). The 4s configuration is the ground configuration 

for KO+ and ca 1+, while the 3d configuration is lowest for sc 2+ to Fe 7+. 

Thus figure (5.1) displays the discrepancy between the experimentally 

determined ionization energy and the values computed by differencing 

single HXR configurations. The deviation from the smooth curve for the 

3d configuration for Z=26 and z~27 is perhaps an indication of a possi~ 

ble error in the experimentally determined ionization energies; the ion~ 

ization energies for Mn 6+ and Fe 7+ are determined from the Rydberg for~ 
. 83 84 mula applied to the perturbed nf ser~es • • The differences for the 

4p, 4d, and 4f configurations displayed in figures (5.3), {5.4), and 

(5.5), are also quite large, but the 4p seems to become asymptotically 

linear very quickly, while the 4f configuration shows the effects of 

strong configuration interaction. 
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The observed ns, np, nd, nh, and ni configurations tn 

figures (5.2), (5.3), (5.4), and (5.7) do not show the effects of strong 

configuration interaction, but perhaps many of these levels have not 

been identified for ions where strong configuration interaction occur·s. 

The large discrepancies in the even parity Hn 6+ levels have been ignored 

as probable misidentifications. The uncorrected HXR calculation 

predicts no significant configuration interaction, and similar identi.fi·~ 

cations from earlier work on Fe 7+ have also been discounted
84

• 

The nf configurations displayed in figures {5o5) and (.5.6), how~ 

ever, show very definite configuration interaction. At low Z the 

differences for the 4f, Sf, and 6f configurations rise above the smooth 

curves, indicating the depression of the energies (increases in the term 

values) from higher lying perturbing levels. At higher Z, the differ~ 

ences fall below the smooth curve, indicating the positions of the per-

turbing levels have fallen below the plotted configurations. The data 

for the 7f, 8f, and 9f configurations displayed in e ( .5. , how~ 

ever, are insufficient to show any real trends. The more mil per~ 

turbed 4d, 5d, Sg, 6g, and 7g levels displayed in f (5.2) and 

(5.7) show indications of configuration interaction the scatter about 

the ~0 (Z) curves. The strength of these perturbations cannot be 

estimated accurately enough to the fits to 
l) 
11 

( ) ' so 

that definite trends do not emerge. 

The correlation correction :fo the 3d, !+s, 4p, and Ld" eonf 

tions is also shown, and adding Ec is an ovement. The 

unusual trend of the 3d conf ation is followed te well 9 VJ:ith 

sharp rise for the low Z values indic the col se of the 3d to the 
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ground state configuration. The asymptotic slope of the 3d difference 

is relatively small, and perhaps even negative. This indicates that the 

differences in the first order corrections to the hydrogenic average 

energies of the 3p 63d and 3p 6 configurations is nearly constant at large 

Z, with perhaps a slightly larger linear component for the 3p 6 correc-

tion. The best agreement of E with the observed differences, however, 
c 

seems to be a low Z, indicating perhaps that the correlation correction 

gets poorer with increasing electron density. Note that E is an 
c 

overestimate of the difference for 4s and 4p configurations at the low Z 

values. 

The odd parity levels of v4+ and Cr 5+ are determined from 91 param~, 

eters, while the even parity configurations are determined from 77 

parameters. In each case, the number of parameters is roughly twice the 

number of observed energy levels, so some method of reducing the number 

of free parameters with constraints had to be devised. To some extent, 

the final decisions on this matter were made by trial and error, but the 

constraints used follow the general guidelines described in (5.1). 

Because there was no information about the levels belonging to the even 

parity 3p 53d4p configuration, the odd parity parameters were us ted 

first. 5 The adjustments made to the 3p 3d4s parameters and the confi~ 

guration interaction parameters were used as rough estimates for their 

5 counterparts associated with the 3p 3d4p conf 

remaining even parity parameters were adjusted. 

ation before the 
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Th h d d d · h v4+ d c' S+ e met o s use to a Just t e an ,r were nearly 

identical, so the overall scheme is outlined first and the few excep~ 

tions are described. Over half the parameters are related to configura~ 

tion interaction (CI) between the 53d 2 and 3p 53d4s configurations and 

the nO configurations (l•p,f,h), so a means of constraining them had to 

be devised, The simplest technique is to scale them all by a single new 

free parameter, but this proved unsatisfactory, so the next simplest 

idea was used; they were scaled in two groups. A number of other con~ 

straints were used while the CI parameters were usted in order to 

overdetermined in this situation. When the CI parameters were scaled to 

satisfactory values, these additional constraints "1ere relaxed by trial 

and error and the optimization continued as long as conve could be 

Using an overall scale parameter for a number of CI parame~ 

ters is consistent with the constraint (5.14a) but stric 

the argument for leading to (5.14a) can be made for over 

the same set of radial vmvefunctions. Because m:L1d co.nf a. 

interaction can be absorbed into the at ion average ene:rgy, how~ 

ever, an overall scale parameter can be used to nst the most 

tive CI parameters, and a trade~off will exist between the less sensi-

tive CI parameters and the average energies. ThE~ best method ot s 

CI parameters 

(n 0 a 

to be seal the two groups 

Q (') 
.! 

• 25a) 
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(50 25b) 

where the first group is all CI parameters involving an nf configura-

tion. and the second group contains all the remaining CI parameters. 

The motivation for this choice was the relatively stronger configuration 

interaction of the nf configurations relative to the other odd parity 

nO configurations. 4+ 
For V • @nf ~ .8783 and 8oth~ .1003. while for 

5+ 
Cr • inf = .8821 and 8oth • .3812. 

Most of the remaining single configuration parameters were indepen~ 

dently adjusted, but exceptions are noted: The fine structure of the nO 

configurations is small for 0>2, so the ~nl parameters for O=f 1 g 1 h,i 

were left at their HXR values. The ~np were all adjusted by a single 

4+ scale parameter while the CI parameters were scaled, and then the V 

values were optimized independently. This constraint had to be main­

tained for Cr 5+ because configuration interaction caused the ~Sp and ~ 6p 
parameters to have unrealistically large values. and the 7p configura­

tion of Cr 5+ is not observed. Initially the 7p average energy was 

adjusted by the value of the function whose smooth curve is plotted in 

figure (5.3) and labeled 7p. Later, a new value was determined 

linear extrapolati.on from the adjusted 7p average of Ti 3+ and 

v4+, The lOf configuration is not observed for v4+, and the rg 

formula was also used to obtain an estimate of its average energy from 

the 7f, 8f, and 9f average energies. 

The remaining constraints were applied to the parameters of the 

While the CI parameters were optim~ 

ized, the number of free parameters for these conf ations were 



reduced via the following constraints: 

( 1) 3p 53d2 parameters: 

-3 
G ( 3p, 3d) 

(2) 5 3p 3d4s parameters: 

-1 
G ( 3p, 3d) 

-3 
G (3p, 3d) 

~3d 

F4(3d,3d) F2{3d,3d) 

F2(3d, 3d) 

.Q 
3( 3p ' 3d) -1 
l G (3p, 3d) 

G ( 3p, 3d) 

'3d) 

G3(3p,3d) Gl(3p,3d) 
G l ( 3p, 3d) 

~3d -
-~ 
~3p 3p 

~211~ 

(5.26a) 

(5.26b) 

(5.27a) 

(5.27b) 

(5.27c) 

After the scaling of the CI parameters was completed, all the con~ 

straints on the 3p 53d 2 configuration parameters were removed, but the 

constraints (5.27b) and (5.27c) were retained for the configura~ 

tion. The need for these constraints was traced in part to an error in 

the published energy level assignments, but the data was still :Lnsu:Eficco 

cient for both v4+ and Cr 5+ to accurately determine all of the 53'' .~ Ct4B 

parameters. After the extrapolations to the or ions :tn the 

isoelectronic sequence, however, the constraint ( o27c) 

the parameters were re-optimized. 

--1 
The behavior of the G (3p, 3d), ( , 3d), and ~]d pln·arneters fo:c 

the 3p 53d4s configuration was erratic over the course of the 
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optimization, until correction of a level misassignment. The 

3 2 ( D) n312 , 512 levels had been assigned with the J~3/2 level lying higher 

in energy for both v4+ and cr 5+. Upon closer inspection of Ekberg's 

5+ work on Cr • however, his assignments were cited as those from an ear~ 

lier work of Cowan's 82 , but Cowan had assigned the pair with the 3/2 

level lower than the 5/2 level. Ekberg's published lineltst also con~ 

firmed that the table values were listed in error. The same pair of 

levels has also been identified for Mn 6+ and Fe 7+ with the 3/2 level 

' 83 84 ly1ng lower • • Apparently Van Deurzen made his assignment of the v4+ 

pair by analogy with Ekberg's published values, unaware of the error. 

Even Parity Parameters 

Only the nO single configuration parameters can be adjusted by 

least squares minimization because there are no observed levels for the 

3p 53d4p configuration. The 3p 53d4s configuration levels are probably 

most sensitive to the 3p-3d interaction, and this should be the case for 

the 3p 53d4p configuration as well. By this reasoning, the difference 

between the ab-initio and adjusted values of the 3p 53d4s configuration 

average energy was used also as an approximate correction to the 3p 53d4p 

average energy. Also, since the configuration interaction seems to be 

mild between this configuration and the even parity nO configurations, 

all the CI parameters were scaled by the @oth constant determined from 

the odd parity configurations of the appropriate ion. As a final con-

k sideration, the F (3p3d) and (3p3d) parameters were adjusted by the 

same differences that were found for their counterparts in the 3p 53d4s 

~ ~-configuration for the V and the Cr 1ons. 



The remaining nO single configuration parameters were us ted 

treating them as free parameters in the least squares mini1nization where 

possible. The ~nO parameters for 0>2 were left alone because the fine 

structure splitting of these levels is so small. The parameters belong-

. t th 6d 7d 7 8 7 7. d 81' f. t. f c S+ ld :1ng o e , , s, s, g, :1, an con 1.gura :1onf> o r cou 

not be optimized either, because these levels are not observed. 

Instead, the 6d, 7d, 7s, Ss, and 7g configuration average energies were 

adjusted by the values of ~0, and then later refined by extrapolation 

from Ti 3+ and v4+, as described in (5.2.3). 

Corrections to the 7i and 8i configurations were ignored, as the 

purpose of calculating these configurations was to test the relative 

precisions of the calculations and the measurements. These levels have 

nearly the hydrogenic values with z=Z-N+l, and should shovJ very ttle 

discrepancy in the calculated and observed values. 

The results of all optimizations are presented in tables (5.11) and 

(5.12), including energies and eigenvector compositions for unobserved 

levels. The comparison between the calculated and observed energy lev-

els is satisfactory, given the simple method used to adjust the CI 

parameters. Closer agreement between the calculated and observed levelB 

could be obtained by adjusting individual CI • but many of the 

possible solutions that would give better agreement might not reli.ab 

extrapolate as functions of Z. Extrapol;Hions of t:h2se co 

however • to the parameters of neighb ions should HJ most 

cases give predictions with comparable accuracy. However, because of 

extrapolation in these cases cannot be relied upor1 becaust0 of he~- s 
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V It+ ODD LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- DD< 2S+l lL = 302( 2S+l lL 

-214~ 

00( 2S+l JL = 302( 2S+l JL OS< 2S+l lL = ( 3P?< 2P l30< 20 l )( 2S+l lL 
============================================================:=============~===== 

IRREP CALC EXP INCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 
' --==---------=--------~-----------------~----------=---------~----~-------~-~--

2P l/2 2063911. 206391t. 

2P 3/2 207660. 207660. 

110 l/2 2915l't. 

liD 3/2 292008. 

'tO 512 2928'16. 

'10 7/2 29'1078. 

'-lG ll/2 305899. 

'tG 9/2 3070't'i. 

'tG 7/2 308339. 

'+G 512 309663. 

'tP '5/2 312761. 

L!P 3/2 31'1'528. 

L!P 1/2 315179. 

'iF 3/2 31660'-t. 

'iF 5/2 31683L!. 

L!F 9/2 3171'17. 

'iF 7/2 31 77 61. 

L!F '512 319ll'i. 319106. 

20 512 319'5 31 . 

20 312 320'125. 

2F 7/2 320731. 320732. 

2P l/2 32'5619. 

2G 712 328387. 

0. 

0. 

.'5 100. 100. 2P ( '-tP 

1.'5 100. 100. 2P 'lP 

.5 100. 82. IJO (00( 3Fll 18. '10 <DO< 3Pll 

1 . 5 99. 81 . IJO ( 00( 3F l l 19. '10 ( OD< 3P l l 

2.5 99. 78. '10 <DO< 3Fll 21. L!D (00( 3Pll 

3. '5 99. 7'5 . L!D ( 00( 3F l l 24. L!D ( DO( 3P l l 

'5.5 100. 100. 'lG <DD<3Fll 

'1. '5 9'5 . 95 . IJG < DO< 3F l l 

3. 5 98. 92. IJG ( DO< 3F l l 5. 'iF ( OD( 3F l l 

2. '5 9'5 . 90. 4G ( DO< 3F J l '5 . 'iF ( DD< 3F l l 

2. '5 99. 99. '-tP < DO< 3P l l 

1.'5 98. 98. 'tP (00( 3Pll 

. 5 99. 99. '-tP < 00( 3P l l 

1. '5 98. 70. 4F (DO< 3F l l 21. 20 <DO< lD l l 
7 . 20 ( DO< 3F J l 

2. 5 9'1. 40. "'F < OD< 3F l l 38. 20 ( DO< 10 l l 
1 0. 20 ( 00( 3F J l '5. L!G ( 00( 3F l ) 

L!.'5 93. 93. L!F <DD<3Fll 

3.5 91. 86. 4F ( 00( 3F l) '5. 4G ( 00( 3F) l 

7.6 2.'5 92. 37. 4F (DO< 3F.)) 26. 2F ( 00( IG)) 
20. 2F <DO< 3F) l 9. 20 < 00( 10) l 

2.5 

1.'5 

~.7 3.'5 

. '5 

3.'5 

9L!. 30. 20 <DO< lOll 21. 2F (00( !Gll 
18. 2F < OD< 3F ) l 17. L!F ( 00( 3F l l 

7. 20 ( DO< 3F l J 

96. '18. 20 (DO< !0 l J 29. 'iF < 00( 3F l l 
11 . 20 ( OD< 3F l J 8. 2P ( 00( 10 l l 

96. lt 1 . 2F ( DO< 1 G l l 35. 2F < DO< 3F l l 

99 . 

93. 

1'-t. 2F (00( lOll 6. "'F (00( 3Fll 

68. 2P ( 00( !0 l) 23. 2P ( 00( 3P) J 
9. 2P ( 00( IS )) 

87. 2G (DO< 3F l l 6. 2F (DO< lD) l 
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-------------------------------------------------------------------------------
TABLE <5. 11Al CONTINUED 

V lJ+ ODD LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- DO( 2S+l lL ::: 302( 2S+l lL 

DD(2S+llL::: 3D2<2S+l)L DS<2S+lll = (3P5<2Pl3D<2DlH2S+llL 
=========================================================~======~========~===== 

IRREP CALC 

2P 3/2 328l!26. 

2Hll/2 330531. 

2G 9/2 331218. 

EXP 

2F 7/2 332191. 332198. 

2H 9/2 335697. 

2F 5/2 337000. 337013. 

LID 712 3t;t; 192. 

"ID '512 3l.f'523lJ. 

"10 3/2 3%"1 73. 

"ID 112 3"17655. 

2F 7/2 3"!9279. 3"192'52. 

2F 5/2 31.f9bl.f 7. 3lf9b 76. 

2P 1/2 3'51501. 351501. 

2P 3/2 352018. 352018. 

20 3/2 355711. 

20 512 35783"1. 

2G 9/2 362/.fO?. 

2G 712 363062. 

l.fS 312 36lf35lf. 

25 1/2 364389. 

2P 3/2 379159. 

2P 112 384'+02. 

2F 512 396249. 396135. 

INCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

1. 5 95 . '53. 2P ( DO( 1D ) l 21. 2P ( DO< 3P l ) 
11. 2P ([)[)( lSll 10. 20 <DO< lOll 

5. 5 100. 100. 2H ( DD< lG l l 

1J . '5 90. 90. 2G < DD< 3F l l 

-7.6 3.'5 92. 71.J. 
6. 

(DO( 10 l l 11 . 2F <DO( 3F l l 
< OD< lG l l 

4.5 

-12.'5 2.'5 

98. 

96. 

3.5 99. 

2.'5 95. 

1. '5 94. 

. 5 100. 

26.2 3.5 

-28.8 2.5 

94. 

95. 

98. 2H <DO< !Gll 

81. 
6. 

( DO< 10 l l 9. 2F 
( OO< 3F l} 

lfF 

71.J. 40 (DO< 3P l) 25. lfD < DD< 3F) J 

71.J. -40 ( DD< 3P l > 21. lfD < 00( 3F l l 

76. -40 (DO( 3P l) !8. I.JD < DO< 3F)) 

82. lfD ( DD< 3P) l 18. -40 ( 00< 3F l l 

89. 2F < LfF 

8/.f. 2F ( LJF 

'5 . 2F ( DD< 10 l l 

11. 2F (00( lOll 

0. 

0. 

.'5 100. 100. 2P ( 5P 

I . 5 ! 00. 100. 2P < '5P 

1.5 

2.5 

lf.'5 

3.5 

1.5 

.5 

1.5 

.5 

113.6 2.5 

92. 

92. 

95. 

96. 

99. 

99. 

98. 

96. 

8'+. 20 ( DO< 3P J J 8. 20 ( DO< 3F l J 

8/.f. 20 ( 00< 3P l ) 8. 20 ( 00( 3F J l 

9'5 . 2G < DD< ! G l l 

96 . 2G < DO< 1 G > l 

99. lJS ( DO< 3P l l 

99. 25 ( DO( 3P l J 

H. 2P ( 00( I 5 J ) 21 2P ( DO( lD) ) 

78. 2P <DO< lSJl 18. 2P (00( 10)) 

92. 35. 2F ( 5F ) 30. 2F ( 00( 3F)) 
2 7. 2F < DO< 1 G l l 

2F 7/2 397887. 397994. -·106.2 3.5 93. lJ 1 . 2F ( 5F l 26 2F ( DO< 3F l } 
2(:.. 2F (DO< lG)) 

2P 112 1Jl5lJ20. 4l5lf20. 0. .5 1 00. 1 00. 2P ( 6P 



TABLE <5. llAl CONTINUED 

V 11+ ODD LEVELS 

~216-

CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 
EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- DO( 2S+l lL = 3D2< 2S+l lL 

DD< 2S+llL :::: 3D2<2S+llL OS< 2S+l lL :::: ( 3P5< 2P l30( 20 l )( 2S+l lL 
~====~=========~============================================================~== 

IRREP CALC EXP !NCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

2P 3/2 ~15676. 1115676. 0. 1.5 100. 100. 2P 6P 

2F 5/2 ~17'136. 1117699. -263.'1 2.5 95. 6'-1. 2F ( 5F l 16. 2F ( DD< lG) l 
15. 2F <DD<3Fll 

2F 7/2 '118lf86. '118188. 298.7 3.5 94. 58. 2F ( 5F l l '). 2F < DD< 1 G l l 
1 7. 2F ( DO< 3F l l 

2P l/2 lf38067. lf38018. '18. 3 . 5 

2P 3/2 lf3938lf. '139'1'13. -'58.lf 1.'5 

20 5/2 lflflf17l. '!It'll 54. 17.8 2.'5 

97. 

98. 

99. 

71. 2P <00( 3Pll 13. 2P (00( lOll 
13. 2P ( DD< 1 S l l 

73. 2P (00< 3Pll 1'5. 2P <OD< lOll 
1 0. 2P ( 00( 1 S l l 

70. 20 (00( 3Fll 18. 20 (00( lOll 
1 1 . 20 ( 00( 3P l l 

20 3/2 ljlflf'590. lflfl16?l. -30.6 1.'5 99. 71. 20 ( OO< 3F l l 18. 20 ( 00( 10 l l 
1 l. 20 ( 00( 3P l ) 

2F '5/2 lflf9338. lflf9371. 

2F 712 lftt9tt53. I.Jlf91f22. 

~p l/2 I.Jif9?87. 'llf9'587. 

2P 3/2 lflf9773. lf'-19773. 

2H 9/2 45021.J8. I.J'5021.J8. 

2Hll/2 '-1502'-18. '-1502'18. 

'IP l/2 '153682. 

4P 3/2 '1'5'1992. 

4P '5/2 45738'-1. 

2P 1/2 I.J63392. 

2P 3/2 '166139. 

'IF 9/2 I.J66377. 

I.JF 7/2 I.J67918. 

4F 5/2 I.J69421.J. 

2F '5/2 469703. '169702. 

2F 7/2 I.J697l'5. I.J69716. 

2H 9/2 I.J70489. I.J701.J89. 

-33.1 2.5 

30.2 3.'5 

95. 

95. 

95. 2F ( 6F 

9'5. 2F 

-. 0 . '5 1 00. 100. 2P 

6F 

7P 

7P .0 1.5 100. 100. 2P 

-. 3 '-1. '5 100. 100. 2H ( 6H 

.2 '5.'5 100. 100. 2H ( 6H 

.'5 

1.5 

2.5 

.'5 

1.'5 

99. 99. '-IP (OS< 3P l) 

99. 99. I.JP (0S(3Pll 

99. 99. '-IP <OS< 3Pll 

97. 97. 2P (OS( 3P l) 

96 . 96 . 2P ( 0 S( 3P l l 

'-1.'5 100. 100. 'IF (OS( 3Fll 

3. '5 97. 97. 'lF <OS< 3F l l 

2.5 

1. 0 2.'5 

-1. '5 3. '5 

97. 

98. 

98. 

8'1. 'IF (OS( 3F l l 13. 2F ( 7F 

86. 2F 

98. 2F 

7F 

7F 

-. 0 1.J. '5 1 00. 1 00. 2H ( 7H 

1 3. '-IF ( 0 S< 3F l l 
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~-------=------~=­-------------------------------------------------------------
TABLE (5.1\A) CONTINUED 

V Lt+ ODD LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- 00( 2S+l lL = 302( 25+1 lL 

00( 2S+l lL ::: 302( 2S+l >L OS( 25+1 lL ::: < 3P5< 2P l30( 20 l H 2S+l )L 
:::::::::::::::o:::::: 

IRI1EP CALC EXP 

2Hll!2 't70Lt89. Lt70i.j89. 

'-IF 3/2 '-170873. 

2F 712 '-175532. 117'5531. 

2F 5/2 '-178565. i.j78566. 

2F 5/2 '-183023. 'l83019. 

2F 7/2 '-183033. 'l83038. 

'tO 712 i.j89560. 

'tO 5/2 '-190'-191. 

'10 3/2 '-190981 . 

'tO l/2 '-191359. 

2F 5/2 't92Ji.j3. 4921'-l't. 

2F 712 '-192203. 't92202. 

20 5/2 't93i'O't. 

20 3/2 '-19'1155. 

2F 5/2 '-19629'-1. '-196296. 

2F 7/2 '-197557. '-197556. 

2F 5/2 '-!98791. 

2F 712 '-198932. 

20 3/2 500117. 5001!7. 

20 5/2 500503. 500502. 

2P 3/2 60'-1984. 

2P 1/2 60'-1997. 

INCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

.5 5.5 

1.5 

. 7 3.5 

-.7 2.5 

'-1.4 2.5 

-'l.7 3.5 

3.5 

2.5 

1.5 

. 5 

-1.7 2.5 

1. 6 3. 5 

2.5 

1.5 

-1.7 2.5 

1. 2 3. '5 

2.5 

3.5 

-. 't 1. 5 

j. 0 2.5 

1 00. 1 00. 2H ( 7H 

98. 

97 . 

95. 

99. 

99. 

99. 

94. 

98. 

99 . 

98. 

98. 

97. 

98. 

96. 

97. 

97. 

98. 

99. 

94. 

