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A Overall Technical Summary

Over the last few years, we have witnessed unprecedented progress in the use of microbial
production systems for a variety of applications ranging from simple or complex industrial
chemicals [1-7] to electrons in biological fuel cells and batteries [8-12]. The hope is that these
success stories are the vanguards of novel and efficient bioconversions of biomass derived feeds
into liquid fuels ranging from ethanol [13], butanol [14], branched-chain higher alcohols [15] and
other high energy density molecules [16] in accordance with the Department of Energy’s mission.
In pursuit of these milestones, a number of modeling, algorithmic and computational bottlenecks
were identified at a recent DOE Workshop on the Computational Research Needs on Alternative
and Renewable Energy (CRNARE) (http://www.nrel.gov/crnare_workshop/). Key modeling and
computational barriers to success were, among others, (i) the automated generation, curation,
archiving and prototyping of metabolic models for microorganisms and plants; (ii) the
development of isotope mapping models and computational approaches to support flux
elucidation
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Figure 1: The general aims of this project are: (Aim 1) to generate integrated computational tools for the
automated generation and curation of genome-scale models of metabolism for microbial and plant
systems; (Aim 2) to automatically generate maps tracking the fate of labeled isotopes through genome-
scale models; (Aim 3) to fully elucidate metabolic fluxes in genome-scale models using GC-MS or NMR
data; (Aim 4) to leverage flux data for wild-type strain to identify all possible engineering strategies that
lead to overproduction of a targeted product.



current research directly address these challenges by building on research milestones already
reached with the support of DOE (DE-FG02-05ER25684). The research will lead to an improved
capability of mapping, elucidating and re-directing metabolic flows in microbial strains and
plants and thus directly contribute to DOE’s bioconversion missions. To accomplish these
objectives, we put forth four aims outlined in Figure 1.

We have promptly posted on the Pls webpage (http://maranas.che.psu.edu/) and broadly
disseminated all data as well as the obtained models and computational tools in accordance with
DOE’s policy.

Progress has been made on all fronts since the time of our previous progress report and we are
well on pace to meet and hopefully surpass all milestones that have been put forth in the proposal.
The work has thus far yielded a number of successful developments both in the area of
computational platforms to support all of our modeling aims for the coming year of this proposal,
and in the area of scientific/technical advances. Below is further information on the progress
related to the specific individual aims as outlined in our original proposal.

Aim 1: Automated Generation and Curation of Genome-Scale Metabolic Reconstructions

Aim 2: Automated Generation of Genome-Scale Isotope Mapping Models
Aim 3: Metabolic Flux Elucidation Algorithms Given GC-MS or NMR data
Aim 4: Computational Strain Design

The following sections detail our progress made during the second year of the award towards the
project aims along a multitude of fronts in the development of computational tools to analyze,
elucidate and redesign biological pathways. The ultimate outcome of the work will be a suite of
computational aids for analyzing and optimizing the behavior of biological networks. We are
confident that the success of the first two years of this three-year research program are a solid
indication that we will be able to accomplish all of the stated objectives of this initiative.

B. Specific Aim 1: Automated Generation and Curation of Genome-Scale Metabolic
Reconstructions

B.1. MetRxn: A Knowledgebase of Metabolites and Reactions Spanning Metabolic Models
and Databases

The work in this section has been published [17].
B.1.1 Background

“The ever accelerating pace of DNA sequencing and annotation information generation [18] is
spearheading the global inventorying of metabolic functions across all kingdoms of life.
Increasingly, metabolite and reaction information is organized in the form of community [19],
organism, or even tissue-specific genome-scale metabolic reconstructions. These reconstructions
account for reaction stoichiometry and directionality, gene to protein to reaction associations,
organelle reaction localization, transporter information, transcriptional regulation and biomass
composition. Already over 75 genome-scale models are in place for eukaryotic, prokaryotic and
archaeal species [20] and are becoming indispensable for computationally driving engineering
interventions in microbial strains for targeted overproductions [21-24], elucidating the organizing
principles of metabolism [25-28] and even pinpointing drug targets [29, 30]. A key bottleneck in
the pace of reconstruction of new high quality metabolic models is our inability to directly make
use of metabolite/reaction information from biological databases [31] (e.g., BRENDA [32],
KEGG [33], MetaCyc, EcoCyc, BioCyc [34], BKM-react [35], UM-BBD [36], Reactome.org,



Rhea, PubChem, ChEBI etc.) or other models [37] due to incompatibilities of representation,
duplications and errors, as illustrated in Figure B.1.1.

A major impediment is the presence of metabolites with multiple names across databases
and models, and in some cases within the same resource, which significantly slows down the
pooling of information from multiple sources. Therefore, the almost unavoidable inclusion of
multiple replicates of the same metabolite can lead to missed opportunities to reveal (synthetic)
lethal gene deletions, repair network gaps and quantify metabolic flows. Moreover, most data
sources inadvertently include some reactions that may be stoichiometrically inconsistent [38]
and/or elementally / charge unbalanced [39, 40], which can adversely affect the prediction quality
of the resulting models if used directly. Finally, a large number of metabolites in reactions are
partly specified with respect to structural information and may contain generic side groups (e.g.,
alkyl groups -R), varying degree of a repeat unit participation in oligomers, or even just
compound class identification such as “an amino acid” or “electron acceptor”. Over 3% of all
metabolites and 8% of all reactions in the aforementioned databases and models exhibit one or
more of these problems.

There have already been a number of efforts aimed at addressing some of these
limitations. The Rhea database, hosted by the European Bioinformatics Institute, aggregates
reaction data primarily from IntEnz [41] and ENZYME [42], whereas Reactome.org is a
collection of reactions primarily focused on human metabolism [43, 44]. Even though they
crosslink their data to one or more popular databases such as KEGG, ChEBI, NCBI, Ensembl,
Uniprot, etc., both retain their own representation formats. More recently, the BKM-react
database is a non-redundant biochemical reaction database containing known enzyme-catalyzed
reactions compiled from BRENDA, KEGG, and MetaCyc [35]. The BKM-react database
currently contains 20,358 reactions. Additionally, the contents of five frequently used human
metabolic pathway databases have been compared [45]. An important step forward for models
was the BiGG database, which includes seven genome-scale models from the Palsson group in a
consistent nomenclature and exportable in SBML format [46-48]. Research towards integrating
genome-scale metabolic models with large databases has so far been even more limited. Notable
exceptions include the partial reconciliation of the latest E. coli genome scale model iAF1260
with EcoCyc [49] and the aggregation of data from the Arabidopsis thaliana database and KEGG
for generating genome-scale models [50] in a semi-automated fashion. Additionally, ReMatch
integrates some metabolic models, although its primary focus is on carbon mappings for
metabolic flux analysis [51]. Also, many metabolic models retain the KEGG identifiers of
metabolites and reactions extracted during their construction [52, 53]. An important recent
development is the web resource Model SEED that can generate draft genome-scale metabolic
models drawing from an internal database that integrates KEGG with 13 genome scale models
(including six of the models in the BiGG database) [54]. All of the reactions in Model SEED and
BiGG are charge and elementally balanced.

In this work, we describe the development and highlight applications of the web-based
resource MetRxn that integrates, using internally consistent descriptions, metabolite and reaction
information from 8 databases and 44 metabolic models. The MetRxn knowledgebase (as of
October 2011) contains over 76,000 metabolites and 72,000 reactions (including unresolved
entries) that are charge and elementally balanced. By conforming to standardized metabolite and
reaction descriptions, MetRxn enables users to efficiently perform queries and comparisons
across models and/or databases. For example, common metabolites and/or reactions between
models and databases can rapidly be generated along with connected paths that link source to
target metabolites. MetRxn supports export of models in SBML format. New models are being
added as they are published or made available to us. It is available as a web-based resource at
http://metrxn.che.psu.edu.



B.1.2 Construction and Content
MetRxn construction

The construction of MetRxn largely followed the following steps, as illustrated in Figure B.1.2:
1) download of primary sources of data from databases and models, 2) integration of metabolite
and reaction data, 3) calculation and reconciliation of structural information, 4) identification of
overlaps between metabolite and reaction information, 5) elemental and charge balancing of
reactions, 6) successive resolution of remaining ambiguities in description.

Step 1: Source data acquisition. Metabolite and reaction data was downloaded from BRENDA,
KEGG, BioCyc, BKM-react and other databases using a variety of methods [6,52-57] based on
protocols such as SOAP, FTP and HTTP. We preprocessed the data into flat files that were
subsequently imported into the knowledgebase. All original information pertaining to metabolite
name, abbreviations, metabolite geometry, related reactions, catalyzing enzyme and organism
name, gene-protein-reaction associations, and compartmentalization was retained. For all 44
initial genome-scale models listed, the online information from the corresponding publications
was also imported. The source codes for all parsers used in Step 1 are available on the MetRxn
website.

Step 2: Source data parsing. The “raw data” from both databases and models was unified using
standard SQL scripts on a MySQL server. The description schema for metabolites includes
source, name, abbreviations used in the source, chemical formula, and geometry. The schema for
reactions accounts for source, name, reaction string (reactants and products), organism
designation, associated enzymes and genes, EC number, compartment, reversibility/direction, and
pathway information. Once a source has been imported into the MySQL server, a data source-
specific dictionary is created to map metabolite abbreviations onto names/synonyms and
structures and metabolites to reactions.

Step 3: Metabolite charge and structural analysis. We used Marvin (Chemaxon) to analyze all
218,122 raw metabolite entries containing structural information (out of a total of 322,936,
including BRENDA entries). Inconsistencies were found in 12,965 entries typically due to wrong
atom connectivity, valence, bond length or stereo chemical information, which were corrected
using APIs available in Marvin. A final corrected version of the metabolite geometries was
calculated at a fixed pH of 7.2 and converted into standard Isomeric SMILES format. The
structure/formula used corresponded to the major microspecies found during the charge
calculation, which effectively rounds the charge to an integer value in accordance with previous
model construction conventions. This format includes both chiral and stereo information, as it
allows specification of molecular configuration [55-57]. Metabolites were also annotated with
Canonical SMILES using the OpenBabel Interface from Chemspider. The canonical
representation encodes only atom-atom connectivity while ignoring all conformers for a
metabolite. Using bond connectivity information from the primary sources and resources such as
PubChem and ChemSpider we used Canonical SMILES [58, 59] to resolve the identity of 34,984
metabolites and 32,311 reactions. Another 6,100 metabolites and 11,401 reactions involved, in
various degrees, lack of full atomistic detail in their description (e.g., use an R or X as side-
chains, are generic compounds like “amino acid” or “electron acceptor”). Over 25,000 duplicate
metabolites and 27,000 reaction entries were identified and consolidated within the database. The
metabolites and reactions present in the resolved repository were further classified with respect to
the completeness of atomistic detail in their description.

Step 4: Metabolite synonyms and initial reaction reconciliation. Raw metabolite entries were
assigned to Isomeric SMILES representations whenever possible. If insufficient structural
information was available for a downloaded raw metabolite then it was assigned temporarily with
the Canonical SMILES and revisited during the reaction reconciliation. Canonical SMILES retain



atom connectivity but not stereo-specificity and are used as the basic metabolite topology
descriptors as many metabolic models lack stereo-specificity information. After generating the
initial metabolite associations, we identified reaction overlaps using the reaction synonyms and
reaction strings along with the metabolite SMILES representations. Directionality and cofactor
usage were temporarily ignored. During this step, reactions were flagged as single-compartment
or two-compartment (i.e., transport reactions). MetRxn internally retains the original
compartment designations, but currently only displays these simplified compartment
designations. In analogy to metabolites, reactions were grouped into families that shared
participants but in the source data sets occurred in different compartments or differed only in
protonation.

Step 5: Reaction charge and elemental balancing. Once metabolites were assigned correct
elemental composition and protonation states, reactions were charge and elementally balanced.
To this end, for charge balancing we relied on a linear programming representation that
minimizes the difference in the sum of the charge of the reactants and the sum of the charge on
the products. The complete formulation is provided in the documentation at MetRxn.

Step 6: Iterative reaction reconciliation. Reactions with one (or more) unresolved reactants
and/or products were string compared against the entire resolved collection of reactions. This step
was successively executed as newly resolved metabolites and reactions could enable the
resolution of previously unresolved ones. After the first pass 164 metabolites were resolved,
while subsequent passes (up to 18 for some models) helped resolved a total of 8,720 entries.
Reactions with significant (but not complete) overlapping sets of reactants/products are
additionally sent to the curator GUI including phonetic information. Briefly, the phonetic tokens
of synonyms with known structures were compared against the ones without any associated
structure. The algorithm suppresses keywords/tokens depicting stereo information such as cis,
trans, L-, D-, alpha, beta, gamma, and numerical entries because they change the phonetic
signature of the synonym under investigation. In addition, the algorithm ignores non-chemistry
related words (e.g., use, for, experiment) that are found in some metabolite names. Certain tokens
such as “-ic acid” and “-ate” are treated as equivalent. PubChem and Chemspider sources were
accessed through the GUI so that the curator gets as much information as possible to identify the
data correctly. Phonetic matches provided clues for resolving over 159 metabolites. The iterative
application of string and phonetic comparison algorithms resolved as many as 8,879 metabolites
after 18 rounds of reconciliation.

Upon completion of this workflow, all genome-scale models are reformatted into a computations-
ready form and Flux Balance Analysis [60] is performed on both the source model and the
standardized model in MetRxn to ascertain the ability of the model to produce biomass before
and after standardization. We performed the calculations using GAMS version 12.6. MetRxn is
accessible through a web interface that indirectly generates MySQL queries. In order to facilitate
analysis and use of the data, a number of tools are provided as part of MetRxn.

Data export and display

MetRxn supports a number of export capabilities. In general, any list that is displayed contains
live links to the metabolite or reaction entities. These lists can consist of an entire model, data
from a comparison, or query results. All items can be exported to SMBL format. In addition, the
public MySQL database will be made available upon request. Because of licensing limitations,
the BRENDA database cannot be exported and is not part of the public MySQL database.
However, we plan to provide Java source code that allows for the integration of a local copy of
the public MySQL database with the BRENDA database (provided upon request).



Source comparisons and visualization

In addition to listing the content (number of metabolites, reactions, etc.) of the selected data
source(s), MetRxn contains tools for comparing two or more models and visualizing the results.
These associations can be for metabolites or reactions. During these comparisons compartment
information and reversibility are suppressed. Comparison tables are generated by comparing the
associations between the selected data source(s) using the canonical structures.

MetRxn Scope

An initial repository of reaction (i.e., 154,399) and metabolite (i.e., 322,936) entries were
downloaded from 8 databases and 44 genome-scale metabolic models. We compiled a non-
redundant list of 42,540 metabolites and 35,474 reactions (after consolidating duplicate entries)
containing full atomistic and bond connectivity detail. Another 6,100 metabolites and 11,401
reactions have partial atomistic detail typically containing generic side-chains (R) and/or an
unspecified number of polymer repeat units. Finally, 5,436 metabolites in metabolic models and
8,000 metabolites in databases are retained with no atomistic detail. In some cases lack of
atomistic detail reflects complete lack of identity specificity (e.g., electron donor) whereas in
other cases even though the chemical species is fully defined, atomistic level description is not
warranted (e.g., gene product of dsbC protein disulfide isomerase Il (reduced)). Figure B.1.3
shows the distribution of metabolite resolution across models and databases in MetRxn. In
general, metabolites without fully-specified structures tend to participate in a relatively small
number of reactions.

The workflow followed in the creation of the MetRxn knowledgebase identified a
number of inconsistencies. For instance, the same metabolite name may map to molecules with
different numbers of repeat units (e.g., lecithin) or completely different structures (e.g., AMP
could refer to either adenosine monosphate or ampicillin). Notably, even for the most well-
curated metabolic model, E. coli iAF1260 [49], we found minor errors or omissions (a total of 17)
arising from inconsistencies or incompleteness of representation in the data culled from other
sources. For example, the metabolite abbreviation arbtn-fe3 was mistakenly associated with the
KEGG ID and structure of aerobactin instead of ferric-aerobactin. The number of inconsistencies
is dramatically increased for less-curated metabolic models. We used a variety of procedures to
disambiguate the identity of metabolites lacking structural information ranging from reaction
matching to phonetic searches. For example, in the Corynebacterium glutamicum model [61],
7,8-aminopelargonic acid (DAPA) has no associated structural information. Reaction matching
found the same reaction in the E. coli iIAF1260 model.

C. glutamicum DAPA + ATP + CO2 <=> DTBIOTIN + ADP + PI
iAF1260 [c] : atp + co2 + dann --> adp + dtbt + (3) h + pi

which implies that 7,8-aminopelargonic acid (DAPA) is identical to 7,8-Diaminononanoate
(dann). Examination of pelargonic acid and nonanoate reveals that they were indeed known
synonyms. In many cases, we were also able to assign stereo-specific information to metabolite
entries in models (e.g., stipulate the L-lysine isomer for lysine). We made use of an iterative
approach that allowed us to map structures from models with explicit links to structures (e.g. to
KEGG or CAS numbers) to models that only provided metabolite names. Furthermore, by using a
phonetic algorithm that uses tokens for equivalent strings in metabolite names (e.g., ‘-ic acid’ and
‘-ate’ are equivalent) we were able to resolve more than an additional 159 metabolites. For
example, phonetic searches flagged cis-4-coumarate and COUMARATE in the Acinetobacter
baylyi model [62] as potentially identical compounds. Additional checks revealed that indeed
both metabolites should map to the same structure. A more complex matching example involved
1-(5'-Phosphoribosyl)-4-(N-succinocarboxamide)-5-aminoimidazole from the Bacillus subtilis



model [63] and 1-(5'-Phosphoribosyl)-5-amino-4-(N-succinocarboxamide)-imidazole from the
Aspergillus nidulans model [64]. We note that the phonetic algorithm only makes suggestions and
orders the possible matches for the curator. Next, we detail three examples that provide an insight
into the type of tasks that MetRxn can facilitate.

B.1.3 Utility and Discussion

1. Charge and elementally balanced metabolic models

The standardized description of metabolites and balanced reactions afforded by MetRxn enables
the expedient repair of existing models for metabolite naming inconsistencies and reaction
balancing errors. Here we highlight one such metabolic model repair for Acinetobacter baylyi
iAbaylyi** [62]. We identified that 189 out of 880 reactions are not elementally or charge
balanced. Most of the reactions with charge balance errors involved a missed proton in reactions
involving cofactor pairs such as NAD/NADH. For example, a proton had to be added to the
reactants side in the reaction (R,R)-Butanediol-dehydrogenase in which butanediol reacts with
NAD to form acetoin. In addition, the stoichiometric coefficient of water in GTP cyclohydrolase |
was erroneously set at -2 which resulted in an imbalance in oxygen atoms. The re-balancing
analysis changed the coefficient to -1 (as listed in BRENDA) and added a proton to the list of
reactants (absent from BRENDA\) in order to also balance charges.

We performed flux balance analysis (FBA) on both the published and MetRxn-based
rebalanced version of the Acinetobacter baylyi model using the uptake constraints listed in [62] to
assess the effect of re-balancing reaction entries on FBA results. We found that the maximum
biomass using the glucose/ammonia uptake environment decreased by 9% primarily due to the
increased energetic costs associated with maintaining the proton gradient. This result
demonstrates the significant effect that lack of reaction balancing may cause in FBA calculations.
Overall, we found that nearly two-thirds of the models had at least one unbalanced reaction, with
over 2,400 entities across all models that were either charge or elementally imbalanced.
Frequently, the same reaction was imbalanced in multiple models (each occurrence was counted
separately).

2. Contrasting existing metabolic models
At the onset of creating MetRxn, we conducted a brief preliminary study to quantify the
extent/severity of naming inconsistencies by contrasting the reaction information contained in an
initial collection of 34 of the most popular genome-scale models spanning 21 bacterial, 10
eukaryotic and three archaeal organisms. Across all branches of life, most metabolic processes are
largely conserved (e.g., glycolysis, pentose phosphate pathway, amino acid biosynthesis, etc.)
therefore we expected to uncover a large core of common reactions shared by all models.
Surprisingly, we found that only three reactions (i.e., phosphoglycerate mutase, phosphoglycerate
kinase, and CO- transport) were directly recognized as common across those 34 models using a
simple string match comparison. Even when examining models for only a few bacterial
organisms (Bacillus subtilis, Escherichia coli, Mycobacterium tuberculosis, Mycoplasma
genitalium, and Salmonella Typhimurium) simple text searches recognized only 40 common
reactions (out of a possible 262, which is the size of the M. genitalium model). The reason for this
glaring inconsistency is that differing metabolite naming conventions, compartment designations,
stoichiometric ratios, reversibility, and water/proton balancing issues prevents the automated
recognition of genuinely shared reactions across models. Using the glucose-6-phosphate
dehydrogenase reaction as a representative example, Table 1 reveals some of the reasons for
failing to automatically recognize common reactions across selected models [30, 49, 52, 53, 64-81].
As many as nine different representations of the same reaction exist due to incomplete elemental
and charge balancing, alternate cofactor usage among different organisms, and lack of universal
metabolite naming conventions. We have found that this level of discord between models is
representative for most metabolic reactions. This lack of consistency renders direct pathway



comparisons across models meaningless and the aggregation of reaction information from
multiple models precarious. This deficiency motivated the development of MetRxn. Given
standardization in metabolite naming and elementally / charge balanced reaction entries MetRxn
allows for the identification of shared reactions as well as differences between any two metabolic
models (assuming that all the metabolites in the compared reaction entries have full atomistic
information). When making the comparison of those same metabolic models, MetRxn found an
additional 15 reactions in common (for a total of 55 — a 38% increase) and that 142 reactions are
shared by B. subtilis, E. coli and Salmonella Typhimurium.

The Web interface of MetRxn allows for any number of models to be simultaneously
compared. As a demonstration of this capability we selected to contrast the metabolic content of
two clostridia models: Clostridium acetobutylicum [82] and Clostridium thermocellum [83].
Figure B.1.4 shows the results in the form of a Venn diagram. Some of the differences between
the clostridia species are not surprising arising due to their differing lifestyles (C. acetobutylicum
contains solventogenesis pathways and a CoB12 pathway, whereas C. thermocellum contains
cellulosome reactions). However, we found many differences that appear to reflect different
conventions adopted when the two models were generated rather than genuine differences in
metabolism. In particular, in the C. thermocellum model [83] charged/uncharged tRNA
metabolites are explicitly tracked whereas they are not included in the C. acetobutylicum model
[82]. Surprisingly, both clostridia models are more similar, at the metabolite level, to the Bacillus
subtilis iBsu1103 model [63] rather than to each other (see Figure B.1.4). Charged/uncharged
tRNA metabolites account for most of the increased overlap between C. thermocellum and B.
subtilis. Most of the reaction overlaps are in the amino acids biosynthesis pathways, carbohydrate
metabolism, and nucleoside metabolism. It is important to note that 48 reactions in C.
acetobutylicum, 67 reactions in C. thermocellum, and 120 reactions in B. subtilis lack full
atomistic information (see Figure B.1.3) and thus were excluded from any comparisons. It is
possible that additional shared reactions between the two models can be deduced by further
examining comparisons between not fully structurally specified metabolite entries. The string /
phonetic comparison algorithms described under Step 6 along with assisted curation could be
adapted for this task.

3. Using MetRxn to Bio-Prospect for Novel Production Routes
A “Grand Challenge” in biotechnological production is the identification of novel production
routes that allow for the conversion of inexpensive resources (e.g., various sugars) into useful
products (e.g., succinate, artemisinin) and bio-fuels (e.g., ethanol, butanol, biodiesel etc.).
Selected production routes must exhibit high yields, avoid thermodynamic barriers, bypass toxic
intermediates and circumvent existing intellectual property restrictions. Historically, the
incorporation of heterologous pathways relied largely on human intuition and literature review
followed by experimentation [84, 85]. Currently, rapidly expanding compilations of
biotransformations such as KEGG [86] and BRENDA [87] are increasingly being prospected
using search algorithms to identify biosynthetic routes to important product molecules. Several
optimization and graph-based methods have been employed to computationally assemble novel
biochemical routes from these sources. OptStrain [88] used a mixed-integer linear optimization
representation to identify the minimal number of reactions to be added (i.e. knock-ins) into a
genome-scale metabolic model to enable the production of the new molecule. However the
combinatorial nature of the problem poses a significant challenge to the OptStrain methodology
as the number of reaction database entries increase from a few to tens of thousands. At the
expense of not enforcing stoichiometric balances, graph-based algorithms have inherently better-
scaling properties for exhaustively identifying all min-path reaction entries that link a source with
a target metabolite. Hatzimanikatis et. al. [89] introduced a graph-based heuristic approach
(BNICE) to identify all possible biosynthetic routes from a given substrate to a target chemical by
hypothesized enzymatic reaction rules. In addition, the BNICE framework was used to identify



novel metabolic pathways for the synthesis of 3-hydroxypropionate in E. coli [90]. Based on a
similar approach, a new scoring algorithm [91] was introduced to evaluate and compare novel
pathways generated using enzyme-reaction rules. In addition, several techniques such as
PathMiner [92], PathComp [93], Pathway Tools [94, 95], MetaRoute [96], PathFinder [97] and
UM-BBD Pathway Prediction System [98] have been used to search databases for bioconversion
routes.

We recently published [99] a graph-based algorithm that used reaction information from
BRENDA and KEGG to exhaustively identify all connected paths from a source to a target
metabolite using a customized min-path algorithm [100]. We first demonstrated the min-path
procedure by identifying all synthesis routes for 1-butanol from pyruvate using a database of
9,921 reactions and 17,013 metabolites manually extracted from both BRENDA and KEGG.
Here, we re-visited the same task using the full list of reactions and metabolites present in
MetRxn to assess the discovery potential of using MetRxn. Figure B.1.5 illustrates all identified
pathways from pyruvate to 1-butanol before MetRxn (29, shown in blue) and the ones discovered
after using MetRxn (112, shown in green). As many as 83 new avenues for 1-butanol production
were revealed as a consequence of using the expanded and standardized MetRxn resource. In
addition, the search algorithm recovered known [101-105] synthesis routes using E. coli for the
production of 1-butanol (shown in orange). The first pathway involves the fermentative
transformation of pyruvate and acetyl-CoA to 1-butanol using enzymes from C. acetobutylicum
[15]. The second pathway uses ketoacid precursors [101]. This example demonstrates how the
biotransformations stored in MetRxn can be used to traverse a multitude of production routes for
targeted bioproducts.

B.1.4 Conclusions

MetRxn enables the standardization, correction and utilization of rapidly growing metabolic
information for over 76,000 metabolites participating in 72,000 reactions (including unresolved
entries). The library of standardized and balanced reactions streamlines the process of
reconstructing organism-specific metabolism and opens the way for identifying new paths for
metabolic flux redirection. Moreover, the standardization of published genome-scale models
enables the rapidly growing community of researchers who make use of metabolic information to
understand metabolism at an organism-level and re-deploy it for various biotechnological
objectives. By removing standardization and data heterogeneity bottlenecks the pace of
knowledge creation and discovery from users of this resource will be accelerated. MetRxn is
constructed in a way that allows for quick updating and tracking of changes that occur in the
primary databases, as well as available parsing tools that allow for rapid import of new genome-
scale metabolic models as they become available. By having exports in SBML, MetRxn’s output
can be directly interfaced with software packages such as the COBRA toolbox.

During the construction of the initial release of MetRxn, we managed to associate
structures for over 8,800 metabolites and re-balanced more than 2,400 reaction instances across
44 metabolic models. This enables the genuine comparison of metabolic content between
metabolic models. Preliminary results reinforce that that discrepancies between metabolic models
echo not only genuine differences in metabolism but also assumptions and workflow followed by
the model creator(s). Going forward, we will continue to expand MetRxn to include more
genome-scale metabolic models and add additional tools to aid in their analysis. Because we
anticipate that the scope and number of models will rapidly expand, we plan to invite and
encourage the community to offer comments about metabolite and reaction information as well as
provide feedback on MetRxn itself.

B.1.4 Availability and Requirements



MetRxn is available at http://metrxn.che.psu.edu. Its use is freely available for all non-
commercial activity.