98. 4:: (OS< 3F)l 

97. 2F ( 05( 3F) l 

95. 2F <OS( 3Fll 

99. 2F 

99. 2F 

8F 

8F 

90. 4D (05<30)) 9. 2F <DS<lFll 

86. 'JD <OS< 30)) 8. 20 <05( lOll 

89. 'tO <DS<3Dll 10.20 <DS<1Dll 

99. 40 (0S(30)) 

98. 2F 

98. 2F 

9F 

9F 

76. 20 ( OS< lD l l 9. 20 < OS< 30 l l 
7. 2F <OS< lFll 5. 40 (05( 30ll 

88. 20 (05( 10)) 10. 'tO (!JS( 30)) 

68. 2F <OS( lFll 12. 20 <OS< 3Dll 
9. 20 <DS<lOll 6. 'lO <DS<3Dll 

79. 2F <DS< lF}) 10. 2F ( !OF 
7. 40 (OS( 30 l l 

97. 2F 

89. 2F 

lOF 

lOF 

99. 20 (OS( 30 l l 

9. 2F (OS( lF l l 

7'5. 20 (OS< 30)) 19. 2F (05( lFll 

1.'5 100. 100. 2P (OS( lP l l 

.'5 100. 100. 2P <OS( lPll 

NO. EXPERIMENTAL LEVELS = 

ABSOLUTE MEAN DEVIATION = 

RMS DEVIATION = 

40. 

27.63 

69.57 



TABLE < '5. llB l 

V lj+ EVEN LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- DO( 25+1 lL ::: 302( 25+1 lL 

DD\ 25+1 )L = 302( 25+1 )L DS< 25+1 lL .:: ( 3P5( 2P )30( 20) )( 25+1 ll 

-218-

:::::::::::::::::::::::::::::::::::::::::::::::::::: 

EXP INCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

20 3/2 0. 0. 

20 '5/2 625. 625. 

25 1/2 ll!8143. l481l!3. 

2D 3/2 293903. 293903. 

20 5/2 2940l!7. 29l!Ol!7. 

25 l/2 328217. 328217. 

20 3/2 387977. 387977. 

20 5/2 3880l!4. 388044. 

25 1/2 403855. 403855. 

2G 7/2 416360. 416360. 

2G 9/2 416362. '-116362. 

20 3/2 434304. 't3l!30'l. 

20 5/2 1.!343'11. 'l3Lf3'll. 

25 1/2 Lf43075. Lflf3075. 

2G 7/2 450024. 450025. 

2G 9/2 '150025. Lf50025. 

20 3/2 '160697. Lf60697. 

20 5/2 Lf60720. Lf60720. 

25 l/2 '166066. Lf66066. 

2G 712 Lf70333. Lf70333. 

2G 9/2 47033Lf. Lf7033't. 

2Ill/2 Lf70524. Lf7')'32Lf. 

211112 '183651. '183651. 

'lD l/2 5097'15. 

'lD 3/2 51 0'5 1 0. 

'lD 5/2 511709. 

'lP 1!2 513123. 

0. 1 . 5 100. 100. 20 ( 30 

0. 2. 5 100. 100. 20 ( 30 

0. .5 100. 100. 25 LfS 

0. 1.5 100. 100. 20 LtD 

0. 

0. 

0. 

0. 

2.5 100. 100. 20 ( itO 

.5 100. 100. 25 

1.5 100. 100. 20 

2.5 100. 100. 20 

55 

?0 

50 

0. .5 100. 100. 25 ( 65 

.I 3.5 100. 100. 2G ( 5G 

-.1 '1.5 100. 100. 2G 5G 

0. 1. 5 100. 100. 20 ( 60 

0. 2. 5 1 00. 1 00. 20 ( 60 

0. . 5 1 00. l 00. 25 ( 75 

-. 1 3. '5 100. 100. 2G < 6G 

. l 'l. 5 l 00. 100. 2G < 6G 

0. 

0. 

0. 

l. 5 100. 100. 20 ( 70 

2.5 100. 100. 20 70 

. '5 1 00. l 00. 25 ( 85 

. 0 3. 5 1 00. 1 00. 2G < 7G 

0. lj .5 1 00. l 00. 2G < 7G 

0. '5 .'5 100. 100. 2I 7I 

0. '5.5 100. 100. 2I 8I 

. 5 

1.'5 

2.'5 

. 5 

96 . 

97. 

97. 

98 . 

89. '10 ( OP( 3P l) T. LfO ( DP< 3F l) 

88. '10 ( DP< 3P l l 9. 1~0 ( OP( 3F) l 

86. '10 ( OP( 3P J l 11. 'lO ( OP( 3F l) 

98. 'lP ( OP< 3P) l 



TABLE (5.11Bl CONTINUED 

V ~+ EVEN LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- OD( 2S+l lL :: 3D2( 2S+l JL 

DD<2S+llL = 302(2S+llL DS<2S+llL:::: <3P5<2Pl3D<2DlH2S+l)L 
IRREP CALC 

~0 7/2 513296. 

~p 3/2 513807. 

~p 5/2 51525'5. 

2P 112 515~11. 

2P 3/2 '5162'51. 

~s 312 518527. 

20 3/2 '522'561. 

20 '5/2 522941. 

'JGll/2 524260. 

~G 9/2 52~786. 

40 712 '524929. 

2F 7/2 '52'5707. 

25 1/2 526033. 

4G 712 526044. 

l.JF 9/2 526130. 

40 5/2 526152. 

~G 5/2 527130. 

~0 3/2 5 27~'10. 

2F 5/ 2 52 8 3 8 9. 

~F 7/2 528LI19. 

40 1/2 5286!0. 

EXP INCA J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

3.5 

1.5 

2.5 

.5 

1.5 

1. 5 

1.1) 

2.5 

5.5 

'1.5 

3.5 

3.5 

. 5 

3.5 

4.? 

2.5 

2.5 

1.5 

2.5 

3.? 

. 5 

99. 82. ~0 ( OP( 3P l) 16. LID ( OP< 3F l l 

91. 91. 4P <OP(3Pll 

96 . 96 . ~p ( OP< 3P l l 

95. 95. 2P ( DP< 3P l l 

88. 79. 2P ( DP< 3P l l l 0. % ( DP( 3P l l 

95. 85. 45 ( OP( 3P l) 10. 2P ( OP< 3P l l 

91. 

93. 

85. 20 ( DP< 3P l l 6. 2P ( DP< 3P l l 

81. 20 ( OP< 3P l) 6. 20 ( DP< 3F l l 
6. 20 ( OP( 30 l l 

100. JOO.~G<OP<3Fll 

97. 79. 4G ( DP< 3F l l 18. LfF < OP( 3F l l 

9LI . 36. LfO ( DP< 3F l l 32. LIF ( DP< 3F l l 
12. 2F ( DP( 3F l) 9. LfD ( DP< 3P l) 
6. LID ( DP< 30 J l 

92. 68. 2F <DP<3FlJ 18. 4G <DP<3Fll 
6. ~D < OP( 3F l l 

97. 97. 2S ( OP< 3P l l 

92. 70. ~G < DP< 3F l l l'-1. l.fD ( DP< 3F l) 
8. 2F ( DP( 3F l ) 

96. 79. 4F <DP< 3Fll 18. LfG <DP< 3Fll 

96. '16. LfD ( OP( 3F)) 28. LfF ( DP< 3F)) 
9. LfD ( DP< 30) l 8. l.fD ( DP< 3P l) 
? . LIG ( DP< 3F l l 

97. 92. '!G ( DP< 3F) l 5. LID ( DP< 3F l l 

97. 56. l.fD (0P(3Fll 20. IJF (0P(3F)l 

91. 

88. 

98 . 

12. LfD ( DP< 3D l l 8. LID ( DP< 3P l l 

62. 2F (OP( 3Fll 21. IJF <DP( 3Fll 
8 . LfD ( OP( 3F l l 

6LI. '1F ( DP< 3F) l 17. LID ( DP< 3F) ) 
7. 2F ( OP( 3F l l 

7'1. 40 ( DP< 3F l) 1?. 40 { DP( 3D l) 
9. '10 ( DP( 3P l l 
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~~~-~---------=---~~=-====----~~--=~==-~-===------~==~-~-~-~==-~-==-=~-~~=~-=~= 
TABLE < 5. llB l CONTINUED 

v It+ EVEN LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

E XTRAPOLATEO AND OPTIMIZED PARAMETERS 
PARENTAGE -- DD<2S+llL " 302( 2S+l lL 

DO< 25+1 ll = 302( 25+1 JL OS( 25+1 lL = ( 3P'5< 2P l30( 20 l )( 25+1 lL 
===~=~=======================================================~================= IRREP CALC EXP !NCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 
=~=--------~~-~--~~-----~~---~-~-----~---=-~--~-~--~-----~------=--~~----------'IF '512 '5299711. 2.'5 88. lt'5. l.!F ( DP< 3F l l 28. 2F ( DP( 3F l l 

1 '5. ItO ( DP( 3F l l 

ltF 3/2 '530103. 1.5 92. 7'1. 4F ( DP( 3F l J 18. 40 ( DP< 3F l l 

2G 9/2 '5336'15. 'l. 5 97. 97. 2G ( DP( 3F l l 

2G 7/2 535852. 3.5 93. 93. 2G ( DP< 3F l l 

20 5/2 536181. 2.5 85. 35. 20 < DP< lD l l 33. 20 < DP( 3F l l 
17. 20 ( DP< lF l) 

20 3/2 537000. 1.5 9Lf. lJ6. 20 ( DP< lD l l 29. 20 ( DP< 3F l l 
13. 20 ( DP< lF l l 6. 20 ( DP< 3D)) 

'tO 712 5lt6207. 3.5 9lJ. 79. 40 ( DP( 3D l l 10. 'tO ( DP< 3F l l 
5. 2F ( DP< lF l J 

'10 '512 51.!6829.· 2.5 91. 66. 40 ( DP< 3D l l 10. 40 ( DP( 3F l l 
5. 'IF < DP< 3D J l '5. 20 ( DP< 30 l l 
5. 2F < DP< lF l l 

'lD 3/2 '51.!781'1. 1.5 87. 7'5. ltD ( DP< 30 l l 13. l.fD ( DP< 3F l l 

2F '512 5'18238. 2.5 96. 35. 2F < DP< 10)) 18. 20 < DP< 3F l l 
18. 20 ( DP< 30)) 13. 2F <DP< lFJJ 
6. 'IF < DP< 3D l l 6. 20 ( DP< 10 l l 

'10 1/2 '51.!8573. .5 99. 82. '10 ( DP( 3D)) 17. 'tD ( DP< 3F l l 

2F '512 5'18883. 2.5 91t. 20. 2F ( DP< lD l l 20. 21J ( DP< 3F l) 
19. 20 ( DP< 30 l l 15. 'JIJ ( DP< 30 l J 
ll.f 2F ( DP< IF l l 6. 20 < DP< lD l l 

2F 712 '51.!95'16. 3.5 90. 36. 2F ( DP< lD l l 31. l.fF ( DP< 31J l) 
1'5. 2F ( DP< lF l l 8. 'tO ( DP< 30 l l 

'1F 9/2 51.!97'56. lJ.'5 97. 83. '1F ( DP< 3D l l ll.f. 2G ( DP< lF) J 

'1F 3/2 '550138. 1.'5 95. 75. 'IF ( DP< 3D l l 11. 20 ( DP( 3F l l 
9. 20 ( DP< 3D l l 

'tF 712 5'50672. 3.5 89. 't7. ltF < DP< 3D l l 25. 2F ( DP( lF) l 
!7. 2F ( DP< liJ l J 

LIF '512 5'50687. 2.'5 90. 8't. 4F ( IJP( 3D l l 7. 2F ( DP( lF l) 

20 3/2 550855. 1.'5 9'1. 3/.f. 20 < DP( 30) l 27. 20 ( DP< 3F) l 
!9. l.fF < DP< 30)) 9. l.fD < DP< 30 l l 
'5. 20 < DP< lF J l 

2G 7/2 '5'53'592. 3.5 96. 6 7. ZG ( DP< IF l l 16. 2F ( DP< 30 l l 
13. 'iF ( DP< 3D l l 

~-----~---=~----~~~~~==--=~---~-~-=~---~-------~---~---------------~~=---------
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------------------------------------------------~---------------~--------------
TABLE <5.11Bl CONTINUED 

V '1+ EVEN LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- 00( 2S+l lL :::: 3D2< 25+1 lL 

DO< 25+1 lL ::: 302( 25+1 lL OS< 2S+l lL = < 3P5( 2P l3D< 20 l )( 25+1 lL 
==~=============================~======~=~=================================~==~ 

I RREP CALC 

2F 5/ 2 55 q 1 77 . 

2G 9/2 555077. 

2F 7/2 55515 2. 

qp 5/2 55'5201. 

LiP 3/2 '555570. 

2P 1/2 5560'12. 

LiP l/2 556995. 

2P 3/2 5'57331. 

20 3/2 558137. 

20 5/2 5'58601. 

2F 7/2 560l.f 11. 

2F 5/2 560769. 

2P 3/2 560884. 

2P 1/2 561836. 

20 3/2 '576066. 

20 5/2 577399. 

2P l/2 661382. 

2P 312 66193'5. 

20 3/2 664892. 

20 5/2 665683. 

INCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

2.5 

LJ.'5 

3.'5 

2.5 

1.'5 

.5 

.5 

1.5 

1.'5 

2.5 

3.5 

2.5 

1.'5 

.5 

1.5 

2.5 

• '5 

1.5 

1.5 

2.5 

95. 

98. 

'10. 2F ( DP< lF) l 35. 2F ( OP( 30 l l 
19. 2F ( OP< 10 l l 

86. 2G ( OP< !F l l 13. L!F ( DP< 30 l l 

96. 28. 2F ( DP< lF l) 26. 2F ( OP( !D l l 
26. 2F (0P( 30)) 16. 2G (OP( !Fll 

91. 91. LJP(Df'(3Dll 

92. 57. LiP <OP( 30ll 35. 2P (OP( lOll 

99. 52. 2P <DP< llJ)) 36. 4P <DP< 30)) 
11 . 2P < DP< 30 l l 

99. 63. LiP ( DP( 3D)) 25. 2P ( DP< 10 l) 
11 . 2P < DP( 30 l ) 

9l. Lt7. 2P (!JP( lOll 41. 11P (OP< 30)} 

93. 

9. 2P ( OP( 30 )) 

33. 20 <DP<lD)) 29. 
20. 2P <DP< 30)) 12. 

( DP( lF) l 
( !JP( lD)) 

9Lf. Lf2. 20 (!JP( lFJl 3l. 20 (DP( lOll 
1 0. 20 ( OP( 30 J l '5. 4P ( DP< 30 l l 

97. 50. 2F ( DP< 30) l 25. 2F ( DP< lF l J 
16. 2F <OP( lOll 6. 2G (IJP( lFJ) 

9'5. 58. 2F ( OP( 30)) 19. 2F < fJP( 1 F l l 
18. 2F { DPC lD ) l 

94. 65. 2P ( OP( 30 l l 12. 20 < DP< lF l) 

97. 

99. 

99. 

99 . 

98. 

97. 

99. 

l 0. 20 < DP( lD) l 7. 20 < DP< 3F)) 

75. 2P ( OP< 30 l) 22. 2P ( DP< 10 l) 

40. 20 ( OP( 3D)) 33. 20 ( OP( iF l l 
l Lf. 20 ( DP( 3F)) 6. 20 ( DP< 10 l l 
6. 20 ( DP( 3P )) 

38. 20 <DP< 30)) 31. 20 ([)P( !F)l 
16. 20 ( OP( 3F)) 7. 20 ( OP( 3P)) 
7. 20 ( OP( lD ) l 

99. 2P <DP( lPll 

98. 2P (0P( IPll 

97. 20 ( DP( !P) J 

99. 20 (DP( !Pll 



TABLE (5.118) CONTINUED 

V ~+ EVEN LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- DO< 2S+l lL ::: 3D2< 25+1 lL 

0[)(2S+llL::: 3D2<2S+llL DS<2S+l)L::: <3P5<2Pl3D<2DlH2S+l)L 

~222~ 

=============================================================================== 
IRREP CALC EXP !NCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

25 112 667226. .5 99. 99. 2S < DP< lP l) 

NO. EXPERIMENTAL LEVELS = 23. 

ABSOLUTE MEAN DEVIATION = .02 

RMS DEVIATION = .0~ 
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-----------------------------------------------------~-------~------------------
TABLE ('5.12Al 

CR'5+ ODD LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- DD< 2S+l lL = 302( 2S+1 lL 

DD( 2S+l lL = 302( 25+1 lL OS( 25+1 lL = ( 3P'5( 2P l3D< 20 l H 25+1 lL 
================~===========================~========================~========= 

IRREP CALC EXP INCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 
-------------------------------------------------------------------------------
2P 1/2 296'573. 296'573. 

2P 3/2 298397. 298397. 

'10 1/2 322022. 

LID 3/2 322661 . 

'10 5/2 3237LI8. 

LID 712 325362. 

'!Gll/2 338991. 

% 9/2 3'10LI92. 

'IG 7/2 31.!2193. 

'lG 5/2 31.f3930. 

LIP 5/2 3'18273. 

'lP 3/2 3'50572. 

'lF 3/2 352133. 

'JP 1/2 352208. 

'iF 5/2 352669. 

'IF 9/2 352765. 

'IF 7/2 353669. 

'IF 5/2 355880. 

2F 5/2 35695'1. 356962. 

20 3/2 357'136. 

2F 7/2 3?9167. 359165. 

2P 1/2 36lf507. 

2P 3/2 3683lf3. 

2G 712 369321. 

0. .5 100. 100. 2P < I.!P 

-.0 1.5 100. 100. 2P { 'JP 

. '5 100. 8 3. '10 ( 00( 3F l J 1 7. '10 ( 00( 3P l l 

81 . '10 ( 00( 3F l ) 18. LID < 00( 3P l l 

78. 40 ( 00( 3F l l 20. 40 ( 00( 3P l) 

75. LID ( D[J( 3F ) ) 24. '10 ( 00( 3P) l 

1. 5 9CJ. 

2. 5 99. 

3.5 98. 

5 . 5 1 00. 1 00. 'JG < DO< 3F l ) 

'i.5 

3.5 

2.5 

2.5 

1.5 

1.5 

.5 

2.5 

'1.5 

3.5 

2.'5 

95. 95 . 'IG < O!J( 3F l l 

98. 92. 'IG (DO< 3F l l 6. 'lF ( 00( 3F l l 

95. 89. 'IG ( DO( 3F l l 6. 'lF ( DO( 3F l l 

99. 

98. 

98. 

99. 'JP ( DO< 3P l) 

98. 'JP ( 00( 3P l l 

7'1. 'lF ( 00( 3F l) 18 20 t DD\ l) 
6 . 20 ( !JD( 3F l l 

99. 99. 'IP (fJD< 3P l) 

97. 50. 'IF <DO< 3Fl) 32. 20 (00< !Dll 
9. 20 ( DO< 3F ) l 6. 'IG ( 00( 3F l l 

9 3 . 9 3 . 'JF \ DO< 3F l l 

9'1. 

9'1. 

88. 'JF ( DD< 3F)) 6. 'iG ( DD< 3F l l 

'13. 'iF (00( 3Fll 112. 20 (00( lOll 
1 0. 20 < 00( 3F l l 

-7.7 2.5 90. 

96. 

'19. 2F (00( lGll 111. 2F (r:JO( 3Fll 

J. 20 ( DD( lD )) 25. 'JF ( DO( 3F l l 

1 ,­
.? 

1.5 

:3.5 

. 5 

!.5 

3.5 

93. 

99 . 

95. 

1 20 ( DO< 3F l ) 8 . 2P ( DO< lD ) l 

'1'1. 2F <DO< lGll 39. 2F (lJD\ 3Fll 
l 0 . 2F ( DD< l D l l 

70. 2P ( 00( lD ) ) 21. 2P ( 00( 3P )} 
8. 2P ( DO< 1 S ) ) 

56. 2P ( DO< lD l ) 20. 2P ( DO< 3P l l 
10. 2P <DD( !SJJ '!. 2D (DD\ 10l) 

71 . 2G ( DJJ( 3F l l 22 . 2F ( DO< 10 > 
--------------------------------------------------------------·---------·--------



TABLE (5.12Al CONTINUED 

CR5+ ODD LEVELS 

-224-

CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 
EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- DO< 25+1 lL = 3D2( 25+1 lL 

DD<2S+l)L = 3D2<2S+l)L DS<2S+lll-= <3P5<2Pl3D<20lH2S+l)L 
====~======================================~======~====::======================= 

IRREP CALC EXP 

2Hll/2 370572. 

2F 712 371656. 371618. 

2G 9/2 373010. 

2H 9/2 377329. 

2F 5/2 3786'19. 378677. 

'10 712 385662. 

'10 5/2 387109. 

'10 3/2 388780. 

'10 l/2 390280. 

20 3/2 '1020'-18. 

20 5/2 '10'1751. 

2G 9/2 '-108268. 

2G 712 '108907. 

'tS 3/2 '110178. 

25 l/2 'tl0238. 

2P 312 '127799. 

2P l/2 '13't893. 

2F 5/2 '1'10102. 'l't0135. 

2F 7/2 '1'129't9. 't't29't0. 

INCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

5.5 

38.5 3.5 

100. 100. 2H (00( !Gl) 

'1.5 

4.5 

-28.5 2.5 

9'1. 

93. 

96. 

93. 

3.5 99. 

2.5 96. 

1. 5 95. 

.5 100. 

1.5 

2.5 

4.5 

3.5 

1.5 

92. 

92. 

98. 

95. 

99. 

99. 

98. 

96. 

6 7. 2F ( 00( !0) l 20. 2G ( 00( 3F l l 
8 . 2F < OO< 3F ) l 

8 7. 2G ( 00( 3F l l 6 . 2G < 00( 1 G l l 

96. 2H ( 00( !G l l 

93. 2F <00( lOll 

7'1. '10 ( 00( 3P) l 25. '10 ( 00( 3F l) 

75. '10 ( 00( 3P l l 20. 40 ( 00( 3F l l 

77 . LtD ( 00( 3P l J 18 . '10 ( DO< 3F l l 

83. 40 (DOC 3P) l 17. 40 ( 00( 3F l l 

84. 20 ( 00( 3P ) l 7. 20 < 001 3F l l 

84 . 20 ( 00( 3P l l 9 . 20 ( 00( 3F l l 

93. 2G (00( lGll 5. 2G (00< 3Fll 

95 . 2G c OO< 1 G l l 

99. LfS ( 00( 3P l l 

99. 2S I 00( 3P ll 

79. 2P ( 001 lS)) 19. 2P <DOC 10 l l 

80. 2P (00( lSll 16. 2P COO< 1Dll 

.5 

1.5 

.5 

-33.1 2.5 97. '12. 2F 100( 3Fll 3'1. 2F COOl lGll 

8.'1 3.5 

21. 2F I I.JF l 

97. 38. 2F I 001 3F l l 35. 2F I DOl lG) l 
24. 2F ( 4F ) 

2F 5/2 481772. '181956. -183.8 2.5 99. 78. 2F ( 4F l 11. 2F ( 00( lG l l 
10. 2F ( 001 3F)) 

2F 7/2 '182716. 482517. 

2P J/2 Lf876't5. 487589. 

2P 3/2 '-188507. '188562. 

2P l/2 '193286. '1932'17. 

198.7 3.5 

55. 'I .5 

-5'1. 9 ! .5 

99. 

97. 

98. 

38.5 . 5 100. 