1) Naming Inconsistencies

2-Oxoglutarate + L-Alanine <=> Pyruvate + L-Glutamate

KEGG C00026 + C00041 <=>C00022 + C00025
BRENDA alpha-ketoglutarate + L-alanine <=> L-glutamate + pyruvate
Escherichia coli iAF1260 [c] : akg + ala-L --> glu-L + pyr
Acinetobacter baylyi iAbaylyi 1 GLT + 1 PYRUVATE <-> 1 2-KETOGLUTARATE + 1 L-ALPHA-ALANINE

Leishmania major iAC560 [m] : akg + ala-L > glu-L + pyr
Mannheimia succiniciproducens PYR + GLU > AKG +ALA

2) Elemental and charge imbalances

Balanced
KEGG (R)-Lactate + NAD+ <=> Pyruvate + NADH + H+
Escherichia coli iAF1260 [c] : lac-D + nad --> h + nadh + pyr
Unbalanced
Acinetobacter baylyi iAbaylyi 1 D-LACTATE + 1 NAD <=>1 NADH + 1 PYRUVATE

3) Errorsfincompleteness/ambiguity in structural information
models
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Figure B.1.1: Typical incompatibilities and inconsistencies in genome-scale models and databases.
Roadblocks to using genome-scale models and databases include ambiguities and differences in naming
conventions, lack of balanced reactions, and incompleteness of structural information.
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Figure B.1.2: Flowchart outlining the construction of MetRxn. After download of primary sources of data
from databases and models, we integrated metabolite and reaction data, followed by calculation and
reconciliation of structural information. By identifying overlaps between metabolite and reaction
information, we generated elemental and charge balancing of reactions. The procedure for developing
MetRxn was iterative with subsequent passes making use of previous associations to resolve remaining
ambiguities.



Zea mays iRS1563 —
Arabidopsis thaliana iRS1597 —
Pseudomonas aeruginosa I
Pseudomonas putida KT2440 iJN746
Bacillus subtilis iBsu1103
Leishmania major
Aspergillus oryzae N —
Escherichia coli iAF1260
Salmonella typhimurium

Rhizobium etli
Mycobacterium tuberculosis H37Rv
A illus nidulans I
Saccharomyces cerevisiae iIFF708
Geobacter metallireducens full
Acinetobacter baylyi M partial
g Shewanella oneidensis iISO783 Hnone
- Saccharomyces cerevisiae IND750
=]
] Staphylococcus aureus
o Porphyromonas gingivalis BRENDA
Halobacterium salinarum BKM-react
Methanosarcina acetivorans
ina barkeri L] ChEBI
Lactobacillus plantarum WCFS1 i ——
Mycoplasma genitalium KEGG
harom revisiae iLL672
Saccharomyces cerevisiae iLL6 MetaCyc
Geobacter sulfurreducens
Clostridium thers llum N HMDB
Mannheimia succiniciproducens
Streptomyces coelicolor BIGGDB
Clostridium acetobutylicum
. . N ChemSpider
Neisseria meningitidis ) : : .
Corynebacterium glutamicum 0 10000 20000 30000 40000
Mus musculus cardiomyocyte
Saccharomyces cerevisiae iIMH805
1

Figure B.1.3: Various levels of structural information was available for models (main) and
databases (inset). For every model, the majority of metabolites had full atomistic detail (blue).
The smaller number of metabolites with partial atomistic detail (orange) such as genetic side
chains, or with no atomistic detail (green) such as gene products, participated in few reactions.
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Figure B.1.4: Comparison of metabolite and reaction overlaps for C. acetobutylicum and C. thermocellum
(A). Although the organisms are same genus, the models of these two species had significant numbers of
unique metabolites (left) and reactions (right). Additional comparisons revealed that there was more
similarity in metabolite usage with a model of B. subtilis than with each other. In part, these overlaps were
driven by the explicit accounting for charged tRNA species in C. thermocellum and B. subtilis models,
which was also reflected in the reaction overlaps through reactions involving these metabolites.
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B.2. OptCom: A Multi-Level Optimization Framework for the Metabolic Modeling and
Analysis of Microbial Communities

The work in this section has been published [106].
B.2.1. Introduction

Solitary species are rarely found in natural environments as most microorganisms tend to function
in concert in integrative and interactive units, (i.e., communities). Natural microbial ecosystems
drive global biogeochemical cycling of energy and carbon [107] and are involved in applications
ranging from production of biofuels [108, 109], biodegradation and natural attenuation of
pollutants [110-112], bacterially mediated wastewater treatment [113, 114] and many other
biotechnology-related processes [115, 116]. The species within these ecosystems communicate
through unidirectional or bidirectional exchange of biochemical cues. The interactions among the
participants in a microbial community can be such that one or more population(s) benefit from
the association (e.g., through cooperation), some are negatively affected, (e.g., by competing for
limiting resources), or more often than not a combination of both. These inter-species interactions
and their temporal changes in response to environmental stimuli are known to significantly affect
the structure and function of microbial communities and play a pivotal role in species evolution
[117-122].

Recent advances in the use of high-throughput sequencing and whole-community
analysis techniques such as meta-genomics and meta-transcriptomics promise to revolutionize the
availability of genomic information [122-124]. Despite the growing availability of this high-
throughput data, we still know very little about the metabolic contributions of individual
microbial players within an ecological niche and the extent and directionality of metabolic
interactions among them. This calls for development of efficient modeling frameworks to
elucidate less understood aspects of metabolism in microbial communities. Spurred by recent
advances in reconstruction and analysis of metabolic networks of individual microorganisms, a
number of metabolic models of simple microbial consortia have been developed. Efforts in this
direction started with the development of metabolic model for a mutualistic two-species microbial
community [19]. The metabolic network of each microorganism was treated as a Separate
compartment in analogy to eukaryotic metabolic models [125, 126]. A third compartment was
also added through which the two organisms can interact by exchanging metabolites. The same
approach was employed for the metabolic modeling of another syntrophic association between
Clostridium butyricum and Methanosarcina mazei [127]. Lewis et al [128] have also described a
workflow for large-scale metabolic modeling of interactions between various cell lines in the
human brain using compartments to represent different cells. Similarly, Bordbar et al [129]
developed a multi-tissue type metabolic model for analysis of whole-body systems physiology.
Alternatively, others proceeded to identify and model synthetic interactions among different
mutants of the same species using genome-scale metabolic models. For example, Tzamali et al
[130] computationally identified potential communities of non-lethal E. coli mutants using a
graph-theoretic approach and analyzed them by extending dynamic flux balance analysis model
of Varma and Palsson [60]. The same researchers have recently extended their study to describe
the co-growth of different E. coli mutants on various carbon sources in a batch culture [131].
Wintermute and Silver [132] identified mutualistic relationships in pairs of auxotroph E. coli
mutants. Each pair was modeled using an extended form of the minimization of metabolic
adjustment (MOMA) hypothesis [133]. More recently, the concept of inducing synthetic
microbial ecosystems not by genetic modifications but rather with environmental perturbations
such as changing the growth medium was introduced [134].



All these studies aimed primarily at modeling communities where one or both species
benefit from the association while none is negatively affected. The first study to characterize a
negative interaction between two microorganisms using genome-scale metabolic models was
published by Zhuang et al [135] where similar to [130, 131] an extension of the dynamic flux
balance analysis [136] was employed to model the competition between Rhodoferax
ferrireducens and Geobacter sulfurreducens in an anoxic subsurface environment. The same
procedure was also employed in a study that characterized the metabolic interactions in a co-
culture of Clostridium acetobutylicum and Clostridium cellulolyticum [137]. A wide range of
methods beyond flux balance analysis have been used to model microbial communities [138-
149]. For example, Taffs et al [150] proposed three different approaches based on elementary
mode analysis to model a microbial community containing three interacting guilds. Other studies
have drawn from evolutionary game theory, nonlinear dynamics and the theory of stochastic
processes to model ecological systems [143, 144, 147].

Despite these efforts, all existing methods for the flux balance analysis of microbial
communities are based on optimization problems with a single objective function (related to
individual species), which cannot always capture the multi-level nature of decision-making in
microbial communities. For example, the flux balance analysis model described in [19] is
applicable only to syntrophic associations, where the growth of both species is coupled through
the transfer of a key metabolite. The dynamic flux balance analysis models introduced by Zhuang
et al [135] and Tzamali et al [130, 131] rely on solving separate FBA problems for each
individual species within each time interval. In all cases these methods cannot trade off the
optimization of fitness of individual species versus the fitness function of the entire community.
Therefore, there is still a need to develop an efficient modeling procedure to address this issue
and to analyze and characterize microbial communities of increasing size with any combination
of positive and/or negative interactions.

Here, we introduce OptCom, a comprehensive flux balance analysis framework for
microbial communities, which relies on a multi-level optimization description. In contrast to
earlier approaches that rely on a single objective function, OptCom’s multi-level/objective
structure enables properly assessing trade-offs between individual vs. community level fitness
criteria. This modeling framework is general enough to capture any type of interactions (positive,
negative or combination of both) for any number of species (or guilds) involved. In addition,
OptCom is able to explain in vivo observations in terms of the levels of optimality of growth for
each participant of the community. We first analyze a simple and well-determined microbial
community involving a syntrophic association between D. vulgaris and M. maripaludis [19] to
demonstrate the ability of OptCom in recapitulating known interactions. Next, OptCom is
employed to model the more complex ecological system of the phototrophic microbial mats of
Octopus and Mushroom Springs of Yellowstone National Park and compare our results with
those obtained using elementary mode analysis [150]. OptCom identifies the level of sub-optimal
growth of one of the guilds (SYN) in this community to benefit other community members and/or
the entire population. Finally, we use OptCom to elucidate the extent and direction of inter-
species metabolite transfers for a model microbial community [151], identifying the proportion of
metabolic resources apportioned to different community members and predicting the relative
contribution of hydrogen and ethanol as electron donors in the community. Addition of a new
member to this community is also examined in this study.

B.2.2. Methods

OptCom postulates a separate biomass maximization problem for each species as inner problems.
The inner problems capture species-level fitness driving forces exemplified through the
maximization of individual species’ biomass production. If preferable, alternate objective
function (e.g., MOMA [133]) could be utilized in the inner stage to represent the cellular fitness



criteria. Inter-species interactions are modeled with appropriate constraints in the outer problem
representing the exchange of metabolites among different species. The inner problems are
subsequently linked with the outer stage through inter-organism flow constraints and optimality
criteria so as a community-level (e.g., overall community biomass) objective function is
optimized. Figure B.2.1A schematically illustrates the proposed concept. OptCom is solved using
the solution methods previously developed for bilevel programs [21, 88, 152, 153] (see Text S1
for details of the optimization formulation and solution). Note that since OptCom yields a (hon-
covex) bilinear optimization problem, all case studies presented in this paper were solved using
the BARON solver [154], accessed through GAMS, to global optimality.

It is important to note that OptCom can be readily modified to account for the case when
one or more organisms show a form of cooperative behavior that benefits the whole population,
but comes at the expense of growing at rates slower than the maximum possible [121, 155]. To
quantify the deviation of community members from their optimal behavior, we introduce a metric
called optimality level for each species k (i.e., c¥). The optimality level for each one of the
microorganisms is quantified using a variation of OptCom which we refer to as descriptive.
Descriptive OptCom incorporates all available experimental data for the entire community (e.g.,
community biomass composition) as constraints in the outer problem and all data related to
individual species as constraints in the respective inner problems while allowing the biomass flux

of individual species to fall below (or rise above) the maxima (voptk ) of the inner problems

bionass:

(see Figure B.2.1B). We note that here the optimum biomass flux for each species (vopt;. ) is
community-specific as it is computed in the context of all microorganisms striving to grow at
their maximum rate (using the formulation given in Figure B.2.1A). An optimality level of less
than one for a microorganism k implies that it grows sub-optimally at a rate equal to 100c* % of

the maximum (vopt; ) to optimize a community-level fitness criterion while matching

bionas,

experimental observations. Alternatively, an optimality level of one implies that microorganism k
grows exactly optimally at a rate equal to voptk whereas a value greater than one indicates

biomass
that it achieves a higher biomass production level than the community-specific maximum (i.e.,
super-optimality) by depleting resources from one or more other community members. It is worth
noting that super-optimality is achievable for a species only at the expense of sub-optimal
behavior of at least one other member in the community. The identified combination of sub-
and/or super-optimal behaviors of individual species is driven by the maximization of a
community-level criterion (e.g., maximize the total community biomass).

OptCom can capture various types of interactions among members of a microbial
community. Symbiotic interactions between two (or more) populations can be such that one or
more species benefit from the association (i.e., positive interaction), are negatively affected (i.e.,
negative interactions), or combination of both. Mutualism, synergism and commensalism are
examples of positive interactions, whereas parasitism and competition are examples of negative
interactions. A pictorial representation of how these interactions can be captured within OptCom
by appropriately restricting inter-organism metabolic flows is provided in Figure B.2.2 (see Text
S1 for implementation details).

B.2.3. Results
Modeling a mutualistic microbial community

We first explore the capability of OptCom to model and analyze a relatively simple and well-
characterized syntrophic association between two microorganisms, namely Desulfovibrio vulgaris
Hildenborough and Methanococcus maripaludis. Syntrophy is a mutualistic relationship between
two microorganisms, which together degrade an otherwise indigestible organic substrate. A
prominent example of syntrophic interactions is interspecies hydrogen transfer, where the



hydrogen produced by one of the species has to be consumed by the other to stimulate the growth
of both microorganisms [156-159]. In these communities degradation of a substrate by
fermenting bacteria is energetically unfavorable as it carries out a reaction, which is endergonic
under standard conditions. However, if this fermenting bacteria is coupled with a hydrogen
scavenging partner such as methanogenic bacteria, the organic compound degrading reaction can
proceed [160]. Methanogens use hydrogen and energy gained from the first reaction and reduce
CO> to methane [158, 160].

Here we focus on such a syntrophic association between Desulfovibrio vulgaris
Hildenborough and Methano- coccus maripaludis S2, for which genomes-scale metabolic models
as well as experimental growth data for the co-culture are available [19]. With lactate as the sole
carbon source and in the absence of a suitable electron acceptor for the sulfate reducer, M.
maripaludis provides favorable thermodynamic conditions for the growth of D. vulgaris by
consuming hydrogen and maintaining its partial pressure low. Stoylar et al [19] modeled this
microbial community as a multi-compartment metabolic network and employed FBA to identify
community-level fluxes by maximizing the weighted sum of the biomass fluxes of two
microorganisms.

Comparing the OptCom predictions with experimental results

First, we examined whether our model is capable of predicting the relative abundance of species
(i.e., composition) in the community by maximizing the community biomass as the outer problem
objective function. Each microorganism was allowed to maximize its own biomass yield in the
inner problems. Consistent with Stoylar et al [19], the lactate uptake rate was set to 48 uM/h and
formate and hydrogen accumulation were set to zero, so as all formate and hydrogen produced by
D. vulgaris is utilized by M. maripaludis. Lower and upper bounds on all other reactions (except
for the uptake and export fluxes of the shared metabolites) were taken from [19]. The ratio of the
biomass yields for D. vulgaris and M. maripaludis was predicted to be 2.28 based on our
simulations. This is consistent with in vivo observation that D. vulgaris dominates in the co-
culture by a ratio of at least 2:1 [19]. Throughout this and the following studies we assume that
the biomass flux for each species is proportional to its biomass abundance in the community.

We next explore how well OptCom performs in predicting various metabolic activities
across different stages of syntrophic growth. To this end, we applied OptCom for each time
interval and compared the model predictions for acetate, methane and carbon dioxide evolution
rates as well as total biomass production rates with experimental measurements [19]. A separate
run was performed for each time interval where lactate uptake and hydrogen evolution rates were
fixed at their experimentally determined values in that interval [19]. The results of this
comparison are illustrated in Figure B.2.3. We can see that OptCom predictions are generally in
good agreement with experimental data especially for the acetate and methane production rates.
The predicted CO; evolution rate, however, is lower in all time intervals (except for 62-76 hr)
than the measured values. Between 62 hr and 76 hr the experimental data show that the CO;
evolution rate is close to zero, which may indicate that all CO, produced by D. vulgaris is
consumed by M. maripaludis [19]. In addition, OptCom predicts an increase in the biomass
production of the whole community over time with increasing lactate uptake rate as expected,
although, all of predicted yields are higher than experimental measurements. This inconsistency
could be due to missing regulatory information, incorrect modeling of ATP utilization and
maintenance energy requirements and/or the presence of futile cycles in the metabolic models of
one or both species. It is worth noting that all predictions by Stolyar’s multi-compartment
approach are also very close to the results obtained by OptCom. This is because in this syntrophic
microbial community the growth of both species is coupled and uniquely dependent on the
exchange of hydrogen and/or formate. This allows for a single fitness function to describe the
behavior of the entire community.



The role of hydrogen and formate in interspecies electron transfer

Hydrogen and formate are primary shuttle compounds for interspecies electron transfer. There
are two enzymes in D. vulgaris that are involved in production of hydrogen and formate namely
pyruvate oxidoreductase and pyruvate-fomrate lyase [19, 161]. While both of these enzymes
convert pyruvate to acetyl-CoA, the former produces reduced ferredoxin, which is then used for
hydrogen production, whereas the latter produces formate, which can be secreted to the medium.
For an uptake rate of 10 pumol/hr, OptCom predicts that a total of 18.6 umol/ hr of electron
transfer in the form of hydrogen and/or formate transfer are required to achieve the maximum
growth for both species and community. To investigate the relative contribution of formate and
hydrogen in interspecies electron transfer, we examined what portion of the total required
electron transfer could be carried by hydrogen or formate while maintaining the maximum
biomass yield for both species. This analysis showed that hydrogen could be used as the sole
electron carrier to support the maximum growth for both microorganisms even if no formate is
secreted by D. vulgaris. Formate, on the other hand, could only account for up to 26% (4.9 pmol/
hr) of the total electron transfer to maintain the biomass productions at their maximum. In
addition, OptCom results show that formate exchange rates of more than 5.5 umol/hr (~30%) are
not able to support growth for any of the two species. Using OptCom we find that D. vulgaris is
unable to produce sufficient formate to meet the minimum electron transfer required to maintain
the redox balance in the absence of hydrogen.

When hydrogen production by D. vulgaris is constrained to be at most 13.7 umol/hr (i.e.,
the rest of 4.9 umol/hr electron transfer is assumed to be carried out by formate if possible),
OptCom predictions show that in a co-culture consisting of D. vulgaris and a mutant of M.
maripaludis the growth rate of both D. vulgaris and M. maripaludis is reduced by 26%. The
simulation results also show that no fomrate is produced by D. vulgaris in this case, which was
expected, as it cannot be consumed by the M. maripaludis mutant. Despite no formate production
by D. vulgaris, OptCom reveals that the flux through pyruvate formate lyase is higher compared
to the community having the wild-type strains. Further investigation of the in silico flux
distributions shows that the entire amount of formate produced by the pyruvate formate lyase
reaction is directed towards CO, production. This in turn results in an increased consumption of
CO; by the M. maripaludis mutant and consequently a lower accumulation of CO; in the
extracellular environment compared to the community with the wild-type strains. The predictions
by OptCom for the community with mutant of M. maripaludis are in agreement with
experimental results by Stolyar et al [19] who established a syntrophic association between D.
vulgaris and the M. maripaludis mutant MM709 lacking the two annotated formate
dehydrogenase enzymes. It was observed that this co-culture is able to grow, confirming that
hydrogen alone can support the syntrophic growth of both species. Nevertheless, the growth rate,
biomass yield and lactate uptake rates were lower compared to the syntrophic growth between the
wild-type strains [19]. Notably, OptCom predictions suggest that if the wild-type D. vulgaris in
Stolyar’s experiment is replaced with a mutant lacking pyruvate-formate lyase, so as all electron
equivalent is produced in the form of hydrogen, then the co-culture should be able to restore
growth to that of wild-type species community as hydrogen alone can carry all required electron
equivalents.

Assessing optimality levels in a phototrophic microbial community

Here we examine the applicability of OptCom for modeling a more complex microbial
community containing three interacting guilds, the phototrophic microbial mats of Octopus and
Mushroom Springs of Yellowstone National Park (Wyoming, USA) [162]. The inhabitants of this
community include unicellular cyanobacteria related to Synechococcus spp (SYN), filamentous



anoxygenic phototrophs (FAP) related to Chloroflexus and Roseiflexus spp and sulfate-reducing
bacteria (SRB) as well as other prokaryotes supported by the products of the photosynthetic
bacteria [150, 162]. Diel (day-night) variations in metabolic activities of members of this
community were observed before [163-165]. During the day when the mat is oxygenated
cyanobacteria appear to be the main carbon fixer, consuming CO- and producing storage products
such as polyglucose as well as O, as a by-product of photosynthesis. High levels of O, relative to
CO; stimulate the production of glycolate. Glycolate is then used as a carbon and energy source
by other community members such as photoheterotrophic FAP. At night, the mat becomes anoxic
and cyanobacteria start to ferment the stored polyglucose into small organic acids such as acetate,
propionate and H,. FAP can incorporate fermentation products photoheterotrophically while SRB
oxidizes the fermentation products under anaerobic condition and produces sulfide [162, 166-
168]. A schematic diagram representing the interactions in this community is given in [150].

This microbial community has been previously modeled and analyzed by Taffs et al
[150] using a representative microorganism for each guild: Oxygenic photoautotrophs related to
Synechococcus spp were chosen to represent the mat’s primary carbon and nitrogen fixers. FAP
from the family Chloroflexaceae, were selected to represent metabolically versatile
photoheterotrophs that capture light energy as phosphodiester bonds but require external reducing
equivalents and carbon sources other than CO,. A SRB guild representative whose metabolic
behavior was based on several well-studied sulfate-reducing bacteria was also included in the
community model description [150]. The metabolic networks representing central carbon and
energy metabolism for each guild were then constructed and three different modeling approaches
based on the elementary mode analysis were employed to elucidate sustainable physiological
properties of this community [150]. Here, we focus only on daylight metabolism (for which more
experimental data is available) to assess the efficacy of OptCom in describing carbon and energy
flows and the biomass ratio between guilds.

Analysis of the daylight metabolism

The relative abundance of various species in a microbial community (i.e., composition) is of
significant ecological importance. The ratio of cyanobacterial (SYN) to FAP biovolumes in a
Mushroom Spring mat was determined experimentally to be 1.6:1 [169]. It was assumed that
biomass formation rates and biovolume of species in the community are directly related [150]. In
another study the biomass ratio in the top 1 mm of Octopus and Mushroom Spring mats was
estimated to range from 1.5:1 to 3.5:1 based on the relative abundances of metagenomic reads
[150]. We used OptCom to model this community postulating that each guild strives to maximize
its biomass and examined if the biomass ratio of SYN/FAP can be correctly predicted. We chose
as the outer problem objective function to maximize the total community biomass (i.e., SYN
biomass + FAP biomass + SRB biomass). During the day O, competes with CO; for the rubisco
active site, leading to production of glycolate (O, + ribulose — 5 — P + ATP — glycolate + triose
phophate + ADP) instead of additional reduced carbon (CO- + ribulose—5—P + ATP — 2 triose
phophate + ADP) [150]. The flux ratio of these two reactions (O»/CO,) was measured for the
Octopus and Mushroom Spring microbial mats and reported to vary approximately between 0.03
and 0.07 [150, 170]. We incorporated this information into our modeling framework by fixing the
flux ratio of these reactions at different values between 0.03 and 0.07 (using a constraint in the
inner problem of SYN). Lower and upper bounds on all reactions (except for the uptake and
export fluxes of the shared metabolites) were taken from [150]. Under these conditions, the
SYN/FAP biomass ratio was predicted to range from 7.94 (for O,/CO; flux ratio = 0.07) to 20.26
(O2/CO; flux ratio = 0.03), which are significantly higher than the experimentally determined
values of 1.5 to 3.5. This suggests that the reason for the discrepancy in prediction may be that
the SYN guild does not maximize its biomass. Therefore, we decided to test this hypothesis by
using the descriptive mode of the OptCom procedure (see Figure B.2.1B) and establish the



optimality level of SYN and other members of this community. To this end, we added a
constraint to the outer problem to fix the SYN/FAP biomass ratio at different values in the
experimentally observed range (1.5 to 3.5). The objective function of the outer problem was
assumed to be maximization of the total community biomass. We determined the optimality
levels across different values of SYN/FAP biomass and O,/CO; flux ratios in their experimentally
determined ranges (see Figure B.2.4). OptCom finds that the observed SYN/FAP biomass ratios
are consistent with SYN guild growing sub-optimally at 61-82% of its community-specific
maximum with lower values corresponding to higher O,/CO- flux ratios (see Figure B.2.4A). On
the other hand, FAP guild appears to benefit from this sub-optimal behavior of SYN by growing
at rates, which are approximately 4.5 to 8.5 times higher than its community-specific maximum
(see Figure B.2.4B).

SYN grows sub-optimally in this community to benefit other community members (e.g.,
FAP) and optimize a community-level fitness criterion (e.g., maximize the total community
biomass). We investigated the effect of sub-optimal growth of the SYN guild on the total
community biomass production across different values of SYN/FAP biomass and O2/CO; flux
ratios (see Figure B.2.4C). As illustrated in Figure B.2.4C, at higher O,/CO, flux ratios, the total
community biomass is higher compared to the case when SYN grows optimally. The metabolic
reason for this lower growth of SYN is that fixing more carbon (manifested by 3-7 times more
predicted glycolate and acetate production) to supply other guilds and increase the overall
community biomass imposes extra energy demands on the SYN guild. In contrast, for low
0,/CO; flux ratios the maximum community biomass when SYN grows sub-optimally is lower
compared with when it grows optimally (i.e., both dashed lines lie below the solid line in Figure
B.2.4C). A possible reason for this discrepancy is that the experimental measurements for
SYN/FAP biomass ratio were performed when the O,/CO; flux ratio was high. This could also be
a consequence of the experimental underestimation of glycolate production due to consumption
of radio-labeled photosynthate during incubation as stated in [150]. Alternatively, SYN may grow
sub-optimally so that it can divert some resources towards polysaccharide production to fuel
night-time maintenance energy and morning nitrogen fixation. This is another type of a
cooperative behavior by SYN.

Notably, two different cases were considered by Taffs et al [150] using the elementary
modes and compartmentalized approach: a selfish criterion where each guild attempts to
maximize its own biomass and an altruistic criterion where the guilds strive to maximize the total
community biomass. It was concluded that predictions using the first criterion are in better
agreement with experimental data. OptCom, on the other hand reveals that a trade-off between
these two criteria appears to be driving the metabolism in this community. While some guilds
strive to maximize their own growth, others (e.g., SYN) grow sub-optimally to maximize the
biomass of entire community or benefit the nighttime metabolism, or a combination of both,
depending on O,/CO; flux ratio and environmental conditions.

Elucidating trophic and electron accepting interactions in sub-surface anaerobic
environments

In a recent study, Miller et al [151] established a model microbial community to better understand
the trophic interactions in sub-surface anaerobic environments. This community was composed of
three species including Clostridium cellulolyticum, Desulfovibrio vulgaris Hildenborough, and
Geobacter sulfurreducens. Cellobiose was provided as the sole carbon and energy source for C.
cellulolyticum whereas the growth of D. vulgaris and G. sulfurreducens were dependent on the
fermentation by-products produced by C. cellulolyticum. D. vulgaris and G. sulfurreducens were
supplemented with sulfate and fumarate, respectively, as electron-acceptors to avoid electron
acceptor competition [151]. The experimental measurements for the biomass composition of the
community showed that, as expected, C. cellulolyticum was the dominant member in the co-



culture and confirmed the presence of D. vulgaris and G. sulfurreducens. It was, however, not
possible to quantify experimentally the flow of shared metabolites among the community
members as their concentrations were below the detection limits. Therefore, the authors proposed
an approximate model of the carbon and electron flow based on some measurements of the three
species community at steady-state, pure culture chemostat experiments and data from the
literature [151].

Here, we model this microbial community by making use of the corresponding bacterial
metabolic models and employ OptCom to elucidate the inter-species interactions. The metabolic
models of C. cellulolyticum (i.e., iFS431) and G. sulfurreducens were reconstructed by Salimi et
al [137] and Mahadevan et al [171], respectively. A basic metabolic model of D. vulgaris
containing 86 reactions was introduced by Stolyar et al [19], however, this model had only a
compact representation of the central metabolism. For example, the model was not able to support
growth in the presence of acetate or ethanol as the sole carbon source. Therefore, we expanded
this model by adding new reactions from a first draft reconstructed model in the Model Seed [54]
and the KEGG database [86] using the GrowMatch procedure [152] (see Text S1 for details). The
updated model of D. vulgaris consists of 145 reactions and is capable of supporting growth on
acetate as well as ethanol. This model is available in the supplementary material (Table S1).