75 . 2F I 'IF ) 1 3 . 2F ( DOl 1 G l l 
1 1 . 2F < DOC 3F l l 

86. 2P 

90. 2P 

5P l 1 0. 2P < OOC 3P l l 

5P 8. 2P ( 001 3P l ) 

64. 2P COO( 3Pll 14. 2P I 5P l 
1 1. 2P I DOl l S l l 1 l. 2P ( DDI liJ l l 
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--------------------------------=----------------------------------------------
TABLE 15.12Al CONTINUED 

CR5+ ODD LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE --DOl 2S+llL =3D~ 2S+l1L 

DI)(2S+llL = 30212S+llL DSI2S+l)L = 13P'512Pl3D<2DlH2S+lll 
==============================~====~===~========================~=========~==== 

IRREP CALC EXP !NCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 
-------------------------------------------------------------------------------
2P 3/2 'i9't87L!. 49'-1911. -37.1 1.5 99. 68. 2PID0<3PJ) 13. 2P<DDI10ll 

1 0. 2P ( 5P l 8 . 2P ( 00( 1 S I l 

2o 5/2 '196952. 496958. -5.7 2.5 100. ro. 20 <OD<3Fl> 11. 20 <DD< 1Dll 
12. 20 ( DD< 3P I l 

20 3/2 't97'50'5. '-1971.!95. 9.7 1. 15 100. 71. 20 IDDI 3Fll 18. 2D IDD< lOll 
1 1 . 20 ( DO( 3P I l 

2F 5/2 568939. 568957. -18.4 2.5 

2F 7/2 569011. 568993. 18.4 3.5 

'lP 112 569285. 

'lP 3/2 570505. 

'lP 5/2 572733. 

2P l/2 574706. 57ltl35. 

. 5 

1.5 

2.5 

571.3 .5 

2P 3/2 575196. 5F57'l2. -546.lf 1.5 

2P 112 '578'l78. 578566. -88.5 .5 

2P 3/2 580962. 580697. 26'l. 7 1. '5 

98. 

98. 

99 . 

99. 

99. 

100. 

97. 

99. 

95. 

98. 2F ( 5F 

98. 2F 5F 

99. 'tP ( OS( 3P l l 

99. 'tP <OS< 3P l l 

99. 'tP (OS( 3P l J 

92. 2P 6P 

97. 2P ( 6P 

7 . 2P ( D S< 3P ) ) 

92. 2P <OS( 3P l) 8. 2P ( 6P 

95. 2P <OS( 3P)) 

'"IF 9/2 ?82665. Lf.? 100. 100. 'lF (05( 3FJJ 

'tF 7/2 581.f't0't. 58'1371. 32.8 3.5 

~F 5/2 '586066. 586273. -206.7 2.5 

'tF 3/2 587507. 1.5 

2F 712 591032. 591137. -10'"1.9 3.5 

2F 5/2 59'1813. 591-1926. -113.3 2.5 

't!J 7/2 607607. 607615. -7.6 3.5 

'tO 512 608650. 608631. 19.3 .2. 5 

'tO 3/2 609267. 609166. 101.0 1.5 

~D l/2 6097!3. .5 

20 512 61 01-l't? . 61 04 9 7. -52.2 2 5 

20 312 6116'+9. 611568. 80.8 1. '5 

98. 

97. 

98. 

9'5. 

95. 

100. 

95. 

98. 

98. L!F <OS( 3F l l 

97. ~F (OS( 3F) J 

98. 'tF ( DS< 3F J l 

95. 2F (OS\ 3F J l 

95 . 2F ( D S< 3F l l 

92. LiD < OSI 30) l 8. 2F ( DS( lF l l 

811. 'tO <OS\ 3DJJ 11. 20 <OS< lOll 

86. ~0 ([)5( 30)) 12. 20 (05( !D)) 

100. 100. 'iD \OS< 3Dll 

93. 

99. 

63. 20 
8. 'tO 

10)) 22. 2D (05( 3Dll 
3D l l 

79. 2D (05( 10)) 13. 'iO <DS< 30ll 
l . 2D ( D S< 3D ) l 

----------------------------------------------------· --·-·-----·------------~-------·----



TABLE (5.12Al CONTINUED 

CR5+ ODD LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- DD< 2S+l lL :::: 302( 2S+l lL 

DD<2S+l)L = 3D2<2S+llL DS<2S+lll::: <3P5<£Pl30<2DlH2S+llL 
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=======================~================~========~==========================~== 
IRREP CALC EXP !NCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

2F 5/2 bllJ516. 61lJ385. 130.7 2.5 92. 78. 2F <OS< lFl) 7. 20 <OS< !Dll 
6 . lJD ( D S< 3D l l 

2F 7/2 615996. 616079. -82.8 3.5 96. 7 8 . 2F ( D S< 1 F l l 11. 2F 6F 
7 . lJD ( 0 S< 30 l l 

20 3/2 61851lJ. 6181{91. 23.1 1.5 99. 

95. 

98. 

91. 20 (0S(30)) 8. 20 (OS< 10)) 

2F 5/2 618585. 618583. 

2F 7/2 618879. 6188lJ9. 

2.3 2.5 

29.7 3.5 

78. 2F ( 6F 

89. 2F 6F 

17 . 20 < 0 S< 30 l l 

10. 2F<OS<1Fll 

20 5/2 619308. 6191{19. -111.0 2.5 99. 56. 20 (OS( 30) l 17. 2F ( 6F l 
llf. 2F (OS< lF)) 12 20 (OS( 10) l 

2H 9/2 621163. 621163. 

2Hll/2 62116l!. 621163. 

2P 112 623lJ8'5. 

2P 3/2 623698. 

2F 5/2 6lf8'520. 6lf8'52l. 

2F 7/2 6lJ853lf. 6lf8'533. 

2H 9/2 650310. 6'50311. 

2Hll/2 6'50311. 650311. 

2F 5/2 667969. 667973. 

2F 7/2 667977. 667973. 

2F 5/2 68130lf. 681307. 

2F 7/2 681310. 681307. 

2F 512 690779. 690781. 

2F 7/2 690783. 690781. 

2P 3/2 730€-38. 

2P !12 730699. 

-.3 lf.'5 100. 100. 2H < 6H 

. 8 5. '5 1 00. 100. 2H < 6H 

. 5 100. 100. 2P < 7P 

1.5 100. 100. 2P 7P 

-. 9 2. '5 100. 100. 2F 7F 

. 9 3 .5 100. 100. 2F < 7F 

-.3 At.'5 100. 100. 2H ( 7H 

. 2 5 . 5 l 00. l 00. 2H ( 7H 

-'t. 1 2 . 5 1 00 . 1 00 . 2F ( 8F 

lf. l 3. 5 1 00. l 00. 2F < BF 

-2.6 2. 5 100. I 00. 2F ( 9F 

2. 6 3. 5 l 00. 100. 2F ( 9F 

-1.9 2.5 

1.9 3.5 

100. 100. 2F ( !OF 

100. 100. 2F ( lOF 

1.5 100. !00. 2P (OS( 1P)) 

.5 100. 100. 2P <DS< !Pll 
------------------------------------------------------------------------------------

NO. EXPERIMENTAL LEVELS = 
ABSOLUTE MEAN DEVIATION -

RMS DEVIATION ::: 

'!9. 

67.92 

136.63 
--------------·-··-···-···---------------------------------------------------------------
-----------------·----------------------------------------------------------------
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~=-----------------------------------------------------------------------------
TABLE (5.12Bl 

CR5+ EVEN LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE --DO( 2S+llL =3D~ 2S+llL 

DD<2S+lll = 3D2<2S+lJL OS<2S+llL = <3P5<2Pl30<20lH2S+lJL 
=============================================================================== IRREP CALC 

20 3/2 

20 5/2 

0. 

9~0. 

EXP 

0. 

9t;O. 

2S 1/2 227858. 227858. 

20 3/2 ~02662. ~02662. 

20 5/2 ~02889. ~02889. 

2S 1/2 '-161253. %1253. 

20 3/2 53~382. 53~382. 

20 5/2 53~~90. 53~lJ90. 

2S 1/2 56206t;. 56206t;. 

2G 712 572272. 572272. 

2G 9/2 572275. 572274. 

20 3/2 599609. 

20 5/2 599664. 

25 1/2 615165. 

2G 7/2 620698. f20696. 

2G 9/2 620699. 620701. 

40 112 63459'5. 

40 312 63566'1. 

40 5/2 637311. 

20 3/2 637379. 

20 '5/2 637420. 

4P 112 638785. 

40 712 639406. 

4P 312 639747. 

2P 1/2 641661. 

t;p 5/2 6'11692. 

2P 312 642608. 

INCA J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

0. 

0. 

1.5 

2.5 

100. 100. 20 30 

100. 100. 20 ( 30 

0. .5 100. 100. 2S ( % 

0. 1.5 100. 100. 20 LtD 

0. 2. '5 100. 100. 20 40 

0. .'5 100. 100. 2S 55 

0. 1 . 5 100. 100. 20 50 

0. 2.5 100. 100. 20 50 

0. .5 100. 100. 2S 6S 

-. 5 3. 5 100. 1 00. 2G < 5G 

.'5 4.5 100. 100. 2G 5G 

60 

60 

75 

1 . '5 l 00. 100. 2D 

2.'5 100. 100. 20 

. '5 1 00. l 00. 25 

1 . 2 3. '5 1 00. 1 00. 2G 6G 

-1.2 l.f.'5 100. 100. 2G 6G 

. 5 

1.5 

2.'5 

1.5 

2.'5 

. '5 

3.'5 

1.5 

.'5 

2.'5 

!.'5 

95 . 

97. 

96. 

99. 

98. 

98 . 

98. 

95. 

93. 

95. 

91. 

88. 40 ( OP< 3P J J 8. 4D ( OP( 3F J l 

87. 40 ( OP( 3P) l 9. t;O ( OP< 3F l J 

83. 40 <OP< 3Pl) 12. 40 <DP< 3Fll 

99. 20 70 

98. 20 ( 70 

98. 4P ( OP< 3P)) 

78. 'iD ( DP< 3P l l 20. 40 ( DP< 3F)) 

90. 4P ( OP< 3P ) ) '5 . 'lS ( OP( 3P ) l 

93. 2P ( DP< 3P) l 

9'5. 4P ( OP< 3P ) ) 

73. 2P (0P(3P)) 12. 45 (0P(3Pll 
6. 'iP ( DP< 3P ) J 

----------------------------------·---------------------------------------------
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---=-=~---------------~===-------===----------=---=~--~-~------~-=~-------=~~-~ 
TABLE ( 5. 12B J CONTINUED 

CR5+ EVEN LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- DD< 2S+1 JL ::: 302< 25+1 lL 

DD< 25+1 lL = 302< 25+1 ll DS< 2S+1 JL ::: < 3P5< 2P l30( 2D l )( 25+1 ll =============================================================================== IRREP CALC EXP INCA J/MU TOTAL --EIGENVECTOR COMPOSITION PCT 
=-=~~------------~----=----~---=------=---~-----~----~-------~-----------~----~ 'lS 3/2 6'15'186. 1.5 93. 81. '15 ( DP( 3P) l 11. 2P ( DP( 3P) J 

25 l/2 6'16600. .5 100. 100. 25 ( 8S 
20 3/2 650068. 1.5 89. 81. 20 ( DP< 3P) l 9. 2P ( OP< 3P l) 

2G 7/2 650069. 3.5 100. 100. 2G 7G 

2G 9/2 6'50070. 'J. 5 100. 100. 2G < 7G 

20 5/2 650250. 2.5 88. 71{. 20 ( DP( 3P l) 7. 20 ( OP( 3D)) 
7. 20 ( DP< 3F l l 

2Ill/2 650381{. 5.5 100. 100. 21 ( 7I 

%11/2 6'51070. 5.'5 100. 100. 'lG ( DP< 3F l l 

1{0 712 6'51'160. 3.5 9'5. 33. LID ( OP( 3F J l 33. U,F ( DP( 3F)) 
12. LID ( OP( 3P l l 11. 2F ( DP< 3Fl) 
6. U,D ( DP( 30) l 

% 9/2 651'172. '1.'5 96. 73. LtG ( DP< 3F l l 21{. 'iF ( OP< 3F l l 

2F 712 6'52'519. 3.5 87. 6'5. 2F < OP< 3F l l 22. LtG ( OP< 3F) l 

'10 '512 652921. 2.'5 88. '12. '10 ( OP< 3F J l 27. 4F ( DP< 3F l l 
10. 40 ( DP( 3D)) 9. u,o ( DP< 3P) l 

'1G 7/2 653135. 3.5 89. 65. U,G ( DP< 3F) l !3. 40 ( OP< 3F) l 
12. 2F ( DP( 3F) l 

U,F 9/2 6531'15. 1{.5 95. 73. 'lF ( DP( 3F) l 23. 4G < DP< 3F l) 

25 1/2 651{120. .5 95. 95. 25 ( DP< 3P l l 

LID 3/2 65'1558. 1.5 9'1. 52. LID ( DP( 3F l l 20. U,F ( DP< 3F l l 
13. 4[) ( DP< 3D l) 9. LID ( DP< 3P)) 

'1G 5/2 65456 7. 2.5 92. 92. 'lG ( DP( 3F l l 

'tF 712 6%0'10. 3.5 85. 61. U,F ( DP< 3F)) 18. LID ( DP( 3F)) 
b. 2F < OP( 3F l l 

2F '512 6560'13. 2.5 88. 59. 2F ( OP( 3F) l 23. u,F < DP< 3F l l 
7. U,O ( DP( 3F l l 

U,!J 112 656179. . 5 96 . 69. 'ID ( DP( 3F) l 17. 1{0 ( DP< 3D l l 
10. LID ( DP< 3P l l 

'iF 5/2 658075. 2.5 82. '10. U,F ( DP< 3F) l 25. 2F ( DP( 3F l l 
17. LID < DP< 3F l l 

'iF 3/2 65'8258. 1.5 89. 70. 'iF ( OP< 3F l l 19. 40 < DP< 3F l l 

=-=-~-·--------------------------------------------------------------------------
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--~~----=---=-=-=-=----~---~===-----~--=-~-=-~---~==-~==~-~=--~=~---=--=----~--
TABLE <5.12Bl CONTINUED 

CR5+ EVEN LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

E XTRAPOLATEO AND OPTIMIZED PARAr1ETERS 
PARENTAGE -- 00( 2S+l lL = 3D2( 2S+l lL 

DD<2S+llL = 3D2<2S+lJL D5< 25+1 )L = ( 3P5( 2P l30( 20 l )( 25+1 JL 
=============================~================================================= 

IRREP CALC EXP INCR J /fi1U TOTAL -- EIGENVECTOR COMPOSITION PCT 
-------··-====-=----------~--~-~-----~=-----=~--~----------=------~--~---~~----= 
2G 9/2 661760. 'L5 %. 96. 2G ( DP< 3F l l 

20 5/2 66ll050. 2.5 87. 33. 20 { DP< lD l) 27. 20 < DP< 3F l l 
17. 20 ( DP< lF) l 9. 2F ( DP< 3F l) 

2G 712 66ll5.90. 3.5 91. 91. 2G ( DP< 3F l l 

20 3/2 66"1853. 1.'5 95. "16. 20 ( DP< 1D l l 2"1. 20 ( OP< 3F l l 
13. 20 ( DP< lF l l 7. 2D ( DP( 3D l l 
5. "'F < OP( 3F l) 

2111/2 669278. 5.'5 100. 100. 2! ( 8I 

LID 7/2 67Lf752. 3.'5 98. 7"1. LID ( OP< 3D l l ll. LJD ( DP( 3F l l 
7. 2F ( DP< lF l l 6. LJF < DP< 30 l l 

LJD '512 67'5%1. 2.'5 90. '57. LJD ( DP< 3D l) 10. LJD ( DP( 3F l l 
9. 2F <DP( lFll 8. '!F ( DP< 30)) 
6. 2F ( DP< lD l l 

'tD 3/2 67689'5. 1.5 88. 69. 'tO ( OP< 3D) l l't. LJD ( DP< 3F l l 
'5. LfF ( OP< 30 J l 

2F '512 6 77176. 2.'5 88. Lf3. 2F ( DP< 1D)) 17. 2F ( OP< !F l l 
11. 20 ( DP< 3F)) 10. 2D ( DP< 3D l l 

7. LfD ( OP( 30) J 

LfD 112 678022. . '5 98 . 78. LfD ( DP( 3D ll 19. LfD ( DP( 3F l) 

20 '512 678297. 2.'5 92. 29. 20 < DP< 3F)) 26. 20 ( DP( 30)) 
13. 'tO ( DP( 3D)) 9. 2F ( OP< lF l l 
8. 2F ( OP( 10) l 7. 20 ( DP< lD l l 

2F 712 678856. 3.5 89. 31. 2F < DP( lD) l 31. LfF < DP< 30)) 
11. 2F ( DP< lF)) !0. LfD ( DP< 3D) l 
6. 2G ( DP< lF)) 

i!F 9/2 6 78876. '1.5 97. 77. LfF < OP( 3D l) 20. 2G (0P( lFlJ 

LfF 312 679'513. 1.'5 90. 8'!. LfF ( DP( 30)) 7. 20 ( OP( 3F l) 

LfF 712 6800l.f8. 3.'5 96. 3'5. LfF ( OP< 30) l 29. 2F (IJP( IF)) 
18. 2F ( DP( lD l l 9. 2G ( OP< lF l) 
5. 2F ( OP( 3D l) 

LfF '512 680235. 2.5 88. 81. 'JF ( DP< 3D) l 7. 2F ( DP( lF)) 

20 3/2 680930. 1.'5 91. 38. 20 ( DP( 3D)) 29. 20 ( DP< 3F)) 
10. LfO ( DP< 30)) 8. LfF ( DP( 3D)) 

7. 20 ([)P( lFll 

2G 712 68306'5. 3.5 96. 66. 2G(DP(lFll 21. LfF < DP< 30)) 
10. 2F ( DP( 3D)) 

-----==--=-=--=--~---=---~--=---~ ----------------------------------------------
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-----=-====-=-==-==--------=--=------=------~---~=--=--~~~~~---~~---------=~=-= 
TABLE (5.12Bl CONTINUED 

CR5+ EVEN LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- DO< 2S+ 1 lL :::: 3D2( 2S+l lL 

DO( 2S+ l )l :::: 3D2( 2S+l )L DS< 2S+1 lL ::: ( 3P5( 2P l3D< 20) )( 2S+1 lL 
=============================================================~================= 

IRREP CALC EXP INCR J /MU TOTAL -- EIGENVECTOR COMPOSITION PCT 
-=-~-=--------~-------------~~=---------------~----~~--~----------=------=~----
2F 5/2 68'l016. 2.5 92. 37. 2F ( DP< lF)) 33. 2F ( DP< 30 l l 

22. 2F (OP( lOll 

2G 9/2 685173. 'l.5 97. 79. 2G ( DP( lF l l 19. i.tF ( OP( 3D l l 

'lP 5/2 685219. 2.5 92. 87. I.!P ( DP< 30 l l 6. 20 ( DP< !D l l 

2F 712 6851.!03. 3.5 93. 31. 2F ( DP< lD l l 28. 2F ( DP< 3D l l 
26. 2F ( OP( lF) J 8. 2G (Of'( !F l) 

'iP 3/2 685722. 1.5 88. 50. 'iP ( DP< 30)) 38. 2P ( DP< lD)) 

2P l/2 686320. .5 98. 53. 2P (Of'( lD l l 32. 'lP ( OP( 30 l l 
12. 2P ( DP< 30)) 

'if' 112 687551. .5 99. 66. 'lP ( DP< 30 l l 22. 2P (Of'( 10)) 
12. 2P ( OP( 30) l 

'iP 3/2 687978. 1.5 9'-1. 'll. 'lP ( OP( 30 J l 32. 2P ( DP< lD l J 
15. 2P ( DP< 30 l l 6. 20 ( DP< lF l l 

20 3/2 688566. 1.5 91. 27. 20 ( OP( lD l l 2'1. 2P ( OP< 10)) 
22. 20 ( OP< lF J l 18. 2P ( OP( 30 l l 

20 5/2 689U8. 2.5 92. 'il. 20 <OP< !Fll 3'l. 2D ( OP< 10 l l 
10. 20 ( DP< 3D J l 7. I.!P ( OP< 30 l l 

2F 712 691312. 3.5 96. '50. 2F < DP< 3D) l 23. 2F ( OP( lF> l 
15. 2F ( DP( lD)) 7. 2G ( DP< lF J) 

2F 5/2 691712. 2.5 9'-1. 59. 2F ( DP< 3D l) 18. 2F ( DP( lD l l 
18. 2F ( OP( lF J) 

2P 3/2 6922LJ1. 1.5 95. 60. 2P ( DP< 30)) 11{. 20 ( OP< lF J l 
11. 20 ( OP( 1D l l 10. 20 ( OP( 3F l J 

2P 112 69326'1. .5 96. 73. 2P < OP< 30)) 23. 2P ( DP< 10 l l 

20 3/2 709580. 1.5 99. 39. 20 ( OP< 30 l l 31. 20 < OP( lF l l 
15. 20 ( OP< 3F l l 7. 20 ( DP< 3P l l 
7. 20 < OP( lD J l 

20 5/2 711522. 2.5 98. 37. 20 ( DP< 30 l) 29. 20 (0P( lFlJ 
18. 20 ( OP( 3F)) 8. 20 ( DP< 3P l l 

7. 20 <OP< 1DlJ 

2P 1/2 795932. .5 99. 99. 2P ( OP< lP l l 

2P 3/2 796 7.5!. 1.5 97. 97. 2P ( DP< lP l l 

20 3/2 800361. 1.5 96. 96. 2D < DP< lP) l 

20 5/2 801531. 2.5 99. 99. 20 < DP( lP l l 

-------------------------------------------------------------------------------



TABLE <5. 12Bl CONTINUED 

CR5+ EVEN LEVELS 
CALCULATIONS COMPARE0 WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- 00( 2S+l lL = 302( 25+1 lL 

DD<2S+llL = 302<2S+llL DS<2S+llL = <3P5(2Pl3D<2DlH2S+l)L 

-231-

~======================================~~===============~===~=================~ 
IRREP CALC EXP INCA J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 
=---~-----~=~~---~-----~--~-=--------------~--~--------------~---~-------------
2S l/2 803731. . '5 99 . 99. 2S < OP( 1 P l l 
~-----~-------------~--~-=---------~--------------------~--------------------~-

NO. EXPERIMENTAL LEVELS= 

ABSOLUTE MEAN DEVIATION = 

RMS DEVIATION = 

13. 

.27 

. 52 

~----------~---­-------------------- ---------------------------------------------
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Table (5.13a) 
Least Squares Corrections to Parameters: Odd Parity Configurations 

v4+ cr 5+ (z = Z-18) 
Parameter new old new old • new-old 

Eav 4p 207266. 212661. 298253. 304493. -952. 30z-485.1 

~ 4p 844. 974. 1217. 1404. 2 (-1.4580/z+3.970/z )G(old) 
Eav Sp 351856. 354102. 489021. 492968. -1119.50z+2963.8 

~ 5p 345. 384. 490. 565. 2 (-2.2268/z+8.583/z )G(old) 
Eav 6p 415600. 416840. 575273. 578267. -856. 50z+2 72 L 5 

~ 6p 170. 191. 247. 285. 2 (-2.0501/z+7.521/z )~(old) 
Eav 7p 449717. 450510. 623649. 624556. -114.00z-223.0 
~ 7p 124. 109. 142. 164. 2 (-8.0960/z+43.794/z )~(old) 
Eav 4f 351223. 352718. 472463. 479453. -5462.16z+25815.7 

~ 4f 3. 3. 6. 6. no change 
Eav Sf 409831. 415105. 567180. 569641. 2812.76z-19337.9 

~ Sf 2. 2. 4. 4. no change 
Eav 6f 447672. 449176. 617771. 619005. 224.88z-2628.6 

~ 6£ 1. 1. 2. 2. no change 
Eav 7f 468913. 469745. 648092. 652315. -3393.67z+16139.0 

~ 7f 1. 1. 1. 1. no change 
Eav 8£ 482592. 483098. 667713. 668193. 26.23z-637.5 

~ 8£ o. o. 1. 1. no change 
Eav 9f 491925. 492248. 681137. 681451. 10.33z-376.1 

~ 9£ g. o. 1. 1. no change 
Eav 10f 498572. 498787. 690664. 690924. ~46.53z+l8.0 

~ 10f 9. o. 1. 1. no change 
Eav 6h 450253. 45032 7. 621170. 621284. -39.88z+125 2 
~ 6h o. o. o. o. no change 
Eav 7h 470494. 470546. 650318. 650399. ~29.36z+94.9 

~ 7h o. o. o. o. no change 
Eav 3p 53d2 338614. 350849. 378710. 390514. 438.81z-14427.3 
F2(3d3d) 91146. 91359. 111345. 103733. 3679. 
F4(3d3d) 43814. 57685. 50828. 65 733. -14L~73. 