Fumarate consumption by G. sulfurreducens

FBA simulations showed that the metabolic model for G. sulfurreducens [171] is not able to
capture the experimental observation that the amount of fumarate consumed is higher than the
amount of succinate produced. In addition, the model predicts that no malate is produced under
the examined conditions. An inspection of the metabolic model of G. sulfurreducens revealed that
the only included uptake pathway for fumarate is through mutual dicarboxylic acid transporter
(fumarate[e] + succinate[c] <> fumarate[c] + succinate[e]) implying that the amount of succinate
produced must be equal to the amount of fumarate consumed. Interestingly, in support of the
observations by Miller et al [151], a recent study [172] has confirmed that the fumarate
consumption rate by G. sulfurreducens is higher than the succinate production rate and
demonstrated using **C-based metabolic flux analysis that fumarate can be used as an additional
carbon source through the TCA cycle where it is converted to malate by fumarase, and
oxaloacetate via malate dehydrogenase. These findings suggest that the dcu gene family
(responsible for the uptake of dicarboxylates such as fumarate) in G. sulfurreducens may have a
dual function, i.e., they can act both mutually (with exchange of another compound such as
succinate) or independently (i.e., protonated), similarly to those in E. coli [173]. This was verified
by performing a bi-directional BLAST analysis that revealed high sequence similarity between
the dcu gene families in G. sulfurreducens and E. coli. It is worth noting that addition of an
alternative succinate transporter to the model could also have been another way of explaining the
experimental data, however this hypothesis was not supported by the BLAST analysis. Therefore,
in the absence of any other experimental data, we decided to add a protonated transport reaction
for fumarate to the model. In our simulations we restricted the flux of this reaction to 15.5% of
the fumarate transfer by dicaboxylic acid transporter based on the metabolic flux data under
electron acceptor limited conditions [172].

Uncovering the inter-species metabolite transfers in the community

While the relative molar abundance of each species was measured experimentally by Miller et al
[151], the metabolite flows across community members were untraceable. We thus chose to use
OptCom to gain insight into inter-species metabolite trafficking. To this end, we employed the
descriptive mode of OptCom (see Figure B.2.1B) first to establish the optimality levels of species
participating in this community, by fixing the biomass composition of the community at the
values obtained experimentally by adding constraints to the outer problem. The objective function



of the outer problem was maximization of the total community biomass. Descriptive OptCom
revealed that the experimentally determined biomass composition in this community was
consistent with optimal growth for all microorganisms (i.e., optimality level of one for all species
involved). Upon verifying that biomass maximization was driving metabolism in this community,
we used OptCom to make predictions about inter-organism flow rates with a basis of 1
mole/gDW.hr of cellobiose uptake by C. cellulolyticum so that we can directly compare our
results with the estimates in Miller et al [151]. The lower bound and upper bounds on all
reactions (except for the uptake and export fluxes of the shared metabolites) were taken from the
publications of the respective metabolic models [19, 137, 171]. Because D. vulgaris has a much
more efficient enzymatic process for hydrogen consumption than G. sulfurreducens, we initially
allowed G. sulfurredcens to take up only a small portion (between 1 to 10%) of the total hydrogen
produced by C. cellulolyticum. However, the total predicted acetate and CO, accumulation in the
extracellular environment deviated significantly from the experimental observations by Miller et
al [151]. Therefore, we decided to perform the remaining simulations assuming that D. vulgaris
consumes all hydrogen produced by C. cellulolyticum (even though this may not be the only way
of reconciling model predictions and the experimental data). OptCom found that under these
conditions 1 mol/gDW.hr of cellobiose leads to 2.48 moles/gDW.hr of acetate and 3.22
moles/gDW.hr of CO, in the extracellular environment which agree well with 2.7 and 3.3
moles/gDW.hr of acetate and CO,, respectively, observed in the supernatant of the bioreactor (per
mole of cellobiose) by Miller et al [151]. We note, however, that the predicted level of acetate
production by C. cellulolyticum metabolic model (1.65 mol/gDW.hr) is lower than what was
estimated in Miller’s model (2.9 mol/gDW.hr). In general, however, the predicted allocation of
metabolic resources to different members of the community by OptCom is in good agreements
with estimations in Miller [151] (see Figure B.2.5). For example, OptCom suggests that about
13% of the acetate produced by C. cellulolyticum is directed towards G. sulfurreducens, which is
very close to the 15.5% value estimated in [151].

OptCom results also show that hydrogen and ethanol produced by C. cellulolyticum can
be completely utilized by D. vulgaris to reduce sulfate to hydrogen sulfide. A rough estimate for
the ratio of hydrogen to ethanol, which serve as electron donors for D. vulgaris, is given in by
Miller et al [151] (H2/Ethanol = 20) based on the pure culture data under similar conditions. The
simulations with OptCom using genome-scale metabolic models of the community members,
however, indicate a much higher contribution of ethanol in inter-species electron transfer
(H2/Ethanol = 2.34). We performed a flux variability analysis to see if this ratio can change under
the examined condition, while maintaining the maximum community biomass, but no changes in
this ratio were possible. This suggests that under the observed experimental condition, a
Hy/Ethanol ratio of 2.34 is needed to support the maximum growth for each species as well as for
the community as a whole. While acetate serves as the only carbon substrate for both G.
sulfurreducens and D. vulgaris, it was not possible to determine experimentally if D. vulgaris
directly uses the available acetate in the medium released by C. cellulolyticum or it derives
acetate from ethanol. OptCom results support the latter scenario (see Figure B.2.5). This is more
likely to happen because acetate is already available internally to D. vulgaris from the cytosolic
oxidation of ethanol. OptCom also identifies that 77.6% of the converted ethanol to acetate is
secreted to the medium by D. vulgaris, while the rest is incorporated into biomass (see Figure
B.2.5). This is in good agreement with the estimate by Miller et al [151] suggesting that D.
vulgaris does not consume any acetate produced by C. cellulolyticum and that it exports 62.5% of
the assimilated ethanol to the medium as acetate. Elucidation of the metabolic interactions among
the members of this community was achieved by OptCom after verifying that all species appear
to grow optimally based on the in vivo observations for the community biomass composition.

Addition of a new member to the microbial community



As mentioned earlier, 2.48 moles/gDW.hr of acetate was predicted to be available in the
extracellular environment (per mole of cellobiose consumed) which could be utilized by other
trophic anaerobic bacteria [151]. Therefore, an acetate utilizing methanogen such as
Methanosarcina species, which are known to be avid consumers of acetate, can be envisioned as
an additional member of this community. We chose Methanosarcina barkeri for this analysis as
its metabolic model has been reconstructed by Feist et al [74]. Another inner problem was added
to the OptCom to account for addition of M. barkeri to this community. Consistent with other
community members the objective function for this inner problem was to maximize the biomass
flux of M. barkeri, whereas the objective function of the outer problem was to maximize the total
community biomass. The acetate uptake rates by G. sulfurreducens and D. vulgaris were fixed at
the values obtained by OptCom for the tri-culture. D. vulgaris and M. barkeri were suggested to
compete in anoxic environments for hydrogen [174], however, we assumed that all H, produced
by C. cellulolyticum is consumed by D. vulgaris, as it has been reported to have much more
favorable kinetic parameters for H, metabolism than methanogens [175-177]. In addition, it was
demonstrated that Methanosarcina species can not only consume but also produce hydrogen
when growing on organic substrates such as acetate [178, 179]. Therefore, we allowed D.
vulgaris to consume the hydrogen produced by M. barkeri (if any) in addition to that produced by
C. cellulolyticum.

The biomass flux of M. barkeri is strongly dependent on the value of growth-associated
maintenance (GAM), which was found to be a function of the proton translocation efficiency of
the Ech hydrogenase reaction [74]. The range of GAM values for 0.2-2 protons translocated/2e
that result in a growth yield consistent with in vivo observations was computed by Feist et al [74].
Here, we examined the variability in growth yields and relative abundance of M. barkeri in the
tetra-culture community across different GAM values associated with 0.2-2 protons
translocated/2e". This analysis showed that M. barkeri is capable of consuming the entire 2.48
moles of acetate produced by C. cellulolyticum and D. vulgari. Depending on the GAM value and
the proton translocation efficiency, M. barkeri was predicted to constitute 2.5 to 10.4% of the
total community biomass (assuming that the biomass fluxes are proportional directly with the
abundance levels of species in the community) with the other three members growing at rates
similar to the ones obtained for the tri-culture. C. cellulolyticum still dominates the co-culture as
before with biomass fractions ranging from 69.6 to 75.7% (depending on M. barkeri’s biomass
flux). The methane evolution rate by M. barkeri was predicted by OptCom to range from 2.36 to
2.45 moles/gDM.hr. It is important to note that previous studies have reported that the internal
carbon and electron flow of M. barkeri could be altered by D. vulgaris in a co-culture grown on
an organic substrate such as acetate, [180]: It was suggested that D. vulgaris strives to keep the
partial pressure of hydrogen low enough to shift the catabolic redox system of methanogen so that
more H; is produced by M. barkeri (compared to pure cultures) and more acetate is oxidized to
CO; instead of methane [180]. Even though we allowed D. vulgaris to take up all hydrogen
produced by M. barkeri (in addition to that produced by C. cellulolyticum), no such shift in
methanogenesis was observed for the tetra-culture according to the OptCom predictions. A
possible reason might be that enough hydrogen (as well as ethanol) is already available to D.
vulgaris from C. cellulolyticum, obviating the need to alter methanogenesis in order to gain the
reducing equivalents. This hypothesis is supported by the experimental observation that if excess
H, is added to the co-culture of M. barkeri and D. vulgaris, it is completely consumed by D.
vulgaris and the acetate catabolism by M. barkeri is no longer affected [180].

Even though 3.22 moles/gDW.hr of CO. produced by C. cellulolyticum and G.
sulfurreducens is available in the medium, OptCom predicts that it remains completely unused in
the tetra-culture. This was expected as growth of M. barkeri on CO. relies on presence of
hydrogen, which we assumed that it was consumed completely by D. valgaris. In order to
examine if M. barkeri is indeed capable of utilizing the available CO; as a carbon source (in



addition to acetate), we temporarily allowed M. barkeri to take up the hydrogen produced by C.
cellulolyticum. For this case, OptCom revealed that if the entire hydrogen produced by C.
cellulolyticum is available to M. barkeri, it can support growth on CO, only for proton
translocation efficiencies of less than one/2e’. Notably, for proton translocation efficiencies of
more than one, even though no CO; is assimilated by M. barkeri, OptCom shows that the
availability of hydrogen will lead to an increase in the methane production by about 26-28%.

B.2.4. Discussion

Here, we introduced OptCom, a comprehensive computational framework for the flux balance
analysis of microbial communities using genome-scale metabolic models. We demonstrated that
OptCom can be used for assessing the optimality level of growth for different members in a
microbial community (i.e., Descriptive mode) and subsequently making predictions regarding
metabolic trafficking (i.e., Predictive mode) given the identified optimality levels. Unlike earlier
FBA-based modeling approaches that rely on a single objective function to describe the entire
community [19, 134] or separate FBA problems for each microorganism [130, 131, 135, 137],
OptCom integrates both species- and community-level fitness criteria into a multi-level/objective
framework. This multi-level description allows for properly quantifying the trade-offs between
selfish and altruistic driving forces in a microbial ecosystem. Species and community level fitness
functions are quantified by maximizing the biomass formation for the respective entity. We note,
however, that the physiology of microbial communities is highly context and environment
dependent and a universal community-specific fitness criterion does not exist. Studies similar to
those conducted for mono-cultures that examine and compare various presumed hypotheses on
cellular objective function [181-186] or algorithms that identify/test a relevant objective function
using experimental flux data [187, 188] are needed in the context of multi-species systems.

An important goal of studying natural and synthetic microbial communities is their
targeted manipulation towards important biotechnological goals (e.g., cellulose degradation,
ethanol production, etc.). This has motivated researchers to construct simple synthetic microbial
ecosystems, which are amenable to genetic and engineering interventions, for biotechnology- and
bioenergy-related applications. As an example, Bizukojc et al [127], have proposed a co-culture
composed of Clostridium butyricum and Methanosarcina mazei to relieve the inhibition of
fermentation products and increase production of 1,3-propanediol (PDO) by Clostridium
butyricum. Mixed cultures have been also established for overproduction of
polyhydroxyalkanoates (PHA) [189, 190] and ethanol [191-195]. For example, Clostridium
thermocellum, which is used for ethanol production, has been found to be capable of utilizing
hexoses, but not pentose sugars generated from breakdown of cellulose and hemicellulose [195].
Therefore, cultivation of C. thermocellum with other thermophilic anaerobic bacteria capable of
utilizing hexoses as well as pentose to produce ethanol (e.g., Clostridium thermosaccharolyticum
and Thermoanaerobacter ethanolicus) has been previously examined in vivo [191-195]. The
multi-objective and multi-level structure of the OptCom procedure, introduced here, can help
assess the metabolic capabilities of such synthetic ecosystems. Taking a step further, OptCom can
be readily modified to identify the minimal number of direct interventions (i.e., knock-
up/down/outs) to the community leading to the elevated production of a desired compound (e.g.,
by considering the overproduction of desired compound as the outer problem objective function),
thus extending the applicability of strain design tools such as OptKnock [21], OptStrain [88],
OptReg [24] and OptForce [196]. It is worth noting that a key bottleneck to the modeling and
analysis of microbial communities is the paucity of genome-scale models for all participants in a
complex microbial community. Overcoming this barrier would require the development of high-
throughput metabolic reconstruction tools such as the Model Seed [54] resource. Given that
microbial communities change with time (e.g., day/night cycle) and also location (e.g., nutrient
gradients), approaches that would be able to capture temporal and spatial varying inter-species



metabolic interactions are needed. For example, the separate FBA problems for each individual
species in the dynamic flux balance analysis methods of Zhuang et al [135] and Tzamali et al
[130, 131] can be integrated with OptCom to account for inter-species interactions and
community-level fitness driving forces within each time interval.
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Figure B.2.1. Schematic illustration of OptCom. (A) The multi-level optimization structure of the
OptCom. A separate biomass maximization problem is defined for each species as inner problems. These
inner problems are then integrated in the outer stage through the inter-organism flow constraint to optimize
a community-level objective function. (B) Structure of the Descriptive OptCom to determine the optimality
level of each species (c*), given a set of experimental data. The available experimental data for the entire
community and the individual species are described using constraints in the outer and inner problems,
respectively, whereas, sub- or super-optimal behavior of each microorganism is captured by using a
constraint for the respective inner problem.
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Figure B.2.2. Pictorial illustration of the customized OptCom for various types of interactions.
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Figure B.2.3 Comparison of the predicted metabolic activities during the syntrophic growth with
experimental data. Experimentally determined (gray diamond) and predicted production fluxes by
OptCom (black square) for (A) acetate, (B) carbon dioxide (C) methane and (D) total community biomass
in the syntrophic growth of D. vulgaris and M. maripaludis. All experimental data were obtained through
personal communications with authors of [19]. A separate simulation was performed for each time interval
wherein lactate uptake and hydrogen evolution rates were fixed at their experimentally determined values
for that interval. Error bars for experimental values indicate the bounds of 95% confidence intervals [19].
The error bars for OptCom predictions were calculated by performing the simulations on the upper and
lower bounds of the 95% confidence intervals for measured lactate and hydrogen flux rates.
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biomass. Optimality levels for (A) SYN and (B) FAP as a function of the SYN/FAP biomass ratio across
different values of the O2/CO- flux ratio (C) Comparison of the predicted total community biomass (1/h)
for the case when SYN grows sub-optimally and when it grows optimally. Note that, to compute the total
community biomass when SYN grows optimally only O,/CO. flux ratio was fixed at values in the
experimentally determined range (i.e., 0.03 to 0.07), whereas for all other cases, in addition to O,/CO; flux
ratio, SYN/FAP biomass ratio was also fixed at values measured experimentally (i.e., 1.5 to 3.5). Lower
and upper dashed lines in (C) represent the maximum and minimum predicted community biomass (when
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Figure B.2.5. Comparison of the predicted fluxes by OptCom with estimates in the proposed model of
[151]. The total predicted acetate and CO; production rates by OptCom are in good agreement with
experimental measurements by Miller et al [151]. Note that it was not possible to determine experimentally
how much of the total acetate or CO, available in the supernatant of the bioreactor is produced by which
microorganism (the values provided by Miller et al [151] for the acetate and CO; production by each
species as well as all inter-organism flow rates are estimates and not experimental measurements). The
values associated with the biomass of each microorganism represent fluxes (1/h) for OptCom predictions
and concentrations (M) for experimental measurements [151].

B.3. Zea mays iRS1563: A comprehensive genome-scale metabolic reconstruction of maize
metabolism

The work in this section has been published [197].
B.3.1 Introduction

Zea mays, commonly known as maize or corn, is a plant organism of paramount importance as a
food crop, biofuel production platform and a model for studying plant genetics [198]. Maize
accounts for 31% of the world production of cereals occupying almost one-fifth of the worldwide
land dedicated for cereal production [199]. Maize cultivation led to 12 billion bushels of grain in
the USA alone in 2008 worth $47 billion [200]. Maize is the second largest crop, after soybean,
used for biotech applications [199]. In addition to its importance as a food crop, 3.4 billion
gallons of ethanol was produced from maize in 2004 [200]. Maize derived ethanol accounts for
99% of all biofuels produced in the United States [200]. However, currently nearly all of this
bioethanol is produced from corn seed [201]. Ongoing efforts are focused on developing and
commercializing technologies that will allow for the efficient utilization of plant fiber or
cellulosic materials (e.g. maize stover and cereal straws) for biofuel production. Maize is the most
studied species among all grasses with respect to cell wall lignification and digestibility, which
are critical for the efficient production of cellulosic biofuels [202]. A thorough evaluation of the
metabolic capabilities of maize would be an important resource to address challenges associated
with its dual role as a food (e.g., starch storage) and biofuel crop (e.g., cell wall deconstruction).



This decade we witnessed significant advancements towards mapping plant genes to
metabolic functions culminating with the complete genome sequencing and partial annotation of a
number of plant species, namely, Arabidopsis thaliana [203], Oryza Sativa [204, 205], Sorghum
bicolor [206], Zea mays [207] and Theobroma cacao [208]. Nevertheless, attempts to engineer
plant metabolism for desired overproductions have been met with only limited success [209].
Genetic modifications seldom bring about the expected/desired effect in plant metabolism
primarily due to the built-in metabolic redundancy circumventing the imposed genetic changes
[210, 211]. This necessitates the development of genome-wide comprehensive metabolic
reconstructions capable of taking account of the complete inventory of metabolic transformations
of a given plant organism.

Genome-scale metabolic reconstructions are available for an increasing number of
organisms [212, 213]. At least 40 bacterial, 2 archaeal and 15 eukaryotic reconstructions are
available to-date [209, 212, 214, 215] while many others are under development. Recently
Poolman et al (2009) and Dal’Molin et al (2010) independently constructed the first two genome-
scale metabolic reconstructions for a plant organism (i.e., Arabidopsis thaliana). The model by
Dal’Molin et al identifies the set of essential reactions, accounts for the classical photorespiratory
cycle and highlights the significant differences between photosynthetic and non-photosynthetic
metabolism. The model by Poolman et al includes ATP demand constraints for biomass
production and maintenance and suggests strategies for the construction of metabolic modules as
a consequence of variation in ATP requirement. Both models make a significant step forward
towards assessing the metabolic capabilities of plants establishing production routes for key
biomass precursors and major pathways of Arabidopsis primary metabolism. In addition, two
recent efforts involved the reconstruction of plant models with an emphasis on specific
physiological conditions or tissue types [216, 217]. Model C4GEM [217] focused on C4 plants
such as maize, sugarcane and sorghum and investigated flux distributions in mesophyll and
bundle sheath cells during C4 photosynthesis. Grafahrend-Belau et al developed a metabolic
network of only primary metabolism in barley seeds and studied grain yield and metabolic fluxes
under a variety of oxygen availability scenarios and genetic manipulations [216]. Pilalis et al.
reconstructed a multi-compartmental model of the central metabolism of Brassica napus
(Rapeseed) and simulated seed growth during the stage of oil accumulation and subsequently
studied network properties of seed metabolism via Flux Balance Analysis, Principal Component
Analysis and reaction deletion studies [218].

In this section, we describe the construction of a genome-scale in silico model of maize
metabolism (i.e., Zea mays iRS1563). This is, to the best of our knowledge, the first attempt of
globally characterizing the metabolic capabilities (both primary and secondary metabolism) using
a compartmentalized photosynthetic model of an important crop and energy plant species. The
development of a genome-scale model for maize is a significant challenge due to its genome size
which is 14 times larger [207] than that of Arabidopsis thaliana (157 million base pairs) [219].
The constructed model contains 1,563 genes and 1,825 metabolites participating in 1,985
reactions from both primary and secondary metabolism of maize. For 42% of the reaction entries
direct literature evidence in addition to homology criteria for their inclusion to the model was
identified. We found that as many as 676 reactions and 441 metabolites are unique to Zea mays
iRS1563 in comparison to the AraGEM model by Dal’Molin et al. We chose the AraGEM model
as a basis of comparisons as at the onset of this study it was the most comprehensive genome-
scale compartmentalized model of a plant species capable of recapitulating basic plant
physiological states. In order to deduce the genuine differences between maize and Arabidopsis
irrespective of annotation chronology we also reconstructed an up-to-date model of Arabidopsis,
A. thaliana iRS1597. A. thaliana iRS1597 contains 1597 genes, 1798 reactions and 1820
metabolites. In comparison to A. thaliana iRS1597, Zea mays iRS1563 has 445 new reactions and
369 new metabolites. Notably, 893 reactions and 674 metabolites are included in Zea mays



iRS1563 that are absent from the maize CAGEM model. All reactions present in Zea mays
iRS1563 are elementally and charged balanced and localized into six compartments including
cytoplasm, mitochondrion, plastid, peroxisome, vacuole and extracellular space. Provisions for
accounting that photosynthesis in maize (i.e., a C4 plant) occurs in two separate cell types (i.e.,
mesophyll cell and bundle sheath cell) are included in the model. GPR associations are delineated
from the available functional annotation information and homology prediction accounting for
monofunctional, multifunctional and multimeric proteins, isozymes and protein complexes. A
biomass equation is established that quantifies the relative abundance of different constituents of
dry plant cell biomass. Biomass production under three different physiological states (i.e.,
photosynthesis, photorespiration and respiration) is demonstrated and the model is tested against
experimental data for two naturally occurring maize mutants (i.e., bm1 and bm3).

B.3.2. Results

The metabolic model reconstruction process follows three major steps: (1) Reconstruction of draft
model via automated homology searches for the identification of native biotransformations; (2)
Generation of a computations-ready model after defining biomass equation and system boundary
and establishing GPR; (3) Model refinement via GapFind and GapFill [220] to unblock biomass
precursors as well as reconnect unreachable metabolites. Upon construction of the model, key
features such as physiological constraints, network connectivity, light reactions, carbon fixation
and secondary metabolism and uniqueness compared to AraGEM and maize CAGEM are
described. In addition, model predictions are contrasted against experimental observations.

Construction of Auto & Draft models

The B73 maize genome [207] has 32,540 genes and 53,764 transcripts in the Filtered Gene Set
(FGS). Out of 32,540 genes, 30,599 (93%) are evidence-based [221], while the remaining 2,141
(7%) are predicted by the Fgenesh program [222]. 13,726 genes (42% of total) do not have any
functional annotation information or are identified as proteins with no or hypothetical/putative
functions. Of the remainder, 1,361 (7%) genes encode proteins that do not participate in specific
metabolic transformations but rather are involved in transcription, signal transduction, DNA
repair, DNA binding, DNA/RNA polymerization, protein folding and adhesion. Because the B73
maize genome is not completely annotated we first established Gene-Protein-Reaction (GPR)
mappings for the AraGEM genome-scale model of A. thaliana [209] to be used as a proxy. Using
these GPRs as a point of comparison we next identified Arabidopsis gene orthologs in maize and
transferred the corresponding GPRs via the AUTOGRAPH method [39]. This step was followed
by annotation of the remainder maize genes by bidirectional protein BLAST (i.e., BLASTp)
searches against the NCBI non-redundant (nr) database. Out of a total of 1,567 metabolic or
transport reactions of AraGEM, GPRs were established for 1,254 reactions via 1,467 genes and
653 enzymes by making use of information from several online databases such as AraCyc,
KEGG, Uniprot and Brenda (see File S1). Bidirectional BLASTp searches for each one of the
1,467 genes included in AraGEM model were carried out against the B73 maize genome using a
stringent cutoff value of 10, This fully automated process generated an initial model, termed as
‘Automodel’, containing 946 genes and 1,365 unique metabolites participating in 1,186 reactions
(see Table 1 and File S2) exclusively derived from AraGEM. Out of 1,186 reactions, 32 are inter-
organelle transport reactions for which homologs were found in maize.

Genes not included in the automodel were scrutinized further by comparing them against
the NCBI non-redundant protein database using the same BLASTp cut-off. This increased the
model size to 1,485 genes and 1,703 unique metabolites involved in 1,667 reactions by pulling
functionalities absent in AraGEM. This is referred to as the ‘Draft model’ (see Table 1 and Files
S2 and S3). As described in Table 2, orthologous genes were found in Oryza Sativa (Rice),
Arabidopsis thaliana (Arabidopsis), Sorghum bicolor (Sorghum) and less frequently in other
plant species such as wheat, tobacco, spinach, soya bean, etc. (See File S3). Notably, 802



orthologous genes from A. thaliana were added in the model Zea mays iRS1563 that were absent
from AraGEM primarily due to recent annotation updates. Reactions associated with these genes
were subsequently extracted from on-line databases such as KEGG and BRENDA. Table 2 shows
the total number of reactions as well as the number of new reactions included in the draft model.
Seven reactions having KEGG reaction IDs R00379, R00381, R06023, R06049, R06082, R06138
and R06209 were excluded since they involve generic groups and were not elementally fully
defined. Figure 1 shows the distribution of the newly added reactions in the draft model based on
their orthologous gene of origin.

Generation of computations-ready model

A computations-ready model requires a fully characterized biomass equation, assignment of
metabolites to reactions, establishment of GPR associations, localization of reactions in
compartment(s), and inclusion of intra- and extracellular transport reactions [223].

(i) Establishing a fully characterized biomass equation: A biomass equation that drains all
necessary precursors present in maize was derived (see File S4 and Table 3). We used the
biomass composition of young and vegetative maize plants as measured by Penningd et al. and
expressed on a dry weight basis [224]. The amino acid and lignin composition were derived based
on the data from [225, 226]. The composition of hemicellulose was approximated using data for
Orchard Grass [227], another monocot grass species, as no corresponding information was found
for maize. Based on these compositions we also defined aggregate reactions such as ‘Amino acid
synthesis’, ‘Protein synthesis’, ‘Carbohydrate synthesis’, ‘Hemicellulose synthesis’, ‘Lignin
synthesis’, ‘Lipid synthesis’, ‘Material synthesis’, ‘Nitrogenous compound synthesis’, ‘Nucleic
acid synthesis’ and ‘Organic acid synthesis’ to produce necessary biomass precursors (i.e., amino
acids, protein, carbohydrates, hemicellulose, lignin, lipids, materials, nitrogenous compounds,
nucleic acids and organic acids respectively). The biomass equation also contains a non-growth
associated ATP maintenance as in the latest Arabidopsis model AraGEM [209].

(if) Assignments of genes, reactions, metabolites and compartments. All metabolic and inter-
organelle transport reactions in the draft model have full gene associations. During this step all
reactions were elementally balanced and metabolites were assigned appropriate protonation states
corresponding to a physiological pH of 7.2. We included an additional 86 reactions to the model
without enzyme association information based on direct literature evidence [209]. For example,
reactions with KEGG IDs R08053, R08054 and R08055 involved in chlorophyll metabolism are
included in the model. Reaction localization information for maize can in some cases be found in
database PPDB (a plant proteome database of maize and Arabidopsis) [228]. Because only
limited reaction localization information exists for maize, we adopted the compartment or
organelle reaction location of the corresponding orthologous gene/enzyme in Arabidopsis using
the Arabidopsis Subcellular Database, SUBA [229] and also PPDB [228]. As in AraGEM,
reactions for which no such information is available we assumed that they are present only in the
cytoplasm.

(iii) Identification of system boundary. The entire reaction network (i.e., system boundary) was
distributed across five different intracellular organelles enveloped by the cytoplasmic membrane.
Exchange reactions were added in the model to ensure that gaseous metabolites (i.e., carbon
dioxide and oxygen), inorganic nutrient metabolites (i.e., nitrate, ammonia, hydrogen sulfide,
sulfate, phosphate, potassium and chloride), sugar metabolites (i.e., glucose, fructose, maltose and
sucrose), water and photons could enter and leave the system whenever necessary depending on
the physiological state. As shown in Table 4, constraints on these exchange reactions as well as
reactions involved with enzyme RuBisCO (Ribulose-1, 5-bisphosphate carboxylase oxygenase)
were established to define three different physiological states (i.e., photosynthesis,
photorespiration and respiration) by allowing the selective uptake/release of certain metabolites.



Even though photorespiration is limited in C4 plants (i.e., maize, sorghum, etc.), literature
evidence [230-232] alludes that it is still present. Therefore, we made sure that the model is
capable of simulating this condition.

The stoichiometric matrix of the draft model (see Table 1) contains 1,901 rows (i.e., total
metabolites after taking account of their compartmental appearance) and 1,682 columns (i.e.,
metabolic reactions, inter-organelle transport reactions and exchange reactions). 970 reactions
have one-to-one GPR associations whereas 712 map to more than one gene. 532 reactions map to
both isozymes and protein complexes while 4 of them map to only protein complexes, 36 to only
isozymes, and 140 to only multimeric proteins.

Network connectivity analysis and restoration

The draft metabolic model inherently contained gaps, unreachable metabolites, omitted transport
mechanisms and missing biomass components. We used the procedures termed GapFind and
GapFill [233] to correct for these pathologies. We first concentrated on resolving problems with
the participation of components in the biomass equation followed by network connectivity.

We found that 723 out of the 1,683 reactions in the draft model could not carry any flux
(i.e., blocked reactions) under any of the relevant three physiological states (e.g. photosynthesis
(PS), photorespiration (PR) and respiration (R)). As a result, these blocked reactions prevented
the formation of some of biomass precursors. GapFind [233] revealed that only 21 out of 64
biomass components could be synthesized using the draft model. GapFill [233] was applied for
bridging the gaps through the addition of metabolic and inter-organelle transport reactions and the
relaxing of irreversible of existing reactions in the model. GapFill suggested the addition of 94
metabolic and 35 inter-organelle transport reactions in the model to unblock the production of all
64 biomass components. These putative additions to the model were tested by performing an
additional round of BLASTp searches for the corresponding genes against the maize genome.
We found that 54 (out of 93) metabolic reactions could be assigned to maize gene(s) if the
expectation value cut-off for BLASTp was lowered to 10°. In light of the critical need of
restoring biomass formation the less stringent cut-off for inclusion was accepted for these genes.
Addition of these reactions ensured the production of biomass under all relevant physiological
states validating the use of the term ‘Functional’ for the updated model (see Table 1).

Upon ensuring biomass formation GapFind was also applied to assess network
connectivity and 715 blocked metabolites were found in the functional model. By applying
GapFill connectivity of 322 (45%) blocked metabolites was restored through the addition of 159
metabolic and 3 inter-organelle transport reactions. Table 5 shows the distribution of blocked
metabolites into four intracellular organelles before and after applying GapFill. BLASTp searches
allowed us to assign 31 (20% of GapFill suggestions) metabolic reactions with specific maize
genes (File S2). Biological evidence of the occurrence of such additional reactions in maize or
other plant species was sought whenever possible. For example, as shown in Figure 2
phenylacetaldehyde appears to be a “no-consumption” [233] metabolite in the functional model
as no reaction can consume it. Using GapFill we found a homolog in maize (i.e., BLASTp score
of 1024 and also literature evidence [234] that Arabidopsis thaliana has a aldehyde
dehydrogenase activity that catalyzes the conversion of phenylacetaldehyde to phenylacetic acid.
Hence, by adding this chemical transformation to Zea mays iRS1563 a consumption pathway for
phenylacetaldehyde is established. After adding these reactions to the functional model and
following charge and elemental balancing and GPR association checking the ‘Final’ Zea mays
iRS1563 model (see Table 1) is derived.

Zea mays iRS1563 model



The Zea mays iRS1563 metabolic reconstruction contains 1,825 unique metabolites and 1,985
reactions associated with 1,563 genes and 876 proteins. Of these reactions 1,898 are metabolic
reactions, 70 are inter-organelle transport reactions and 15 are exchange reactions between intra-
and extracellular environments. GPR associations are established for all entries (see Table 1).
Notably, we identified that the fraction of multifunctional proteins (19% of the total number of
proteins) in Zea mays iRS1563 is similar to the ratio found in E. coli [235]. Zea mays iRS1563
accounts for the metabolic functions for all three physiological states. Photosynthetic as well as
photorespiration metabolism was modelled by including light mediated ATP and NADPH
production via separate charged balanced reactions in the electron transfer system of the
thylakoid membrane [236]. Furthermore, the ratio of fluxes for the carboxylation and oxidation
reactions associated with enzyme RuBisCO was kept at 1:0 thus ensuring complete carbon
fixation during photosynthesis. This ratio was shifted to 3:1 during photorespiration to model
simultaneous carbon fixation and oxidation [237]. Because sucrose is the main growth substrate
during respiration for higher plants [238], the aforementioned reactions were inactivated and the
exchange reaction for sucrose uptake was activated. Under all these three conditions, inorganic
nutrients required for plant growth, e.g. sulfate, nitrate, ammonia, hydrogen sulfide, phosphate,
potassium and chloride, were allowed to be freely taken up from the environment via
extracellular exchange reactions.

The participation of Zea mays iRS1563 metabolites across different compartments is
shown in Figure 3. The five intracellular organelles differ notably in terms of mutual
connectivity, metabolite uniqueness and number of metabolites. As shown in Figure 3a,
approximately 90% of these metabolites are unique to cytoplasm. In addition, cytoplasm contains
all metabolites shared between any two organelles because any metabolite needs to be transported
through cytoplasm in order to be exchanged between organelles. Among the remaining
metabolites, cytoplasm shares the highest number with the plastid (i.e., 63) where photosynthesis
and photorespiration occur. It also shares a significant number of metabolites with mitochondrion
(i.e., 27) and peroxisome (i.e., 22) that are involved in energy production and fatty acid
biosynthesis, respectively. Figure 3b shows the distribution of other non-cytoplasmic Zea mays
iRS1563 metabolites in terms of how many organelles they participate.

Light reactions, carbon fixation and secondary metabolism

In plants photosynthesis reactions include light dependent and light independent or carbon
fixation reactions [239]. Zea mays iRS1563 includes charged balanced light reactions culled from
a number of literature sources [236, 240-242]. The overall photosynthesis reaction cascade
produces two NADPH, three ATP and one O, whenever nine photons are absorbed and fourteen
H* are transferred via the electron-transport system. This defines the following overall balance
equations:

12 H*[c] + 2 H2O[c] + 2 NADP[c] + 9 hvi[c] — 14 H*[p] + 2 NADPH]Jc] + O2[c] + 9 hvo[c]
3 ADP[c] + 14 H*[p] + 3 Pi[c] > 3 ATP|c] + 14 H*[c]

Here, [c] and [p] represent cytoplasm and plastid and hvi and hvo signify input and output
photons respectively. Carbon fixation in maize (C, plant) is more complex compared to
Arabidopsis or other Cs plants [239]. Zea mays iRS1563 captures these differences by accounting
for (i) direct carboxylation of phosphoenol pyruvate and CO, fixation to form C,4 acids such as
oxaloacetic acid [ATP: oxaloacetate carboxy-lyase (ocl)] and malic acid [Oxaloacetate: NADPH
hydrogenase (oha)] in mesophyll cells, (ii) transport of malic acid from mesophyll cell to bundle-
sheath cells, (iii) decarboxylation of malic acid [Malate:NADP+ oxidoreductase (mor)] in bundle-
sheath cells to produce pyruvic acid and CO,, which enters the Calvin cycle, (iv) transport of
pyruvic acid from bundle-sheath cells to mesophyll cells, and (v) production of phosphoenol
pyruvic (i.e., Cs) acid [ATP:pyruvate,phosphate phosphotransferase (ppt)] from pyruvic acid



[239]. Figure 4, pictorially shows the localization of reactions and organelles between mesophyll
and bundle sheath cells. In addition, to differences in carbon fixation reactions, the peroxisome
activity is primarily present in bundle-sheath cells and largely absent from mesophyll cells [243].
Based on this localization information a standalone metabolic model can be developed for the
photosynthetic tissue of maize. Because RuBisCO that operates in the Calvin cycle cannot come
in direct contact with atmospheric oxygen during day time (see Figure 4), photorespiration is
restricted providing an advantage for survival in hot and arid environments for maize and other
C. plants. This comes at the expense of higher (ATP) requirements as C,4 carbon fixation involves
additional steps [239].

In addition to photosynthesis, secondary metabolism plays a key role in the physiology of
maize. For example, phenylpropanoid metabolism produces monolignols (i.e., p-coumaroyl
alcohol, coniferyl alcohol and sinapyl alcohol) that are used in the generation of three major
lignin subunits H-lignin, G-lignin and S-lignin, respectively [244]. Many of these enzymes such
as hydroxycinnamoyl transferase (HCT), ferulate 5-hydroxylase (F5H) and caffeic acid 3-O-
methyltranferase (COMT) along with their associated reactions are unique to C. plants and are
not present in the lignin biosynthesis pathways of A. thaliana [244]. HCT is involved in the early
stages of lignin biosynthesis by controlling the flux from p-coumaroyl-CoA towards caffeoyl-
CoA while F5H and COMT regulate fluxes from coniferaldehyde and coniferyl alcohol to
sinapaldehyde and sinapyl alcohol, respectively [244]. Zea mays iRS1563 contains all these
enzymes and associated reactions thus providing a comprehensive lignin biosynthesis pathway
for a C4 plant.

In addition to phenylpropanoid metabolism, Zea mays iRS1563 provides a detailed
description of flavonoid biosynthesis pathways. Flavonoids are pigments occurring in plant as
secondary metabolites and mostly function in the recruitment of pollinators and/or seed dispersers
[245]. For example, maize is known to produce 3-deoxyanthocyanins, which are a specialized
class of flavonoids [246, 247]. Zea mays iRS1563 contains the dihydroflavonol 4-reductase
(DFR) enzyme that catalyzes the reaction for flavan-4-ols biosynthesis that channels flux towards
3-deoxyanthocyanins production [247]. The model also accounts for isoflavone 7-O-
glucosyltransferase (IF7GT) and associated reactions that are involved in the production of
necessary intermediates for pterocarpin phytoalexin conjugates such as medicarpin 3-O-
glucoside-6’-O-malonate (MeGM) and maackain 3-O-glucoside-6’-O-malonate (MaGM)
involved in plant defense against fungal elicitation [248].

Comparing Zea mays iRS1563 with Arabidopsis thaliana and maize C4GEM models

Figure 5a compares the total number of genes, reactions and metabolites between Zea mays
iRS1563 and the A. thaliana AraGEM genome-scale-models [209]. Approximately, only 61% of
genes in Zea mays iRS1563 are present in AraGEM. This yields a surprisingly low degree of
matching between these two models of 64% and 76%, respectively in terms of reactions and
metabolites. In the interest of elucidating the true differences between maize and Arabidopsis
irrespective of annotation chronology we constructed a more up-to-date genome-scale model for
Arabidopsis by appending onto AraGEM newly annotated genes as well as full GPR annotations.
We refer to this updated model containing 1,597 genes, 1,798 reactions and 1,820 metabolites as
A. thaliana iRS1597 (see File S1). The newly added 228 reactions (absent from AraGEM) are
involved in various pathways in primary (i.e., glycolysis, TCA, fatty acid and amino acid
biosynthesis, starch and sucrose metabolism) and secondary (i.e., biosynthesis of steroid,
ubiquionone, streptomycin, thiamin, riboflavin, terpenoid, brassinosteroid, phenylpropanoid, etc.)
metabolism of Arabidopsis.

A direct comparison of Zea mays iRS1563 with A. thaliana iRS1597 reveals, as expected,
an increased degree of matching of 72%, 76% and 80% in terms of genes, reactions and



metabolites, respectively (see Figure 5b). We find that 445 reactions are unigue to maize with no
counterpart in A. thaliana. Secondary plant metabolism including flavonoid, mono- and
diterpenoid, brassinosteroid, phenylpropanoid, anthocyanin, zeatin biosynthesis, riboflavin and
caffeine metabolism account for 185 of the maize-specific reactions. In addition, a variety of
primary metabolism reactions dispersed throughout central metabolism, photosynthesis, amino
acid and fatty acid biosynthesis account for the remaining 260 reactions. This comparison implies
that about one third of the differences between Zea mays iRS1563 and AraGEM are caused by the
incompleteness of AraGEM model especially in terms of secondary metabolism while the
remaining two third reflect genuine differences between Cs (i.e., Arabidopsis) and C4 (i.e., maize)
plant metabolism.

Figure 5¢c shows a similar comparison between Zea mays iRS1563 and maize C4GEM
genome-scale-models. Degrees of matching between these two models are 39%, 53% and 63% in
terms of genes, reactions and metabolites, respectively. This surprisingly low degree of matching
is caused primarily due to the fact that maize C4AGEM includes only metabolites and reactions in
leaves during photosynthesis. Therefore, there are 893 reactions in Zea mays iRS1563 absent
from maize CAGEM. 343 of these reactions describe secondary plant metabolism such as
brassinosteroid, phenylpropanoid, carotenoid, flavonoid, mono- and diterpenoid, and
glucosinolate metabolism. The remaining 550 reactions are found in a wide range of primary
metabolism pathways such as central metabolism, photosynthesis, benjoate degradtion, starch and
sucrose metabolism, lipid metabolism, nitrogen metabolism amino acid and fatty acid
biosynthesis. Conversely, 116 (out of 149) new reactions in maize C4GEM have untraceable EC
numbers and gene loci.

Zea mays iRS 1563 model testing

Zea mays iRS1563 allows for the production of biomass under all three different physiological
states (see Files S5 and S6 for detailed information of the model). Due to limited photorespiration
C4 plants usually have higher photosynthetic efficiency [239]. Under higher light intensity and
photosynthetic condition, Zea mays iRS1563 produces 0.0008 mole biomass/mole CO2 whereas
A. thaliana iRS1597 yields 0.0006 mole biomass/mole CO2. Thus, the model predictions match
with findings reported in literature [239]. We also investigated the model’s ability to predict the
effect of suppressing genes in the lignin biosynthesis pathway observed in naturally occurring
brown midrib (bm) maize mutants (i.e., bml, bm2, bm3 and bm4) [244, 249-251]. These maize
mutants are Mendelian recessives that are characterized by brown vascular tissue in leaves and
stems due to a changed lignin content and/or composition [252]. The specific genetic background
for two of these mutants (bml and bm3) was elucidated based on the analysis of cell wall
composition [251]. Mutants bm1 and bm3 were found to have disrupted enzymatic activity for
cinnamyl alcohol dehydrogenase (CAD) and caffeic acid 3-O-methyltranferase (COMT). Both of
these enzymes are involved in the last stages of the monolignol pathway [251] that controls lignin
synthesis and composition (i.e., the ratio of three major subunits, H-lignin, G-lignin and S-lignin)
[253].

We simulated mutants bm1l and bm3 using Zea mays iRS1563 under photosynthetic
conditions by restricting the flux of the reactions catalyzed by enzymes CAD and COMT to 10%
of the wild-type values. It is expected that the disruption of the activity for these genes will
directly affect lignin content and composition (see File S7 to find literature data used for bm1 and
bm3 mutants). We were interested to see whether the Zea mays iRS1563 metabolic model will be
able to correctly propagate this disruption across the metabolic pathways and correctly predict the
effect on other key metabolites. Table 6 contrasts experimental results by (Marita et al (2003),
Vanholme et al (2008) and Sattler et al (2010)) with in silico predictions for the maximum
theoretical yield of lignins, sugars and crude protein in terms of whether they increased,
decreased, or remained the same in the mutant strains. Out of 21 compared components Zea mays



iRS1563 correctly predicted the direction (or absence) of change for 17 cases.

In Figure 6 we highlight two cases that describe the availability of glucose and galactose to
cell wall for mutants bm1 and bm3, respectively. ‘Carbohydrate synthesis’ and ‘Hemicellulose
synthesis’ are aggregate reactions that describe the utilization ratios of sugar molecules such as
arabinose, fructose, galactose, glucose ribose, mannose, sucrose, and xylose for the production of
carbohydrate and hemicellulose present in the plant cell wall. For simplicity, we have simulated
the model under the photosynthetic condition where CO;, can be uptaken with a maximum
allowable rate of 1000 mM/gDW-h along with photons in excess. In Figure 6a, wild-type and
bml mutant flux values for reactions involving glucose as reactant including ‘Carbohydrate
synthesis’, ‘Hemicellulose synthesis’, ‘ Alpha,alpha-trehalose glucohydrolase’ [R00010], ‘Sucrose
glucohydrolase’ [R00801], ‘Sn-Glycerol-3-phosphate:  D-glucose  6-phosphotransferase’
[RO0850] and ‘Cellobiose glucohydrolase’ [R00306], are highlighted. For the wild-type case, the
maximum theoretical yield of glucose is predicted to be 1.66 moles/mole of CO; but it is reduced
to 0.93 moles/moles of CO; for the bm1 mutant. The reduced capability of the bm1l mutant to
direct flux towards ‘Carbohydrate synthesis’ and ‘Hemicellulose synthesis’ implies that less
glucose is available for the formation of cell wall components which is consistent with the
experimental finding of Table 6.

Figure 6b contrasts the wild-type and bm3 mutant maximum theoretical yields for all
reactions involving galactose including ‘Hemicellulose synthesis’, ‘ATP: D-galactose 1-
phosphotransferase’ [R01092] and ‘Galactosylglycerol galactohydrolase’ [R01104], ‘3-O-alpha-
D-Galactosyl-1D-myo-inositol galactohydrolase’ [R01194] and ‘alpha-galactosidase’ [R03634].
A reduction of the maximum theoretical yield of galactose from 0.81 to 0.65 moles/mole of CO,
for the bm3 mutant is observed. In addition, the maximum theoretical yield for reaction
‘Hemicellulose synthesis’ decreases by 4-fold compared to wild-type in line with the
experimental finding. However, the experimentally observed increase of glucose availability in
mutant bm3 and xylose availability for both bm1 and bm3 mutants are in contrast with the model
predictions (see Table 6). As reported by Guillaumie et al (2007) several gene expression levels
were changed during bm1 and bm3 mutations implying that additional regulatory constraints may
be needed to capture these changes.

B.3.3. Discussion

Maize, apart from its central role a food crop, is also a promising plant biomass target for
cellulosic biofuels production. Plant cell wall cellulose, hemicellulose and lignin polymers are
major contributors of plant biomass [244, 254]. Therefore, controlling the amount and
composition of cell wall polymers is important in developing cellulosic maize for biofuel
production. In cell wall, lignin provides rigidity by forming a matrix where cellulose and
hemicellulose are imbedded via cross-linking bonds [249, 255]. This makes digestion of cellulose
and hemicellulose by microbial enzymes (i.e., cellulases) difficult during dilignification, one of
the critical steps in cellulosic biofuel production [256]. Many genetic modification strategies have
been explored to improve maize food crop and/or biofuel characteristics. For example, cellulosic
biomass yield improvements have been pursued before by altering the lignin content and
composition [257, 258], genetically manipulating the cellulose biosynthetic pathway [259] and
over-expressing the gene encoding phosphoenolpyruvate carboxylase (PEPC) to improve CO;
fixation rate [260]. At the same time, grain yield enhancements have been attempted by up-
regulating ADP-glucose pyrophosphorylase (AGP) that catalyzes the rate limiting step in starch
synthesis [261].

Unfortunately, existing genetic engineering strategies to reduce lignin content are
problematic as lignin reductions are usually achieved at the expense of plant viability and fitness
[256]. It is becoming widely accepted that focusing on a single pathway at a time without
guantitatively assessing the system-wide implications of the genetic disruptions may be



responsible for not preserving the agronomic properties of the plant. By accounting for both
primary and some secondary metabolism pathways of maize, Zea mays iRS1563 can be used to
explore in silico the effect of genetic modifications aimed at plant cell wall modification and/or
starch storage on the overall metabolic state of the plant (e.g., biomass precursor availability,
cofactor balancing, redox state, etc.). Moving a step further, the use of computational strain
optimization techniques [196, 262] can be customized for engineering plant metabolism. By
taking full inventory of plant metabolism optimal gene modifications could be pursued for a
variety of targets in coordination with experimental techniques. These may include (i) increase
cellulose and hemicellulose production, (ii) starch yield, (iii) tolerance against biotic stress (e.g.,
fungal elicitation), or (iv) disruption of the production of lignin subunits (H/G/S) while enhancing
the production of easily digestible lignin precursor (e.g., rosmarinic acid, conferyl ferulate,
tyramine conjugates, etc).

In this section, we introduced the first comprehensive genome-scale metabolic model
(Zea mays iRS1563) for maize metabolism. The model meets (or exceeds) the quality and
completeness criteria set out [263, 264] for genome-scale reconstructions. In analogy to the
human genome-scale model Recon 1 [265], Zea mays iRS1563 can be viewed as a
mathematically structured database enabling systematic studies of maize metabolism.185 of
unique to maize reactions accounting for a fraction of secondary metabolism were delineated. As
a by product of this effort a more up-to-date version of AraGEM [209] was constructed including
GPR associations. Comparisons between Zea mays iRS1563 and maize CAGEM also revealed the
detail in description of primary and secondary metabolism. Model predictions of Zea mays
iRS1563 for two widely occurring maize Mendelian mutants were tested against experimental
observations with very good agreement in the direction of changes. By making use of high
throughput enzymatic assays, proteomic and transcriptomic data across different parts of the
maize plant, Zea mays iRS1563 could serve as the starting point for the development of tissue-
specific maize models [217, 266, 267]. Furthermore, Zea mays iRS1563 could also serve as the
stepping stone for the development of genome-scale models for other important C, plants such as
Sorghum and switch grass.

B.3.4. Materials and Methods

A number of recent publications [212, 223, 263] have outlined the general steps necessary for the
metabolic reconstruction process. In the following section, we highlight the specific methods used
in the reconstruction of Zea mays iRS1563 and subsequent model simulations in more detail.

Model reconstruction

The maizesequence database [207] provided the filtered gene set (FGS) which has been generated
from the working gene set upon removing pseudogenes and low confidence hypothetical models.
The FGS of B73 maize genome (release 4a.53) was downloaded from maizesequence database on
February 17, 2010. Once maize genes were obtained, we used sequence comparison tools [268]
such as stand-alone BLAST (version 2.2.22, NIH) and BLAST+ (version 2.2.22, NIH) for
performing homology comparisons. Marvin (version 5.3.3, ChemAxon Kft) was used to calculate
the average micro-species charge to determine the net charge of individual metabolites at pH 7.2
assumed for all organelles. In the final step of the model reconstruction, we implemented
GapFind and GapFill [233] for analyzing and subsequently restoring metabolic network
connectivity.

Model simulations

Flux balance analysis (FBA) [269] was employed both in model validation and model testing
phases. Zea mays iRS1563 was evaluated in terms of biomass production under three standard



physiological scenarios: photosynthesis, photorespiration, and respiration. Flux distributions for
each one of these states were approximated using FBA:

Maximize Vg, as
Subject to
m
DSV, =0Viel..n (1)
j=1
Vigin SV S Vi V] € L...om 2)

Here, Sjj is the stoichiometric coefficient of metabolite i in reaction j and v; is the flux value of
reaction j. Parameters Vjmin and vjmax denote the minimum and maximum allowable fluxes for
reaction j, respectively. As mentioned in Table 4, the three physiological states were represented
via modifying the relevant minimum or maximum allowable fluxes and the following constraints:

Voxi = O (3)
Vcarboxi 2 3Voxi (4)
Vcarboxi = O (5)

where Vaiomass 1S the flux of biomass reaction and voxi and Vearnoxi are the fluxes of carboxylation and
oxidation reactions associated with enzyme RUBISCO. For photosynthesis and photorespiration,
constraints (3) and (4) were respectively included in the linear model, whereas for respiration
both constraints (3) and (5) were included.

Once the model was validated, it was further tested for two maize mutants (i.e., bm1 and
bm3) under the photosynthetic condition. The following two constraints were included
individually in the linear model to represent the mutants:

mel < WXWFbml (6)
meS < WXWFbm3 (7)

Here, w represents the percent of residual activity of 10%. vpm1 and vems are the fluxes of reactions
catalyzed by CAD and COMT, respectively and WFun: and WFuns are the corresponding wild-
type flux values under the photosynthetic condition.

CPLEX solver (version 12.1, IBM ILOG) was used in the GAMS (version 23.3.3, GAMS
Development Corporation) environment for implementing GapFind and GapFill [233] and
solving the aforementioned optimization models. All computations were carried out on Intel
Xeon E5450 Quad-Core 3.0 GH and Intel Xeon E5472 Quad-Core 3.0 GH processors that are the
part of the lionxj cluster (Intel Xeon E type processors and 96 GB memory) of High Performance
Computing Group of The Pennsylvania State University.



Figure 1. Species origin of newly added reactions in the draft model.
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Figure 2: Example of connectivity restoration for phenylacetaldehyde.



Figure 3: Distribution of metabolites based on their number of appearance in different organelles. (a)
cytoplasmic Zea mays iRS1563 metabolites in cytoplasm and other organelles, and, (b) non-cytoplasmic
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Figure 5: Venn diagram for genes, reactions and metabolites. (a) between Zea mays iRS1563
and AraGEM, (b) between Zea mays iRS1563 and Arabidopsis thaliana iRS1597, and (c)
between Zea mays iIRS1563 and maize CAGEM.
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B.4. Metabolic reconstruction of the archaeon methanogen Methanosarcina Acetivorans
The work in this section has been published [270].
B.4.1 Introduction

Genome-scale metabolic models (for recent reviews, see [37] and [271]]) are increasingly
becoming available for an expanding range of organisms. There exists at least forty completed
bacterial and thirteen eukaryotic metabolic reconstructions with many more under development
[37]. In the past decade, several studies [272] have demonstrated a variety of uses ranging from
strain optimization [21, 273, 274] pathogen drug target identification [275, 276], bacterial
community metabolic interactions [19] and identification of human disease biomarkers [277]. In
contrast to the extensive interest devoted towards bacterial and eukaryotic metabolism
reconstruction, efforts to construct archaeal metabolic models have been noticeably limited [53,
74]. This is partly due to the current relative paucity of -omics datasets available for species from
the Archaea domain. This dearth of data, however, is likely to change in the near future as recent



interest in methanogenic archaea has led to several sequencing efforts [278-280], as well as
transcriptomic and proteomic analyses [281-285]. Furthermore, it is increasingly becoming
apparent that archaeal metabolism has significant implications to the earth’s climate [286] thus
motivating the need to globally assess their true metabolic capabilities by reconstructing high
guality metabolic models.

Methanogens (def., methane-producing) constitute the largest group of the Archaea domain
of life [287]. Methanogens are terminal organisms in anaerobic microbial food chains (i.e.,
consortia) that break down organic matter to methane in diverse anaerobic environments in a
process that helps regulate the global carbon flux [288] . The process plays a surprisingly
significant role in global warming accounting for about one billion tons of the annual methane
production [286, 289]. Recently, Cheng and coworkers used a consortia of methanogens to
convert electricity into methane thereby paving the way for converting electric current generated
by renewable energy sources into renewable biofuels [290]. On the evolutionary front,
methanogens are amongst the most ancient form of life on earth and their role as the progenitors
of the first eukaryotic cell has been suggested under two separate hypotheses [291, 292]. In
addition, unique biochemical properties such as broad substrate specificity, participation of novel
coenzymes in the methanogenesis pathways and the presence of unique lipids in their cell wall set
these organisms apart from the bacterial and eukaryotic branches of life [293]. Therefore, the
reconstruction of archaeal methanogen metabolic models could help paint a more complete
picture of life’s metabolic processes.

Feist and coworkers first developed a genome-scale model (named iAF692) [74] for the
fresh-water methanogen, Methanosarcina barkeri using a draft version of its genome. In this
work, we reconstruct a genome-scale metabolic model for the marine methanogen,
Methanosarcina acetivorans. M. acetivorans is an aceticlastic methanogen that was first isolated
from marine microbial communities that degrade kelp into methane [294]. At over 5.7 million
base pairs [280], it has the largest reported genome of all sequenced Archaea (about 20% larger
than the M. barkeri genome) alluding to an expanded metabolic repertoire. This repertoire
includes unique methanogenic pathways, broad substrate specificity than other methanogens and
a large number of duplicate genes [280, 283-285, 295, 296]. Recent studies have shown that M.
acetivorans uniquely exhibits both methanogenic and acetotrophic growth on carbon monoxide
[296]. All these unique metabolic characteristics and planet-wide carbon balance impact [286,
289] provide the motivation to globally assess its metabolic capabilities.

Draft metabolic reconstructions generated using homology-based comparisons unavoidably
contain some omissions and misclassifications. These errors are manifested either as unreachable
metabolites or as in silico predictions that are in contrast with observed in vivo behavior [152,
220]. In response to these challenges, Suthers et al., proposed a computational workflow to
generate and curate the metabolic models and applied it to the metabolic reconstruction of
Mycoplasma genitalium [223]. The proposed workflow makes use of two separate model
correction procedures. GapFind and GapFill identify and subsequently restore connectivity to
unreachable metabolites [220] and GrowMatch that reconciles in silico growth predictions with in
vivo growth data [152]. In this work, we streamline this workflow for the generation of an
archaeal metabolic model and customize it to the available types of data.

We first generated a draft reconstruction of M. acetivorans using homology comparisons
with the published model [74] of the fresh-water methanogen, M. barkeri. We then deployed a
modified version of the workflow presented in Suthers et al., by combining the GapFind/ GapFill
and GrowMatch steps of the procedure [223], which was included in the first year progress report
of this grant. The completed model accounts for 1007 genes, 835 reactions and 790 metabolites.
The model also predicted substrate specific phenotypes of M. acetivorans and captured unique
bioenergetics exhibited by the organism across different conditions.