~ 3p 5062. 5061. 6613. 6426. (.6663/z-2.923/z 2)§(old) 

~ 3d 306. 322. 382. 466. 2 .2715/z+25.201/z )~(old) 
F2( 3d) 83464. 95189. 99841. 105385. -8619. 
G1(3p3d) 944 77. 117200. 107438. 128426. ~21860. 

G3(3p3d) 48579. 72269. 66867. 79905. -18406. 
Eav 3P 53d4s 486431. 493848. 603883. 611357. -69 19z-7082.7 

~ 3p 4919. 5216. 2 4906. 6720. (-.9854/z-0./z )~(old) 
~ 3d 356. 2 361. 219. 514. (-.9863/z-0./z )~(old) 
F2(3p 3d) 85528. 99383. 92520. 109168. -15285. 
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Table (5.13a) 

Least Squares Corrections to Parameters: Odd Parity Configurations 

v4+ Cr 5+ (z "" Z-18) 
Parameter new old new old • new~old 

G ( 3p3d) 109293. 121400. 116678. 131878. -14076. 

G3(3p3d) 67951. 75478. 73142. 82671. -8793. 

G1 ( 3p 4s) 9648. 9853. 13087. 11242. 1033. 

G2(3d4s) 12546. 11917. 5973. 12755. -3415. 

R l ( 3p 4p 3d 3d) 1003. 9732. 4937. 12952. -8372. 

R 3 { 3p 4p 3d 3d) 1032. 10014. 4707. 12349. -8312. 
1 R ( 3p 4p 3d 4s ) 4829. 46866. 20247. 53118. =37454. 
1 R ( 3p 4p 4s 3d ) 958. 9297. 5308. 10554. ~6792. 

R 1 ( 3p 5p 3d 3d) 517. 5019. 2490. 6532. -4272. 
R 3 ( 3p Sp 3d 3d) 494. 4797. 1609. 5893. ~4293. 

1 R (3p5p3d4s) 1976. 19179. 8091. 21228. -15170. 
R 1 (3p 5p 4s 3d) 541. 5246. 2279. 5978. -4203. 

R 1 ( 3p 6p 3d 3d) 331. 3215. 1585. 4159. -2728. 

R 3 ( 3p 6p 3d 3d) 307. 2979. 1392. 3653. -2466. 

R 1 (3p 6p 3d 4s ) 1206. 11704. 4905. 12868. -9230. 
1 R ( 3p 6p 4s 3d) 363. 3520. 1532. 4020. -2822. 

R 1 ( 3p 7p 3d 3d) 237. 2303. 1133. 2973. -1953. 

R 3 ( 3p 7p 3d 3d ) 216. 2098. 980. 2571. -1736. 

R 1 ( 3p 7p 3d4s) 848. 8234. 3441. 9027. -6486. 
1 R ( 3p 7p 4s 3d) 267. 2589. 1129. 2962. ~2078. 

R 1 ( 3p 4f 3d 3d) -23223. -26440. -31478. -35684. 3711. 
R 3 ( 3p 4f 3d 3d) -12020. ~13685. ~16867. -19121. 1959. 
R 3 ( 3p 4f 3d4s) 6792. 7733. 8305o 9415. ~1025. 

R 1 ( 3p 4f 4s 3d) 1197. 1363. 874. 991. ~141. 

R 1( 3p5f 3d3d) ~19266. ~21935. ~25146. ~28505. 3014. 
R 3 (3p 5f 3d 3d) ~10388. ~11827. -14042. ~15918. 1658. 

R3(3p5f3d4s) 4550. 5180. 4858 5507. -6L,o. 
R 1 (3p Sf 4s 3d) 619. 705. 109. 123. -'50 
R 1 ( 3p 6f 3d 3d) -15199. -17305. ~19405. -21997. 2349. 
R 3 ( 3p 6f 3d 3d) -8356. -9514. -11048. -12524. 1317. 
R 3 ( 3p 6f 3d 4s) 3149. 3585. 3060. ~!+ 23. 
R 1 ( 3p 6f 4s 3d) 328. 374. -160. -182. -12 

R1(3p7f3d3d) -12178. ~13865. -15373. ~17427. 1871. 
R 3 ( 3p 7f 3d 3d) -6769. ~7706. -8847. -10029. 1060. 
R3(3p7f3d4s) 2318. 2639. 2112 2394. L~302. 

R 1 (3p 7£ 4s 3d) 186. 212. -241. -273. 3. 
R 1( 8£ 3d 3d -9987. -11370. l253L -14206. 1529. 

-~~~--~~~-=.-.. 



~234~ 

Table {5.13a) 

Least Squares Corrections to Parameters: Odd Parity Configurations 

v4+ cr 5+ (z "' Z~18) 
Parameter new old new old • new-old 

R3 ( 3p8f 3d 3d) -5588. ~6362. -7259. ~8229. 872. 

R3(3p8f3d4s) 1794. 2042. 1562. 1770. -229. 

R 1 ( 3p 8£ 4s 3d) 113. 128. ~255. ~290. 9. 

R 1 ( 3p9f 3d3d) -8365. -9524. -10477. -11858. 1270. 

R 3 ( 3p 9£ 3d 3d) -4 701. -5353. -6085. -6898. 732. 

R 3 (3p 9£ 3d4s) 1442. 1642 1214. 1377. -181. 

R 1 ( 3p 9£ 4s 3d) 71. 81. -246. -279. 12. 
R1(3p10f3d3d) ~7133. -8121. ~8901. -10090. 1089. 

R 3 (3p 1 Of 3d 3d) -4021. -4579. -5193. -5887. 625. 

R 3 (3p 10£ 3d4s) 1193. 1359. 980. 1111. -148. 

R 1 ( 3p 1 Of 4s 3d ) 4 7. 54. =230. -260. 12. 

R 3 ( 3p 6h 3d 3d) =103. =194. -118. -309. 141. 

R 3 ( 3p 7h 3d 3d) -118. -222. -135. =354. 161. 

R 2 ( 3p 3d 3p 4s) 3520. 6624. 3511. 9212. =4403. 

R 1 ( 3p 3d 4s 3p ) 5725. 10774. 4935. 12947. -6530. 

R 2 ( 3d3d3d4s) 2 717. 5112. 3500. 9182. -4039. 
~-~~-· -~-=-~~ 
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Table (5.13b) 
Least Squares Corrections to Parameters: Even Parity Configurations 

Parameter 

Eav 3d 

~ 3d 
Eav 4d 

~ 4d 
Eav 5d 

~ 5d 

Eav 6d 

~ 6d 

Eav 7d 

~ 7d 

Eav 4s 

Eav Ss 

Eav 6s 

Eav 7s 

Eav 8s 

Eav 5g 

~ 5g 
Eav 6g 

~ 6g 
Eav 7g 

~ 7g 

Eav 7i 

~ 7i 
Eav 8i 

~ 8i 
Eav 3p 53d4p 

~ 3p 

~ 3d 

~ 4p 
F 2( 3d) 

F 2(3p4p) 

F 2(3d4p) 

c1( 3p3d) 
( 3p 3d) 

c0 (3p4p) 

(3p4p) 

c1 ( 3d4p) 

G3 (3d4p) 

v4+ 

new old 

391. 9743. 
250. 322. 

cr 5+ 
new old 

796. 9979. 
376. 469. 

294020. 299880. 403300. 410187. 
58. 66. 89. 105. 

388034. 390904. 534693. 538177. 
27. 30. 42. 48. 

(z "" Z-18) 
• new-old 

277.05z-12420.8+8215./z 
2 (-1.5853/z+2.362/z )~(old) 

-1273. 50z+6 71.8 
2 (-2.2479/z+8.260/z )~(old) 

-713.00z+761.0 
(-1.4338/z+4.168/z 2 )~(old) 

434338. 435967. 599824. 601924. -471.00z+726.0 
15. 16. 21. 26. (-4.8911/z+22.198/z 2 )~(old) 

460721. 461734. 637582. 638504. -20.58z+126.9 
9. 10. 12. 16. (-5.4588/z+25.604/z 2 )~(old) 

148197. 154487. 228717. 234916. -794.10-2227.1 
328226. 330659. 461355. 464152. 
403862. 405054. 562118. 563554. 
443081. 443759. 615204. 616046. 
466072. 466496. 646647. 647183. 
416366. 416758. 572280. 572913. 

o. o. 1. 1. 

450030. 450294. 620706. 621208. 
o. o. o. o. 

470339. 470520. 650078. 650343. 
o. o. o. o. 

470533. 470546. 650401. 650401. 
o. o. o. o. 

483661. 483668. 669298. 669298. 
o. o. o. o. 

545165, 552594. 673957. 681456. 
4194. .5224. 5623. 6728. 

291. 
788. 

362. 431. 
981. 1178. 

516. 
1409. 

85785. 99588. 92492. 109316. 
26337. 26337. 30860. 30860. 
27420. 27420. 3136L 31361. 

109640. 121606. 115792. 132017. 
68198. 75641. 72611. 82786. 

8021. 8021. 9213. 9213. 
8844. 8844. 10349. 10349. 
9671. 9671. 10882. 10882. 
9273. 9273. 10554 10554. 

-409.50z-355.2 
~253.00z+79.0 

~151.10z+81.1 

~96.40z+62.4 

-1 7 2 • 6 Oz +4 3 7 • 2 

no change 

-138.10z+373.7 
no change 

~60. 00z+l27. 0 

no change 
no change 
no change 
no change 
no change 

~69. 70z·~ 7080.3 
(-.9836/z-.010/z 2)~(old) 
(-.9827/z~.Ol2/z 2 )~(old) 
(-.9820/z-.019/z 2)G(old) 

~15313. 

no 
no 

-14095. 
-8809. 

no 
no 
no 

no 
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Table (5.13b) 
Least Squares Corrections to Parameters: Even Parity Configurations 

v4+ Cr5+ (z "" Z-18) 
Parameter new old new old • new-old 
0 R (3p3p3p4p) 379. 3756. 155 7. 4085. -2952. 
2 R ( 3p 3p 3p 4p) 17 43. 1725 7. 7149. 18755. -13560. 

R 1 ( 3p 3d3d4p) 1030. 10195. 5201. 13644. -8804. 
( 3p3d3d4p) 1052. 10419. 4896. 12843. -8657. 

R0(3p3d4p3d) 123. 1220. 589. 1544. -1026. 
R2(3p3d4p3d) 1532. 15169. 6806. 17854. -12342. 
R1( 4d3d4p) 3743. 37055. 16871. 44259. -30350. 
R3(3p4d3d4p) 1406. 13923. 6516. 17094. -11547. 
R O ( 3p 4d4p 3d) 870. 8610. 3758. 9858. -6920. 
R 2 ( 3p4d4p 3d) 870. 8615. 3914. 10269. -7050. 
R1(3p5d3d4p) 1912. 18934. 8082. 21201. -15070. 
R3(3p5d3d4p) 878. 8688. 3900. 10231. -7071. 
R O ( 3p 5d4p 3d) 534. 5282. 2270. 5956. -4217. 
R2(3p5d4p3d) 563. 5576. 2477. 6498. -4517. 
R 1 (3p6d3d4p) 1242. 12300. 5106. 13396. -9673. 
R 3 ( 3p6d3d4p) 612. 6060. 2663. 6986. -4885. 
R0(3p6d4p3d) 372. 3687. 1571. 4122. -2932. 
R2(3p6d4p3d) 400. 3965. 1739. 4562. -3193. 
R1(3p7d3d4p) 898. 8894. 3640. 9548. -6952. 
R3(3p7d3d4p) 459. 4541. 1973. 5176. -3643. 
R0(3p7d4p3d) 280. 2770. 1176. 3084. -2200. 
R2(3p 7d4p3d) 304. 3005. 1309. 3435. ~2414. 

1 R (3p4s3d4p) 4743. 46961. 20263. 53155. ~37555. 

2 R (3p4s4p3d) 925. 9156. 3999. 10491. -7362. 
1 R (3p5s3d4p) 1229. 12166. 5428. 14240. -9874. 
2 R (3p5s4p3d) 470. 4649. 2075. 5443. -3774. 
1 R (3p6s3d4p) 703. 6963. 3120. 8184. -5662. 
2 R ( 3p 6s 4p 3d) 302. 2993. 1347. 3533. -2439. 
1 R (3p 7s 3d4p) 481. 4761. 2138. 5608. -3875. 

R2{ 7s4p 218. 2154. 973. 2554. -1758. 
R1(3p8s3d4p) 359. 3554. 1598. 4193. -2895. 
R 2 ( 3p 8s 4p 3d) 167. 1652. 749. 1965. -1351. 

( 3p5g3d4p) -214. -2118. -1155. -3030. 1890. 
R2 (3p 5g4p 3d) -37. -368. 192. -504. 321. 
R3 ( 3p 6g3d4p) -198. -1965. -1048. -2750. 1734. 

2 R (3p6g4p3d) -35. -349. -177. -465. 301. 
3 R (3p 7g3d4p) -171. -1691. -890. -2334. 1482. 
2 R (3p 7g4p 3d) -31. -303. -151. -397. 259. 



~237~ 

method used to adjust the CI parameters. Also, because of relativistic 

effects that become increasingly more important with increasing Z1 it 

would not be reliable to extrapolate any of these corrections beyond the 

neighboring ions in the sequence. 

4+ 5+ The old and new parameter values for V and Cr are presented in 

table (5.13), along with a function that estimates their differences as 

a function of z=Z-18. The corrections to the average energies were fit 

to a linear function of z, as there are only two ions with corrections. 

To this same order in the 1/Z expansion, the corrections to the Slater 

integrals are constant, so an average of the corrections to both ions 

was found for each parameter. The spin~orbit parameters, however, were 

fit to 

which is an approximate expansion of (5.18b). The 3p 53d4s spin~orbit 

parameters, ~Jp and ~Jd' have a somewhat erratic behavior, so the aver~ 

age ratio ~nO/~nO for v4+ and Cr 5+ was used to determine the AnO term 

in these cases, and the BnO term was omitted. 

Applying these formulas with z~22, 25. and 26, the corrections were 

.3+ 6+ 7+ extrapolated to T~ • Mn and Fe • Then the average of all 

identified configurations for these ion were optimized by least squares. 

In addition, the parameters of the 3p 53d4s configuration were adjusted 

for Mn
6+ and Fe 7+ with the constraint (S.27b). TI1e corrections to the 

average energies of the even par II f. . f T' 3+ nv con ~gurat~ons o ~ were 
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combined with the corrections to v4+ and cr 5+ and extrapolated to the 

5+ 7s, 8s, 6d, and 7d configurations of Cr and all the even configura-

6+ 7+ tions of Mn and Fe • Similarly, the corrections to the average ener-

6+ 7+ gies of the np configurations \vere also extrapolated to Mn and Fe , 

5+ and also the 7p configuration of Cr • All the extrapolations were 

again made. with the linear approximation, except for the 3d configura­

tion; because of its curvature, the function ~d was used instead. The 

nf configurations were too badly perturbed to extrapolate with any con-

fidence, so the predictions for the 6f, 7f, 8f, 9f, and lOf, configura-

tions cannot be taken very seriously. The functions used to extrapolate 

all the parameters appear in table (5.13) • 

. 3+ 6+ 7+ The old and new parameters for T1 , Mn , and Fe are displayed 

in table (5.14), while the predicted energy levels and eigenvector com-

positions for all three ions are presented and compared with the identi~ 

fied levels in tables (5.15) through (5.17). Agreement with the levels 

5 2 5 6+ 7+ belonging to the 3p 3d and 3p 3d4s configurations of Mn and Fe was 

improved, even before any additional optimizations of these confi.gura-

tions. After the additional least squares adjustments, the agreement 

for the 3p 53d4s configuration is comparable with v4+ and cr 5+. It is 

hoped that predictions for the spectra of the transition array with 

these two configurations and the 3p 53d4p are improved over the initial 

HXR estimates. 

The small discrepancy in the agreement between the observed and 

calculated average energies of the 3d configuration for 11n 6+ and Fe 7+ 

reflects the accuracy of the extrapolation of ~Jd and also perhaps the 

accuracy of the experimentally derived ionization energies. The 
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Table (5.14a) 
Optimized and Ex tr apo la ted Parameter Corrections: Odd Parity 

Ti 3+ Jl1n6+ Fe 7+ 
Parameter new old new old new old 

Eav 4p 128493. 132675. 400961. 407690. 514019. 522124. 

~ 4p 559. 633. 1690. 1936. 2274. 2584. 

Eav 5p 230838. 232546. 643690. 648563. 814663. 820655. 

~ 5p 240. 245. 679. 793. 919. 1074. 

Eav 6p 274867. 275732. 754413. 759335. 955654. 959785. 

~ 6p ll5. 120. 348. 404. 476. 553. 

Eav 7p 298079. 298578. 818896. 819917. 1035413. 1036548. 

~ 7p 116. 68. 17 3. 235. 217. 323. 

Eav 4f 236897. 238290. 611350. 617630. 759968. 766921. 

~ 4f L 1. 11. 11. 19. 19. 

Eav Sf 278168. 278073. 738739. 740986. 925684. 928611. 

~ Sf 1. 1. 6. 6. ll. 11. 

Eav 6f 298026. 299756. 807094. 808500. 1015957. 1017397. 

~ 6f o. o. 4. 4. 6. 6. 

Eav 7f 315400. 312835. 848491. 849353. 1069628. 1071017. 

~ 7f o. o. 2. 2. 4. 4. 

Eav Sf 320790. 321323. 875313. 875848. 1105334. 1105762. 

~ 8f o. o. 2. 2. 3. 3. 

Eav 9f 326804. 327138. 893598. 893985. 1129234. 1129528. 

~ 9f o. o. 1. 1. 2. 2. 

Eav 10f 331129. 331298. 906951. 906929. 1146125. 11464 79 0 

~ 10f o. o. 1. 1. 1. 1. 
Eav 6h 300169. 300203. 812099. 812282. 1022791. 1022985. 

~ 6h o. o. o. o. I. 1. 

Eav 7h 313120. 313142. 851771. 851910. 1074605. 1074745. 

~ 7h o. o. o. o. o. o. 
5 294293. 310221. 415730. 429505. 454675. 468161. Eav 3p 3d2 

F2(3d3d) 81789. 78111. 119250. 115572. 130733. 127054. 

F4(3d3d) 34599. 49073. 58963. 73436. 66436. 80910. 

~ 3p 3733. 3794. 8452. 8162. 10607. 10223. 

~ 3d 263. 209. 493. 648. 641. 872. 
F2(3p 3d) 75460. 84079. 106425. 115043. 115735. 12435LJ.. 
G1 ( 3p 3d) 82618. 104478. 118392. 138765. 128356. 148529. 
G3( 3p3d) 45324. 63730. 69465. 86999. 76334. 93737. 

5 Eav 3p 3d4s 380066. 387425. 731998. 739721. 871404. 878971. 

~ 3p 2995. 3974. 8409. 8162. 10160. 10650. 

~ 3d 181. 240. 205. 648. 345. 943. 
F2(3p3d) 73654. 88939. 100879. 118546. 107268. 12 7 651. 
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Table (5.14a) 
Optimized and Extrapolated Parameter Corrections: Odd Parity 

TiJ+ Mn 6+ Fe7+ 
Parameter new old new old new old 

G1(3p3d) 95776. 109852. 128749. 141695. 138287. 151070. 
(3p3d) 58836. 67629. 81373. 89451o 87984o 95954. 

G1( 4s) 9416. 8384. 4806. 125 77. 5476. 13871. 
2 G (3d4s) 7797 0 11213. 17612. 13662. 19481o 14607. 

R1(3p4p3d3d) -2186. 6186. 7563. 15935. 10370. 18742. 
(3p4p 3d 3d) -812. 7500. 6241. 14553. 8345. 16657. 

1 2633. 40087. 21551. 59005. 27175. R ( 3p 43p 33d4s) 64629. 
1 1164o 7956o 4958o R ( 3p 4p 4s 3d) 11751. 6110. 12903. 

R 1 (3p 5p3d3d) -911. 3361. 3668o 7940. 4999. 9271. 
R 3 ( 3p 5p 3d 3d) -677. 3616o 2635. 6929o 3626. 7919. 

1 1705. 16874. 7933. 23102. 9681. 24851. R ( 3p 53p 33d4s) 
1 R ( 3p 5p 4s 3d ) 263. 4465. 2473. 667 s. 3144. 7346. 

R 1 ( 3p 6p 3d 3d) -547. 2181. 2310. 5038. 3142. S870. 
R 3 ( 3p 6p 3d 3d) -215. 2252. 1822o 4289. 2430. 4896. 

1 R (3p6p3d4s) 1144. 10374. 4684. 13914. 564So 148 76. 
1 R ( 3p 6p 4s 3d) 165. 2988. 16 73o 4495o 2130. 4952. 

R 1 ( 3p 7p 3d3d) -382. 1570. 1645. 3598o 2235. 4188. 
R 3 ( 3p 7p 3d 3d) -149. 1S87. 1280o 3016. 1704. 3441. 

1 R ( 3p 7p 3d 4s ) 831. 7317 0 3246. 9732. 3884. 10370. 
1 115. 2192. 1238. 3316. 1578. 3656. R ( 3p 7p 4s 3d) 

R 1 ( 3p 4f 3d 3d) -13988. -17699. -41305. -45017. -50S19. -54230. 
(3p4f 3d 3d) -6730. -8689. -22763. -24723o -28377. -30336. 

R3 (3p4f 3d4s) 4688. 5714. 9713o 10739. 10724. 11749. 
R 1 ( 3p 4£ 4s 3d) 1294. 143S. 234. 37 5. -564. -423. 

(3pSf3d3d) -12181. -1S195. -31689. -34703. -37512. -40S26. 
R 3 ( 3p Sf 3d 3d) -6117. -777S. -18219. -19877. -22005. -23663. 

( 3p Sf 3d4s) 3651. 4290. 4734. S374. 4263. 4903. 
R 1 ( 3p Sf 4s 3d) 957. 1007. -701. -651. -1599. -1549. 
R 1( 6f 3d 3d) -9944. -12293. -23994. -26343. -28059. -30408. 
R 3 ( 3p 6f 3d 3d) -6416. -14066. -1S383. -16786. -18103. 
R3 (3p6f 3d4s) 2786. 3209. 2575. 2997. 1863. 2286. 
R 1 ( 3p 6£ 4s 3d) 701. 714. -884. -872. -1656. -1644. 
R l ( 3p 7£ 3d 3d) -8139. -10009. -18853. -20724. -21943. -23813. 
R3 (3p 7£ 3d 3d) -4224. -5283. -11170. -12230. -1326S. -14325. 
R 3 ( 3p 7£ 3d4s) 2184. 2486. 1S 76. 1878. 880. 1182. 
R 1 ( 3p 7f 4s 3d) 534. S31. -856. -859. -1503. -1506. 
R 1 ( 8f 3d 3d) -6763. -8292. -1S306o -16835. -17772. -19301. 
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Table ( 5. 14a) 
Optimized and Extrapolated Parameter Corrections: Odd Parity 

Ti 3+ Mn 6+ Fe 7+ 
Parameter new old new old new old 

-~-

R3( 8f3d3d) ~3536. ~4408. ~9127. ~9999. ~10812. -11684. 
R3 ( 3p8f3d4s) 1763. 1991. 1054. 1283. 425. 654. 
R 1 ( 3p 8f 4s 3d) 423. 414. -778. -787. -1323. ~1332. 

R 1 ( 3p 9f 3d 3d) -5 720. -6990. ~12756. -14026. ~14789. -16059. 
R3(3p9f3d3d) -3001. -3733. -7633. ~8365. ~9029. -9761. 
R 3 ( 3p 9f 3d4s) 1459. 1640. 753. 934. 195. 376. 
R 1 ( 3p9f 4s3d) 345. 333. -694. ~705. -1159. -1171. 

R 1 ( 3p 1 Of 3d 3d) -4898. ~5987. -10832. -11921. -12549. ~13638. 

R3(3p10f3d3d) ~2583. -3208. ~6505. -7131. ~7687. -8312. 
R 3 ( 3p 1 Of 3d 4s ) 1233. 1381. 566. 714. n. 220. 
R 1 ( 3p 1 Of 4s 3d) 288. 276. -617. -629. -1019. ~1031. 

R 3( 3p6h3d3d) 34. -107. -311. -452. -4 79. -620. 
R 3 ( 3p 7h 3d 3d) 39. -123. -354. ~515. -543. -705. 

2 R ( 3p 3d 3p 4s) -547. 3856. 7255. 11657. 9585. 13988. 
1 R (3p 3d4s 3p) 1986. 8517. 8512. 15043. 10542. 17073. 

R 2(3d3d3d4s) -3420. 619. 8901. 12940. 12419. 16458. 
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Table (5.14b) 
Optimized and Extrapolated Parameter Corrections: Even Parity 

-.mg;;: m 

Ti3+ Mn 6+ Fe 7+ 

Parameter new old new old new old 

Eav 3d 263. 9454. 810. 10118. 1102. 10280. 

~ 3d 155. 206. 538. 654. 740. 882. 
Eav 4d 196867. 201207. 523377. 531620. 654566. 664082. 

~ 4d 36. 38. 133. 157. 190. 224. 
Eav 5d 258869. 260954. 697261. 702139. 877639. 882 582. 

~ Sd 16. 17. 63. 72. 91. 103. 
Eav 6d 289207. 290365. 785008. 787579. 989512. 992554. 
t; 6d 11. 9. 29. 39. 41. 55. 
Eav 7d 306411. 307117. 835278. 836696. 1054380. 1056018. 

G 7d 7. 6. 17. 23. 24. 33. 
Eav 4s 80410. 85938. 319504. 326688. 421957. 429633. 
Eav 5s 212410. 214388. 611040. 614262. 777142. 780783. 
Eav 6s 265850. 266780. 739920. 741612. 937410. 938974. 
Eav 7s 293003. 293517. 808654. 809660. 1023161. 1024332. 
Eav 8s 308713. 309025. 849700. 850 348. 1074941. 1075701. 
Eav Sg 278514. 278731. 745565. 746395. 935826. 936864. 
~ Sg o. o. 1. 1. 2. 2. 
Eav 6g 300050. 300193. 811474. 812136. 1021897. 1022738. 

~ 6g o. o. 1. 1. 2. 2. 
Eav 7g 313038. 313135. 851453. 851801. 1074127. 1074560. 

~ 7g o. o. 1. 1. 1. 1. 
Eav 7i 313134. 313143. 851913. 851913. 1074745. 1074745. 

~ 7i o. o. o. o. o. o. 
Eav 8i 321535. 321542. 877635. 877635. 1108348. 1108349. 

~ 8i o. o. o. o. o. o. 
5 427464. 434480. 813654. 821574. 964319. 971956. Eav 3p 3d4p 

~ 3000. 3982. 7327. 8527. 9345. 10657. 

~ 3d 182. 242. 608. 708. 828. 941{. 

~ 4p 484. 642. 1667. 1940. 2268. 2586. 
F2( 3p3d) 73928. 89241. 103344. 118657. 112423. 127737. 

2 F ( 3p4p) 21597. 21597. 35226. 35226. 39473o 73. 
F2(3d4p) 23331. 23331. 35190 35190. 38935. 38935. 
G1( 3d) 96086. 110182. 127697. 141792. 137045. 151141. 

( 3p 3d) 59067. 67876. 80727. 89536. 87209. 96018. 
c0(3p4p) 6756. 6756. 10358. 10358. 11468. 11468. 

( 3p4p) 7252. 7252. 11790. 11790. 13185. 13185. 
G1(3d4p) 8463. 8463. 12083. 12083. 13269. 13269. 
G3(3d4p) 7966. 7966. 11808. 11808. 13039. 13039. 
~· ~~~~~~-~~-_,_ __ ,_. ~~-~~·~~·~-~--~~-~~-==~&.-==-----=~- -
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Table (5.14b) 

Optimized and Extrapolated Parameter Corrections: Even Parity 
S<~ucu;;:;~=-~~'W14"'1"" ' ~~~~~. '?'1'?~m 

Ti 3+ Mn6+ Fe7+ 

Parameter new old new old new old 
-

0 R ( 3p 3p 3p 4p) 452. 3404. 1449. 4401. 17 56. 4708. 
2 R ( 3p 3p 3p 4p ) 2077. 15637. 6616. 20175. 7985. 21544. 

R1(3p3d3d4p) -2560. 6245. 7964. 16768. 10860. 19664. 

R3 (3p3d3d4p) -905. 7752. 6444. 15101. 8583. 17240. 

R 0 (3pa 3d) -16 7. 859. 816. 1842 1096. 2122. 

R2(3pa3d) -101. 12242. 8038. 20380. 10451. 22793. 

R1 (3p4d3d4p) -1316. 29034. 20509. 50859. 26659. 57009. 

R3 (3p4d3d4p) -1042. 10505. 8512. 20059. 11311. 22858. 

R0 (3p4d4p3d) 389. 7309. 4136. 11057. 5297. 12217. 
2 R (3p4d4p3cl) -213. 6836. 4769. 11819. 6239. 13289. 

R1 ( 3p5d3d4p) 891. 15961. 7926. 22997. 9399. 24469. 

R 3 ( 3p5d3d4p) -199. 6872. 4498. 11569. 5683. 12754. 

R O ( 3p Sd 4 p 3d ) 335. 4552. 2372. 6589. 2977. 7194. 

R2(3p5d4p3d) 14. 4531. 2814. 7331. 3582. 8099. 
1 R ( 3p 6d3d4p) 1034. 10707. 4506. 14179. 5083. 14757. 

R 3 ( 3p6d3d4p) 28. 4913. 2870. 7755. 3527. 8412, 

R0 (3p6d4p3d) 277. 3210. 1597. 4530. 1989. 492L 

R 2 ( 3p 6d4p 3d) n. 3270. 1899. 5093. 2384. 5578. 
Rl ( 7d3d4p) 92 7. 7879. 3025. 9977. 3307. 10259 

R 3 ( 3p 7d3d4p) 91. 3734. 2047. 5690. 2474. 6117. 

R0 (3p7d4p3d) 227. 2426. 1181. 3380. 1465. 3665. 

R2( 3p 7d4p 3d) 87. 2501. 1401. 3814. 1745. 4159. 
1 R (3p4s3d4p) 2729. 40284. 21456. 59011. 27062. M617. 

R 2 (3p 4s 4p 3d) 337. 7698. 4371. 11732. 5542. 12903 

R1(3p5s3d4p) 124. 9999. 6367. 16242. 8310 • 18185. ., 
R"'( 5s4p 3d) 29. 3803. 2421. 6195. 3141. 6915. 
R1(3p6s3d4p) 29. 5691. 3701. 9363. 4846. 10508. 

(3p 6s 4p3d) ~16. 2423. 1610. 4048. 2105. Ll543. 

R 1 ( 3p 7s 3d4p) 3. 3878. 2550. 6425. 3344. 7219. 

(3p7s4p3d) ~25. 1733. 1178. 2936. 1547. 3305. 

R1(3p8s3d4p) -7. 2888. 1914. 4809. 2512. 5L+06. 

R2( 3p8s4p 3d) ~27. 1324. 914. 2265. 1203. 255/~c) 

R3( 5g3d4p) 573. ~1317. ~2128. -4018. ~3164. ~5053. 

R 2 (3p 5g4p 3d) 82. -239. ~321. ~642. ~456. ~777. 

R 3( 3p6g3d4p) 486. -1248. -·1832. -3566. -2651. --4385 

R 2 ( 3p 6g 4p 3d) 68. -233. -274. ~575. ·~374. -6 7 !+. 

R3 (3p7g3d4p) 393. -1089. ~1499. -2981. '-2130. ~--3612. 

R2(3p 7g4p3d) 54. -205. ~·221. -480. -291. ~sso. 
-~--~~~~~~-~~~~~-~--~-~· ~~~~~ 
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CALCULATIONS COMPARED WITH EXPERIMFNTAL OBSERVATIONS 
EXTRAPOLATED AND OPTIMIZED P~RAMETERS 
PARENTAGE-- DDI 2S+llL- 3D~2S+lJL 

DO< 25+1 lL = 302< 25+1 JL DS< 25+1 JL = I 3P5( 2P J3D( 20 l )( 2S+l ll 
===~==================================================~==========~============= 

IRREP CALC EXP INCA J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

2P 1/2 127911. 127921. -10.3 .5 100. 100. 2P 'tP 

2P 3/2 128750. 1287'10. 10.3 1.5 100. 100. 2P 'tP 

2P 112 230587. 230609. -21.9 .5 100. 100. 2P '5P 

2P 3/2 2309'16. 23092'1. 

2F 5/2 236132. 236135. 

2F 7/2 2361'16. 2361'12. 

LtD 1/2 252379. 

LtD 3/2 252781. 

ltD '512 253'160. 

LtD 712 25'f't't'5. 

LfGll/2 265393. 

ltG 9/2 266266. 

'fG 7/2 26 7226. 

LtG '5/2 268193. 

'fP '5/2 272109. 

'fP 3/2 273'122. 

'fP 112 27'f3'tl. 

2P J/2 27'f7'tlf. 27lf726. 

'fF 3/2 27'1750. 

'-IF 5/2 27'f770. 27'-18'-10. 

2P 312 27'1917. 27'1881. 

'fF 9/2 27533'1. 

'IF 7/2 275559. 

21 . 9 1 . 5 1 00. 1 00. 2P 5P 

'IF 

l.fF 

-3.3 2.5 99. 99. 2F 

3. 't 3. 5 

. 5 

99. 

!00 . 

1. '5 100. 

2.5 

3.5 

99. 

99. 

99. 2F 

82. LfD <DO( 3F J l 18. LfD (DO< 3P J l 

81 . LfD ( DD< 3F l l 1 9. LfD ( DOl 3P J l 

79. LfD ( DDI 3F l l 21. LfD ( DDI 3P l J 

76. LtD (DO< 3F l l 23. ltD ( DD< 3P l J 

5 . 5 1 00. 100. LfG < DD< 3F l J 

l.f.5 

3.5 

2.5 

2.5 

1.5 

. 5 

97. 

95. 

9'-1. 

99. 

99. 

99 . 

97. l.fG IDD<3Fll 

95 . 'tG ( DD< 3F l ) 

9'-1. 'tG ( DOl 3F l l 

99. 'lP ( DD< 3P l l 

99. LIP (DO( 3P l) 

99. 'JP (DO( 3P l l 

17.7 .5 100. 100. 2P 6P 

1.5 

-70.3 L'5 

35.5 1. 5 

'1.'5 

3.5 

98. 

89. 

99. 

95. 

87. 

7!. 'IF (00( 3Fll 21. 20 (00( lOll 
6 . 20 ( DD< 3F l l 

3'-1. 'IF (DO< 3F l l 32. 20 ( 00( lD l l 
9 . 2F ( 5F ) 8 . 20 < DO< 3F l l 
6. 2F COD< lGll 

99. 2P 6P 

95. 'IF ( DO< 3F l ) 

6 2 . 'JF ( DO( 3F J l 18 . 2F 
8 . 2F < DO< 1 G l l 

5F 

2F '512 275736. 2758'17. -111.2 2.5 92. '13. 2F ( 5F l 21. 'IF <DD< 3Fll 
18. 2F (DO< lGll 10. 2F <DD( 3F)J 
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CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 
EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- DO< 2S+l ll ::: 302( 2S+l ll 

DD< 2S+l lL = 302( 2S+l lL OS( 2S+l ll :: ( 3P5< 2P l3D( 20 l J( 2S+l lL 
==================================~============================================ 

IRREP CALC EXP 

2F 7/2 276095. 275862. 

20 5I 2 216 8 81 . 

20 3/2 277752. 

2F 5/2 279321. 

2F 7/2 280211. 

2P 112 282885. 

2P 3/2 28'1761. 

2G 7/2 285922. 

2Hll/2 287677. 

2G 9/2 288012. 

2F 7/2 289257. 

2H 9/2 2915'15. 

2F 5/2 2929'1'). 

2F 7/2 297828. 

2P 1/2 297957. 298000. 

2F 512 298085. 

2P 3/2 298131 . 298088. 

2H 9/2 300166. 300159. 

2Hll/2 300166. 3001~9. 

'10 7/2 300317. 

'10 5/2 301160. 

'10 312 30207'1. 

'10 112 302853. 

20 312 310985. 

INCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

232.7 3.'5 

2.'5 

1.5 

2.5 

3.5 

9'5. l.f 9 . 2F < 5F l 31 . 'lF ( 00( 3F l l 
9 . 2F ( 00( 1 G l l '5 . 2F ( 00( 10 l l 

9'1. '1'1. 20 < 00( 10 l l '11. IfF < OO< 3F l l 
1 0. 2D ( DD< 3F l l 

97. 51. 20 ( 00( !D l l 28. 'lF < DD< 3F l l 
12. 20 (DO( 3F l) 6. 2P ( 00( 10 l) 

98. '1'1. 2F ( '5F l 30. 2F (DO< 3F l l 
23. 2F (00( !G)) 

93. 35. 2F ( 00( 3F) l 30. 2F 
28. 2F COO< lGll 

5F 

.5 99. 68. 2P (00< 10ll 22. 2P (00( 3Pll 
9 . 2P ( 00( 1 S l l 

1.5 97. 57. 2P (00( 10)) 21. 2P (00( 3Pll 
12. 2P <OD< lSll 7. 20 (00( lOll 

3. 5 90. 90. 2G ( 00( 3F l J 

5.5 100. 100. 2H <DO< lGll 

'J. 5 

3.'5 

'1.'5 

2.'5 

3.'5 

-'t2. 7 . '5 

2.5 

'-12. 7 l. 5 

6.8 't.5 

6.8 S.5 

3.5 

92 . 2G < 00( 3F l J 92. 

88. 

98. 

92. 

96. 

81. 2F ( 00( lD) l 6. 2F ( 00( 3F l l 

98. 2H <DO< lGll 

82.2F(00(10)Jl0.2F( 6F 

96. 2F 6F 

100. 100. 2P ( 7P 

99. 89. 2F 6F l 0. 2F ( DO( lD ) ) 

100. 100. 2P ( 7P 

1 00. 1 00. 2H < 6H 

1 00. 1 00. 2H 6H 

99. 

2.5 97. 

76. '10 ( 00( 3P) l 21L LfO ( 00( 3F) l 

76. LID (00( 3Pll 21. '10 (00( 3Fll 

78. '10 < 00( 3P) l 19. '10 ( 00( 3F l l 

82. '10 ( 00( 3P l) 18. '10 ( 00( 3F) l 

86 . 20 ( DO< 3P l l 8. 20 < DD< 3F l l 

1. '5 97. 

.5 100. 

1.5 94. 
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CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 
EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- DO< 2S+l lL ::: 3D2( 2S+l lL 

DO< 2S+ I )L = 302( 2S+l )L OS( 2S+ l ll = < 3P5< 2P l 3D< 2D l )( 2S+l lL 
====~======~=================================================================== 

IRREP CALC 

:m 512 312555. 

2H 9/2 313116. 313111. 

2Hll/2 313116. 313111. 

2F 7/2 314932. 

2F 5/2 314947. 

2G 9/2 315891. 

2G 712 316'-1 34. 

-'IS 3/2 318-456. 

25 1/2 318-473. 

2F '512 320438. 

2F 7/2 320-457. 

2F 5/2 326489. 

2F 7/2 326508. 

2P 3/2 330074. 

2F 5/2 330872. 

2F 712 330890. 

2P 112 333992. 

'-IP 1/2 352560. 

lJP 3.'2 353359. 

2F 5/2 354408. 

4P 5/2 354 797. 

2F 7/2 356525. 

2P 1/2 3')98!4. 

2P 3/2 36150'-1. 

'IF 9/2 363281. 

'tF 7/2 3643')6. 

4F 5/2 365348. 

INCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

2.5 94. 85 . 2D ( 00( 3P ) l 9. 20 ( DO( 3F )) 

5. 5 LJ. 5 100. 100. 2H ( 7H 

5 . 5 5 . 5 l 00. l 00. 2H 7H 

3.5 

2.5 

96. 

97. 

96. 2F 7F 

97. 2F < 7F 

LJ • 5 95 . 95 . 2G < OO< 1 G l l 

3. 5 95. 95. 2G < DD< lG l l 

1. 5 100. 1 00. I.JS ( DD< 3P l l 

. 5 100. 100. 25 (DO( 3P l l 

2.5 

3.5 

2.5 

3.5 

1.5 

2.5 

98. 98. 2F 

98. 98. 2F 

98. 98. 2F 

98. 98. 2F 

8F 

8F 

9F 

9F 

99. 

98. 

78. 2P (00( lSll 21. 2P (00( lOll 

98. 2F 1 OF 

3. 5 98. 98. 2F < 1 OF 

.'5 97. 79. 2P (00( lSll 18. 2P (00( lDll 

.5 100. l00.'-IP<OS<3Pll 

1 . 5 99. 99. liP <OS< 3P l l 

2.'5 92. 46. 2F (00( 3F)) 46. 2F <OO< !Gll 

2.'5 99. 99.4P<OS<3Pll 

3.'5 92. 47. 2F <OO< lGll 11'5. 2F <DO< 3Fll 

. '5 99. 99. 2P ( OS< 3P) l 

l . 5 98. 98. 2P ( DS< 3P l l 

4.5 100. 100. '-IF <DS< 3Fll 

3. 5 99. 99. '-IF < DS< 3F l l 

2.5 98. 98.4F<OS<3Fll 

---------------------------------------------------------------
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TABLE (5.15AJ CONTINUED 

TI 3+ ODD LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- DD< 2S+l lL :::: 302( 2S+l lL 

DO< 25+1 JL = 302< 2S+l JL DS< 25+1 lL :::: ( 3P5( 2P l3D( 20 l )( 25+1 JL 
=======================================================~=================~===== 

IRREP CALC 

'IF 3/2 366182. 

2F 712 370598. 

2F '5/2 37275'1. 

2P 112 381994. 

'lD 712 383006. 

2P 3/2 383072. 

'fC 5/2 383503. 

40 3/2 3838'1'/. 

40 l/2 384100. 

2D 5/2 385130. 

20 3/2 385173. 

20 5/2 385603. 

20 3/2 386288. 

2F 5/2 388639. 

2F 7/2 389328. 

20 3/2 3921'59. 

20 5/2 392315. 

2P 3/2 '-18'1197. 

2P l/2 '184220. 

EXP INCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

1.5 99. 99.4F<DS<3Fll 

3 . 5 9 7 . 9 7 . 2F < D S< 3F l l 

2.5 97. 97. 2F <OS<3Fll 

.5 100. 74. 2P (00( 3PJ) 13. 2P (00( lOll 
12. 2P ( 00( 1 S l J 

3. 5 95. 9?. 40 (OS( 30 l l 

1.5 99. 75. 2P (00( 3Pll 15. 2P <DO< lOll 
1 0 . 2P ( DO< 1 S l l 

2.5 

1.5 

96. 

98. 

89. 40 (05( 30)) 7. 20 (05( 10)) 

90. 'lO (OS< 30 l l 8. 20 (OS< 10 l l 

.5 100. 100. 'fD (DS<3Dll 

2.5 96. 59. 20 (00( 3Fll l'l. 20 <OO< 10)) 
1'1. 20 <OS<30ll 10. 20 (0D<3Pll 

1. 5 100. '19. 20 ( 00( 3F l l ! 9. 20 ( 05( lD l l 
12. 20 < 00( lD l l 8. 20 ( 00( 3P J l 

7. 20 (OS< 30 l) 5. 40 ( 05( 30 l l 

2.5 97. 80.20(0S(JD))ll.20(0S(30l) 
6. 'lO (OS( 30) l 

1.5 91. 69. 20 (05( 10)) 11. 20 (00( 3Fll 
11 . 20 ( 05( 30)) 

2.5 89. 89. 2F <DS< lFll 

3.5 93. 93.2F<DS<lFll 

1.'5 92. 82.2D<DS<3DJll0.20(00(3Fll 

2.5 

1.5 

.5 

96. 73. 20 < 05( 30 l l 9. 20 ( 00( 3F)) 
8. 20 (OS< lOll b. 2F (05( JFll 

100. 100. 2P (OS< lPJ) 

100. 100. 2P (OS< !Pll 

NO. EXPERIMENTAL LEVELS 

ABSOLUTE MEAN DEVIATION = 
RM5 DEVIATION = 

17. 

38. 16 

6 7. 7'5 
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TABLE (5.15Bl 

Tl 3+ EVENLEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- DD< 25+1 JL ::: 302( 25+1 lL 

0!)( 2S+1 JL ::: 302( 2S+l lL 05( 25+1 lL = ( 3P5< 2P )3D< 20 l )( 25+1 lL 
=~===============~============================================================= IRREP CALC 

20 3/2 

20 5/2 

-2. 

38'1. 

EXP 

0. 

382. 

25 1/2 80389. 80389. 

20 3/2 196802. 19680'1. 

20 5/2 196892. 196890. 

251/2 212'107. 212'107. 

20 3/2 258838. 258838. 

20 5/2 258877. 258877. 

2S 1/2 2658'17. 2658'17. 

2G 712 278511. 278511. 

2G 9/2 278511. 278511. 

20 3/2 289183. 289186. 

20 5/2 289clO. 289207. 

2S 1/2 293000. 293000. 

2G 712 3000'16. 3000'16. 

2G 9/2 300046. 3000'16. 

20 3/2 306393. 306396. 

20 5/2 306'1!1. 306'108. 

25 1/2 308710. 308710. 

2G 712 31303'1. 31303'1. 

2G 9/2 31303'1. 31303'1. 

2Ill/2 313131. 313!31. 

2111/2 321531. 321531. 

40 1/2 397455. 

'10 312 397970. 

'10 5/2 398790. 

'10 7/2 399909. 

!NCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

-2.2 1.5 100. 100. 20 ( 30 

2.2 2.5 

0. . 5 

-2.0 1.5 

2.0 2.5 

100. 100. 20 

100. 100. 25 

!00. 100. 20 

100. 100. 20 

0. . 5 100. 100. 25 

-.3 1.5 100. 100. 20 

.3 2.5 100. !00. 20 

0. .5 100. 100. 25 

.1 3.5 100. 100. 2G 

-. l l.f .'5 100. 100. 2G 

-3.2 1.5 100. 100. 20 

3.2 2.'5 100. 100. 20 

0. .'5 100. 100. 2S 

-. 1 3. 5 1 00. 100. 2G 

. 1 4.5 l 00. 100. 2G 

-2.4 1 . 5 100. l 00. 20 

2.'1 2.'5 100. 100. 2D 

0. .5 100. 100.25 

-.1 3.5 100. 100. 2G 

. 1 4 . 5 1 00. 1 00. 2G 

0. '5.5 100. !00. 2I 

0. 5.5 100. 100. 21 

30 

LJS 

40 

IJD 

55 

'50 

50 

6S 

'5G 

5G 

60 

60 

75 

6G 

6G 

7D 

7D 

8S 

7G 

7G 

7I 

8I 

. 5 

1.5 

2.5 

3 .. '5 

97 . 

97. 

98. 

99. 