B.4.2 Results

The metabolic model reconstruction workflow consists of four steps. Step 1 refers to the
draft model generation using bidirectional BLAST homology (BBH) and database/literature
searches. Step 2 involves model modifications to ensure biomass formation for growth under all
known substrates. Step 3 applies GrowMatch [152] to restore growth prediction inconsistencies
and Step 4 applies GapFind and GapFill [220] to restore connectivity.

Step 1: Generating Draft model

BBH searches for each of the 692 genes included in the iAF692 model were conducted
against the latest genome sequence of Methanosarcina acetivorans C2A strain [280]. At this stage
of the reconstruction process, we included only open reading frames (ORFs) that have e-values
(in both directions) of at most 10, This process yields an initial conservative model for M.
acetivorans that has 820 genes. Based on the primary TIGR annotation of M. acetivorans [297]
this accounts for 18.1% (820/4540) of all ORFs in the M. acetivorans genome. The mapping of
the metabolic genotypes between these two very closely related organisms is surprisingly
complex. Specifically, 369 one-to-one mappings, 1,113 one-to-many mappings and 1,050 many-
to-many mappings (M. barkeri to M. acetivorans) were generated. The large number of one-to-
many and many-to-many mappings is consistent with the incidence of a high number of gene
duplicates in the M. acetivorans genome [280] [298].

We use multiple sources to annotate the remaining 3,720 ORFs in the genome.
Specifically, we assigned metabolic annotation to seven genes based on the information available
at an organism-specific annotation effort for M. acetivorans [299], 51 genes based on SEED
annotations [300] and 110 genes based on TIGR annotations. Interestingly out of these 168 genes
as many as 68m code for isozymes. Predicted or hypothetical proteins account for the remaining
2,411 ORFs not included in the model after the annotation step. Approximately 46% of all genes
in M. acetivorans (upon excluding hypotheticals and predicted proteins) were present in the draft
metabolic model. The methanogenesis pathways in the M. acetivorans model were modified to
account for known differences documented in the literature. Specifically, we added reactions
carbonic anhydrase (abbreviation in iVS1007: CAM), multiple resistance/pH regulation Na+ /H+
antiporter (abbreviation in iVS1007: MRP) and an electron transfer complex which oxidizes
ferredoxin and exports sodium ions (abbreviation in iVS1007: RNF). We removed the ECH and
VHO hydrogenases The added reactions are involved in ATP synthesis and replace the activities
of ECH and VHO hydrogenase, which are observed in H2/CO»-utilizing fresh-water methanogens
[295]. In contrast with other archaeal models [53, 74], we delineated methyltransferase specificity
[298, 301] for different substrates observed in M. acetivorans .

We generated the Gene-Protein-Reaction mappings for the M. acetivorans model using as
a starting point the iAF692 model based on the AUTOGRAPH method developed by Notebaard
and coworkers [39]. All exchange reactions and non-gene associated intracellular reactions
available in the iIAF692 model were also appended to the model, as we did not find any evidence
to the contrary [see Methods]. Upon conclusion of Step 1, a draft model with 988 genes, 820
reactions and 792 metabolites was generated.

Step 2: Model correction to enable biomass formation

We determine the metabolic capabilities of the assembled draft model to grow on known
methanogenic substrates by first specifying the biomass equation and then specifying the
composition of the minimal medium. The first requirement is addressed by assuming that the set
of components that make up the biomass equation in M. acetivorans is identical to that used in the
iIAF692 model. However, we changed the stoichiometric coefficients of the nucleotide
components (datp, dgtp, dctp, dttp, ctp and gtp) to reflect the difference in the G/C contents of the



two organisms. The utilization of the same biomass component set is supported by experimental
data on the minimal medium (Ferry et al., unpublished data). The minimal growth medium six
additional vitamins and trace elements (pyridoxine-HCL, sodium molybdate, thioctic acid, nitrilo
tri acetic acid and boric acid) over the one used in iAF692 [74]. We chose to exclude them from
our model as no metabolic role for them was identified based on literature searches or gleaned by
the model.

Equipped with the biomass composition and the minimal medium, we tested the
capability of the draft model to enable growth on the following known methanogenic substrates:
carbon monoxide, acetate, methanol and monomethylamine, dimethylamine and trimethylamine
[294]. The draft model did not exhibit growth on any of these substrates motivating the use of
GapFind [220] to identify the biomass precursor metabolites that could not be produced using
these substrates in a minimal medium. GapFind revealed that the same precursor metabolite
Adenosylcobalamin-HBI could not be produced for all substrate choices in the draft model. We
used GapFill [220] to restore flow through this metabolite. This was achieved under all
aforementioned substrate conditions by adding an exporter for the cofactor,
tetrahydrosarcinapterin. No evidence was found in the literature for the presence of a
tetrahydrosarcinapterin exporter. However, it is possible there exists an enzyme outside the cell
wall that utilizes the cofactor as a substrate.

Step 3: Evaluating and improving model performance using GrowMatch

After ensuring in silico growth on a defined medium across different substrates, we
further examined the model by testing for growth prediction agreement with experimental data
across different genetic/environmental perturbations. Using literature searches, we assembled a
dataset consisting of in vivo growth data for 66 different conditions (See Table B.4.2). As shown
in Table B.4.2, growth data was assembled for 29 genetic perturbations for growth on methanol,
thirteen on acetate, seven on carbon monoxide as carbon and energy source, and 22 on
methylamines as carbon substrates. Not surprisingly, most of these gene deletions are in
methanogenesis pathways (Table B.4.2) indicative of the significant attention this pathway has
received before.

In line with previous approaches [302] the growth cutoff for classifying a mutant as a
“Growth” or a “No-Growth” mutant was chosen to be 1/3" of average growth across the dataset.
Using this cutoff and the terminology introduced in the GrowMatch procedure [152] we arrive at
43 GG (in silico and in vivo “Growth”) fifteen GNG (in silico “Growth” and in vivo “No-
Growth”) and eight NGNG (in silico and in vivo “No-Growth”) cases. Notably, the incidence of
only GNG model/experimental discrepancies indicates that the draft model tends to over-predict
the metabolic capabilities of the organism when in error. A closer examination reveals that in 32
out of 43 GG cases the deleted genes correspond to isozymes while the remaining eight
correspond to deletions of methyltransferases. In all these cases both the model and the
experiment agree that the deleted genes are non-essential. Of the nine GNG cases that could be
resolved, eight were resolved by conditionally suppressing one additional reaction and one was
resolved by carrying out a single global suppression.

M. acetivorans. As shown in Figure B.4.1(A), the genes encoding for Methyl Coenzyme
reductase (the reaction that forms methane) under growth on Carbon Monoxide are non-essential
in silico and essential in vivo [303]. GrowMatch suggests suppressing either the reaction
catalyzed by acetate kinase (ACKr) or phosphotransacetylase (PTAr) to restore consistency to
this mutant. These hypotheses are consistent with the bioenergetics when M. acetivorans grows
on CO as the sole energy source [296]. Both the acetogenic (acetate forming) and methanogenic
(methane forming) branches of the methanogenesis pathway are energy yielding. Flux in the
methanogenic branch results in a proton and sodium ion gradient which is then used to synthesize



ATP catalyzed by the proton translocating ATP synthase. Alternatively, flux through the
acetogenic branch results in ATP synthesis using substrate level phosphorylation when acetyl
phosphate is converted to acetate by acetate kinase. When Mcr is deleted there is no mechanism
to recycle HS-CoM for another round of methylation and the Mtr-catalyzed methyl transfer
reaction coupled to generation of the sodium gradient is also deactivated thereby diverting CHs-
THSPT towards synthesis of acetate and ATP. Therefore suppressing ACKr (or equivalently
PTAr) in a mutant lacking Methyl coenzyme reductase (and consequently, the methane forming
branched pathway) ensures that both energy yielding pathways are deactivated thereby halting
growth.

In the second case (Figure B.4.1(B)), deleting ATP synthase results in a GNG mutant
when the organism grows on methanol as the sole carbon and energy source [284]. This deletion
negates proton- coupled generation of energy via methanogenesis leaving substrate level
generation of energy via acetogenesis. GrowMatch suggests restoring consistency to this mutant
by suppressing the sodium proton antiporter (abbreviation in iVS1007: Nat3_1). Suppressing this
reaction in this mutant metabolic network deactivates flux in the sodium-dependent reaction
methyl-THSPT:coenzyme M methyltransferase (abbreviation in iVS1007: MTSPCMMT) which
results in no flux in the acetogenesis pathway (Figure B.4.1B)).

Step 4: Network connectivity analysis and restoration

After evaluating and improving the model using in vivo gene deletion data, we used the
automated procedures GapFind and GapFill [220] to identify and rectify any remaining network
connectivity inconsistencies. Using GapFind, we identify 95 metabolites (i.e., 12.2% of all
metabolites in model) that cannot be produced for any choice of carbon substrate. Not
surprisingly, none of the 95 no production metabolites were present in the methanogenesis
pathway alluding to the completeness of its reconstruction. Interestingly, of the 161 metabolites
present in the M. acetivorans model but absent in iAF692, 101 can be produced whereas 60 have
blocked production routes. Notably, GapFind revealed that 35 out of these 95 metabolites could
also not be produced in the iIAF692 model of M. barkeri.

Flow restoration to all 95 metabolites was attempted using GapFill by adding reactions
from KEGG [86]. In this step, we restored consistency to only 21 of the 95 no production
metabolites. Flow through two of these 21 metabolites was restored by treating two existing
reactions (cob(l)alamin-HBI adenosyltransferase and hydroxyethylthiazole kinase) as reversible.
Flow through the remaining nineteen metabolites was restored by adding three reactions from the
iAF692 model and thirteen reactions from the KEGG database. In accordance with the prescribed
systematic cutoffs (see Methods section) reactions are added only when they have e-value lower
than 102 against the M. acetivorans genome.

Model characteristics for iVS1007

Table B.4.2 contrasts the model statistics for the iVS1007 model against previously
constructed archaeal models. The iVS1007 model is characterized by a large number of entries
with high confidence scores due to the stringent cutoffs prescribed at each step. Furthermore, the
inclusion of seven regulatory constraints that allow for substrate specific activation of
methyltransferases and the addition of reactions using multiple pieces of evidence are unique
features of this model. Finally, in contrast to the remaining models, the iVS1007 model
documents global and conditional suppressions based on systematic evaluation of model
predictions with in vivo growth data and network gap correction.

We compared flux values through the methane forming reaction catalyzed by Methyl
Coenzyme Reductase and the biomass equation to ascertain the extent of coupling between flux
in the methanogenesis pathway and in silico growth rates. We identified the range of methane



production flux by maximizing and minimizing flux through the MCR reaction for different
values of biomass formation. Conversely, we identified the range of biomass production for
different values of required methane production. Figure B.4.2 shows these plots for growth on
methanol, acetate and carbon monoxide.

As shown in Figure B.4.2 (A) and (B), a positive biomass flux implies a hon-zero MCR
flux for growth in methanol and acetate but not the reverse. Using the terminology introduced in
[26], this implies that the flux in biomass reaction is directionally coupled to the flux in MCR.
This is consistent with the indispensability of the methanogenic branch when M. acetivorans
grows on acetate and methanol [295, 303]. Moreover, the maximum biomass formation is reached
at when the flux through MCR is fixed at 74% of its maximum value for growth on methanol and
86% for growth on methanol. At maximum biomass production, the ratio of biomass to methane
production is 0.016 GDW/mmol and 0.005 GDW/mmol for growth on methanol and acetate,
respectively. This higher biomass yield is qualitatively consistent with the higher energetic yield
per mole of methanol observed for M. acetivorans [304].

Figure B.4.2(C) illustrates the predictions of the iVS1007 model for growth on carbon
monoxide as the sole carbon and energy substrate. The model prediction that the methanogenic
branch is dispensable when M. acetivorans grows on carbon monoxide is consistent with the
mechanism proposed in [291, 296]. Notably, the maximum biomass production is achieved at
58% of the maximum flux in the MCR reaction and the ratio of the two fluxes is 0.033
GDW/mmol. It has been previously established that the acetogenic and methanogenic branches of
the pathway are energy yielding when M. acetivorans grows on carbon monoxide [296]. Using
the coupling analysis described above, we find that the acetogenic and methanogenic branches are
not coupled This supports the independence of the energy yielding branches for growth on carbon
monoxide.

B.4.4 Summary

Metabolic reconstruction technology has been used extensively to document the
metabolic fingerprints of organisms in the Bacteria and the Eukarya domains [305]. Here, we
take advantage of the increased availability of experimental and -omics datasets for archaeal
organisms to build the metabolic model, called iVS1007, of the archaeon with the largest known
genome, Methanosarcina acetivorans. The iVS1007 model is constructed using a systematic
procedure that enables sequential evaluation and improvement of model capabilities. The model
consists of 835 reactions, 790 metabolites and 1007 genes; the latter accounting for 45% of all
ORFs in M. acetivorans with putative annotations [297]. The completed model has 716
metabolites (91%) that can be produced and it has a high agreement of 91% against in vivo
growth data across environmental and genetic perturbations with specificity of 74% (i.e., percent
of correctly identified essential genes) and selectivity of 86% (i.e., percent of correctly identified
non-essential genes). Additionally, the model recapitulates substrate-specific energetic
characteristics such as ATP synthase indispensability for growth on acetate/methanol and its
dispensability for growth on carbon monoxide.

The number of reactions included in the draft model under Step 1 is quite sensitive to the
adopted BLAST cutoff. The number of reaction entries increases to 1,090 when the cutoff is
relaxed to 10% from the 820 entries for the adopted cutoff of 10-*°. This more stringent cutoff
was chosen to ensure that the draft model did not contain any falsely added reactions. We have
found that it is much easier to find and add missing functionalities than correctly identifying and
removing erroneous ones. Interestingly, all but one reaction in the methanogenesis pathway
known to occur in M. acetivorans were included in the draft model using the most stringent
cutoff. Reaction ECH Hydrogenase which is known to occur in M. barkeri but not in M.
acetivorans was excluded from the draft model.



This constructed iVS1007 model represents the most comprehensive up-to-date effort to
catalogue methanogenic metabolism. Given the attention methanogenic consortia have received
and the growing amount of metagenomic data [306], this model can be used to assess the
biological impact on carbon balance of methanogenic communities. This organism-specific
compilation of the metabolic repertoire of M. acetivorans can serve as the framework for fusing
additional experimental data on methanogens as they become available.

B.4.4 Materials and Methods
B.4.4.1 Generation of initial model

We generate the initial model for M. acetivorans by taking advantage of an existing genome-scale
metabolic model for the marine methanogen M. barkeri (iIAF692). The iAF692 model is based on
a draft version the M. barkeri fusaro genome [74]. We first mapped the genes from iAF692 onto
the current genome-sequence of M. barkeri to restore consistency with the most up-to-date
genomic information. For every gene in the iAF692 model, we retrieved the corresponding
protein sequence (personal communication with Adam Feist of UCSD) and conducted
bidirectional BLAST (BBH) (BLASTp [307]) searches against the current genome sequence of
M. barkeri. This mapping is available in the submitted paper.

The draft reconstruction for M. acetivorans is generated by conducting bidirectional
BLAST (BLASTp) searches for each one of the 692 genes in iAF692 against its genome and
including only those genes/protein/reaction associations with an e-value of better than 100, We
used multiple sources to annotate the remaining genes in M. acetivorans. Specifically, we
incorporated in the following order updated annotations made available as part of an ongoing
effort at the University of Maryland (carried out in the Sowers Lab at the Center for Marine
Biotechnology), extracted from the SEED database [300], and ones available at TIGR [297].

Upon obtaining annotations for the remaining genes, we pinpointed metabolic genes by
searching each annotation against the KEGG ligand [86] database and retrieving corresponding
reactions. For annotations with no synonyms in the KEGG ligand database, we use their Enzyme
Commission Number (if available) to search the Swiss- Prot database [308] and retrieve the
metabolic reaction(s) (if at all) they are associated with. Finally, we also included reactions that
are known to be present in M. acetivorans but absent in M. barkeri (e.g., reactions for CO
metabolism. We use the AUTOGRAPH procedure developed by Notebaard et al., to generate the
gene-protein-reaction (GPR) associations [39]. This procedure uses bidirectional BLAST hits
(BBH) to generate GPR’s for new metabolic reconstructions (M. acetivorans in our case) using
the GPR’s of related metabolic models (M. barkeri). We also added non-gene associated
reactions and exchange reactions in iAF692 to the model unless we found evidence to contrary.

B.4.4.2 Model fidelity improvement using available data sources

Upon the generation of the draft model the next step involves the systematic elimination of
network gaps using GapFind/GapFill [220] and growth prediction inconsistencies using
GrowMatch [152]. These procedures are deployed in a synergistic manner to provide mutually
corroborating evidence for model correction.

Step 1: We generate the draft model as discussed above.

Step 2: We test the ability of the model to grow on known substrates. If it doesnt, we use
modified versions of GapFind and GapFIII respectively to identify biomass precursors that cannot
be produced and ensure their production. We allow for addition of functionalities at this step only
if the BLAST e-value is lower than 102, Upon completion of this step all biomass components
are available in iVS1007.



Step 3: We compare in silico biomass production in iVS1007 against available in vivo
growth data across different environmental/genetic perturbations. Mutants are classified as
Grow/Grow (GG), No-Grow/Grow (NGG), Grow/No-Grow (GNG) and No-Grow/No-Grow
(NGNG) following the definitions proposed in [152]. GNG mutants are resolved by identifying
global/conditional suppressions in the iVS1007 network using GrowMatch. NGG mutants are
corrected by globally or conditionally adding reactions in iVS1007 using GrowMatch. These
reactions are preferentially chosen from model iAF692 followed by additions from external
databases such as KEGG [86] using a BBH e-value cutoff of 10", Upon completion of this step,
all in silico/ in vivo growth inconsistencies that could be corrected by either removing or adding
reactions available in databases resolved.

Step 4: We next identified metabolites that cannot be produced or consumed using
GapFind. Using GapFill, we restore connectivity to them by appending only reactions that have
BBH e-values of less than 1071°.

In addition, we mined for all published articles having the word “Acetivorans” anywhere in their
content in the Web of Science and PubMed databases and download these articles using
EndNote'Ve®. We used the mdfind command on a MacBook ™, search for articles that have loci-
names of M. acetivorans genes included in the iVS1007 Model. This enables a relatively quick
search for literature evidence supporting (or not) annotations in the iVS1007 Model. We update
the model to resolve any incorrect annotations identified in this step and consolidate information
from articles not included in the above search domain but have information regarding
methanogenesis [301].
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Figure B.4.2 S Flux coupling analysis between flux in Methyl
coenzyme reductase and biomass for cellular growth on A)
methanol, B) acetate, C) carbon monoxide. All values of fluxes are
in mmol/gDW hr? and are normalized to the respective substrate
uptake rates fixed at 1000 mmol/gDW hr.



Table B.4.1 In vivo gene deletion data used evaluate and improve iVS1007’s predictive

capabilities.
Substrate
Gene deletions acetate carbon monoxide methanol MMA DMA TMA
ackR NGNG GNG GG - - -
ATP synthase NGNG GNG - - -
DMTsD GG GG GG - - GG
mtsD+mtsF GG GG GG - - GG
mtsD+mtsH GG GG GG - - GG
mtsF GG GG GG - - GG
mtsH GG GG GG - - GG
mtsF+mtsH GG GG GG - - GG
lysK - - GG - GG GG
lysS - - GG GG GG GG
MCR NGNG GNG NGNG GNG GNG GNG
mtaAl - - NGNG - -
mtaAl + MT1 GNG - - - - -
mtaA2 - - GG - - -
mtaCB1 - - GG - - -
mtaCB1 + mtaCB2 - - GG - - -
mtaCB1 + mtaCB2
+ mtaCB3 - - GNG - - -
mtaCB2 - - GG - - -
mtaCB3 - - GG - - -
NGN NGN
mtbA - - - G G -
mtbA - - - - - GG
ppyIR - - GNG - - -
ppylT GG - GG GNG GNG GNG
ptaR NGNG GNG GNG - - -

Rnf complex GNG - - - - -



Table B.4.2 Comparison between iVS1007 and other available Archaeal models

Genome size
ORF's

Metabolic genes

Unique proteins
Isozymes

Multidomain proteins

Reactions
gene-associated
non gene-associated
transport reactions
Metabolites

Gaps

Consistency with growth data

Methanosarcina acetivorans
5.7 Mb
1007
1007

1007
140
145
835
726

109

790

91%

Methanosarcina barkeri
4.8 Mb
5072
692

542
31
65

619
509
110
88
558

35

69%

C._Specific Aim 2: Automated Generation of Genome-Scale Isotope Mapping Models

C.1 Automated generation of complete atom mappings for MFA using genome-scale

metabolic reconstructions

The work in this section was recently published [309].

C. 1.1 Introduction

Halo



Metabolic flux analysis (MFA) [310] has emerged as a critical tool to understand the
physiological state of a cell [311-313]. Using isotopically labeled substrates with different
labeling patterns, experimental techniques such as NMR [314, 315] and GC-MS [316] are used to
measure the amounts of different isotope forms of select metabolites. The fluxes in a metabolic
network are directly coupled to the relative isotopic abundances of different metabolites through a
system of nonlinear algebraic equations [317]. Details of the same can be found in literature in a
recent review [318]. Briefly, these nonlinear equations are constructed using mapping matrices
that trace the path of each atom and subsequently each isotopomer (isotope isomer) in a metabolic
reaction. This information was initially represented using atom mapping matrices (AMM) [319]
that track the transfer of carbon atoms from reactants to products. This concept was subsequently
generalized in the form of isotopomer mapping matrices (IMM) [320] that enumerate all possible
product isotopomers that can be created from each reactant isotopomer.

Two separate computational challenges arise during flux elucidation based on MFA. The first
challenge involves the automated generation of isotope mapping matrices for genome-scale
metabolic reconstructions while the second involves the efficient solution of the corresponding
system of nonlinear equations for the unknown fluxes while accounting for measurement error.
The challenge of flux elucidation has been previously addressed using a variety of computational
techniques including the cumomer concept [321], theoretical bondomer [322], the elemental
metabolic unit (EMU) framework [323] and FluxCalc [324]. However, the application of these
methods has been restricted to models that were at least an order of magnitude smaller than
genome-scale reconstructions as a consequence of the aforementioned challenges. Typical isotope
mapping models contain 25-50 reactions [318], 76 reactions [325] or 238 reactions [324], which
is the largest to-date model (developed in our group). A key shortcoming of using lumped
metabolic abstractions to perform flux elucidation is that they may erroneously lead to the
conclusion that the available GC or MS data is sufficient for unique flux elucidation [326]. The
inferred metabolic fluxes may then inherently reflect the biases/assumptions built-in during the
lumped metabolic map creation step. In addition, by utilizing a genome-scale model for
simulation/strain design purposes and a separate lumped metabolic model for flux elucidation
could complicate the seamless integration/transfer of results.

Motivated by these shortcomings, here we introduce a largely automated workflow for
constructing isotope mapping matrices using as input full genome-scale metabolic
reconstructions. This is a formidable challenge as it requires a detailed mapping of atom
transitions for all reactions in a metabolic network and has so far remained organism-specific and
labor intensive. Atom mapping matrices are obtained by tracing the origin and destination of
atoms through each individual reaction in the metabolic network. In addition to tracing
isotopically labeled carbon atoms (typically preferred in MFA experiments) we also trace the path
of O, N, P, S atoms as well as of metal/non-metal ions. Tracing atoms from reactants to products
requires the ability to topologically superimpose the structures of reactant and product molecules.
This involves the identification of all “common” substructures between the two molecules.

Techniques relying on pattern recognition concepts from graph theory, which have been
extensively employed in cheminformatics [327-329], can be used to topologically align and
compare a reactant with a product molecule. These techniques essentially apply two mathematical
operations on the molecular graphs of the two compounds to be aligned. A molecular graph is a
mathematical representation in which nodes correspond to atoms and edges to molecular bonds.
The first mathematical operation combines the two molecular graphs into a single association
graph (AG). The second operation identifies the largest clique (i.e., connected graph) within the
AG. In the maximum common edge subgraph (MCES) procedure, the edges of the AG
incorporate bond-type information (single, double or triple bond) of the compared molecules.
[330] adopted the MCES approach to match two randomly chosen (not part of a biochemical



reaction) structurally complex chemical compounds with reasonable accuracy. Unfortunately, the
MCES method does not scale well for genome-scale level reaction compilations requiring
prohibitive computational time [331].

The maximum common subgraph (MCS) approach [332], formulates the edges of the AG without
considering the bond-type data of the two compounds involved. As a consequence, the MCS
approach is more computationally efficient and thus more suitable for mapping atoms
participating in a large number of reactions [333]. In addition, the accuracy of atom mappings
produced through this procedure is quite high for most biochemical reactions.  However, to
date it has only been used to contrast pairs of compounds [333] or trace only carbons [334] within
the KEGG/LIGAND database [335, 336]. Also, the atom transitions listed in KEGG are
inadequate for flux analysis using MFA since alternative atom transitions are not explicitly listed
when symmetric molecular sub-structures or symmetric molecules are present in the reaction.
Alternatively, compound matching based on an algorithm that tallies the connectivity (i.e. number
of atoms connected to a given atom) of atoms in the compared compounds [337], has been used
to trace atoms across reactions [338, 339]. However, this procedure requires the manual
reordering of metabolites in reactions and has scaling limitations (i.e., it cannot detect rings of
size greater than ten such as heme) [340].

We chose to overcome these limitations and generate mappings for the latest metabolic
reconstruction of E. coli [49] by first representing molecular chemical structures as graphs
defined by a set of vertices (the atoms) connected by edges (the bonds). Subsequently, the MCS
method [333] coupled with a modified branch and bound algorithm for clique finding [341] is
customized to automatically generate genome scale atom mappings.

In the next section we describe in detail the generated isotope mapping model imPR90068 for the
E. coli strain K-12, which spans 1,039 metabolites, 2,077 reactions and contains a total of 1.37 x
10%" isotopomers and 8.34 x 10% 3C isotopomers. Furthermore, we highlight the enhanced
pathway resolution capability of imPR90068 with an emphasis on nucleotide salvage, cofactor
and prosthetic group biosynthesis, glycerophospholipid metabolism and alternate carbon
metabolism. We also provide guidelines on the application of the model for MFA using an EMU
representation. Finally, we describe the general procedure developed for the largely automated
generation of genome-scale atom mappings.

C.1.2 Results and Discussion

We first highlight the adopted molecular graph based description by reactant to product atom
mapping for two separate example reactions. Next, the size and content statistics of imPR90068
are reviewed followed by the application of the model for flux elucidation.

C.1.2.1 Reaction to product atom mapping examples

The metabolic network iAF1260 contains 304 exchange reactions, 690 transport reactions and
1,387 metabolic reactions [49]. The atom mappings for the 690 transport reactions, which account
for 12,325 of the traced atoms, were generated in a straightforward manner as the molecular
graphs remain invariant upon transport. For example, the atom mappings for the
arginine/agmatine antiport reaction, which is a reversible inner membrane transport reaction, are
retained as arginine and agmatine as they simply transported from the cytosol to the periplasmic
space without any bond modifications:

ARGAGMLt7pp agm|c] + arg-L[p] <==> agm|[p] + arg-L[c]

The atom mappings for the remaining 1,387 metabolic reactions, containing 77,619 of the
mapped atoms, were created by iteratively applying for every reaction the proposed workflow
(see Steps 1-4 in Figure C.1.1). During this process, five frequently occurring reaction motifs



were automatically identified and stored in a database (see Table C.1.1). The atom mappings of
these five reaction motifs, which occur in 424 different reactions, were simply copied from the
reaction motif library (Table C.1.1).

The following two example reactions illustrate the results obtained upon applying the four steps
of the mapping procedure (see Figure C.1.1). The first reaction is histidinol-phosphatase, which is
part of histidine metabolism and listed in iIAF1260 as:

HISTP [c] : h20 + hisp --> histd + pi

In Step 1, the reaction is parsed into reactants, products and the reaction name (i.e. HISTP). In
Step 2, atom and bond information of water, L-histidinol phosphate, L-histidinol and phosphate
molecules are obtained from respective MDL mol files of iAF1260. These data are used to create
the reactant and product graphs of histidinol-phosphatase reaction (Figure C.1.2). The reactant
and product graphs contain fifteen nodes linked through fourteen edges. Each node is associated
with two parameters, one representing the atom number and the other representing the atom type.
Each edge is associated with three parameters, the pair of atoms they connect and the bond type
(Figure C.1.2). The corresponding chemical structures of the metabolites represented in the
reactant and product graphs are also shown in Figure C.1.2. In Step 3, the six carbon, one
phosphorous, five oxygen and three nitrogen atoms of water and L-histidinol phosphate are traced
to atoms in phosphate and L-histidinol through 24 alternate atom mappings (grey atom traces in
Figure C.1.2). In Step 4, known reaction chemistry information is used to prevent the oxygen
atom in the water molecule water from being traced to the phosphate moiety (dephosphorylation
reaction chemistry). Due to the interchangeability of all oxygen atoms in the phosphate group, 24
separate atom mappings are generated and stored as one reaction mapping under the reaction
name HISTP.

Symmetric molecules introduce a number of additional complications. They are illustrated using
the taurine dioxygenase reaction:

TAUDO [c]: akg + 02 + taur --> aacald + co2 + h + s03 + succ

After parsing the reaction into the required components, MDL mol files of 2-oxoglutarate,
oxygen, taurine, succinate, carbon dioxide, aminoacetaldehyde and sulphite are used to create the
reactant and product graphs (Figure C.1.3). Due to the presence of symmetric molecules (i.e.,
succinate, carbon dioxide and oxygen) and interchangeable atoms within groups (i.e., sulphite),
96 alternate mappings are generated for the taurine dioxygenase reaction. These atom mappings,
which trace seven carbon, one nitrogen, ten oxygen and one sulfur atoms between seven
metabolites (Figure C.1.3), are stored as a reaction mapping under the reaction name, TAUDO. A
manual curation of the generated 96 atom mappings reveals that there are no erroneous mappings
implying that symmetry is properly handled by our mapping procedure.

C.1.2.2 Size statistics and content of imPR90068

The genome-scale mapping model imPR90068 generated for the E. coli encodes the complete list
of reactions in iAF1260 (Feist et al., 2007) as a library of 2,077 reaction mappings (See
supplemental information for the mapping files). Each reaction mapping contains multiple atom
mappings that trace all reactant atoms to all product atoms in the respective reaction. The model
contains a total of 20,872 alternate atom mappings that trace the fate of 90,068 atoms through a
network of 2,077 reactions and 1,039 metabolites. These atom mappings trace the path of C, O,
N, P, S atoms as well as Ag, As, Ca, Cd, Cl, Co, Cu, halogens, Fe, Hg, K, Mg, Mn, Na, Ni, Se,
W, Zn ions. Detailed information on atoms traced is provided in Table C.1.2.

The classification of all 1,387 metabolic reactions in imPR90068 based on the number of
alternative mappings (per reaction) is shown in Table C.1.4 and Figure C.1.4. The reaction



mappings of 734 reactions contain a single alternative, which implies that the atoms in these
reactions are uniquely mapped from reactants to products. The majority of these 734 reactions
with no mapping degeneracy are isomerization, displacement or substitution reactions typically
containing less than three reacting species. The remaining reaction mappings are degenerate to
various degrees and contain multiple alternative atom transitions from reactants to products due
to symmetry(ies) present in the reaction operator (Table C.1.4). A general downward trend is
observed in the number of reactions with increasing reaction mapping degeneracy with 578, 256,
155 reactions containing respectively 2-8, 9-128, 129-1024 alternative mappings (Figure C.1.4).
A certain obvious clustering of reactions is observed at 17-32 alternatives and similarly at 257-
512 alternatives. This happens due to the nature of reactive groups participating in individual
reactions such as phosphate, which typically produces 24 alternatives or diphosphate, which
typically results in 288 alternatives. Table C.1.4 also identifies which atom type (or combination
of atoms) is responsible for the degeneracy in the mapping. The individual reactions containing a
modest number of mappings (i.e., from two to eight) are primarily degenerate either due to
equivalent carbons or due to equivalent oxygens and less likely due to the presence of both
equivalent carbons and oxygens (71% due to either only C or only O and 22% due to both C and
0). The degenerate reactions containing equivalent O (either standalone or in combination with
other equivalent atoms such as C, N) are predominantly due to electronic orbital resonance of the
oxygen atoms in the carboxyl groups [342]. Degeneracy due to only equivalent C and only N
arise as a result of backbone symmetry of the reacting species (see also Figure 4). For example, in
reaction TAUDO (see Figure C.1.3), reactant 2-oxoglutarate can be mapped to product succinate
in four possible ways. This multiplicity arises from two equivalent carbon atom pairs 1,2 and 8,5
in 2-oxogluterate that can be mapped to either 17,16 or 12,13 positions, respectively present in
the succinate product molecule.

Surprisingly, despite the presence of nearly 60% less number of oxygen atoms in the model than
carbons, we find that equivalent oxygen atoms are by far the most frequently occurring (resulting
in 44% of all degenerate reactions) whereas C atoms result only in 28% of total reaction
degeneracy. The reaction HISTP (see Figure C.1.2) illustrates the reason for the above statistics,
where all 24 alternative mappings are due to 4 oxygen atoms (3,4,5 and 6 in the reactant graph)
although a greater number of carbon atoms are present in the graph. Often, multiple atoms (e.g.,
C, O, N or P) simultaneously contribute in the mapping degeneracy. Fairly ubiquitous are
reactions with multiple mappings arising from both C and O atoms. For example, in the citrate
hydro-lyase reaction of TCA cycle, both carbon and oxygen atoms in the symmetric citrate
molecule are mapped in multiple ways to the product cis-aconitate molecule.

Phosphorous atoms accompanied by equivalent oxygen atoms (due to the presence of resonating
phosphate groups) are involved in reactions with large numbers of mappings (i.e., more than 64).
There exist ten reactions with number of mappings in the range of 513-1,024. These reactions
contain four or more reacting molecules usually with multiple symmetric operators and are
involved in cofactor and prosthetic group biosynthesis, murein recycling and nucleotide
synthesis/salvage pathways. For example, in the asparigine synthetase reaction ASNS2, six
molecules containing five reaction operators (two carboxyl groups and three phosphate groups)
bring the reaction mapping degeneracy to 864 alternatives.

C.1.2.3 New reactions/metabolites in imPR90068

The introduced isotope mapping model imPR90068 contains mappings for reactions that were
previously lumped or completely absent from isotope mapping models (even in imPS1485).
These new additions include 68 reactions involved in the metabolism of 17 different amino acids
(all but Asparagine, Glutamine and Glutamic acid), 65 reactions involved in central metabolism,
153 reactions in nucleotide biosynthesis and salvage pathways, 225 reactions in
glycerophospholipid metabolism, 160 reactions in cofactor and prosthetic group biosynthesis and



181 reactions in alternate carbon metabolism. The inclusion of all biotransformations spanned by
the genome-scale model implies that alternate metabolic routes can now fully be taken into
account during flux elucidation using MFA. For example, in imPR90068, the xylose isomerase
catalyzed reaction XYLI2 that reversibly isomerizes D-glucose to D-fructose combined with the
fructose transport reaction FRUpts2pp which converts PEP (phosphoenolpyruvate) to pyruvate
during the transport of D-fructose, creates a pathway from glucose to pyruvate alternate to
glycolysis. Similarly, reactions such as the amylomaltase (AMALT1-4), maltodextrin glucosidase
(MLTGL1-5), a- and b-galactosidase (GALS3, LACZ, LACZpp) reactions of the alternate carbon
metabolism pathway, which involve alternate routes for glucose metabolism, are included in the
genome-scale model. Further, analysis under growth on 174 carbon sources is possible in the
imPR90068 model as opposed to growth on glucose and few amino acids studied in imPS1485.
In addition, all biomass components are mapped in imPR90068 model. As many as 45 biomass
components absent from imPS1485 are now part of the model. These metabolites include
cofactors (e.g., CoA), amino acids (e.g., His and Trp), riboflavin, murein, and inorganic ions
(e.g., Fe+3). It is important to note that new reactions in imPR90068 are not necessarily far away
from central metabolism. Even under aerobic glucose growth conditions, as many as 35 new
reactions are added to central metabolism that are part of Citric Acid Cycle,
Glycolysis/Gluconeogenesis, Oxidative Phosphorylation, Pentose Phosphate Pathway and
Pyruvate Metabolism.

Notably, imPR90068 accounts for not only all reactions but also all metabolites present in
iAF1260. 76 new metabolites are present in imPR90068 that were absent in imPS1485. These
newly added metabolites link parts of metabolism previously treated before as separate. For
example, (see Figure C.1.5) the added metabolite aicar (5-Amino-1-(5-Phospho-D-
ribosyl)imidazole-4-carboxamide) directly participates in purine meabolism and the histidine
pathway. It is also indirectly linked to thiamine metabolism (through metabolite air), glycine,
serine and threonine metabolism (through glycine) and in alanine, aspartate and glutamate
metabolism (through glutamate). Thus, the incorporation of a single additional metabolite in
imPR90068 enables for the first time the ability to fully describe histidine and purine metabolism
as well as account for interactions between many pathways.

C.1.2.3 Reduced and EMU based representation of imPR90068

Armed with a complete database of all atom mappings implied by the genome-scale model
iIAF1260, it is straightforward to select only the mappings which are relevant for a given isotope
labeling experiment. The numbers of isotopomers present upon labeling various atoms present in
the model are detailed in Table C.1.2. For example, by labeling only carbons we find that the 932
carbon-containing metabolites (with a total of 20,935 carbon atoms) yield 8.34 x 10% 3C
isotopomers. We can tailor the set of considered isotopomers to the specifics of the system under
consideration by removing all reactions/mappings that are suppressed under the experimental
conditions. For example, under aerobic glucose minimal media conditions 752
blocked/suppressed reactions can be removed from the model leaving 793 metabolites containing
33,026 tractable carbon atoms and 3.02 x 10%2 isotopomers.

An even more compact representation of the isotope mapping relations can be achieved using the
EMU representation [323]. We have developed Python scripts that given the atom mapping
matrices of imPR90068, the labeled substrate and measured fragments the EMU representation is
automatically generated. The EMU representation of imPR90068 for aerobic labeled glucose
minimal media conditions and using the 31 amino acid fragments listed in Table C.1.1 of [324] is
provided as supplemental material. Table C.1.3 highlights the savings afforded by the EMU
representation. While the 17,346 carbon isotopomers of imPS1485 are reduced to 1,215 EMU
species and 3,912 mass isotopomers (Suthers et. al., 2009), the 10% carbon isotopomers in



imPR90068 are reduced to 1,067,652 EMU species and 6,065,801 mass isotopomers. This is a
tractable model size that can be handled by current solvers such as CPLEX 10 [343].

C.1.3 Summary

This work introduced the computational infrastructure for tracing all atoms present in every
reaction in the iAF1260 metabolic reconstruction of E. coli from reactants to products to create a
genome-scale mapping database. This automated procedure can be efficiently leveraged for
genome-scale models of other organisms to create isotope mapping databases. Common reactions
already present in iAF1260 can be directly culled from the imPR90068 reaction-mappings
database thus significantly reducing the effort needed to construct other organism-specific
mapping models. The potential to improve our understanding of flux allocation in different
organisms is alluded by the gap in the size of genome scale vs. isotope mapping models. For
example, there exists a 50-fold difference in the size of the genome-scale reconstruction of
Bacilus subtilis that spans 1,020 reactions [68] and its current isotope mapping model [344] that
accounts for only 25 reactions (all from central metabolism). It is expected that incorporating
reactions into the mapping model already present in the genome-scale model could shed light
onto metabolic pathway usage patterns with many practical implications, for example for an
industrially relevant organism such as B. subtillis.

The ability to elucidate fluxes using the full complement of reactions and metabolites present in
genome-scale level reconstructions comes at the expense of requiring additional labeling data.
While lumped isotope models [318, 324, 325] typically require the analysis of spectra (i.e., NMR
or GC/MS) for only about 20-50 fragments, using the totality of mapped isotopomers in
imPR90068 will likely require significantly higher numbers of carefully chosen labeled
fragments. This makes even more pertinent the use of methods such as OptMeas [326]; Suthers
et al. 2009) to pinpoint minimal measurement sets and compact isotope representations such as
EMU [323] for complete flux elucidation.

Finally, the use of molecular graph representations at a genome-scale level can be used to study
the synthesis problem in metabolic networks [89]. An example application is in creating specific
chemistry operations for the computational framework BNICE [89]. BNICE generates novel
biochemical pathways and novel intermediate compounds given the bond-electron matrix (BEM)
of the initial metabolites and a single or combination of reaction operators for each reaction in the
pathway [89, 345]. The BEM specifies compound properties: the non-bonded valance electrons of
all atoms in participating molecules and the connectivity, bond order (single, double bond etc.)
between those atoms. On the other hand, the reaction operators used in BNICE are
biotransformation rules that have been generalized based on EC reaction classification [346]. The
molecular graph approach used to create the isotope mapping model specifies complete reaction
rules for genome scale networks in the form of reaction mappings. Hence the data available in
mapping files can be used to generate reaction operators required by BNICE for analysis of
genome-scale networks. The metabolic network of E.coli (and eventually other organisms) can
potentially be explored for hypothetical reaction steps which include novel intermediate/product
metabolites with relative ease due to the availability of a genome-scale isotope mapping model
[89].

C.1.4 Materials and Methods

The proposed procedure used to generate imPR90068, requires as input the stoichiometry of all
reactions present in the metabolic network and data (e.g., MDL mol files) encoding the chemical
structure of all metabolites involved in the network. The method described below can be applied
to any genome-scale metabolic model and is amenable to the straightforward inclusion of
additional reactions not present in the original organism models as well as user-supplied
metabolite structures. During the automated procedure, a library of atom mappings and recurring



motifs is generated which can be leveraged for future isotope mapping efforts. The following four
steps are performed on every reaction in the input network (see Figure C.1.1).

Step 1: Automated identification of metabolites with constant labeling and elucidation of
recurring reaction motifs

The reaction stoichiometry, supplied as part of the input network, is parsed into reactants and
products. Reaction stoichiometry is appropriately handled by accounting for multiple or partial
occurrences of metabolites. Exchange reactions (i.e. a reaction in which the metabolite crosses the
system boundary) are handled in a straightforward manner as labeling remains unaffected during
transport. Similarly, reactions for which the same metabolite is present on both the reactant and
product side are identified and the corresponding metabolite’s labeling is flagged as identical for
both compartments (Fig 1). A number of reaction motifs occurring in many biotransformations
(such as atp + h,0 > adp + h + pi) are identified and their atom mappings are stored in a library
(see Table C.1.1). Therefore, when parsing a particular reaction, metabolites that remain
unaltered and metabolites identified as part of a reaction motif are temporarily removed before
the molecular graph comparison step.

Step 2: Generation of reactant and product molecular graphs

Atom and bond information for all reactants and products in the reduced reaction is extracted
from molecular geometry descriptors supplied as input data (i.e., MDL mol files). The chemical
structure of each metabolite is represented as a graph where nodes depict atoms and edges refer to
chemical bonds. The graphs of all reactants participating in a reaction are concatenated together
(by combining atom and bond data of the individual metabolites) to yield a single reactant graph.
Similarly, all the product molecule graphs are pooled to yield a single product graph (see Fig. 1).
Note that reactant or product graphs are disjoint when multiple reactants or products are present,
respectively. As a test, the total number of each atom type in the reactant graph is verified to be
equal to that in the product graph.

Step 3: Construction of atom mappings between reactant and product graphs

We use the MCS method [333] to create the association graph AG between the reactant and
product graphs. Subsequently, the branch and bound algorithm [341] is applied to detect the
largest clique(s) in the AG. The largest clique corresponds to the largest subgraph (subset of
nodes connected by the same set of bonds) shared between the reactant and the product graphs. In
chemistry terms, this is the largest portion of the reacting molecules that remains invariant
through the reaction step. The largest clique(s) encode the required mapping data for the current
reaction (Fig. 1). The atom mappings of the metabolites with fixed labeling and those
participating in reaction motifs (see Step 1) are generated and re-incorporated into the atom
mapping database entry for the current reaction.

Step 4: Elucidation of consistent mappings

The MCS procedure often generates multiple atom mappings between reactant and product
graphs (Fig 1). Alternate mappings are generated mainly due to the presence of many identical
atoms within similar subgraphs between the reactant and product molecules. For example, the
two oxygen atoms in a carboxyl group could, in principle, be routed in the same location in the
product molecule. In addition, the presence of symmetric reactant metabolites (e.g., succinate)
implies that positions equidistant from the middle are equivalent labeling choices in the product
molecule. All the atom mappings obtained are verified to be correct by visually depicted the atom
transition between the structures of reactant and product molecules (Fig. 1). If a particular atom
transition is prohibited due to reaction chemistry, only the atom mappings permitted by the
reaction heuristics are retained. One such example is a dephosphorylation reaction in which water
molecule reacts with a phosphate-containing molecule thus displacing the phosphate group. Since



we know from reaction chemistry that the oxygen originating in the water molecule does not
escape with the phosphate group, all such alternate mappings generated for dephosphorylation
reactions can be automatically eliminated. Therefore, in some cases a post-processing step is
needed to prune biologically irrelevant mappings. Using information of the reaction chemistry we
retain only plausible mappings from the atom mapping file created in Step 3.

The end result of the atom mapping process is a library of atom mappings for every
reaction in the input network. The procedure described above was used to create genome-scale
atom mappings for the latest E. coli metabolic reconstruction iAF1260 [49]. Specifically, we
constructed and used Python modules to extract atom and bond information for all 1,039
metabolites in iAF1260. This information was parsed from MDL mol files (whenever available)
and from the KEGG [86] and the SDF PubChem databases. These data sets were used to create
reactant and product graphs for all 2,077 reactions in iAF1260. The atom mappings were
generated for each reaction separately using a cluster of Dell PowerEdge 1950 servers with dual
3.0 GHz Intel Xeon E5450 Quad-Core Processors and 32 GB of ECC RAM. Atom mappings
were generated for every reaction in the network tracing all non-hydrogen elements including C,
N, O, P, S and metal/non-metal ions. The obtained atom mappings were also manually curated as
a final check.

The EMU representation [323] was implemented using Python modules. Briefly, given a set of
mass isotopomer measurements and a set of source metabolites, this implementation calculates
network fluxes through an EMU represention. The details of the procedure used to identify all
EMU species and variables are outlined in (Suthers et al. 2009).

Reactant and product graph definitionsl

The reactant and product graphs are defined by the following parameters.

G, Reactant graph

G, Product graph

V(G)="{u} Vertices of G,
V(Gy)=1{v;} Vertices of G,

E(G1)={(ui, u;)}Edges of G;

E(G2)={(vi, V) } Edges of G

w(ui) Atom type of vertex ui
w(ui, uj) Bond type between u; and u;

The maximum common subgraph: (MCS) approach
In the MCS approach, the association graph (AG) of G1 and G; is defined by the set of vertices,
V(AG)={(ui, vi)} , Where ui € V(G1) , vi € V(G2) and w(ui)=w(vi)

Two vertices (ui, vi) and (u;, v;) of the AG are connected whenever
(ui ,uj) € E(G1) and (vi ,vj) € E(G2)

or



(ui,uj) ¢ E(G1) and (vi ,vj) ¢ E(G>)
This defines the edges of the AG.

Table C.1.1: List of frequently occurring reaction motifs

Reaction motif # of occurrences in iIAF1260 # of atoms mapped
atp + h,0 > adp + h + pi 162 32
atp + h,0 —» amp + h + ppi 65 32
adp + h,0 — amp + h + pi 5 32
nad + h <> nadh 110 44

nadp + h <> nadph 82 48




Table C.1.2: Total number of most-prevalent atoms and their respective isotopomers

Atom type Total # of atoms traced Total # of isotopomers
Carbon 49,539 8.34 x 10%
Oxygen 29,061 1.61 x 10%°
Phosphorous 3,280 1.00 x 10*
Nitrogen 2,386 2.58 x 10’
Sulfur 409 4.09 x 10°
Others* 265 4,05 x 10°
Total 90,068 1.37 x 107

*includes Ag, As, Ca, Cd, Cl, Co, Cu, halogens, Fe, Hg, K, Mg, Mn, Na, Ni, Se, W, Zn

Table C.1.3: Comparison of the sizes of imPS1485 and imPR90068 isotope mapping models of

E. coli
EMU model EMU reduced model
Isotope mapping 15¢ EMU EMU mass EM_U _EMU mass
model Isotopomers species isotopomers Spectes Isotopomers
Allowing for all uptakes with a transport mechanism
imPR90068 83x10%® 1,067,652  6,065801 621,311 2,786,978
imPS1485 17,346 1,215 3,912 762 2,438

Aerobic glucose minimal growth medium with all blocked reaction removed

imPR90068

3.02 x 10%

748,544

3,425,876

473,495

1,978,454

imPS1485

3,584

909

2,911

486

1,538




Table C.1.4: Distribution of metabolic reactions present in imPR90068 based on the number of
alternate atom mappings of individual reactions. The break down of degenerate reactions with
respect to equivalent carbons(C), oxygens(O), nitrogen(N) and phosphorous(P) are also shown.

Alternatives  Total # of # of reactions with equivalent C,O,N or P

(Degeneracy) ~ reactions  cony Qonly Nonfly CO CN ON OP CON COP
1 734

2 232 138 105 4 30 3 1 0
3-4 117 17 48 41 2 2 4 1
5-8 179 41 66 58 1 2 7 3
9-16 71 2 31 33 1 1 1 1 0
17-32 121 9 68 31 1 4 7
33-64 35 1 14 14 3 2
65-128 29 0 16 9 2 1 1
129-256 19 0 5 6 8 0 0
257-512 126 1 107 4 3 3 1
513-1024 10 0 2 2 2 3 1




Input reaction

stoichiometry RXN[c:A+B->C+B

S Temporarily remove metabolite B
tep 1 to generate reduced RXN

Automated identification of
metabolites with unchanging
labeling

RXN [c]:A->C

Read in A.mol and C.mol
Step 2

Reactant graph @—@:@
Nodes [1,0],[2,C],[3,0]

Edges [1,2,SB],[2,3,DB] A
Generating reactant graph
and product graph
Product graph
Nodes [1,C],[2,0],[3,0] w—@
Edges [1,2,SB],[1,3,SB] o
Step 3

Generating atom mappings
between reactant graph and

product graph
Association graph (AG) Two largest cliques are identified
[1,2],[2,1],[3,3] and
[1,31,[2,1],[3,2]
Step 4 Incorporate trivial
mapping of
metabolite C
Retain correct atom mappings Atom mappings

[1,2],[2,1],[3,3],[4,4]
[1,3],[2,1],[3,2],[4,4]

Figure C.1.1: Steps 1-4 are applied to a general reaction A + B --> C + B. The molecular
structures of A, B and C are shown in Step 4. Grey circles and squares indicate carbon atoms (C),
red denote oxygen (O) and orange map phosphorous (P) atoms. (Step 2) The atoms of reactant
graph are shown as colored circles and that of product graph are shown as colored squares. (Step
3) The nodes of the AG are pairs of nodes from reactant and product graphs, and grey lines are
the edges of the AG [see Appendix A for details]. The two cliques identified are the largest set of
vertices that are completely connected to each other in the AG and are shown as thick green and
blue lines respectively. (Step 4) The atom mappings are shown as lines (atom traces) between
reactant and product molecular structures. From the visual representation we see that two
alternate mappings exist due to symmetry of A and C molecules.



histidinol-phosphatase [c] : h20 + hisp --> histd + pi

Nodes  [1,0],[2,P],[3,0],[4,0],[5,0],[6,0],[7,C],[8,C],[9,C],[10,N],[11,C],[12,C],[13,N],[14,N],[15,C]

Edges [2,3,SB],[2,4,SB],[2,5,SB],[2,6,DB],[3,7,SB],[7,8,SB],[8,9,5SB],[8,10,SB],[9,11,SB],[11,12,DB],
[11,13,SB],[12,14,9B],[13,15,SB],[14,15,DB]

H20 L-Histidinol phosphate

Reactant
graph

Product
graph

Phosphate L-Histidinol

Nodes  [1,C],[2,C],[3,C],[4,N],[5,C],[6,N],[7,C],[8,C],[9,N],[10,0],[11,P],[12,0],[13,0],[14,0],[15,0]

Edges [1,2,SB],[1,3,DB],[1,4,SB],[2,5,SB],[3,6,SB],[4,7,SB],[5,8,SB],[5,9,5B],[6,7,DB],[8,10,SB],
[11,12,SB],[11,13,SB],[11,14,SB],[11,15,DB]
/ Atom trace

Figure C.1.2: The reactant and product graphs of reaction histidinol-phosphate. The mathematical
form of the two graphs and the molecules represented by them are shown. The grey lines between
the reactant and product graph trace atoms from reactants to products based on the 24 atom
mappings generated for the reaction. Grey circles are carbon atoms; red circles are oxygen atoms;
blue circles are nitrogen atoms; orange circles are phosphorous atoms.

@Carbon @ Oxygen \ SB, single bond

@Nitrogen ® Phosphorous // DB, double bond

A



taurine dioxygenase [c] : akg + 02 + taur --> aacald + co2 + h + so3 + succ

2-oxogluterate oxygen

taurine

LS

-V S /,01 =
J

\\
S
A

KL

aminoacetaldehyde carbondioxide sulfite succinate

©Carbon @ Oxygen \\ SB, single bond

/ Atom trace
@Nitrogen @ Sulfur +/ DB, double bond

Figure C.1.3: Atom mappings of Taurine dioxygenase. The atom mappings between reactant

graph and product graph are shown as a set of grey lines connecting reactant atoms to product
atoms.



2-8 alternatives: 578 reactions

9-128 alternatives: 256 reactions

129-1024 alternatives: 155 reactions

Figure C.1.4: The distribution of reaction mappings present in imPR90068 based on the type of
equivalent atom(s) contributing to degeneracy in the mappings. Degeneracy arising due to
equivalent C, O, N and P are shown respectively using blue, orange, green and yellow squares.
The reactions are classified into three categories based on the number of alternative mappings
present in individual reaction mappings: reactions containing 2-8, 9-128 or 129-1024 alternative
mappings follow particular trends with respect to the reactant groups and atom types that result in
degeneracy of mapping data.
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Figure C.1.5: An example of the expanded scope of the genome-scale isotope mapping model
imPR90068. In imPS1485 Ribose-5P production was directly routed to biomass as a stand-in
substitute for histidine. In imPR90068 R5P downstream conversion is linked to other amino acid
synthesis pathways.



D. Specific Aim 3: Metabolic Flux Elucidation Algorithms Given GC-MS or NMR data

D.1 ldentification of Optimal Measurement Sets for Complete Flux Elucidation in
Isotopically Dynamic MFA Experiments

D.1.1 Introduction

Metabolic flux analysis (MFA) aims at the quantification of intracellular fluxes of metabolic
networks. MFA methods based on 3C labeling experiments have been successful in elucidating
fluxes in many microorganisms under isotopic steady-state [347]. However, isotopic steady-state
can be difficult to attain due to long duration of the experiment and high cost of the labeled
substrates [348]. Moreover, isotopically stationary MFA (IS-MFA) cannot determine fluxes
whose reactants and products reach steady-state isotopic distributions that are insensitive to the
flux values. For instance, the intracellular fluxes of the one-carbon metabolism such as
photoautotrophic metabolism fixing CO, are unidentifiable under IS-MFA, and this situation
could arise in cases [349].

These limitations of IS-MFA are overcome in isotopically dynamic/non-stationary MFA
(ID-MFA) experiments, which track the temporal changes in isotopic distribution of intracellular
metabolites [350-353]. There have been several flux elucidation efforts utilizing non-stationary
isotopic measurements [354-358]. In all these efforts, only a subset of internal fluxes and
concentrations were determined as the available measurements were not sufficient for complete
flux elucidation.

Recent progress in the ability to measure fragments from an expanded list of internal
metabolites for microorganisms such as E. coli has enabled complete flux and concentration
elucidation using relatively comprehensive model [359-361]. Recently, we developed an integer
programming formulation OptMeas, which identifies a minimal number of measurements that
uniquely determine the fluxes [362] using stationary isotopic data. Notably, the incidence
structure analysis introduced in OptMeas does not require isotopic steady-state condition unlike
other parameterization or linearization approaches [363].

In this work, we extend the OptMeas formulation to perform flux and concentration
elucidation under isotopically transient conditions (ID-MFA). Additional variables are introduced
in the optimization formulation to capture metabolite concentration information. The
approximation gap, inherent with the incidence matrix analysis approach [362], is kept at a
minimum through careful definition of the concentration variables. This gap is subsequently
closed by relying on an iterative procedure. In addition, fast prescreening tests based on linear
algebra are first carried out to detect infeasibility and sub-optimality. The screened solutions are
further queried and refined until they fully determine the system.

The extended OptMeas formulation that can make use of isotopically non-stationary data
is tested using a small network example producing minimal measurement sets for the complete
determination of all fluxes and concentrations. OptMeas also correctly predicted that the
measurement set can be further reduced if flux identifiability is the only requirement. OptMeas is
subsequently applied to a medium-scale E. coli model (i.e., 75 reactions and 74 metabolites) to
determine minimal measurement sets that resolve all identifiable fluxes.