90. -40 ( DP( 3P > ) 7. '10 ( DP< 3F > l 

89. 40 ( DP< 3P l l 8. 40 ( OP( 3F l) 

88. 40 < DP< 3P)) 10. 'tO ( OP( 3F)) 

8'5. '10 ( OP( 3P)) 1 '1. 40 ( DP< 3F l) 
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-=-'=>=-=-=------------------------------------------------------------------------
TABLE (5.15Bl CONTINUED 

TI 3+ EVENLEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- DD<2S+llL = 302( 2S+l ll 

DO< 2S+l lL = 302<2S+llL OS( 2S+l ll = ( 3P5( 2P l3D< 20 l )( 2S+l )L 
=============================================================================== Hi REP CALC EXP INCR J lf'1U TOTAL -- EIGENVECTOR COMPOSITION PCT ----------~~-~--~---~-~-~-~--~-=------~----------~----------~--~~-=----~-------
"'P l/ 2 '1001'12. . 5 99 . 99. "'P ( OP( 3P)) 

"'P 3/2 '100602. 1 . 5 93. 93. "'P ( OP( 3P l l 

"'P '512 Lf0l615. 2.5 97. 97. LiP ( DP< 3P l l 

2P l/2 '10181.fl.f. . 5 96 . 96. 2P ( OP< 3P l l 

2P 3/2 Lf02'51.f9. 1.5 91. 8Lf. 2P ( OP< 3P l l 7. "'S ( DP< 3P l l 

LIS 3/2 '10'1369. 1.5 96. 89. 'IS ( DP< 3P l l 7. 2P ( OP( 3P l l 

20 3/2 '107821.. 1. 5 87. 87. 20 ( DP< 3P l J 

2D '512 '108159. 2.5 95. 83. 20 ( DP< 3P l l 6. 20 ( DP< 3F l l 
6. 20 ( OP< 30 l l 

l.fGll/2 l.f09'50't. 5.5 100. 100. 'IG ( OP( 3F l l 

'tG 9/2 '110050. 't.5 98. 86. 'JG ( DP< 3F l l 12. 'tF ( DP< 3F l l 

LfD 712 'J103't5. 3.5 9'1. 32. '10 ( DP< 3F l l 31. 'IF ( DP( 3F) l 
16. 2F < DP< 3F l l 8. 'IG ( DP< 3F l) 

7. 'JO < DP< 3P) l 

2S 1/2 '11 0752. . 5 98 . 98. 2S < OP( 3P l l 

2F 7/2 't10800. 3.'5 93. 68. 2F ( DP( 3F l l 16. ttG ( OP< 3F l l 
9. '10 ( OP< 3F l l 

'iG 712 .l.f10979. 3.5 88. 71. .l.fG ( OP( 3F l l 17. 'tO ( DP< 3F l l 

'tF 9/2 .l.flll33. .l.f.'5 97 . 8'5. 'tF ( DP< 3F) l 12. 'tG ( DP< 3F l l 

'tO '5/2 'lll29.1.f. 2.5 97. '15. '10 ( DP< 3F ) l 27. 'IF ( OP( 3F l l 
11. 'IG ( DP( 3F)) 8. 'ID ( DP< 30 l l 

7. 'ID ( DP< 3P) l 

'IG '512 'tll766. 2.'5 96. 87. 'IG ( DP( 3F)) 9. 'tO ( DP( 3F)) 

'ID 3/2 .l.fl22'57. 1.'5 98. '59. '10 ( OP( 3F l l 20. 'IF ( DP< 3F l l 
11. 'tO ( DP( 30)) 8. 'ID ( DP< 3P l) 

2F 5/2 'tl2797. 2.5 92. 66. 2F ( DP( 3F l) 19. 'IF ( DP\ 3F) l 
8. .l.fD ( DP( 3F)) 

4F 712 '112856. 3.'5 90. 66. 'IF ( OP< 3F l) 17. .l.fO ( DP( 3F)) 
7. 2F < OP( 3F) J 

'10 l/2 .l.fl3070. . '5 99 . 76. '10 < DP< 3F l) 1'1. '10 ( DP( 30)) 
9. '10 ( OP( 3P l) 

.l.fF '512 .l.fl3979 . 2.'5 91. '19. 'IF ( DP< 3F l l 27. 2F ( DP< 3F l) 
15. 'ID ( DP< 3F l ) 

--~-~--------=---~-~ ~---~~-----------------------------------------------------
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-----------------------------~-------------------------------------------------
TABLE 15.1581 CONTINUED 

TI 3+ EVENLEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- DO( 2S+l lL = 302( 25+1 JL 

00( 25+1 lL = 3021 2S+l )L 051 25+1 )L = ( 3P5( 2P 130( 20) )( 25+1 IL 
====~=============================~=============================~============== lRREP CALC 

I.!F 3/2 1.!11.!102. 

2G 9/2 1.!17529. 

2G 7/2 1.!19126. 

20 5/2 1.!19911.!. 

2D 3/2 'f20551t. 

!.fD 7/2 't28!.f87. 

!.fD 5/2 1.!28995. 

!.fD 3/2 1.!29671.!. 

!.fD l/2 1.!30181.!. 

2F 5/2 1.!30203. 

2F 5/2 '130,80. 

2F 7/2 !.f 31 0 73. 

ltF 9/2 lf 31297. 

'lF 3/2 '131612. 

LIF 5/2 '131961. 

l.fF 7/2 '131987. 

20 31 2 lj 3 l 9 95 . 

2G 712 43l!672. 

2F 5/2 'l3lt972. 

2G 9/2 1.!3'5663. 

2G 712 lt3'5695. 

EXP INCH J/MU TOTAL --EIGENVECTOR COMPOSITION PCT 

1.5 

1.!.5 

3.5 

2.5 

1. 5 

3.5 

2.5 

1.5 

. 5 

2.'5 

2.5 

3.5 

l.f.5 

1.5 

2.5 

3.5 

1.5 

3.5 

2.5 

4.5 

3.5 

93. 

98. 

95. 

88. 

76. 'lF IDPI3Fll 17. 'tD IDPI3Fll 

98. 2G < DP< 3F I l 

95. 2G ( DP< 3F l l 

37. 20 I DPI 1D l l 35. 20 ( DP( 3F l l 
l 7. 20 ( DP( lF I l 

95. 1.!6. 20 <DPI 1Dll 31. 20 IDP< 3Fll 
13. 20 ( OPI lF l l 5. 20 ( OPI 3D) I 

92. 82. 'tO ( DPI 30 J l 10. 'tO ( OP< 3F J l 

81. 72. 'tO I DPI 30 l l 10. !.fD ( DP< 3F)) 

90. 78. 'lD IDPI 3Dll 12. 'lD IDPI 3Fll 

99. 8lJ. 'tO IDP< 3Dll 15. lJD <DPI 3Fll 

97. 32. 2F ( DPI 10 J l 20. 20 ( DPI 3F l l 
20. 20 <DP< 3Dll 12. 2F <DP( lFll 

7. LIF < DP< 30 l l 6. 2D ( DP( lD l) 

89. 25. 2F ( DP< lD l) 19. 20 ( DP< 3D l) 
18. 20 <OP(3Fll 16. 2F !DP<lFll 
12. 'lD ( OP< 30)) 

93. 39. 2F (DP<lDll 31. lJF <DP<3Dll 
17. 2F ( OP< lF l l 6. 'lD ( OP( 3D l l 

97. 88. lJF ( DP< 3D l l 9. 2G < DP< lF l l 

95. 69. lJF (OP< 30)) llJ. 20 <OP< 3Fll 
12. 20 < OP( 3D J l 

91. 8'5. 'lF ( OP( 3D l) 6. 2F ( !JP( lF)) 

9'1. 55. lJF ( DP< 30)) 21. 2F ( DP< IF l I 
18. 2F ( DP< lD l l 

90. 33. 20 ( DP< 3D) l 26. lJF ( DP< 3D l l 
25. 20 ( OP( 3F l) 7. liD ( DP( 30)) 

90. 59. 2G <DP( lFll 23. 2F <DP( 3Dll 
8. 'lF ( DPI 3D )) 

96. lJ2. 2F <DP< 1Fll 36. 2F <DP( 3Dll 
18. 2F ( DP< 10 l l 

99. 

97. 

90. 2G ( !JP( lF l) 9. lJF ( DP< 3D l l 

30. 2G ( DP< lF l l 28. 2F ( !JP( lF l l 
21. 2F < DP< 10 J l 19. 2F < DP< 30)) 
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TABLE (5. 158) CONTINUED 

TI 3+ EVENLEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- DO< 2S+l lL :::: 302( 2S+l ll 

DD<2S+l)L:::: 3D2<2S+l)L DS<2S+l)L = (3P5(2Pl30(20lH2S+llL 
======================~=========================================~============~= 

IRREP CALC 

'tP 5/2 'l35922. 

'tP 3/2 Lt36209. 

2P 1/2 Lt365'l9. 

'IP 1/2 Lt372'l3. 

2P 3/2 'l37'193. 

20 3/2 Lj 38%'5. 

20 '512 'l2869!. 

2F 7/2 'l'l0283. 

2P 3/2 '-l'i0538. 

2F 5/2 't't0597. 

2P 1 I 2 't'll 311 . 

20 3/2 '1'5376't. 

20 '5/2 't5'1672. 

2P l/2 '529776. 

2P 3/2 '530113. 

20 3/2 '532686. 

20 5/2 533175. 

25 112 53Lf598. 

EXP INCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

2.5 

1.5 

.'5 

. 5 

1.5 

2.'5 

3.5 

1.5 

2.5 

. 5 

1.5 

2.'5 

. ') 

1.5 

1.5 

2.5 

. 5 

93. 93. 'JP <DP< 3Dll 

93. 62. 'tP <DP( 30l) 31. 2P <DP< lOll 

99. 't9. 2P (0P( lOll LJO. IJP (0P( 30)) 
1 0. 2P ( DP( 30 l l 

100 . 60. 'tP ( OP< 30 l l 30. 2P ( OP( 10 l l 
1 0 . 2P ( OP( 30 l l 

99. 5'l. 2P ( DP< 10 l l 36. 'tP < OP< 30 l l 
8. 2P ( OP( 30 l l 

93. 35. 20 (IJP( lDll 33. 20 (0P( lF)l 
1 7. 2P ( DP< 30 l l 7. 2P ( OP< 10 l l 

91. Lf't. 20 <DP< !Fll 38. 20 <DP( lOll 
9. 20 ( DP< 30 l l 

93. 52. 2F <OP< 30ll 2'1. 2F <OP( lFll 
1 7. 2F ( OP< lD l l 

91J. 69. 2P <OP( 30)) 10. 20 <OP( lFll 

96. 

98. 

99. 

99. 

99 . 

99. 

98. 

99. 

99 . 

8. 20 (0P( lOll 6. 2P (OP< lOll 

58. 2F <DP< 30)) 20. 2F <DP< lFll 
18. 2F <DP< lOll 

77. 2P (Qp( 30)) 20. 2P (QP( lOll 

'tO. 20 <OP( 3Dll 33. 20 <DP< lFll 
llf. 20 <DP< 3Fll 7. 20 <DP( lOll 
6 . 20 ( OP< 3P l ) 

38. 20 ( DP( 30)) 32. 20 ( DP( lF)) 
16. 20 ( DP< 3F) l 7. 20 ( DP( 3P l l 

7. 20 ( DP< 1D)) 

99. 2P <DP( !PlJ 

99. 2P (Qp( lPll 

98. 20 ( DP( lP l l 

99. 20 (QP( lPll 

99. 25 < DP< 1 P l J 

NO. EXPERIMENTAL LEVELS= 23. 

ABSOLUTE MEAN DEVIATION = 

RMS DEVIATION = 

. 91 

1. Lf8 



TABLE (5.16Al 

MN6+ ODD LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- DO< 2S+l lL :::: 302( 2S+l lL 

~252-

00( 25+1 lL = 302( 25+1 lL OS( 2S+l lL ::: ( 3P5( 2P l3D( 20 l )( 2S+l lL 
===========================================~=================================== 

IRREP CALC EXP INCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT -------------------------------------------------------------------------------
'10 1/2 35'1226. 

'10 3/2 355013. 

'-![) '5/2 3'5635'1. 

'-10 712 3'58365. 

'!G ll/2 372'137. 

'1G 9/2 37'415'1. 

lJG 712 376202. 

'4G 5/2 378330. 

'+P 5/2 381838. 

"'P 3/2 384692. 

'+F 3/2 3866l! 1 . 

'IP l/2 386789. 

itF 5/2 387lf52. 

'+F 9/2 387505. 

'IF 7/2 388755. 

'lF 5/2 391357. 

2F 5/2 392109. 

2D 3/2 392913. 

2F 7/2 39'1672. 

2P l/2 397152. 397650. -498. 1 

. '5 1 00. 8 3. l!D ( DO( 3F l l 1 7. l!D ( DD< 3P ) l 

l . 5 99. 81 . ltD (DO< 3F l l 18. liD < DD< 3P l l 

2. 5 98. -;'8. '10 < 00( 3F) l 20. 'ID ( DO< 3P l l 

3. 5 98. T3. 'ID (DO< 3F l l 2'1. l!O (DO( 3P l l 

5. 5 100. 100. 'IG <DO< 3F l l 

lf.'5 

3.5 

2.5 

2.5 

1.5 

1.5 

.5 

2.5 

4.'5 

3.5 

2.5 

2.5 

1.5 

3.5 

. 5 

99. 

97. 

92. 

93. LJG ( 00( 3F l l 5. 4F < 00( 3F l l 

89. 4G ( 00( 3F l l 8. l!F (DO< 3F l l 

8'1. l.JG ( DO( 3F)) 9. LJF ( DO< 3F l l 

98. 98. 'IP ( 00( 3P) l 

97. 97. ltP <00<3Pll 

97. TO. 'IF ( OD< 3F l l 20. 20 <DO< 10 l l 
7. 20 < DO< 3F ) l 

98. 98. '-IP < 00( 3P) l 

97. 41. 4F <DO( 3Fll 38. 20 (00( lOll 
11. 20 ( 00( 3F l l 8. 'lG ( DO< 3F l l 

96. 

90. 

91. 4F ( DO( 3F l l 5 . 2G ( 00( 3F l l 

8 3 . IfF ( DD< 3F l l 7. 'lG ( 00( 3F l l 

86. 48. IfF ( 00( 3F) l 32. 20 < OD< 10 l l 
7. 20 ( 00( 3F l l 

96. '-1'1. 2F ( 00( 1 G l ) 38. 2F ( DO< 3F l l 
7. 'IG < DO( 3F J l 7. 20 < OD< 10 l l 

93. lf'4. 20 ( 00( 10 l l 28. 1-IF (DO< 3F l) 
11. 2P < OD< lD l l l 0. 20 < OD< 3F l l 

95. 42. 2F (00( 1Gll 38. 2F (00( 3Fll 
10. 2F (00( lOll 5. 'IF <DO< 3Fll 

96 . 65. 2P ( 4P ) 25. 2P ( DO( lD ) l 
6 . 2P ( OD< 3P l l 

2F 3/2 '+00501. '100120. 380.5 1.5 90. 8'-1. 2P 6. 2P ( OD( 10 l) 

2P l/2 '101'+06. .5 

2G 712 '+0l!709. 3.5 

95. '-1'1. 2P ( DO< 10 l l 35. 2P 
15 . 2P ( 00( 3P l l 

'IP 

92. 71. 2G < OO< 3F l l 21. 2F ( OO< lD l l 

-------------------------------------------------------------------------------
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TABLE ( 5. 16A) CONTINUED 

MN6+ ODD LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE --DOl 2S+11L- 3021 2S+11L 

DDI2S+l1L = 30212S+11L DSI2S+l1L:::: 13P512P13012DIH2S+l1L 
=======================================~======================================= IRREP CALC 

2Hll/2 lf05890. 

2P 3/2 lt05920. 

2F 7/2 lt07819. 

2G 9/2 tt09388. 

2H 9/2 ltllf31t9. 

2F 5/2 1116950. 

110 7/2 11220%. 

110 512 1123637. 

40 3/2 4 25 71 1 . 

40 1/2 427831. 

20 3/2 439219. 

20 5/2 442715. 

2G 9/2 1147104. 

2G 7/2 447798. 

'IS 3/2 '-1'18373. 

25 112 4481152. 

2P 3/2 4685'-15. 

2P 11 2 Lf 775 27. 

EXP 

2F 5/2 '189817. Lf89880. 

2F 7/2 49'16Lf5. Lf9'-!300. 

2P l/2 5'110'16. 

2P 312 5'-13160. 

INCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

5.5 100. 100. 2H I 001 lG l I 

1.5 95. If?. 2P 1001 lOll 18. 2P 100( 3Pll 
111. 2P< 4P I 10.2010011011 
8 . 2P I 00( 1 S l I 

3.5 98. 67. 2F 1001 lOll 17. 2G 1001 3FII 

'-1.5 

'-1.5 

2.5 

3.5 

2.5 

1.5 

.5 

1.5 

2.5 

'-1.5 

3.5 

1.5 

.5 

1.5 

. 5 

-62.9 2.5 

3Lf5.Lf 3.5 

.5 

1.5 

8 . 2F I DOl 3F I l 5 . 2F I DOl 1 G I l 

91. 85 . 2G I DO< 3F I I 6 . 2G ( 00( 1 G I l 

94. 9'-1. 2H I 001 lG I l 

93. 93. 2F 1001 lOll 

98. 73. 1-10 ( 00( 3P I J 26. lfO < 001 3F l I 

99. 73. '-10 ( 00< 3P I I 21 . '10 ( 00( 3F) J 
5 . 20 ( 00( 3P ) ) 

99. 75. '-10 ( 00( 3P I I l 7. lfO ( 00( 3F l I 
6. 20 ( 001 3P l l 

99. 83. '-10 ( 00( 3P)) 16. 1~0 ( 00( 3F)) 

95. 

90. 

92. 

95. 

99. 

99. 

98. 

9'5 . 

95. 

9'-1. 

99. 

99. 

82. 20 (DOl 3P l l 7. 20 ( 00( 3F) l 
6 . '-10 ( 00( 3P J I 

82. 20 ( 00( 3P I l 8. 20 ( 00( 3F l) 

92. 2G < 00( lG l l 

95. 2G < OO< lG l J 

99. Lf5 ( 00( 3P l I 

99. 25 ( 00( 3P I l 

78. 2P 1001 15ll 20. 2P (00( lOll 

79. 2P (00( !Sll 16. 2P 100( lOll 

50. 2F ( OO< 3F l l 4'5. 2F ( 00( lG)) 

Lf7. 2F (001 lGll '17. 2F <DO( 3Fll 

73. 2P ( DOC 3P l l llf. 2P ( 00( IS ) J 
13. 2P < OO< 1 D l ) 

7'5. 2P < 001 3P l l 15. 2P ( 00( 10 l l 
l 0. 2P ( 00( l S l l 

20 5 I 2 5 '-! 7 212. 5 '17 3 7 0 . -15 8 . 3 2 . 5 100. 70. 20 < oo< 3F l l 1 r. 20 < oo< w n 
l 2 . 20 ( 00( 3P ) l 



~254-

- ..... <=>-.=--==----------------------------------------------------------------------
TABLE (5. 16Al CONTINUED 

MN6+ ODD LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- DD< 2S+llL =3D~ 25+llL 

DO< 2S+l lL = 302< 25+ 1 lL D5< 2S+ 1 lL = < 3P5< 2P l 30< 20 l )( 2S+ l lL 

=~~~~;===~:~~======~~~=====~~~~==~;~~===~~~:~=~~=~~~~~~~~~~~=~~~~~~~~~~~=~~~=== 

20 312 51t7935. 51J7930. '5 .It l. 5 100. 71. 20 <DD< 3Fll 18. 2D <DD( lDll 
11 . 20 ( DD< 3P l l 

2F 5/2 615911J. 615960. 

2F 712 616136. 616100. 

-'16.0 2.5 

36.2 3.5 

96. 

96. 

96. 2F 

96. 2F 

2P 1/2 61t296l. .5 100. 100. 2P 

ltF 

'4F 

5P 

'5P 2P 3/2 6'4398'5. 1.'5 100. 100. 2P 

'+P 112 693227. . 5 

ltP 312 69'50'53. 69',li20. -1367.1 1.'5 

liP '5/2 698'506. 2.5 

2P 112 701987. 700870. 1116.8 .5 

2P 3/2 705897. 70'5170. 726.8 1.5 

99 . 

97. 

98. 

98. 

96. 

99. 'lP ( D5< 3P l l 

97. '4P (lJS( 3Pll 

98. 'JP < DS< 3P l l 

98. 2P <DS<3Pll 

9b. 2P ( DS< 3P l l 

liF 9/2 707599. '1.5 100. 100.1tF(DS<3Fll 

liF 7/2 71006'1. 709720. 

'IF 5/2 712861. 712350. 

'+F 3/2 715702. 

3'13. 5 3. 5 

511.'1 2.'5 

1.5 

2F 7/2 71698lJ. 717'130. -'1'15.8 3.5 

2F '5/2 721'112. 722100. -688.0 2.5 

't[) 712 735283. 73'5510. -226.7 3.5 

'lD 5/2 737295. 737020. 

't[) 3/2 738508. 

LtD 112 739549. 

2F 5/2 7397Lf 1 . 739770. 

2F 7/2 7399tt8. 73991.f0. 

20 3/2 71.f10!9. 

20 '512 7lf!830. 

275.5 2. '5 

1.5 

. 5 

-29.1 2.5 

7.7 3.5 

1.5 

2.5 

98. 

96. 

95. 

98. 

91. 

97. 

93. 

92. 

99 . 

91.f. 

93. 

90. l.fF < DS< 3F l l 8. 2F <OS( 3F l l 

89. l.fF <D5( 3Fll 6. 2F (05( 3Fll 

9'5. l.fF (OS( 3F l l 

90. 2F <OS( 3Fll 7. l.fF (05( 3Fll 

85. 2F ( DS( 3F l l 6. lfF (OS< 3F l) 

81. l.fO (05< 30)) 16. 2F <DS< !Fll 

66. l.fD ( D5( 3D)) 9. 2D < 05( 30)) 
9. 2D ( DS< 1fJ)) 9. 2F < DS< lF l l 

61. l.fD <OS( 30)) 3L 2D (05( lDJl 

99. l.fD < DS< 3D)) 

82. 2F ( 5F l b. 2F < 05< !F l l 
5. 20 (05( 10)) 

93. 2F ( '5F 

98. 50. 20 ( D5< lD)) 36. '40 ( 05( 30 l l 
11. 20 ( D S< 3D l l 

96. 77. 20 < 0 5( l D l l 7. LtD ( D S< 30 l l 
6. 2F < 5F l 6. 2F IDS< !Fl) 

-------------------------------------------------------------------------------















TABLE (5.16Bl CONTINUED 

MN6+ EVEN LEVELS 
CALCULATIONS COMPARED WITH Eli PER I MENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- DO( 25+ 1 lL = 302( 25+ 1 lL 

DD<2S+l>l = 3D2<2S+l>l DS<2S+llL = <3P5<2Pl3D<2DlH2S+llL 

IRREP CALC 

2P 3/2 9!i8TT7. 

20 3/2 952HO. 

2D 5/2 95~361i. 

25 l/2 956619. 

EXP INCR J/MU TOTAL --EIGENVECTOR COMPOSITION PCT 

1.5 

1.5 

2.5 

.5 

95. 9'5. 2P ( DP< lP)) 

9tt . 9tt . 20 ( DP< l P l l 

99. 99. 20 <DP< lPJJ 

98. 98. 25 <DP( lPJ) 

NO. EXPERIMENTAL LEVELS = 

ABSOLUTE MEAN DEVIATION = 

RMS DEVIATION :::: 

5. 

3161t.OO 

5672.51 

~261~ 

------------------~------------------------------------------------------------
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---------~-~-~--~=-==----------------------------------------------------------
TABLE ( 5. 1 7A l 

FE7+ ODD LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- DD< 2S+l lL :::: 3D2< 2S+l ll 

00( 2S+l lL = 302< 2S+l lL DS< 2S+l ll = ( 3P5< 2P l3D( 2D l )( 2S+l )L 

IRREP CALC EXP INCR JIMU TOTAL -- EIGENVECTOR COMPOSITION PCT 
-~---~=-------------=~~--------=---~~~~---~-----------------~---~----~~------~-'!{) l/2 38701'1. . 5 100 . 8'1. '10 < 00( 3F l) 16. '10 (DO( 3P)) 

'ID 3/2 387990. 1.5 99. 81. liD (DO< 3F l l 18. liD (DO( 3P l) 

'ID 5/2 389651. 2.5 98. 77. ltD <DO< 3F l l 20. ltD (DO< 3P l l 

ltD 712 392163. 3.5 97. 72. '10 (DO< 3F l l 25. ltD ( 00( 3P l l 

'+G ll/2 '!06913. 5.5 100. 100. 'IG ( 00( 3F l) 

'-lG 9/2 '!088'15. lJ.5 98. 92. lJG ( OD( 3F) l 6. 'IF ( 00( 3F) l 

'!G 712 '111263. 3.5 96. 86. 'IG <DO< 3F l l 10. 'IF <DO< 3F}) 

'!G 512 '113787. 2.5 95. 78. ttG (DO( 3F l l 11. 'IF < 00( 3F l l 
5. 2F ( DD< 3F) l 

l!P 5/2 tt 17179. 2.5 98. 98. 'IP (DO( 3P l l 

'JP 3/2 lJ20655. 1.5 96. 96. 'JP <DO< 3P l l 

'IF 312 'l22'196. 1.5 96. 68. 'JF ( 00( 3F l) 21. 20 <DO< !D)) 
8. 20 <DO( 3F l l 

'lP 1/2 lJ23296. .5 97. 97. 'IP (DO< 3P) l 

20 512 'l23688. 2.5 97. ttl. 20 ( 00( 10)) 3'1. 'IF ( 00( 3F l) 
12. 20 ( OD< 3F l) 10. l!G (DO( 3F)) 

'IF 9/2 lf23710. 'l.5 9'5. 89. 'lF ( OD< 3F l l 7. 2G < 00( 3F l l 

LJF 7/2 'l25329. 3.5 9'l. 78. 'JF < 00( 3F ) l 9. 'JG ( 00( 3F l l 
7. 2G ( DD< 3F l l 

'JF 5/2 'l28'l35. 2.5 90. lib. 'JF <DO( 3F)) 2'l. 2D ( 00( lD)) 
ll. 2F (DO< lG l l 9. 2F ( 00( 3F l l 

2F 512 lJ29175. 2.5 97. 37. 2F < OD< lG)) 31. 2F < 00< 3F l l 
11. 'JG <DO< 3F l l 11. 20 ( 00( 10)) 
6. l!F (DO< 3F) l 

20 3/2 'l30193. 1. 5 93. 'l2. 20 ( 00( lD}) 30. 'JF (DO< 3F l l 
12. 2P ( 00( lD l l 9. 20 ( 00( 3F l l 

2F 712 'l32159. 3.5 9lf. lJl. 2F <DO< lGll 37. 2F <DO( 3F l l 
10. 2F (DO< 10 l l 6. LlF ( OD( 3F) l 

2P l/2 'l37336. . 5 98 . 70. 2P (DO< lD l l 21. 2P ( OD( 3P l l 
7. 2P (DO( 1 S l) 

2G 7/2 'J'l2679. 3.5 92. 59. 2G < 00( 3F)) 33. 2F (DO< lD l l 

2Hll/2 'l'l3597. 5.5 100. 100. 2H (DO< !G) J 

-------~----~-------=-~---~--~-~--~----------~-~-------------~---~--~------
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------~------------------------------------------------------------------------
TABLE (5.!7Al CONTINUED 

FE7+ ODD LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- DD< 2S+l lL ::: 302( 2S+l lL 

DD< 2S+l lL = 3D2< 2S+l lL DS< 2S+l lL ::: ( 3P5< 2P l30( 20) )( 25+1 lL 
========================================================================~=====~ 

IRREP CALC EXP INCA J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

2P 3/2 'l!tlt253. 

2F 712 lt%058. 

2G 9/2 lt'l8757. 

2H 9/2 lt51t039. 

2F 5/2 '!57388. 

ltD 7/2 %1176. 

ltD 5/2 lt62931. 

ltD 3/2 %5'155. 

"tO 112 "!68305. 

20 3/2 '1803'!7. 

20 512 "!8'l751t. 

2G 9/2 "!89320. 

2G 712 '189968. 

LIS 3/2 Li90!02. 

25 l/2 '!90217. 

2P l/2 5 1 Oli 15 . 

2P 3/2 51160li. 

2P 3/2 '5 ! L1906. 

2P 1/2 523955. 

1.5 

3.5 

'!.5 

LJ.5 

2.5 

3.5 

2.5 

1.'5 

.5 

1.5 

2.5 

Ll.5 

3.5 

1.5 

. 5 

. '5 

1.5 

1.5 

.5 

2F 512 536181. '535926. 2'55.3 2.5 

2F 712 5'12516. 5'11777. 739.2 3.5 

2P l/2 590976. 591973. -99Ll .5 

92. I.J9. 2P ( DD( 10 l l !9. 2P ( 00( 3P) l 
l '5. 2D (DO( l D)) 10. 2P ( DD( 15 l l 

97. '56. 2F <DO( 10 l l 27. 2G (DO( 3F l l 
8. 2F (DO< 3F l) 6. 2F (DO< lG l) 

88. 

98. 

93. 

98. 

98. 

98. 

99. 

9'5. 

95. 

91. 

91t. 

98. 

99 . 

98 . 

81. 2G (DO< 3Fll 7. 2G <OO< lGJl 

92. 2H ( DO< 1 G l l 5 . 2G < 00( 3F J l 

93. 2F ( 00( 10 l l 

71. itO (00( 3Pll 27. ltD (00( 3Fll 

71 . I.JD (DO< 3P) l 20. itO ( 00( 3F l l 
6 . 20 ( DO( 3P l l 

73. '10 ( 00( 3P l) 1 7. LID ( 00( 3F l l 
9. 20 ( 00( 3P ) l 

8 3. LtD ( 00( 3P ) l 16. I.JD ( 00( 3F l l 

80. 20 ( 00( 3P l l 8. 'lD ( 00( 3P l l 
7. 20 ( 00( 3F l l 

81 . 20 ( 00( 3P ) l 8. 20 ( 00( 3F l l 
6 . I.JO ( 00( 3P l l 

91. 2G (00( !Gll 

9it. 2G (DO< !G l l 

98. ItS (DO< 3P l l 

99. 25 ( 00( 3P l ) 

98. 2P 

100. 57. 2P (00( !5ll 29. 2P 
I 'l . 2P ( 00( 1 D ) l 

98. 

99. 

70. 2P ( LIP l 21. 2P (00( l5ll 
6 . 2P ( 00( 10 l ) 

77. 2P ( DDt 1 5 J l 16. 2P r 00( 10 ) ) 
6 . 2P ( DO< 3P l l 

97. 51. 2F ( 00( 3F J l it6. 26 ( DD( IG l l 

96. I.J9. 2F (00( !Gll 'l8. 2F ([)0( 3Fll 

99. 72. 2P ( 00( 3P) J 1 '5. 2P ( 00( ! S) l 
12. 2P ( OD< 10 l l 

------------------------------------------------------------------------------··--
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TABLE (5.17Al CONTINUED 

FE7+ ODD LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- DD< 2S+1 lL ::: 3D2< 25+1 lL 

DD<2S+l)L::: 3D2<2S+l)L DS<2S+llL = (3P5<2PJ3D<2DJH2S+llL • 
===============~=============================================================== 

IRREP CALC EXP !NCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 
-~----~~--~------~-----------------~------------~--------------------~----------
2P 3/2 593618. 595166. -15'18.3 1.5 

20 '5/2 597093. 596'130. 

20 3/2 5979'15. 5970T2. 

2F 5/2 763711. 7637?.9. 

2F 7/2 76388'1. 763821. 

2P 1/ 2 81 35 21 . 

2P 3/2 81'1928. 

LJP 112 829166. 

662.'5 2.'5 

873.3 1.'5 

-77.9 2.'5 

62.8 3.'5 

.'5 

1.5 

. '5 

LJP 3/2 831387. 833000. -1612.9 1.'5 

LJP 5/2 835614. 2.5 

2P 1/2 839127. 837750. 1377.3 .'5 

2P 3/2 843877. 842930. 947.5 1.'5 

4F 9/2 844687. 4.5 

LJF 7/2 8474'54. 847250. 203.8 3.5 

4F 5/2 8'50638. 8'19990. 6'18.2 2.5 

LJF 3/2 8'>'1021. 1.5 

2F 7/2 855176. 85'>190. -13.6 3.5 

2F 5/2 860243. 860710. -467.2 2 " 

40 7/2 87LJLJ39. 87'1770. -331.1 3.5 

40 5/2 87686 7. 876810. 

LJO 3/2 878204. 

LJO l/2 879355. 

20 3/2 881161 . 

20 5/2 8 81 712. 

56.9 2.5 

1.'} 

.5 

1.'5 

2.'5 

98. 

100. 

100. 

98. 

98. 

99. 

99. 

99 . 

97. 

97. 

97. 

95. 

7LJ. 2P (00( 3Pll 1'5. 2P <DD( lD)J 
1 0 . 2P ( DO< 1 S ) l 

70. 2D (DO( 3F l l 17. 20 ( 00( 10 l l 
12. 20 ( 00( 3P ) ) 

71. 20 ( 00( 3F)) 18. 20 ( 00( 10) l 
1 1 . 20 < 00( 3P l l 

98. 2F LJF 

98. 2F 'JF 

99. 2P '5P 

99. 2P ( '5P 

99. LJP (OS( 3P l l 

97. LJP (OS< 3P l) 

97. 4P ( DS< 3P l l 

97. 2P (OS<3Pll 

9'5. 2P <DS<3Pll 

100. 100. 4F ( DS< 3F l l 

98. 

9'-1. 

93. 

97. 

88. 

98. 

93. 

89. '-IF <OS<3Fll 8. 2F <DS<3Fll 

88. LJF ( DS< 3F l l 7. 2F ( IJS( 3F l l 

93. 4F <DS<3Fll 

90. 2F <OS( 3Fll 7. LJF <DS< 3Fll 

82. 2F ( DS< 3F l l 6. LJF (OS< 3F l l 

82. LfD (OS< 30)} 17. 2F ( DS( lF l l 

6'5. LJIJ (OS< 30)) 11. 20 (OS< 30 l l 
9. 20 (OS< lOll 9. 2F <OS( lFl) 

96. 58. LfD <OS<3Dll 32. 2D <DS<lDll 

99. 

97. 

96. 

6 . LJF < D S< 3F l l 

99. '10 (0S(30)) 

LJ7. 20 ( DS( lD l) 38. 40 ( DS< 3D l l 
12. 2D (OS( 3D)) 

62. 20 (OS< lD l l 20. 2F (OS< lF l l 
l LJ • 20 ( D S< 3D l l 

-----------------------~---------------------~-----~~---------------~--~--~----~ 



TABLE (5.17Al CONTINUED 

FE1+ ODD LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- 00( 25+1 lL ::: 302( 2S+1 lL 

OD<25+llL = 3D2<2S+l)L OS<25+llL = <3P5<2Pl3D<2DJH25+1)L 

-265~ 

================~==============~===================~=======================~=== 
IRREP CALC EXP !NCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

-==~~-----~-----~---~-~------------------------------~------=---~~--------
20 5/2 883095. 

2F 712 887538. 887320. 

20 3/2 889398. 889110. 

2.5 

218.2 3.5 

288.0 1.5 

98. 

96. 

97. 

33. 20 <OS<3Dll 29. ltD <DS(30ll 
21. 20 (OS( lOll 15. 2F (OS< lFll 

81. 2F (05( lFll 15. 40 (05( 30)) 

2F 512 890796. 890810. -14.~ 2.5 97. 

82. 20 <OS( 30)) 16. 20 (OS( 10)) 

50. 2F (05( lFll lfl. 20 <OS< 3Dll 

2F 5/2 927006. 927025 

2F 712 927071. 927053. 

2P 1/2 955065. 

2P 3/2 95'5774. 

2F 5/2 101653'5. 1016'530. 

2F 7/2 1016565. 1016'570. 

2P l/2 1022094. 

2P 3/2 1022196. 

2H 9/2 1022779. 

2Hil/2 1022783. 

2P l/2 103'5516. 

2P 3/ 2 1 0 35 8lJ 3 . 

2F 5/2 1069941. 1069870. 

2F 7/2 10699'59. 1070030. 

2H 9/2 l071f593. 

2Hll/2 107lJ'595. 

2F '5/2 1105521. 

2F 7/2 1105533. 

2F 5/2 1!29355. 

2F 7/2 1129363. 

2F 51 2 l 14 6 2 0 7. 

2F 7/2 11462!3. 

-19. 1 2. '5 

18.2 3.5 

.'5 

1. 5 

99. 

99. 

6. 2F <OS< 3F l l 

99. 2F 

99. 2F 

100. 100. 2P 

100. 100. 2P 

4.6 2.5 100. 100. 2F 

5F 

5F 

6P 

6P 

6F 

6F -5.lJ 3.5 100. 100. 2F 

.'5 

1.5 

97. 

97. 

97. 2P ( DS< lP l l 

97. 2P (OS< lPl) 

lJ.5 100. 100. 2H 6H 

'5.'5 100. 100. 2H( 6H 

. '5 98. 98. 2P ( 7P 

1. '5 98. 98. 2P ( 7P 

70.8 2.5 100. 100. 2F 7F 

-71.3 3.5 100. 100. 2F 7F 

4.'5 100. !00. 2H 7H 

'5.'5 100. 100. 2H ( 7H 

2 . '5 1 00. 1 00. 2F BF 

3. '5 1 00. 1 00. 2F 8F 

2.'5 100. 100. 2F 9F 

3.5 100. 100. 2F < 9F 

2.'5 

3.'5 

100. !00. 2F ( !OF 

100. 100. 2F !OF 

-------------------------------------------------------------~-----------------



TABLE (5.17Al CONTINUED 

FE7+ ODD LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE-- DDI 2S+llL = 3D~2S+IIL 

OD<2S+lll = 3D2<2S+llL DS<2S+l)L = 13P512Pl3DI2DIH2S+llL 

NO. EXPERIMENTAL LEVELS -

ABSOLUTE MEAN DEVIATION = 

RMS DEVIATION = 

26. 

l{l.f5.58 

666.38 

-266-



TABLE <'5.17Bl 

FE7+ EVEN LEVELS 

-267~ 

CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 
EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- OD< 25+1 lL = 302( 25+1 lL 

OD< 25+1 lL = 302( 25+1 lL OS( 25+1 lL = ( 3P5< 2P )30( 2D) )( 2S+l lL 
=======================================~==========~=~========================== 

IRREP CALC 

20 3/2 

20 '5/2 

-251J. 

1'596. 

25 1/2 l!\9796. 

20 3/2 653279. 

20 5/2 653763. 

25 112 776901. 

20 3/2 876960. 

20 5/2 877198. 

l!O l/2 9l!J337. 

l.fD 3/2 916261. 

l.fD .'5/2 919169. 

!jp 1/2 920187. 

l.fP 3/2 921'135. 

l.fD U 2 922608. 

2P 1/2 92'15A9. 

l.fP 5/2 925156. 

2P 3/2 92557'5. 

liS 312 929990. 

20 5/2 935354, 

20 3/2 935618. 

l.fF 7/2 935718. 

2G 712 935792. 

2G 9/2 935799. 

4G 9/2 935932. 

EXP INCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

0. -253.8 1 .'5 100. 100. 20 

1838. -21Jl.9 2.5 100. 100. 20 

30 

30 

l.fS 

liD 

40 

.5 100. 100. 25 

1.5 100. 100. 20 

2.5 100. 100. 20 

. 5 100, 100, 25 55 

1.5 100. 100. 20 50 

2.'5 

. 5 

1.'5 

2.'5 

. 5 

1.'5 

3.5 

.'5 

2.5 

1.5 

1.5 

2.5 

1.5 

3.5 

4.5 

'1.5 

l 00. 1 00, 20 ( 50 

94 . 

95. 

96. 

o., • 7'. 

93. 

87. LfO ( OP< 3P l l 7. 40 ( OP( 3F l l 

87. l!D <DP< 3Pll 9. l.fD <OP< 3Fll 

83. IJO ( OP< 3P l l 13. 1.!0 ( OP< 3F l l 

95 . 4P < DP< 3P l l 

86. IJP ( OP< 3P)) 7. 'fS ( OP( 3P l l 

91. 71. 40 (0P( 3Pll 26. IJO (0P( 3Fll 

90. 90. 2P <DP<3Pll 

9;~. 92. '!P ( DP< 3P l l 

93. 64. 2P <OP( 3Pll 1'1. 'lS <OP( 3Pll 

95. 

86. 

86. 

95. 

9. 'JP ( OP( 3P l l 6 . 20 ( OP< 3P l l 

75. IJS < OP< 3P l l 11 . 2P ( OP( 3P l l 
8. 20 ( OP< 3P l l 

62. 20 ( DP< 3P l) 7. 20 ( OP( 30) l 
6. 2F ( OP< 3F l) 6. IJO ( DP< 3F l l 
5. 20 ( OP( 3F l l 

71 . 20 ( OP( 3P l l 15. 2P < OP( 3P) l 

3'-1. '-IF ( OP( 3F)) 28. '-Ill ( OP( 3F l ) 
15. IJO <OP< 3Pll !2. 2F <OP( 3Fll 
6. IJO ( DP< 30 l l 

1 00. 1 00. 2G < 5G 

96. 96. 2G 5G 

95. 61 . '-IG < DP( 3F ) l 30. 1-lF ( DP( 3F l l 
5. 2G ( OP( 3F l l 

-----------------------------------------------------------------------------~--



~268~ 

----===~~---=~---~~==-~---~-~--~~--=~-~~--~-----~=-~---~-----~--=---~----~=-~-=~ 

TABLE ( 5. 17B l CONTINUED 

FE7+ EVEN LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- 00( 2S+ 1 lL ::: 302{ 2S+l lL 

OD< 2S+l lL ::: 302( 2S+l lL OS( 2S+l lL ::: ( 3P5< 2P l3D< 2D l )( 2S+l lL 
=======================================================~======================~ 

IRREP CALC EXP I NCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 
=-------=----------~--~----~---=------~-------~-~-----------------~~~----~-----
-'!Gll/2 936133. 5.5 100. 100. LJG < DP< 3F l l 

2S l/2 936905. . '5 99 . 91. 25 65 8. 25 ( DP< 3P l l 

2F 7/2 927296. 3.'5 87. 55. 2F ( DP< 3F) l 32. ttG ( DP< 3F l l 

'10 5/2 937758. 2.5 80. 33. '10 ( DP< 3F l l 2'5. 'IF ( OP< 3F l l 
9. '10 ( OP< 3P l l 8. '10 ( OP< 30 l l 
6. 20 ( DP< 3P l l 

'IF 9/2 938679. IJ.'5 9'1. 6'5. 'IF ( OP< 3F l l 29. 'IG < OP( 3F l l 

t;G 712 93871.!'5. 3.5 86. 50. t;G ( OP( 3F l) 21. 2F ( DP( 3F l l 
liJ. LID ( DP( 3F l l 

LtD 3/2 9Lt0362. 1.5 88. '15. t;D ( DP< 3F l) 21. LtF ( DP< 3F)) 
liJ. LtD ( DP( 3D l l 8. LtD < DP< 3P l l 

t;G '512 9Lt0986. 2.5 89. 89. LtG < DP( 3F l l 

2S 112 9Ltl0'18. .'5 89. 81. 2S ( DP< 3P l) 9. 2S 6S 

2F 5/2 9Lt28'1 1. 2.5 9!. 5Lt. 2F ( DP< 3F)) 23. 'IF ( DP( 3F l l 
8. 20 ( OP< 3P l l 6. '10 ( OP< 3F) l 

LtF 712 91.!2919. 3.5 86. 57. t;F ( DP< 3F l l 18. LtD ( OP( 3F l l 
6. LfG ( DP( 3F l l 5. t;[) ( DP< 3P l l 

40 1/2 9'-13332. .5 90. 62. '-10 ( OP( 3F l) 18. 'tO ( DP< 30)) 
10. LID ( DP< 3P l l 

4F 5/2 9'16019. 2.5 82. 31. 'IF ( DP< 3F)) 21. '-10 ( DP< 3F l l 
17. 2F ( IJP( 3F l l 8. 20 ( OP( lD l l 
5. 20 ( DP< 3P l l 

4F 3/2 9LI6525. 1.5 8LI. 62. LIF ( DP( 3F)) 22. 'ID ( DP< 3F)) 

2G 9/2 949300. '-1.5 93. 93. 2G ( OP{ 3F)) 

20 5/2 95266'i. 2.5 91. 25. 20 ( OP< 3F l l 24. 20 < DP< lD l l 
18. 2F (Of'( 3F l l !6. 2D<OP<lFll 
9. 'IF (Of'( 3F l l 

20 312 953%'5. 1.5 93. Lll. 20 <Of'( 10 l l 22. 20 ( OP( 3F l l 
12. 20 (Of'( lF l) Jl. 'IF ( DP< 3F l l 

7. 20 ( DP( 30 l l 

2G 7/2 953696. 3.5 85. 85. 2G ( DP< 3F l l 

'-10 712 96'-1637. 3.5 97. 69. 'ID < DP< 3D l l 11. LID (Of'( 3F l l 
9. 2F < OP< IF l l 8. LIF ( DP< 30) l 

--=---~~----=--~--------~--------------------~--~-~--~-------------------------
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-~---====--~~-------~~-~==~=----~-----=-~-~~-~-~==~~-~-~-~~=--=-~-~=-=-=-~--~~~ 
TABLE ( 5. 17B) CONTINUED 

FE7+ EVEN LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- DD< 2S+ 1 lL :::: 3D2( 2S+l lL 

DD<2S+llL :::: 302(25+l)L DS<2S+l)L :::: < 3P5( 2P l3D< 20 l )( 2S+l lL 
=========================================~===~================================= 

IRREP CALC EXP I NCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 
==~~------~--~-----=--=--=-~~---~~----~---~------~-~--~-==----~-~--~--~--~-----
IJD '512 965371. 2.5 86. 't7. IJD < DP< 3D l l 12. 2F ( DP( lF l l 

10. 'tF ( DP< 3D l l 9. ltD ( DP< 3F l l 
8. 2F (DP< lDll 

2F '512 96 7887. 2.5 83. 31. 2F ( DP< 1D l l 21. 2D ( DP( 3F) l 
18. 2D ( OP< 30 l) 7. 2F ( OP< !F l l 
5. 'tO ( DP< 3D l l 

IJD 3/2 967959. 1.'5 96. 61. IJD ( OP( 30)) 13. ltD ( DP< 3F l) 
8. 2.0 ( DP< 30 l l 8. 20 ( DP< lF) l 
7. 'tF ( OP( 30 l l 

'tO '512 969791. 2.5 90. 20. ltD ( OP< 30)) 19. 20 ( OP( 3F) l 
17. 2F ( DP< 10 l) 15. 20 ( OP< 30 l l 
l 't. 2F ( DP< !F)) 6. 20 ( DP< 10)) 

IJD l/2 970013. .5 9't. 7't. 'tO ( OP( 30)) 21. ltD ( OP( 3F)) 

'IF 9/2 97011't. 't.5 97. 68. 'tF < DP< 3D l l 29. 2G < DP< IF l l 

'tF 712 970580. 3.5 90. 37. l.fF ( DP( 3D)) 21. 2G ( DP( lF l l 
11. 2F ( DP< 3D l l 11. 'tO ( DP< 30 l l 
11. 2F ( DP< lD l l 

'IF 312 971123. 1.'5 92. 77. 'tF < DP< 3D l l 9. 20 ( OP< 3F l l 
5. 20 < OP< 3D) l 

2F 7/2 972't73. 3.5 9't. 37. 2F ( OP( lF l l 35. 2F ( DP< 10 l l 
7. 2G <DP< lFll 5. 2F ( OP< 30 l) 
5. 'IF ( OP< 30 l l 5. 2F ( DP< 3F l l 