D.1.2. Materials and methods
D.1.2.1 Overview of Mathematical Model for ID-MFA



For the systematic representation of the fluxes, metabolites, and isotopes present in ID-MFA
models, we use the following sets throughout the section:

Sets:
1= {l} : metabolite pools (intermediate metabolites: Al )
J = {J} > unidirectional fluxes
K = {k } : isotopomers of metabolite i € /
T: %19""t‘T‘] . . - - e - —O
J : sampling time points (initial point; ‘o =Y)

j
We define parameters Sy for stoichiometry and IMM 4o for isotopomer mapping as in

Chang et al. [362]. State variables of the ID-MFA models are:

Variables:
S0
v;20 jeJ : flux values
. N
G20 iel : metabolite concentrations (pool sizes)

L(@ell] kekyiel . isotopomer fractions (known for all substrates 7\ 7")

Using these variables, the metabolic and isotopic balances can be put forth as follows:

dSv.=0 el

i
jeJ
1)
Zlik =1 iel”
kek; (2)
I | YT D -
C"E - Sijvj IMMi’»i,k’»in’k' + Sijvjll-k k eKl.,z el
Jls;>0 irel k'ek, <0 )

Eqg. (1) describes the metabolic steady-state where fluxes and concentrations remain constant, and
Eq. (2) dictates that the sum of the isotopomer fractions must be equal to one. Eq. (3a) describes
how the isotopomer fractions change over time [see 362 for a detailed description]. Given a set

of measured fluxes and metabolites, the remaining unknowns v/, Ci, and ]ik(t) are determined
by solving the system of differential and algebraic equations (DAE).

D.1.2.2 Inverse Problems of ID-MFA

We estimate unknown fluxes and concentrations from isotopic measurements by means of a least-
squares parameter fitting (inverse problem). The isotopic non-stationarity renders the inverse
problem to a dynamic optimization (DO) problem. This resulting problem has been solved before
using iterative sequential procedures [354, 355] or evolutionary algorithms [357, 358]. These
approaches require the repetitive simulation of Eq. (3a) which becomes very time-consuming for
isotopomer models derived from comprehensive metabolic models.



In this work, we discretize variables Lk(t) in time to convert the DO problem into large-scale
(algebraic) nonlinear programming (NLP) problems DynaCalc and DynaRange that minimize the
sum of squared errors (SSE) (see supplementary text). Note that least-squares methods are used
for overdetermined systems. We apply the incidence structure analysis [362] and find minimal
sets of measurements that are required to fully determine the ID-MFA system.

D.1.2.3 OptMeas Formulation for ID-MFA

A key observation arising from Eq. (3a) is that fluxes always appear multiplicatively coupled
with concentration variables. One can combine the two using a single variable set after dividing

both sides of equation (3a) by ¢

% = Z [Win ZIMMij;ﬁi,k’ﬁk]i/k’J Wil keKjiel

JlS;>0 el k'eK,
3)
where " i the space velocity of influx / to metabolite i (7 ~ V) defined as
S.v.
wy=—~+ iel'jeJ
C
| (4)

and Wii is the sum of all the outgoing space velocities of metabolite i

Sv.
W, =— Z % iEIN
jisg<0 (5)

Note that the isotopic distribution of metabolite i does not depend on the magnitude of each

efflux but only on their sum i that is the reciprocal of the residence time or turnover rate.
Similarly, if multiple fluxes lead to the production of a metabolite using the same reactants
through identical atom mappings, the corresponding space velocities cannot be determined
uniquely. Only their sum can be determined by solving Eq. (3) for the metabolite in question.
We use Egs. (1-5) to construct the incidence matrix of ID-MFA system (Figure D.1.1). Note that
one isotopomer balance for each metabolite is dropped in Eq. (3) in order to eliminate the
inherent redundancy due to Eq. (2).

We assign one output variable (column) to each equation (row) based on the incidence structure
using binary variables x, V', and z for the rows, nonzero elements, and columns of the incidence
matrix, respectively [362]:

Zyrc =z, ceCO

reRO
:E:JCT ::xr re }2()
ceCO

(10)

Here, Vre =1 if and only if column ¢ is assigned to row 7. If column ¢ is not assigned to any
row (%c :0) then column ¢ must be part of measurement set. Column variable Z in the

. . .. Z 0Z .02 .0l 0 .
incidence matrix is denoted as (-/’ pegI ’k] and accounts for the state variables of VJ, Ci,

WU’, Wi, and Iik, respectively. Since Wii and Wi are not measured, we enforce Zij =1 and



zi; =1 4t all times. For the sake of economy of presentation, concentration and IDV of
metabolites are assumed to always be measurable. This restriction is lifted in D.1.2.5 to account
for indirect measurement options such as lumped pool and mass isotopomer distribution vector
(MDV).

Total measurement cost is taken to be a linear combination of individual measurement costs as
tabulated below. Different cost structures are discussed in D.1.2.5.

Parameters:
q; : flux measurement cost
ei, 9 : metabolite measurement cost for concentration and IDV, respectively

OptMeas aims at minimizing the total measurement cost

ZQj(l —zj.)+ z;(qa.(l —zl.)+ qh.(l - u,))

jeJ iel’

(11)

where binary variable % =1ifand only if the IDV of metabolite i is not measured, and satisfies
u, <z, k ek,
(12)

In D.1.2.5, we discuss two interesting variants of OptMeas for ID-MFA: 1) OptMeas that is used
to estimate the number of intracellular fluxes that need to be known to determine the system, and
2) the OptMeas formulation that focuses on only flux identifiability.

D.1.2.4 Solution Strategy

The incidence structure analysis that OptMeas relies on may generate measurement sets that do
not fully determine the nonlinear DAE system (1-5). Therefore, we use an iterative procedure
adapted from Chang et al. [362] to recover the measurement sets for unique flux and
concentration determination.

Step 0: Initialization. Preprocess the network so that S is of full row rank. Construct OptMeas
formulation that is updated by introducing integer cuts in the course of the algorithm. Define set
MS containing the list of optimal measurement sets, and initialize it to be empty.

Step 1: Solve OptMeas. Solve the current realization of OptMeas using an integer linear

. . (J* [Nl INZ) . .
programming (ILP) solver, and obtain w0 as optimal measurement choices for fluxes,
concentrations, and IDVs. Here, we used CPLEX 11 [364] accessed through Concert technology
2.5 [365].

Step 2: Remove linearly dependent flux measurements. Remove columns J" from S. If the
resulting matrix has full row rank, continue with Step 3. Otherwise, introduce the following
integer cut into OptMeas and return to Step 1.

sz >1
jer'

Step 3: Prescreen for a unique flux/concentration elucidation. Test if unknown fluxes and
concentrations can be uniquely determined as described in D.1.2.6. If so, continue with Step 4.
Otherwise, cut off the current flux and concentration measurements and return to Step 1.



Step 4: Check for a unique flux/concentration elucidation. Test if the measurement set

.y : o o
o uniquely determines all fluxes and concentrations in the network. This is
accomplished by solving formulation TestUniq described in D.1.2.6. If the set determines all
fluxes and concentrations, move to the next step. Otherwise, go to Step 7.

(J* INI IN2)
Step 5: Check for solution optimality. Testif \" *° ° is optimal by solving TestOpt given

in D.1.2.6. If TestOpt marks any measurement as unnecessary, then remove it from current set
and move to the next step.

Step 6: Termination criterion. If the current measurement set has a higher relative cost than a
predefined threshold, terminate and report the current MS as the final collection of all optimal
measurement sets. Otherwise, include the current measurement set in MS.

(J*’INI’]NZ

Step 7: Search for alternative solutions. Remove ) from the search space using the

following integer cut and go back to Step 1.

Zz + D4 D —[Zz + Yz + ZMJ<‘J\J*‘+‘]N I [T
jel\J" iel™\ IV eV TN? i ier™ ierV?

(13)
D.1.2.5 Extension of OptMeas
Consideration of Lumped Pool Measurements
Metabolites X5P, R5P, and Ru5P are difficult to measure individually, but their lumped pool is

not [358, 366]. For such measurements, we use set L:{l} for lumped pools and I' for
constituent metabolites of pool /. Then, the pool size € and IDV L of [ are:

Zylicizcl lelL

iel’

Z zé‘ik'l w =Ly kek,leL

iel k'ekK;

We denote the additional columns in the incidence matrix as 2/ and . If the relative

1

measurement cost of C1 and Zix is 9cr and 9n respectively, the cost function is extended to:

J%qj(l z)+l§(qa(l Z)+qh(l u))+2(qa(l z,)+q,l(l u,))

where binary variable % =Lifand only if IDV of lumped pool ! is not measured.

Consideration of Different Cost Structures for Metabolite Measurement

In general, the cost O of measuring both concentration and IDV of metabolite i is smaller than
9cit49i. We use binary variable Ui that is equal to 1 if and only if we do not make the
simultaneous measurement of metabolite i. We substitute % in Eq. (12) by % +U, _1, and “i

in Eq. (10) by Z+U: =1 in order to avoid duplicate measurements, and augment the cost
function:



qu(l —Zj)-i— Zv(qa.(l —Z[)-I- q,l.(l - u,.)+ Ql.(l - U[))

jeJ iel’
Conservative OptMeas

OptMeas assigns an isotopomer variable to any equation that it participates in, which could cause
nonlinear dependency. If we allow only the assignment of an isotopomer variable to its own
balance equation, then OptMeas behaves conservative in predicting identifiability and the
propagation of measurement errors upstream in the network is prevented. For this, we introduce

Zc = zyrc

reR,

where column ¢ corresponds to an isotopomer variable Ty and row set e consists of Eqg. (2) for
metabolite i and Eq. (3) for isotopomer k.

Restriction to Flux Identifiability

In some situations when the flux identifiability is of primary interest, we can ignore concentration
identifiability by introducing two additional binary variables

¥ = Liff concentration of metabolite 7 is required to resolve any flux
& =1 if concentration measurement of i is not necessary for flux identifiability
Auxiliary variable S is used to linearize the concentration measurement term in the objective

function ¢’ (1 _Z") to 9ci (1 B ;)_ These variables are defined by the following constraints:

Ry, =22y, 2,

reR;jeJ
z,+ (l —yi)Z g
where i is the set of rows corresponding to Wie.
D.1.2.6 Sub-problems for the Proposed Procedure
Prescreening Test for Unique Flux Elucidation

In order to devise a fast test for identifiability of a measurement set, we rely on linear algebra
upon expanded stoichiometric matrix ES that accounts for the participation of fluxes and
concentrations in Egs. (1), (4), and (5). Matrix ES is similar to the first two columns and three

ES; =Sy r corresponds to Eq.

8, >0 g ES, =S,

rows of incidence matrix (Figure D.1.2). For flux column j,

ESrf :Sif if 7 corresponds to Eq. (4) for Wi and

Sl.j.<0_

(1) for metabolite £,

if 7 corresponds to Eq. (5) for Wi and For concentration column i, ES, =1 i »

corresponds to Eq. (4) for Wi and ES =V if r corresponds to Eq. (5) for Wi where vi' is the
number of incoming fluxes of metabolite i with distinct atom mapping. All the unassigned
elements of ES are set to 0.

Then, the rank of ES indicates the maximum number of fluxes and concentrations that can be
determined. Moreover, if we remove measured columns from ES, the rank of the resulting

thinner matrix ES implies the maximum number of unmeasured fluxes and concentrations that



can be determined. Using this property of ES, we can derive the following integer cut that
prohibits a measurement set that does not have full column-rank of ES.

Z(sz —-1)z; —Zj.)-l- Z(sz -1)z, —Zj)< 0.

jeJ ielV
Uniqueness and Optimality Tests

Optimization formulations TestUnig and TestOpt are similar to those for IS-MFA [362] except
that they are DO problems with additional concentration variables:

(TestUniq) max Z(v‘i —Vj)2+ Z:(Cl.—a.)2

jeJ\J" ielV\ N
s.t.  Egs. (1),(2)(3a),

Fix all the measured variables
(TestOpt (x)) max |x — x|

s.t. Egs. (1)(2)(3a),

Fix all the measured variables except x

As for DynaCalc, we apply the total discretization scheme to convert these sub-problems into
large-scale NLP problems, which are then locally solved using multiple starting points.

D.1.3. Results and Discussion
D.1.3.1 Hlustrative Network Example

We first consider the small network adapted from No6h and Wiechert [367] as shown in
Figure D.1.3a. The network is simulated using MATLAB 7.6 [368] using the flux, concentration
and substrate labeling entries used in the original paper (see Figure D.1.2b and D.1.2c). We

assume that external fluxes V1, V4, and Vs, the IDV of substrate A, and the concentration and
MDV of all internal metabolites (B, C, D, and E) can be precisely measured. Five samples at
time points 1, 3, 7, 15, and 31 of the simulated MDV time profiles are used for flux inference.

The measurement set used in the original paper [367] is composed of Y1 and the MDVs
of B, C, D, E. These measurements are sufficient to infer all the intracellular fluxes (see Table
D.1.1). However, because MDV measurements are conducted multiple times (five times for this
example), measuring all four intracellular metabolites could be costly. Based on the cost
coefficients shown in Table D.1.2, the measurement set of the original paper [367] has a relative
cost of 56.

OptMeas successfully identified 48 optimal solutions with a relative cost of 27 (less than
half of original cost). These solutions require measurement of two external fluxes chosen from

Vi, Va, or Vs, The required metabolite measurements include: 1) MDV of D plus MDYV of either
B or E, 2) any concentration plus MDV of C or MDVs of both B and E, 3) any combination of
two concentrations plus MDV of D, or 4) any combination of three concentrations plus MDV of
B or E. Flux and concentration identifiability of these suggested measurement sets were verified
by solving TestUnig to global optimality using GAMS/BARON [369]. The DynaRange results

¢ 1v45C,Cp, Cs MDY )

for one measurement se are shown in Table D.1.3.



If only flux and not concentration elucidation is sought after then all concentration
measurements in the optimal sets can be eliminated. The optimal measurement sets for this case
include any combination of two external fluxes plus the MDV of either B or E. This example
demonstrated that OptMeas can generate measurement sets that allow for complete flux
elucidation at substantial reduction in cost.

D.1.3.2 Escherichia coli Network
Analysis of isotopomer model

We next apply OptMeas to the metabolic network of the 1,3-propanediol (PDO) producing E. coli
strain including 74 metabolites, 75 reactions, and 4,806 isotopomers [370]. An abridged version
of this model was investigated before using ID-MFA [355] in order to elucidate net fluxes
between carbon containing metabolites. However, many exchange rates of reversible reactions
were left non-determined using the MDV measurements of proteinogenic amino acids and the
intermediary metabolites (AKG, Cit, Mal, Pyr, Suc).

The model was earlier subjected to the stationary OptMeas analysis [362], which showed
the potential redundancy of the MDV measurements used in the original paper and suggested
novel measurement options for better flux elucidation. Here we perform ID-MFA for improved
flux and concentration elucidation based on OptMeas. All fluxes are numbered and metabolites
are named in agreement with the nomenclature scheme used in the original paper. We modified
the original model to account for the symmetry of glycerol.

We summarize intracellular metabolite measurement alternatives that have been used for
ID-MFA in Table D.1.4. The measurement of all other metabolites was prevented (see Figure
D.1.3).

We first analyzed the expanded stoichiometric matrix (D.1.2.6) and detected that the
exchange rate of the transhydrogenation reaction (reaction 64) and the branching ratio of two
oxidative decarboxylations of malate (reactions 28 and 29) are both unidentifiable irrespective of
substrate labeling or isotopic measurement. This agrees with earlier observations [362]. We also
identified ten conditionally unidentifiable exchange rates of reversible reactions for the currently
available measurement set (see Figure D.1.4). All of these practically unidentifiable fluxes [371,
372] are excluded from any further analysis.

Identification of measurements

First we reduce the problem dimensionality by identifying groups of fully coupled fluxes [373],
shown in Table D.1.5, thus retaining only a single flux measurement for each group. OptMeas
returned eight optimal measurement sets with some measurements shared amongst all of them.

Common measurements include the rates of glucose uptake (Yss), glycerol uptake (Vss), oxygen

uptake (¥72), PDO secretion (Ve9), and CO; secretion (V71), and concentrations of Ac, Arg, Cys,
E4P, Leu, Pro, and TA-C3. Common isotopic measurements include IDV of PDO and MDV of
Glu, lle, Lys, Met, S7P, and Ser. Other than these common measurements, OptMeas required
two MDV measurements of Phe or Tyr and Ala or Val.

Among these measurements, the oxygen uptake rate, IDV of PDO, and MDV of Glu,
Met, and Phe are present in ID-MFA as they are for IS-MFA [362]. MDV of S7P and
concentration of E4P together provide better elucidation of pentose phosphate pathway and

determine the exchange rate of the transaldolase (Vi6) and transketolase (Y14) reactions that were
not determined before [355, 370]. Arg, Leu, and Pro do not produce any carbon-containing
products as they only serve as biomass constituents in the model. Therefore, the most cost
effective way of elucidating their concentration is by measuring them directly. Interestingly, both



Cys and TA-C3 cannot be elucidated through other measurements requiring instead their direct
measurement which is prohibited in this example.

By investigating 80 near-optimal solutions derived by OptMeas, we observe that the
concentration and MDV measurement of some metabolites are interchangeable. For example, if
one solution requires the concentration of Tyr and MDV of Phe, then another solution requires
the concentration of Phe and MDV of Tyr. The same is true for Ala and Val pair. These pairs
receive carbons from the same metabolites through similar biosynthetic reactions (Phe and Tyr
from E4P and PEP, and Ala and Val from Pyr). A similar observation is made for the triplet of
lle, Leu, and Pro, which receive carbons from TCA cycle metabolites (OAC, AcCoA, and AKG)
respectively. The near-optimal solutions also suggest one extra MDV measurement of 6PG, F6P,

FBP, G6P for a better elucidation of glucosephosphate isomerase (*1) and fructose-biphosphate
aldolase (V3) in glycolytic pathway and transaldolase (V13) in phosphate pathway.

Recall that the concentration measurement of Cys and TA-C3 are required but not
allowed. Interestingly, OptMeas replaced these concentration measurements by citrate uptake

(Ve7), acetate secretion (V70), biomass formation (V7s) rates and MDYV of Asp when only the flux
identifiability is required. This is an example where the measurement of metabolite
concentrations directly leads to the elucidation of fluxes.

In summery, the identified measurement set is composed of eight external fluxes Yes, V7,

Ves, Veo, V70, V71, V72, V75, seven concentrations of Ac, Ala, Arg, E4P, Leu, Pro, Tyr, one IDV of
PDO, and eleven MDVs of Asp, F6P, FBP, Glu, lle, Lys, Met, Phe, S7P, Ser, Val. It is tested for
the ability to fully identify fluxes in the metabolic model by solving DynaRange. We found that

this measurement set still leaves the exchange rates of V2s and Y27 undetermined. This is due to
the symmetry of Fum and Suc and the cascade of reversible reactions in the TCA cycle that
scramble their atom mapping. They can only be determined by adding the MDV measurements
of Fum, Mal, and Suc in the list.

D.1.4 Summary

In this work, we extended the OptMeas formulation to account for flux and concentration
inference in ID-MFA under isotopically non-stationary conditions. OptMeas exploits the
multiplicative coupling of fluxes and concentrations in the isotope balance equations by recasting
the isotope balance using space velocities as new variables. OptMeas correctly identified all
optimal measurement sets for the small network example and predicted that some of the
measurements are dispensable if only fluxes and not concentrations are needed. When applied to
a medium-scale E. coli network [370], OptMeas found a set of fluxes that are unidentifiable under
ID-MFA due to linear dependency, and suggested the measurement of intracellular metabolites
that are distributed among the network to elucidate five more exchange rates than the previously
reported ID-MFA results [355].

As demonstrated with E. coli network example, OptMeas can be improved by imposing
the results of external analyses such as other identifiability analyses and flux/concentration
coupling analyses [374] to refine its predictions. Moreover, OptMeas can be modified to focus
on the variables that are specifically interested. For example, if certain fluxes and concentrations
are not determined by an ID-MFA experiment, we can identify which measurements to make in
the next experiment to pinpoint them.

The proposed solution procedure can greatly benefit from global optimization algorithms
that exploit the structure of metabolic networks. We are currently exploring how to decompose
an isotopomer network to generate sub-networks that are easy to solve and require the least



amount of effort in connecting their solutions. Both EMU and cumomer representations [355,
375] will be also considered for this purpose (Suthers et al. 2010).

We note that the incidence structure analysis used in OptMeas is also applicable to
kinetic parameter estimation using metabolic non-stationary MFA experiments that have been
explored recently [376-378]. We are also probing how to model the nonlinear structure of the
mechanistic rate equations in order to help OptMeas produce the measurement sets that determine
as many kinetic parameters as possible.

Table D.1.1 Estimated flux ranges for the illustrative toy network using the measurement set of

No6h and Wiechert [367]
Fluxes true Lobatto 5 Radau 5

v, 10 10 10

v] 13.7 [13.61, 13.80] [13.65, 13.75]
v 6.7 [6.61, 6.79] [6.64, 6.75]
v, 3 [2.99, 3.00] [2.99, 3.00]
v, 7 [7.00, 7.01] [7.00, 7.01]

SSE - 1E-5? 1E-62

The flux ranges are obtained by solving DynaRange formulation. They are tight enclosing the
true value (with the relative error less than 0.2% for the unidirectional reactions and below 1% for
the reversible reaction).

Table D.1.2 Measurement costs for the illustrative toy network

Type Measurements Relative cost
external fluxes Vir Var Vs L
Ve 2
concentrations B,C,DE 5
B, E 20/10
IDVs/ MDVs D 30/15
C 40/ 20

Table D.1.3 Identifiability results for the illustrative toy network

— samples used for inverse problem
<1> <1,3,715, 31>
vl =137 | [13.047,14.433]  [13.609, 14.646]
Vi =67 [6.047, 7.433] [6.609, 7.646]
C-.=10 [3.58, 207] [9.802, 10.556]
SSE 0 1E-5

The range of exchange rate vf is best captured by the first sample, which is most sensitive to this

flux. On the other hand, the concentration of C is best estimated by using multiple samples. For
discretization, 5th-order Lobatto nodes are used. DynaRange was solved using (number of
included samples)*1E-5 as the cutoff.

®The upper bound of the concentration.

Table D.1.4. Metabolite measurement candidates from the literature

Pool | Concentration |MDV fragments| qc |

Jmbv
3PG c c 15 40
6PG c, e C 15 40



AcCoA b, e - 20 -
AKG b, c e a,b,c 15 40
Cit c,e a,c 15 40
DHAP b, e - 20 -
E4P b, e - 20 -
F6P b,c e b, c 15 40
FBP b, e b 15 40
Fum c, e c 25 40
G6P b, c e b, c 15 40
GAP b, e - 20 -
ICit e - 20 -
Mal b, c e a,c 15 40
OAC e - 20 -
PEP b,c, e b, c 15 40
Pyr b,c, e a, b 15 40
R5P e - 25 -
RusP e - 25 -
S7P b 20 40
Suc c, e a 25 40
P5P (R5P+Ru5P+X5P) b, c b, c 15 -
SuccFum (Suc+SucCoA+Fum) b b 15 -
Ala f a,b,cdf 10 30
Arg f f 10 40
Asn f f - -
Asp b, f a,b,cdf 10 30
GIn f f - -
Glu b, f a,b,cdf 10 30
Gly f a,df 10 30
His f ,f - -
lle f a,df 10 30
Leu f a, d,f 10 30
Lys d 15 30
Met f a, df 10 30
Phe f a,cdf 10 40
Pro f d, f 10 30
Ser f a,cdf 10 30
Thr f a,df 10 30
Tyr f a, f 10 40
Val f a,df 10 30

Relative costs are scaled to the external flux measurements (one for liquid flux and ten for gas flux
measurement). We assume that the concentration can be measured whenever MDV can be measured.
References are (a) [370] or [355], (b) [354], (c) [357] or [358], (d) [324], (e) [379] or [380], (f) [381]. In
addition, we assume that the IDV of Ac, CO,, and PDO are measurable at the relative costs of 50, 30, and
100, respectively as they are metabolites transported into the extracellular medium. Concentration
measurement cost for these three products are assumed to be equal to 25.

Table D.1.5. Flux coupling analysis of the medium-scale E. coli network

Fully coupled fluxes

Vi Vig

Va3s Vea
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Figure D.1.1. Incidence matrix of the ID-MFA system. The incidence matrix of ID-MFA
contains more rows and columns related to concentrations and space velocities than that of IS-
MFA, which implies that more measurements are necessary for the identifiability of the
underlying mathematical system. K’ is the same as K; except that the last isotopomer of
metabolite i is excluded. Although denoted as 1"xJ for notational convenience, w;; is defined only
for the (i, j) pairs that have |S;| > 0.
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Figure D.1.2 Illustrative small network example.

the system have been dropped for visualization purposes.

v, A(ab) — B(ab)

v, : Blab) < Efab)

vy Blab)+ E(cd) — C(abcd)

v, E(ab) - .

v,: Clabed) —  D(bed)+--
V! D(abc) —  Efab)+---
(c)

Panel (a) shows its network representation
together with stoichiometry and atom mapping for each reaction. Note that metabolites leaving

Panel (b) shows the change in the

isotopic distribution of each metabolite when the labeled substrate (a mixture of 2% unlabeled,
96% 1-labeled, and 2% fully labeled A) starts to feed. Cumomer fractions are shown for easy
comparison with the original paper (N6h and Wiechert 2006). Panel (c) is the MDV profile that

is used to infer fluxes and concentrations.

The simulation is conducted given the true flux

distribution in Table D.1.2 and concentrations Cg = 4, Cc =10, Cp =7, and Cg = 3.
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Figure D.1.3. Network representation of the medium-scale E. coli model. Substrates are circled,
and the MDV and IDV measurements are shown in shaded squares in yellow and blue,
respectively. Some metabolites (in dotted square) appear more than once to make the figure more
readable.
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Figure D.1.4. Practically unidentifiable exchange rates of reversible reactions of medium-scale E.
coli network using available measurements. Reactions in solid circle are found by solving
DynaRange for the EMU representation of the network (Antoniewicz et al. 2007a) using
GAMS/CONOPT3 NLP solver (Drud 1994) from multiple starting points. A pair of nodes that
are connected by an edge correspond to alternative measurements recommended by conservative
OptMeas for determining the system.



E. Specific Aim 4: Computational Strain Design

E.1 Identification of Non-native Production Routes and Engineering Interventions for the
Microbial Synthesis of Long-chain Alcohols

The work in this section was published [99].
E.1.1. Introduction

Increasing demands for renewable energy and environmental concerns have stimulated an interest
towards the production of second generation biofuels from renewable sources [109]. For the past
few decades, bio-ethanol was considered as a substitute for transportation fuels. More recently,
long-chain alcohols (C3-C5) have also emerged as biofuel alternatives because of their higher
energy density and ease of storage [382]. Microorganisms from diverse environments naturally
produce ethanol during fermentation. However, the natural synthesis of higher alcohols is not as
commonplace with the exception of certain Clostridia strains [383, 384]. One possible production
alternative for 1-butanol and 1-propanol is to use native pathways in Clostridium acetobutylicum
[103, 105, 385-387]. An alternative approach is to integrate non-native pathways into standard
microbial production hosts (i.e., Escherichia coli or yeast) by exploiting the conversion of key
intermediary amino acids into long-chain alcohols [388, 389]. In this regard, numerous efforts
have been made in the recent past to clone and express Clostridia genes (butyryl-CoA
dehydrogenase, bcd) responsible for the production of 1-butanol in E. coli [390-392]. Homologs
and isoenzymes of bcd from Megasphaera elsdenii [393, 394] and crotonoyl-CoA reductase (ccr)
from Streptomyces coelicolor [395] have been tested. Recently, enzymes catalyzing the final
steps of the Ehrlich pathway [396] in yeast were recruited in E. coli to convert 2-ketoacids into 1-
butanol and isobutanol [15]. The global aim to converting biomass to energy has led to an
increased interest in transferring non-native metabolic pathways and enzymes into industrial
production hosts such as E. coli [104, 397] or Saccharomyces cerevisiae [398].