'tF 5/2 972724. 2.'5 85. 75. l.fF ( DP< 30)) 10. 2F ( DP< lF l l 

20 3/2 973741. 1.5 91. 29. 20 ( OP< 30)) 21. 20 ( DP< 3F l) 
16. IJO ( OP( 30 l l 11. 'lF < DP< 3D l l 
7. 'lP ( OP< 30 l l 6. 20 < DP< lF l l 

2G 7/2 975862. 3.5 91. 50. 2G ( DP< lF)) 35. 'tF ( OP< 3D l l 
5. 2F ( DP< lF l l 

2F 5/2 977230. 2.5 92. 3'5. 2F ( DP< lF l) 30. 2F < DP< 30 l l 
21. 2F ( DP< lD l l '5. 'tF ( OP( 3D) l 

'IP 5/2 978't5't. 2.5 9't. 80. 'lP < DP< 3D l l 9. 20 ( DP< 10) l 
5. 20 ( DP( JF l l 

2P 3/2 979331. 1.5 96. '11. 2P ( DP< lD l) 38. LIP < IJP( 3D l l 
6. 2D ( DP< 3F l l 5. 2P ( DP( 3D l l 
5. 20 ( DP( 30)) 

2G 9/2 979871. '1.5 95. 69. 2G < DP( lF l l 26. l.fF ( DP< 3D l) 

2F 7/2 979875. 3.5 90. 3'!. 2F < OP( 10 l) 29. 2F ( DP< 30)) 
20. 2F <OP( lFll 7. 4F ( DP( 30 l l 

-------------------------------------------------------------------------------
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-=---~==-~--=-~-==---=-=~--=---~----=-~~--~----~-----~-~-~=~~~---~------=-~---= 
TABLE <5.17BJ CONTINUED 

FE7+ EVEN LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- OD<ZS+llL = 3D2< 2S+l lL 

DO<ZS+llL = 3D2< 2S+l lL DS<2S+llL ::: < 3P5< 2P l3D< 20 l l< 25+1 ll 
=========================================================~===================== 

IRREP CALC EXP I NCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 
-~--~=-==-=~----~~---~~-~-~--------~---~~---------------------~--~-------------
2P 1/2 980230. . ~) 95. 55. 2P < OP< liJ l l 28. itP ( OP( 30 l l 

12. 2P < DP< 30 l l 

2P 3/2 982013. 1.5 92. 36. 2P < DP< 3D l l 25. 20 < OP< 10 l l 
21. 20 ( OP( lF) l 9. ijp ( OP< 30 l l 

ijp 1/2 982058. . 5 98. 69 . ttP ( OP< 30)) 15. ZP ( OP< 10 l l 
lit. 2P ( OP< 30 l l 

2P 312 9832tt-4. 1.'5 92. 50. 2P ( OP( 10 l) '12. 4P ( OP( 30) l 

20 5/2 98tt379. 2.'5 89. 31. 20 < DP< lF J l 30. 20 < OP( 10)) 
13. 20 ( DP< 30 l l 9. 'IP < OP< 30 l l 
'5. 2F ( DP( 3D l l 

2F 7/2 986922. 3.'5 93. 47. 2F < DP< 3D l l 23. 2F ( DP< lF l l 
13. 2F ( DP< 10 J J 10. 2G ( DP< lF l l 

2F '5/2 987176. 2.5 89. 56. ZF ( OP< 30 l l 17. 2F < OP( lD l l 
16. 2F ( OP( lF) l 

2D 3/2 987368. 1.5 93. '11. 2D ( 60 ) 38. 2P ( OP< 30 l l 
7. 20 ( OP< 3F l l 6. 20 < OP< 10 l l 

20 '5/2 989201. 2.5 92. 92. 20 60 

2P 1/2 989811. .5 93. 66. 2P < OP< 30 l l 27. 2P ( OP< 10)) 

20 3/2 990294. 1.5 97. 51. 20 ( 60 ) 17. ZP ( DP< 3D)) 
16. 20 ( OP( lF) l 6. 20 ( OP( 3F l l 
6. 20 ( OP< 10 l l 

20 3/2 1008533. 1.5 94. 38. 20 < OP( 30 l) 29. 2D<OP<1Fll 
15. 20 ( DP< 3F l) 7. 20 ( OP( 3P l l 
6. 20 < DP< 10 l l 

20 5/2 1011876. 2.5 9'1. 35. 20 < OP< 30 l l 27. 20 ( IJP( lF l l 
18. 20 ( DP< 3F J > 8. 20 ( DP< 3P l l 

7. 20 ( OP( 1D l l 

2G 7/2 1021892. 3.5 100. 100. 2G 6G 

2G 9/2 1021899. '1.5 100. 100. 2G 6G 

25 l/2 10230'15. . '5 100 . 100. 2S < 75 

2D 3/2 1054'527. 1.'5 100. 100. 20 70 

20 '5/2 1051.!'597. 2.'5 99. 99. 20 70 

2G 7/2 l 07'11!7. 3.'5 100. 100. 2G 7G 

2G 9/2 l071.fl2l. '1.5 100. 100. 2G 7G 

-------------------------------------------------------------------------------



TABLE <5. 17Bl CONTINUED 

FE7+ EVEN LEVELS 
CALCULATIONS COMPARED WITH EXPERIMENTAL OBSERVATIONS 

EXTRAPOLATED AND OPTIMIZED PARAMETERS 
PARENTAGE -- DO< 2S+1 lL :::: 302( 2S+1 )L 

00( 25+1 lL = 3D2( 2S+l lL OS< 2S+l lL :: ( 3P5( 2P )30< 20) )( 2S+1 )L 

IRREP CALC EXP INCR J/MU TOTAL -- EIGENVECTOR COMPOSITION PCT 

2!11/2 1071.!73't. 5.5 100. 100. 2! 7I 

2S 112 107lf792. .5 100. 100. 2S 8S 

2P 1/2 11071.!'47. . 5 98 . 98. 2P ( OP< lP l) 

2I ll/2 1108337. 5.5 100. 100. 21 8! 

2P 3/2 ll0897't. 1.5 100. 92. 2P ( OP< lP l) 7. 20 ( OP( lP l) 

20 3/2 1113'426. 1.5 99. 91. 20 ( DP< lP)) 7. 2P ( DP( 1P l) 

20 '5/2 1115581.!. 2.5 99. 99. 2D < OP( lP) l 

2S l/2 1118319. .'5 97. 97. 25 < OP( lP l l 
----------~--~---~------------~-------------------------------------------~--~-

NO. EXPERIMENTAL LEVELS ;;: 2. 

ABSOLUTE MEAN DEVIATION = 2't7.88 

RMS DEVIATION = 2'47.95 
=------------~------~-----~---------~----------------------------~----

~~-~~---~~ 



relative energies, of course, are unaffected by an error in the ioniza~ 

tion energy. 6+ The 5s and 6s configurations cited for Mn are probably 

misidentifications because the discrepancies are so large, and the pred~ 

ictions for most of the even parity configurations for both Mn 6+ and 

Fe 7+ should be fairly good (less than 1000 cm~ 1 ). The predicted inten~ 

sities may be even more useful for identifying many expected transitions 

for these ions, but the long lists of relative intensities of the elec~ 

tric dipole transitions between pairs of levels are given in the appen~ 

dix. These were calculated by Cowanps RCG code with the reduced matrix 

elements for the dipole operator obtained from the HXR calculation. 

5.3 (UX6 ) 2~ Complexes (X=F,Cl,Br,I) 

Features of the spectra of certain crystals containing metal ions 

can be interpreted as electronic transitions of free ions perturbed by 

the presence of the crystal lattice. Bethe86 first described the effect 

of a crystal lattice on an ion as a homogeneous electric field derived 

from a potential with the local symmetry at the ionus lattice site. The 

rare earth ions (i.e. ions with a single unfilled shell of f~electrons) 

87 have been treated by Wybourne • This section discusses the electronic 

4+ structure of U ions in crystals with octahedral (actually Oh) site 

symmetry. 

5.3.1 Effective Hamiltonians and ---

The effective Hamiltonian for an ion with an (nf)w configuration in 

the presence of a perturbing field with oh symmetry takes the form 

H 
e 

(5.28a) 
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where Eav is a constant energy, He is the traceless portion of the 

effective Coulomb interaction between the nf electrons, 

1 6 S+L 1 c (SLSL) 00 
)i ~~ 1+(~~) E(SL) [S,L] /2w 81 (nf,nf;nf,nf) 
s""o L=O 

(5.28b) 

E(SL) 
~ 2 

f 2(L)F (nfnf) + f 
4 
(L) F4 (nfnf) + 

~ 6 
f

6
(L)F (nfnf) (5.28c) 

[ -· ( 3 3 k1 J r 3 k 31 2 

fkcD "' 49(~1) 1 < _> +~ I I 
l3 3 LJ 13 lo 0 OJ 

(5.28d) 

and H is the crystal field Haml~tonian: c 

4 6 
He (Bo.Bo) = B6[~~Jlf2 (w~6(nf) + 'JS/14 [w~~4 (nf) + w~i(nf~ ] (5s28e) 

The parameters B6 and B~ are derived empirically from the observed elec~ 

tronic transitions. 

States Oh Symmetry 

The representations of DJ of 0+(3) reduce to direct sums of irredu~ 

cible representations of Oh upon restriction to this subgroup. The Ham""" 

iltonian matrix for a configuration fw becomes block d w::U::h 

respect to a basis that carries the irreducible representations of the 

subgroup. 2 1 The configuration f • with SLJ states s0 • 1, 2 • 

1 3 1 
G4 • H6, 5, 4 • r 6 • decomposes into the irreducible 

representations of oh' 

(5s29a) 



3p 3-1 ~ -~-4 
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(5.29b) 

(5.29c) 

(5.29d) 

(5.29e) 

(5.29f) 

(5.29g) 

d for a total of thirty-nine energy levels ( r denotes the representation 
r 

rr with dimension d). The irreducible representations of oh can alter~ 

Extensive analyses of the absorption spectra of crystals of cs 2uc1 6 

and Cs 2UBr 6 enabled Satten and co-workers 88- 91 to identify twenty-one 

electronic energy levels relative to the ground state of each of the 

2- 2-complexes (UC1 6) and (UBr 6) • Aided by these efforts, Edelstein et 

a1 92 were able to identify eleven relative levels of(UI 6) 2- and twenty­

one relative levels of (UF 6) 2- from absorption spectra of (NEt 4) 2ur 6 and 

(NEt 4) 2UF 6 crystals. 

Using empirically d~rived 93 constraints F4(5f5f) = .74F 2(5f5f) and 

F6(5f5f) ~ 0.5SF 2(5f5f), Edelstein fitted the parameters of the effec-

tive Hamiltonian for each of the four complexes. The results of the 

least squares fits are given in table (5.18) and the relationship of the 
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Table (5.18) 

) 
2- Parameters -1 (em ) X "" F~ Cl, Br, I 

Parameter UF6 UC1 6 UBr 6 UI 6 

F2(5f5f) 49699 43170 40867 38188 

~Sf 1970 1774 1756 1724 

B4 
0 

10067 7463 6946 6338 

B6 
0 

22 992 999 941 

~(~2)a 67 168 176 188 

(l~l)b 39 76 95 106 

a deviation rms 

b absolute mean deviation 

calculated to observed levels is displayed in figure (5.8). The results 

are typical of the effective Hamiltonian (5.28ab). In other cases, 

additional parameterized effective operators have been added to the cry-

stal field Hamiltonian to reduce the rms deviation (reduced chi-square) 

to about twenty-five cm-1 94 Two such corrections suggested by Judd 

are described and tested here on the tetravalent uranium hexahalide com·~· 

95 96 plexes • • 

Correlated Crystal Fields 

One method suggested for improving the agreement between the effec 

tive Hamiltonian description and the observed electronic transitions is 

the inclusion of 2-electron operators in the crystal field Hamiltonian 

inspired by a variety of physical mechanisms 95- 98 • The major obstacle 
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Figure (5.8) 
XBL 766-3039 

Comparison between the observed and calculated electron1c 
transitions for the (UX ) 2- complexes. The calculated ener~ 
gies are derived from tHe effective Hamiltonian H given by 

e equation (5.28). 



in testing this hypothesis for £~electrons is the large number of addi~ 

tional parameters required for a purely empirical model; the lowest sym~ 

metry case requires 637 parameters, and even in octahedral symmetry 41 

parameters are needed for empirical crystal field Hamiltonian 95 •1
• Judd 

has proposed models of the correlated crystal field derived from physi~ 

cal assumptions that substantially reduce the number of additional 

parameters, and two of these models were tested for the (UX6) 2- com­

plexes95•96. 

Electron Delocalization Model 

The first model tested was derived from the assumption that the 5£ 

electrons are not as closely localized to the ion center in a crystal 

lattice as say, the 4f electrons, and tend to drift over to the ligand 

95 atoms • A 5f~electron wavefunction is replaced with a superposition of 

itself and a ligand localized function, 

(5.30) 

where ¢~ carries an irreducible representation of Oh with respect to 
f 

3 rl r2 r3 
symmetry operations on the space coordinates (D ~ D + D + D , r 

1 1 1 
¢ lf (x) = - <} (x) -- 1 (x) \IZ s£,2,f \12 Sf ,-2,f 

(5.3la) 

2 
¢1f(x) 9' Sf ' 0' f (X) (5.3lb) 

2 
\15/8 9isf 3 (x) \13/8 9'sf,-l,p(x) ¢2p(x) + 

' • f 
(5.3lc) 

2 
\15/8 ¢Sf _3 (x) \13/8 ¢Sf 1 (x) ¢3p(x) "" + 

' ·f • •f 
(5.3ld) 



3 
Sli3p(x) 

1 
¢sf 2 (x) + ~ ¢sf -2 (x) 

\l2 ' •P \l2 • •P 
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(5.31e) 

( 5. 3lf) 

(5.31g) 

Judd then argues that the Coulomb interaction between electrons is the 

largest contribution to the effective Hamiltonian and that the integrals 

involving the ligand wavefunctions, e.g. 

(5.32a) 

can be neglected with respect to the integrals 

rt rz* ri rz 
Sdxldx2¢b (x1)¢b (x2) fib' ,(x1)¢b' ,(x2) 

1P 1 2P 2 r 12 1P 1 zP 2 
(5.32b) 

owing to the fact that the Sf-electron has a small overlap with the 

ligand, and that the terms of the type represented by (5.32a) are larg-

est for the monopole component (-2/r 2) and contribute to the effective 

1-electron crystal field Hamiltonian. 

TI1e end result is to replace ¢~p with 9r¢~p when evaluating the 

Coulomb operator. For w Sf-electrons, this can be accomplished by 

inserting the Coulomb operator between a pair of operators ~(9 1 ,9 2 ,93 ) 

constructed from the 1-electron projection operators: 
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(5.33) 

The 1-electron projection operators can be rewritten in terms of the 

unit tensors, 

(5.34a) 

where h is identical to the effective crystal field Hamiltonian H with c c 

w~~(nf) replaced by wg~(nf), and 

bo 
91+ 392+ 393 

"' 7 
(5.34b) 

p 3 
93~ 291) "' 4 (392-

y 39 Tao (491+ 592~ 993) (5.34d) 

Judd then argues that 9 1 from molecular orbital theory, and that 

e2 and 93 must be nearly equal to 1, so that p and Y are small. 

p-n(91,e2,93) can be approximated by linear expansion in p and Y 

To this order, the effective Coulomb operator is replaced by 

(5. 

For two electrons, the effective Coulomb operator is diagonal in the 

SLJH basis set, with matrix elements given by 

(5.37) 
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the replacement (5.37) can be written in matrix form: 

(5.38) 

of the Electron Delocalization Model 

The correction to the effective Hamiltonian~ given in matrix form 

by (5.38), was easily incorporated into a least squares fitting program. 

Tne renormalized Coulomb ~ 4k parameters F (nfnf) ~ (b 0) F (nfnf), along with 

the constraints F4(5f5f) • .74F 2(5f5f) and F6(Sf5f) ~ .ssF 2(Sf5f), lead 

to the correction matrix H'(S,T), where 

(5.39a) 

s (5.39b) 

(5.39c) 

The matrices multiplied by the parameters S and T were constructed from 

4 6 the matrix elements multiplied by B0 , B0 , 

F6(Sf5f). 

(SfSf), F4(Sf5f), and 

-2 In the actual fitting, S, T, and F (5f5f) were treated as free 

parameters. Direct fitting treating 92 and 93 as free parameters 

(9 1 ~ 1) was attempted with constraints 0 ~ 9 2 ~ 1 and 0 ~ 9 3 ~ 1, but 

the eigenvalues were not linear enough locally in these parameters to 

obtain convergence with the fitting algorithm used. The values of s2, 



s3• and b 0 were recovered with the equations 

1 + 2S/[11F2(5f5f)] - 100T/[429F2(5f5f)] 

1- 4S/[11F2(5f5f)] + 280T/[143F2(5f5f)J 

1- 2S/[33F2(5f5f)] - 60T/[429F2(5f5f)J 

1- 4S/[11F2(5f5f)] + 280T/[143F2 (5f5f)] 

1- 4S/[11F2(5f5f)) + 280T/[143F2(5f5f)] 
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(5.40a) 

( s. 40b) 

(5.40c) 

assuming that 91 1. The parameters obtained by this method are 

presented and compared with the uncorrected model in table (5.19). 

The uncorrected effective Hamiltonian was refitted to the data, 

taking some care to properly weight the observed levels, which might 

explain the small discrepancies with Edelsteinus work (table (5.18)). 

From the reduced chi-squares, one can conclude that the correction has 

little or no correlation with the observed data. In most cases, the 

inclusion of the extra parameters tended to cause the deviations between 

the observed and calculated levels to become more uniformly distributed. 

Judd suggested that the constraints on F4(5f5f) and F6(5f5f) might 

be too severe, so the fit was repeated with the constraint removed. Tne 

implementation was the same as before, but the ratios .74 and .55 were 

4 2 replaced with the computed ratios F (5f5f)/F (5f5f) and 

F6(5f5f)/F2(5£5f) computed from the previous iteration. The fitted 

parameters for this case along with the parameters for the effective 

Hamiltonian without the correction terms are presented in table (5.20). 

The results did not show any significant improvement except perhaps in 

the case of the iodide. The small number of observed levels made con-
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Table (5.19) 

Electron Delocalization Model Parameters (F4 "" • 74F 2, F6 • 55F 2) 

Parameter UI6 UBr 6 UC1 6 UF6 

~Sf 1742 1731 1767 1798 1804 1811 1973 1974 

38459 38396 40888 40457 41851 41732 49856 50443 

B4 
0 6608 6331 6399 6030 7142 6748 10081 10272 

B6 
0 849 880 1605 1560 1486 1703 41 125 

s 0 -1741 0 3449 0 3492 0 1076 

T 0 620 0 1089 0 1119 0 263 

boxl05 100000 95411 100000 97875 100000 97839 100000 99755 

92x105 100000 94266 100000 98778 100000 98716 100000 100002 

9
3
x105 100000 95027 100000 96263 100000 96242 100000 99408 

E av 11804 11984 12471 12419 12803 12746 14844 14894 

(1~1) 106 105 201 189 169 160 36 39 

D. F. 7 5 16 14 16 14 12 10 

~x2;n.F. 173 198 283 262 235 233 57 61 

vergence of this case difficult, however, and it should not be taken too 

seriously. The details of calculated levels and the eigenvector compo~ 

sitions have been omitted. since there is little change from the previ-

ous results. 
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Table ( 5. 20) 

Electron Delocalization Model Parameters (Free F4 • F6) 

Parameter ur6 UBr 6 UC1 6 UF6 

Gs£ 1707 1717 1789 1785 1782 1789 1980 1983 

-2 
F 36417 36145 41098 40519 42712 42236 49582 50570 

~4 
F 32201 30834 37709 38052 37940 38375 35468 35062 

-6 F 17888 17263 29078 28081 30304 29564 25233 25879 

B4 
0 6839 6440 6572 6573 7215 7242 9969 lOll 

B6 
0 928 870 1124 1165 1353 1400 56 221 

s 0 ~3446 0 1361 0 921 0 692 

T 0 144 0 293 0 460 0 1034 

b 0x1o5 100000 95925 100000 99806 100000 98676 100000 96614 

e
2
x1o5 100000 94174 100000 100025 100000 99020 100000 96394 

e3x 10
5 100000 96319 100000 99300 100000 98095 100000 95075 

E 12250 av 11920 12508 12491 12826 12807 14769 14827 

\Ill!) 98 94 141 140 102 100 31 32 

D.F. 5 3 14 12 14 12 10 8 

~X2/D.F. 192 234 202 216 155 166 53 53 
,-~~~--~~---~-~--~-~, -~-,~-----~~--==~ 

96 Judd proposed another correlated crystal field model for the 

lanthanides based on the notion that a pair of electrons with 

spins experience stronger 11 exchange 11 forces than a pair >>lith 

lel spins and would tend to be more localized on the metal ion than near 

the ligands. This means the parallel would feel the crystal 
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field forces more strongly than an antiparallel pair. For two elec-

trons, this suggests a substitution 

(4.41) 

as the crystal field operator commutes with the spin operators. 

Although the effect may not be relevant to actinides because of 

their relatively stronger interaction with the crystal field, the model 

was tested because of its simplicity in the case of the uranium hex­

ahalide complexes. The matrices for B6 and B~ were simply replicated, 

removing all matrix elements between the singlet (S = 0) basis vectors. 

These matrices were then multiplied by two new free parameters and fit-

ted to the observed levels. 

The results obtained with and without the extra parameters are 

presented in table (5.21). The iodide, however, is something of a 

pathological case. Because of difficulty in obtaining convergence, the 

constraints on F4(5f5f) and F6(5f5f) were used. Even then the B~ param-

eter changed sign and the two new parameters were larger than expected. 

Overall there seems to be little or no improvement with the addition of 

the two new parameters, and in particular the iodide result cannot be · 

taken very seriously. Again, the details of the calculated energies and 

eigenvector compositions have been omitted because the model had such 

little success. 
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Table (S.21) 

Spin Dependent Crystal Field Model 

Parameter UI 6 UBr 6 UC1 6 UF 6 

~Sf 1707 1746 1770 1793 1783 1794 1980 1987 

~2 
F 36417 38998 41098 39788 42712 41680 49S82 50038 

-4 F 32201 29059t 37709 37235 37940 37987 35468 3S223 

~6 
F 17888 22449t 29078 26039 30304 28219 25233 25802 

B4 
0 6839 1721 6572 7354 7215 7768 9969 10271 

B6 
0 

928 -1496 1124 1658 1353 1749 56 284 

c
4
x10 4 0 27970 0 -1260 0 -713 0 -305 

c6x1o 4 0 -14620 0 -4019 0 -2815 0 ~9228 

E 12250 av 12042 12508 12460 12826 12795 14769 14797 

(1~1) 98 76 141 124 102 95 31 27 

D.F. 5 5 14 12 1 L; 12 10 8 

~X2 /D.F. 192 163 202 202 155 15 7 53 49 

----·--· 

t F4 (Sf Sf) .74F 2(SfSf); F6(5fSf) ~ .SSF 2(SfSf). 
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VI. Concluding Comments 

Although there were no new spectra actually analyzed during the 

course of this work, a logical next step is to use the predictions for 

3+ 4+ 5+ 6+ 7+ Ti , V , Cr , Mn , and Fe to attempt to extend the analyses for 

these ions. The author feels he has learned a great deal about semi-

empirical theories, however, and hopes to continue investigations in 

this direction in the course of some experimental work also. This work 

is somewhat like a research notebook because many of the ideas are only 

partially developed, there is much material to build upon in the future. 

The ideas about systematic incorporation of correlations in semi-

empirical theories discussed in chapter IV are perhaps the most 

interesting, because some practical new techniques for effective Hamil-

tonian descriptions of quantum mechanical systems can come out of them. 
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Appendix. Predicted Energies, Eigenvectors, and Spectra. 
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