An important goal of this research requires extending the metabolic confines of microbial hosts
by recruiting non-native biosynthetic pathways. So far, studies concerning the incorporation of
heterologous pathways relied largely on human intuition and literature reports followed by
experimentation [84, 85]. Nowadays, rapidly expanding compilations of biotransformations such
as KEGG [86] and BRENDA [87] are increasingly being prospected to identify biosynthetic
routes to long-chain alcohols. With a combined size that accounts for over 60,000 enzymatic
reactions and 250,000 metabolites, these databases include reactant and product designation,
stoichiometric coefficients, organism assignment, and occasional thermodynamic information for
pathways [399]. Several optimization and graph-based methods have been employed to
computationally assemble novel biochemical routes from these sources. Given a set of reactions
(i.e., Universal database) the OptStrain [88] procedure uses a mixed-integer linear optimization
representation to identify the minimal number of reactions to be added (i.e. knock-ins) into a
genome-scale metabolic model to enable the production of the new molecule. However, the
developed universal database, at the time, was limited to only approximately 4,000 reaction
entries. The combinatorial nature of the problem poses a significant challenge to the OptStrain
methodology as the number of reaction database entries increase from a few to tens of thousands.
At the expense of not enforcing stoichiometric balances graph-based algorithms have inherently
better-scaling properties for exhaustively identifying all min-path reaction entries that link a
source with a target metabolite. Hatzimanikatis et. al. [89] introduced a graph-based heuristic
approach to identify all possible biosynthetic routes from a given substrate to a target chemical by
hypothesized enzymatic reaction rules. Recently, a new scoring algorithm [91] was introduced to
evaluate and compare novel pathways generated using enzyme-reaction rules. The identified
pathways may involve conversions for which no enzymatic activity has been isolated for before.



While this could shed light to truly novel production avenues, it may be more time-consuming to
implement. In addition, several techniques such as PathMiner [92], PathComp [93], Pathway
Tools [94, 95], MetaRoute [96], PathFinder [97] and UM-BBD Pathway Prediction System [98]
are in use to search for bioconversion routes in reaction databases. Most of these methods, so far,
have been employed to aid metabolic pathway reconstructions by matching putative enzymes
with reference pathways while their contribution towards strain optimization has so far been
limited.

In this work, we introduce a min-path graph procedure for in overcoming the complexity
associated with exhaustively identifying all possible ways of linking a source with a target
metabolite. The procedure is designed to remain tractable even when reaction database entries
reach hundred of thousands. The first step, in this effort involved the incorporation of reaction
and metabolite entries from both KEGG [86] and BRENDA [87] databases into a single
repository. A customized min-path algorithm [100] is then employed to compute all possible
pathways that enable the bio-production of a target alcohol molecule. We further scrutinize the
identified pathways by first incorporating them into the genome-scale metabolic model of the
production host microorganism and subsequently examining their maximum theoretical yields,
number of enzymatic steps needed and cofactor availability. We demonstrate our integrated
framework by exploring pathways from pyruvate (produced in E. coli) to 1-butanol. We then
selectively add one or more of these pathways to the latest genome-scale metabolic model of E.
coli, iAF1260 [49] and use our recent OptForce [196] procedure to predict metabolic
interventions (i.e., up-/down-regulations and knockouts).

E.1.2. Methodology

The graph-based procedure discussed here is aimed at elucidating all possible biochemical routes
from compounds found in the metabolic network of a desirable production host to a target
molecule of interest. Alternatively, the procedure can also be used to track native routes that may
increase productivity over known synthesis pathways by restricting the reaction entries to the
ones present in the metabolic model of the production host. To provide the search procedure with
known metabolic routes, we downloaded the most up-to-date version of the KEGG database [86]
and extracted approximately 9,000 reactions and 16,000 metabolites. Unfortunately, the KEGG
database does not contain complete production pathways of long-chain alcohols. We therefore,
added a few hundred reaction entries from the BRENDA database [87] that are relevant to
biofuels production to restore the metabolic connectivity to long-chain alcohols. It is important to
note that we did not globally reconcile the entire KEGG database with BRENDA database
(containing ~250,000 metabolites and 67,191 reactions). Instead, for all reactions in BRENDA
associated with the synthesis of the target alcohol, we manually recorded identifiers for all the
reactants, products and stoichiometric coefficients and integrated them with the KEGG entries
into a single database.

Sorting out the naming inconsistencies for compounds was the most time consuming
step. To accomplish this, we made use of available synonym data from PubChem [400] to arrive
at unique metabolite identifiers. Reactions with generic (e.g. metabolites named as “alcohol”,
“aldehyde” etc.) descriptions for reactant/product compounds, unknown stoichiometry and the
ones that involve macromolecules (e.g. RNAP) were excluded. The integrated database used in
this work spans 9,921 reactions and 17,013 metabolites from both BRENDA and KEGG.

We used the min-path procedure as depicted in Figure E.1.1 to trace all possible paths
between a source and a target metabolite. We first computationally transformed the information
contained within the stoichiometric coefficients (S;) that track participation of metabolites in
reactions into a directed metabolite-to-metabolite graph (Nii) where nodes represent metabolites.
A directed arc with a weight of one exists between two nodes if one or more reactions in the



database allow the direct bioconversion from one metabolite to the other. If no such reaction
exists then a very large cost value is assigned to signify that their direct interconversion is
disallowed. Small molecules (e.g. water, carbon dioxide) and cofactors (e.g. NADP, ATP) are
involved in a large number of reactions and thus can link reaction steps that do not share any
additional metabolites. We therefore exclude all such associated directed arcs before employing
the shortest path algorithm. We next compute all k-shortest “loopless” pathways [100] between a
source and a target alcohol molecule. We start from the shortest path (k = 1) and exhaustively
sample the combinatorial space of alternative pathways by subsequently eliminating arcs, one at a
time, belonging to the shortest pathway. We recompute the shortest path until we record all “k —
17 shortest possible metabolic linkages to the target molecule.

We next evaluated the multiple identified pathways based on criteria such as maximum
theoretical yield, number of reaction steps needed and co-factor requirements. Given a choice of a
pathway to be added, we use our recent OptForce procedure [196] to identify additional strain
manipulations (knockouts, up/down-regulations for fluxes) that guarantee a pre-specified yield
for the alcohol molecule. The OptForce procedure uses metabolic flux measurements available
for the wild-type strain and identifies which fluxes must depart from the original ranges to ensure
the overproduction target for the desired alcohol molecule. Based on these necessary network
changes, we combinatorially identify the minimal set of engineering interventions that result in a
new flux distribution consistent with an overproducing strain of host microbe. All lexicographic
searches needed to integrate database entries were performed using Python (version 2.4.3) and the
algorithm for the identification of shortest paths was coded using C++ on a 2.6 GHz AMD
Opteron Processor with 32 GB of ECC RAM.

E.1.3. Results

In this section, we demonstrate our min-path procedure by identifying all synthesis routes using
KEGG and BRENDA database entries for producing 1-butanol from pyruvate. We first select
promising pathways and subsequently integrate them with the genome-scale metabolic model of
E. coli, iIAF1260 [49]. Using OptForce [196] we next pinpoint metabolic engineering strategies
for overproduction. Traditionally, two distinct synthesis routes have been employed in E. coli for
the production of 1-butanol. The first pathway involves a fermentative transformation of pyruvate
and acetyl-CoA to 1-butanol by the action enzymes from C. acetobutylicum [397]. The second
pathway takes advantage of enzymes with broad-range substrate specificity to convert natural
amino acids in E. coli into ketoacid precursors [15, 104] and eventually 1-butanol. In both
pathways, pyruvate acts as an important precursor and a branching metabolite for butanol
synthesis [401]. The fate of pyruvate at the end of glycolysis depends on the engineering
strategies imparted to the production host. Therefore, here we selected pyruvate as a source
metabolite in exploring pathways to 1-butanol (sink metabolite).

Figure E.1.2 illustrates all identified pathways from pyruvate to 1-butanol using the
integrated reaction database. With the exception of the thiobutanoate pathway (present in the
BRENDA database), all other pathways involved butanoyl-CoA and 1-butanal as shared
intermediates that are converted to 1-butanol using secondary alcohol dehydrogenase (adhE)
from C. acetobutylicum. The min-path procedure recapitulated both the fermentative and ketoacid
pathways for 1-butanol synthesis (shown in dotted lines). In addition, the algorithm uncovered a
number of possible transformations to butanoyl-CoA involving intermediate metabolites that are
produced in E. coli. For example, pyruvate can be converted into acetyl-CoA using pyruvate
dehydrogenase natively present in E. coli. However, the conversion from acetyl-CoA to butanoyl-
CoA is not favored because 1-butanal produced along the pathway is used up as a co-reactant
along other reactions in the same pathway. This severely reduces the flux of the 1-butanol to less
than 10 mmol/g.DW.hr which is about ten times less than the yields from existing pathways [15,
382]. Similarly, pathways involving methylmalate and methylbutanoate as intermediates require



cofactors, which in turn, adversely reduce the yield of 1-butanol. Upon integrating these reactions
in the metabolic model of E. coli, we estimated that the maximum theoretical yield of 1-butanol
synthesis was only around 32 mmol/g.DW.hr.

The thiobutanoate pathway recruits a decarboxylase and a reductase enzyme and defines
a novel synthesis route distinct from the two existing pathways. Instead of using dehydrogenases
to convert butyraldehyde into 1-butanol, the new pathway proceeds with the transamination of
methionine into 2-oxomethylthiobutanoate and eventually into 1-butanol. Notably, a native
transaminase (E.C. 2.6.1.42) enzyme in E. coli is known to catalyze the conversion of L-
methionine to L-glutamate with 2-ketoglutarate as a co-reactant [402]. The intermediate product,
2-methylthiobutanoate, is subsequently decarboxylated (E.C. 4.1.1.72) to 3-methylthiopropanal.
This conversion is native in Lactococcus lactis [403]. Subsequently, 3-methylthiopropanal is
reduced (E.C. 1.1.1.265) to 1-butanol by a reductase present in yeast [404]. It is important to note
that the decarboxylase reaction removes a considerable amount carbon in the form of carbon
dioxide, reducing the yield of 1-butanol by ~22% in comparison to the ketoacid pathway.

Next, we integrate these reactions in the iAF1260 metabolic model of E. coli and use
OptForce [196] to identify metabolic interventions to meet an imposed overproduction target. The
identified results are contrasted against the ones derived when the ketoacid pathway is integrated
into the E. coli model. In both the case studies, the initial strain is first characterized by estimating
the maximal range of flux variability using the intracellular flux measurements [405] available for
the wild-type strain of E. coli, BW25113. The OptForce employs a bilevel optimization procedure
to first identify the reaction fluxes that must increase or decrease (MUST sets) outside the wild-
type flux ranges to meet the overproduction target. A minimal set of direct interventions (i.e.
knock-up/down/outs) that guarantee a pre-specified yield for 1-butanol is next extracted from the
MUST sets. All abbreviations for reactions and metabolites adhere to the iAF1260 metabolic
model conventions.

E.1.3.1. Case 1: 1-butanol Synthesis using Thiobutanoate Pathway

Figure E.1.3 lists the identified MUST set of reactions considered one reaction at-a-time. The
yield for 1-butanol was set at 95% of its theoretical maximum, while allowing the production of
5% biomass to support growth. The thiobutanoate pathway branches away from 2-ketoglutarate
along the oxidative arm of the TCA cycle. In order to increase the pool of oxaloacetate available
for the TCA cycle, the fluxes of reactions in the glycolytic pathway (PGI, PGM, PGK, PPC etc.)
increase beyond their initial ranges. Many reactions in the pentose phosphate pathway (e.g. GND,
TKT1/2, TALA etc.) were also classified in the MUSTV sets. The increase in the fluxes for these
reactions replenishes the glycolytic intermediary metabolites. Since, methionine is required as an
important precursor for 1-butnaol pathway, reactions in methionine biosynthesis (e.g., CYSTL,
METS, MTHFR2, CYSS) also members of the MUSTV set. The fluxes of reactions leading to
competing by-products, pyruvate kinase (PYK) and pyruvate formate lyase (PFL) decrease below
their initial ranges. Since biomass production is reduced to 5% of its theoretical maximum,
reactions in amino acid biosynthesis that are directly coupled to growth appear in the MUST:
sets.

As expected, more complex flux changes are revealed in the network of MUSTYY,
MUSTY: and MUST!" sets shown in Figure E.1.4. These results underscore the importance of
increasing the flux through the oxidative arm of the TCA cycle (FUM etc.) or at the same time
negating the drain towards by-products such as acetate and ethanol. Additionally, in the MUSTYY
set, the flux of propanoyl CoA:succinyl CoA transferase (PPCSCT) or the flux of succinyl CoA
synthetase (SUCOAS) must increase. Both of these fluxes are in close proximity to 2-
ketoglutarate, which is an important branching metabolite in the TCA cycle for the thiobutanoate
pathway. We carry out this hierarchical classification by considering three reactions at-a-time



(see Figure E.1.5). The increase in fluxes for IPPMI, IMPC and AIRC3 further boosts the
synthesis of precursors for methionine through amino acid biosynthetic pathways.

It is to be noted that the MUST set of reactions represent the changes that must take place
in the metabolic network for overproduction that can be directly or indirectly imparted by means
of metabolic interventions. OptForce identifies the minimal set of reaction interventions (culled
from the MUST sets) that forces the target yield for 1-butanol. Figure E.1.6a shows the FORCE
set of reactions for overproducing 1-butanol in E. coli using the thiobutanoate pathway. Up
regulating one of the two glycolytic fluxes, glucose-6-phosphate isomerase (PGI) or
phosphoglycerate mutase (PGM), replenishes phosphoenol pyruvate available for the anaplerotic
conversion to oxaloacetate. The up-regulation for phosphoenol pyruvate carboxylase (PPC)
results in increasing the amount of oxaloacetate for the TCA cycle. Increase in fluxes of PPCSCT
or SUCOAS ensure the availability of 2-ketoglutarate for transamination along the thiobutanoate
pathway. In addition, the FORCE sets also include knockouts for pyruvate formate lyase (PFL) to
reduce the drain towards by-products (acetate and ethanol) and methylenetetrahydrofolate
dehydrogenase (MTHFD) to prevent the drain of L-methionine away from the thiobutanoate
pathway. These coordinated set of interventions lead to a guaranteed yield for 1-butanol of 73
mmol / g.DW.hr.

E.1.3.2. Case 2: 1-butanol using Ketoacid Pathway

Figure E.1.6b contrasts the metabolic pathways and branching points for the ketoacid and
thiobutanoate pathways on a metabolic map of E. coli, respectively. hile the thiobutanoate
pathway branches out from a TCA cycle intermediate, pyruvate serves as an important precursor
for 1-butanol produced via the ketoacid pathway. We integrated the reactions along this pathway
to iAF1260 metabolic model of E. coli and applied our OptForce procedure to predict the MUST
sets and subsequently, the FORCE sets. Figure E.1.6b shows the FORCE set of eight engineering
interventions for 1-butanol synthesis in E. coli using the ketoacid pathway. Herein, OptForce
suggested the up-regulation in the fluxes of reactions that convert key amino acids to 1-butanol
precursors (i.e., serine deaminase (SERD) and methylglyoxal synthase (MGSA)). Presumably due
to the proximity of the ketoacid pathway to the synthesis routes for natural fermentation products
(acetate, ethanol, formate, lactate etc.), the down-regulations for pyruvate formate lyase (PFL)
and lactate dehydrogenase (LDH) are needed to reduce carbon drain. Additionally, down-
regulation of TCA cycle reactions, fumarate reductase (FRD3) and aconitase (ACONTa/b), also
appear as essential network changes to ensure overproduction.

A notable difference between the two cases is the down-regulation of phosphogluconate
dehydrogenase (GND) using the ketoacid pathway. While the flux of GND must increase for the
thiobutanoate pathway (i.e., member of MUSTV set), OptForce suggests that its flux must be
reduced to facilitate 1-butanol synthesis when using the ketoacid pathway. In addition, while PGI
and PGM were identified as up-regulations for the thiobutanoate pathway no glycolytic reactions
were up- regulated in the FORCE set for the ketoacid route. Since the ketoacid pathway branches
out from precursors synthesized at the end of glycolytic pathway, OptForce indicates that the
depletion of carbon can be minimized through a number of down-regulations for competing
pathways without the need of overexpressing glycolytic enzymes. However, in the thiobutanoate
case, the anaplerotic phosphoenol pyruvate carboxylase (PPC) is required to replenish
oxaloacetate and to sustain an increased flux through the TCA cycle.

E.1.4. Discussion and Summary

We have presented a graph-based min-path procedure that combines metabolic information from
online databases (KEGG and BRENDA) to identify all possible biochemical synthesis routes to
target biofuel candidates. The results for 1-butanol pathways reveal several new heterologous
synthesis routes that can be computationally evaluated for overexpression and cloning



experiments. Our algorithm was able to identify existing pathways (ketoacid and fermentative
pathways) used for 1-butanol production. Interestingly, we the results also suggested several
native synthesis routes to precursors of 1-butanol in E. coli. For example, seven pathways from
pyruvate to butanoyl-CoA involved intermediate metabolites produced by naturally occurring
enzymes in E. coli. However, the yield of 1-butanol using these pathways was limited. In
addition, the algorithm also uncovered a new alternative route to 1-butanol synthesis through the
thiobutanoate pathway. Although, the decarboxylation of methylthiobutanoate reduced 1-butanol
production, the computationally derived yield was comparable to the existing strains [15, 382,
397].

The results suggested by our OptForce procedure [196] revealed the differing nature of
metabolic interventions required to overproduce 1-butanol using the thiobutanoate and ketoacid
pathway. Recruiting the thiobutanoate pathway for 1-butanol overproduction required up-
regulations for glycolytic fluxes (PGI, PGM). On the other hand, the ketoacid precursors were
made available to 1-butanol synthesis by knocking down competing pathways (PFL, ACONTa/b
etc.). The flux changes observed in the MUST sets for the two cases also showcased contrasting
patterns. For example, for the thiobutanoate pathway, the fluxes of the pentose phosphate
pathway increased so that alternative routes for glutamate and other amino acids are maintained
to support growth. Although, none of the reactions from pentose phosphate pathway appeared in
the FORCE sets, on the contrary, the OptForce procedure indicated that the fluxes of
phosphogluconate dehydrogenase (GND) must be down-regulated while using ketoacid pathway
to synthesize 1-butanol.

Several interventions that were identified in the FORCE sets have been used in existing
strains to produce 1-butanol. For example, recent strategies to delete host competing pathways
encoded by the genes IdhA, frdBC, pta, pfl and adhE [15, 382, 397] have resulted in a three-fold
increase in the yield of 1-butanol. In addition, enhancing glycolytic fluxes by overexpressing
NADH-regenerating enzymes were implemented in an E. coli strain [406] that yielded 580 mg/L
of 1-butanol. In addition to the existing interventions, the OptForce procedure also uncovered
new knockouts and up-regulations that coordinate an increased synthesis of 1-butanol. For
example, the up-regulation of glycolytic fluxes and phoephoenolpyruvate carboxylase (PPC)
increase the amount of oxaloacetate for the TCA cycle. However, in order to effectively utilize
the transamination pathway, OptForce suggested up-regulations for PPCSCT and SUCOAS that
are in close proximity to the branching thiobutanoate pathway.

The procedure detailed in this work allows for the enumeration of all possible metabolic
routes to any target compound. Alternatively, the graph-based procedure can be used to identify
alternative synthesis routes found entirely within the production host by selectively exploring
pathways that are native. Currently, the procedure uses all the biotransformations found in the
KEGG database [86, 407] and a selected set of reactions from the BRENDA [87] database. The
min-path  search procedure remains tractable for much larger compilations of
reactions/metabolites. It is to be noted that the interventions proposed by OptForce pertain to the
reactions. A complete mapping between the reactions and the genes is required for projecting the
results at the gene-level.
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Figure E.1.5: Minimal set of network changes for triples (i.e. MUSTYYY, MUSTYYL, MUSTY
etc). Reactions whose fluxes must increase are shown in white ovals while reactions whose fluxes
decrease are shown in black ovals.
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E.1 Ground and transition state computations for enzymatic reactivity and specificity
E.1.1. Introduction

A challenge in enzyme design is to improve substrate specificity, active site access, and
binding while maintaining or even improving transition state stabilization. Because of
enzymes’ immense potential to provide solutions to challenges in biomass treatment,
biosensing and environmental pollutants treatments, the goal of this project is to develop
a new computational workflow utilizing highly accurate quantum mechanical methods.
This will be done as purely (exhaustive) experimental library screening approaches
cannot predictably lead to optimized designs within a reasonable amount of time/cost.

We are addressing this challenge by putting forth and demonstrating an enzyme
design workflow relying on computations at multiple states. We are fine-tuning and
benchmarking the new computational workflow using the E. coli dihydrofolate reductase
catalyzing the reduction of dihydrofolate to tetrahydrofolate as the test system given the
abundance of available mutant activity data and modeled transition states. Concurrently
we are deploying the developed IPRO computational base to re-engineer cytochrome
P450sm-3 monooxygenase, which is functionally expressed at high levels in E. coli and
has become a prime target for hydroxylase engineering of small alkanes towards
alcohols. P450gm-3 is being engineered to hydroxylate ethane, a non-natural substrate. The
reaction mechanism for P450gm-3 is well established, experimental design attempts exist
for comparison, and the system is computationally tractable. From a practical viewpoint,
the selective oxidation of light alkanes can produce liquid fuels or value-added chemicals
from remote natural gas sources or less valuable refinery by-products. By studying these
systems, our goal is to develop and demonstrate a general computational workflow that
can create enzymatic activity for a non-natural substrate.

E.2.2. Methodology

We explored the application of molecular mechanics (MM) and quantum mechanically
(QM)-parameterized MM calculations to test our computational methodology against
existing experimental data prior to moving forward with computational design. Arnold
and coworkers used directed evolution to identify a mutant of P450gm-3, 535-h, which
was capable of hydroxylating ethane to ethanol. This mutant involved 14 amino acid
substitutions relative to the wild-type, with 3 mutations occurring in the active site region
(Positions 78, 82, 328). Our preliminary binding calculations explored whether the 535-h
mutant performance can be explained by improvements in enzyme-ethane binding and
enhanced transition state stabilization. A computational saturation mutagenesis procedure
written in Python using CHARMM was used to sequentially mutate each one of the 14
positions identified by the Arnold lab in mutant 535-h to every possible amino acid.
Interaction energy changes upon mutation were calculated using the generalized born
implicit solvent model (GBSW).[408]

E.2.3. Results



In Figure E.2.1, we plot the interaction energy improvement (-AAGcalculated ) COMpared to
the wild-type enzyme for every position and single mutation choice. A positive value in
Figure E.2.1 indicates stronger binding of ethane to the mutant as compared to the wild-
type enzyme. Looking at the 53-5h mutations (one at a time) arrived at through the
directed evolution procedure we find that they are sometimes but not always the most
energetically beneficial. In particular, for residues 78 and 328 that are in contact with the
substrate (but not for position 82) the identified mutations are near at the interaction
energy optimum. These results confirm that energy interactions at the ground state
provide only part of the answer to the enzymatic activity level improvement puzzle. We
next explored whether transition state energy interactions may provide any missing
pieces. We applied DFT calculations to obtain the transition state structure and charge
distribution obtained from the DFT-determined transition state to reparameterize the MM
force-field for evaluation of transition state stability. This QM-derived MM force-field
was then used to estimate the impact of mutations on transition state stability.
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Figure E.2.1: Interaction energy improvement (-AAG), compared to the wild-type P450sm-3, upon single amino
acid mutations at the 14 positions changed in mutant 535-h for the binding of the ground state (ethane) structure.
The x-axis value represents the mutated position in the enzyme. The blue (top) amino-acid abbreviations
represent the computationally determined optimal mutation at that position, whereas in cases the experimental and
computationally optimal mutant differ, red values (bottom) indicate the experimental mutation.

Figure E.2.2 illustrates the results of the computational saturation mutagenesis
applied to the transition state, where the interaction energy was calculated exactly the
same way as in the ground state calculations. Interaction energy improvements at the TS
are significantly higher on average than the corresponding ones at the ground state due to
the difference in charge distribution between the ground and transition states. We find
that single point mutations (i.e. K941, A290V, F205C) that had little or no effect on the
energy interactions at the ground state provide significant stabilization at the transition
state. Conversely, mutations that seem to not make a difference at the transition state (i.e.
A184V, A328F) are important for energy stabilization at the ground state. These results
demonstrate the complementary nature of GS and TS calculations for explaining and
improving enzymatic activity levels.
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Building upon what we’ve learned from the mutagenic analysis above, we next
proceeded to design the P450. We first had to select the positions to be designed.
Therefore we proposed a new approach to systematically select design positions. In our
approach we employed sequence, structural, and energetic factors. Shannon entropy
analysis selected positions with intermediate sequence variability. Next, the distances of
the entropically identified positions to the ethane were calculated, and only those within
8A were selected as part of the final group of design positions. Lastly, we developed and
performed a computational alanine scanning mutagenesis mutating every sequence
position of P450BM3 to alanine, and identifying which of the positions affected the
interaction energy with the ethane most drastically. Design positions that changed the
interaction energy by more than 1 standard deviation were considered in the final pool of
design positions. Based on the sequence, structure, and energetic factors, as well as
knowledge of the active site residues, we refined our final # of design positions to 16
positions.

We next used the IPRO framework running in parallel and with solvation and
optimized the interaction energy between the P450 and the ground and the transition
states calculated previously. IPRO generated 8 ground state and 6 transition state
solutions that optimized the interaction energy between the P450 and the substrates

presented in Table E.2.1.



Table E.2.1: IPRO generated designs optimizing the interaction energy between the
ground and transition states.

Ground State Designs Transition State Designs
260G 75D, 78K, 82G
88G, 260G 75D, 78K, 82G, 260G

75D, 78K, 82G, 260G, 327G,
88G, 260G, 327G, 328G 328G

75D, 78K, 182G, 177G, 182K,
88G, 200K, 260G, 327G, 328G | 260G, 327G, 328G

88G, 177K, 182G, 200K,
260G 75D, 78K, 82G, 177G, 182K,

327G, 328G 200K, 260G, 327G, 328G

47K, 88G, 177K, 182G, 200K, | 47H, 75D, 78K, 82G, 177G,
260G, 327G, 328G 182K, 200K, 260G, 327G, 328G

47K, 88G, 177K, 182G, 200E,
260G, 327G, 328G

47K, 94R, 88G, 177K, 182G,
200E, 260G, 327G, 328G

At this stage in the design process, we cannot describe any specific designs in
detail without experimental results. Instead, we will highlight some of the general trends
found. We are seeing that IPRO predicted more positive and more hydrophobic residues
at the ground state. The change in charge can be explained by the partial negative charge
on the oxygen portion of the iron-oxo species. For the transition state, the residues
predicted were net smaller than the wild-type. Mutations to glycine can be rationalized by
the backbone needing more flexibility to conform around the smaller ethane substrate
compared to the large fatty acids P450 naturally hydroxylates.

We next employed IPRO using the design positions found by Arnold and
coworkers with directed evolution. The goal of this was to compare whether the
experimentally-found positions would improve interaction energy and the number of
stabilizing residue contacts within 3 angstroms to the ethane relative to the design
position selection procedure outlined above.

Wild-type P450 had 11 contacts within 3 angstroms of the ethane. Our best
ground state design improved the number of contacts to 17, whereas the experimentally
determined positions improved the number of contacts to 18. IPRO using the
experimentally derived positions improved the interaction energy by 25.6% relative to the
best design predicted by our systematically determined design positions. At the transition
state, we observed just the opposite. The IPRO designs using our design positions



improved the number of contacts to 22 from 11, whereas the designs predicted by Arnold
and coworkers’ design positions improved the number of contacts to 16. Our best design
improved the interaction energy by 58.1% relative to the best design predicted with the
Meinhold et al. design positions at the transition state. The design positions found
experimentally improved the interaction energy the best at the ground state, whereas the
systematically selected design positions improved the interaction energy the best at the
transition state.

Finally, with several designs found to improve the ground and transition state
interactions, we confirmed that the ethane was still capable of entering the binding pocket
of the top designs. Figure E.2.3 shows the binding pockets of the best ground and
transition state designs using our systematically selected design positions, relative to the
wild-type binding pocket. Clearly the substrate can still access the binding pocket to
bind/unbind.

Thereis one distinct
ocketin which ethane
can enter during catalysis

# Contacts within 3A: 11

Duringredesign, point of
entrance was not perturbed

Ground State Design Transition State Design
17 22

Figure E.2.3: Visual depiction of best ground and transition state binding pockets relative to the wild-type binding
pocket. The best designs improved the number of contacts while still allowing the substrate to bind/unbind.

With the shortage of experimental data for this system, the next steps would be to
construct the designs predicted both by both sets of design positions for experimental
quantitative comparison. These limited number of sequence designs are offered for
further experimental study

We are currently carrying out the calculations described above on dihydrofolate
reductase (DHFR) to reduce dihydrofolate to tetrahydrofolate. This system is being
explored since there is an abundance of experimental mutagenesis data to perform
benchmarking on both positive and negative designs. These calculations will lead to
experimental constructs of top designs as DHFR is much easier experimental system to



work with. Computational designs leading to improved DHFR activity will validate our
preliminary hypothesis that ground and transition state interaction energies are
complementary so we can proceed to experimentally construct the best P450 designs.
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