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A. Overall Technical Summary 

Over the last few years, we have witnessed unprecedented progress in the use of microbial 

production systems for a variety of applications ranging from simple or complex industrial 

chemicals [1-7] to electrons in biological fuel cells and batteries [8-12]. The hope is that these 

success stories are the vanguards of novel and efficient bioconversions of biomass derived feeds 

into liquid fuels ranging from ethanol [13], butanol [14], branched-chain higher alcohols [15] and 

other high energy density molecules [16] in accordance with the Department of Energy’s mission. 

In pursuit of these milestones, a number of modeling, algorithmic and computational bottlenecks 

were identified at a recent DOE Workshop on the Computational Research Needs on Alternative 

and Renewable Energy (CRNARE) (http://www.nrel.gov/crnare_workshop/). Key modeling and 

computational barriers to success were, among others, (i) the automated generation, curation, 

archiving and prototyping of metabolic models for microorganisms and plants; (ii) the 

development of isotope mapping models and computational approaches to support flux 

elucidation 

using 

labeled 

isotopes 

(MFA) for 

large-scale 

metabolic 

models; and 

(iii) the need 

for reliable 

algorithms 

to identify 

engineering 

strategies 

that lead to 

the targeted 

biomass 

conversion 

target. This 
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Figure 1: The general aims of this project are: (Aim 1) to generate integrated computational tools for the 

automated generation and curation of genome-scale models of metabolism for microbial and plant 

systems; (Aim 2) to automatically generate maps tracking the fate of labeled isotopes through genome-

scale models; (Aim 3) to fully elucidate metabolic fluxes in genome-scale models using GC-MS or NMR 

data; (Aim 4) to leverage flux data for wild-type strain to identify all possible engineering strategies that 

lead to overproduction of a targeted product. 

 



current research directly address these challenges by building on research milestones already 

reached with the support of DOE (DE-FG02-05ER25684). The research will lead to an improved 

capability of mapping, elucidating and re-directing metabolic flows in microbial strains and 

plants and thus directly contribute to DOE’s bioconversion missions. To accomplish these 

objectives, we put forth four aims outlined in Figure 1. 

We have promptly posted on the PIs webpage (http://maranas.che.psu.edu/) and broadly 

disseminated all data as well as the obtained models and computational tools in accordance with 

DOE’s policy. 

Progress has been made on all fronts since the time of our previous progress report and we are 

well on pace to meet and hopefully surpass all milestones that have been put forth in the proposal. 

The work has thus far yielded a number of successful developments both in the area of 

computational platforms to support all of our modeling aims for the coming year of this proposal, 

and in the area of scientific/technical advances. Below is further information on the progress 

related to the specific individual aims as outlined in our original proposal. 

Aim 1: Automated Generation and Curation of Genome-Scale Metabolic Reconstructions 

Aim 2: Automated Generation of Genome-Scale Isotope Mapping Models 

Aim 3: Metabolic Flux Elucidation Algorithms Given GC-MS or NMR data 

Aim 4: Computational Strain Design 

 
The following sections detail our progress made during the second year of the award towards the 

project aims along a multitude of fronts in the development of computational tools to analyze, 

elucidate and redesign biological pathways. The ultimate outcome of the work will be a suite of 

computational aids for analyzing and optimizing the behavior of biological networks. We are 

confident that the success of the first two years of this three-year research program are a solid 

indication that we will be able to accomplish all of the stated objectives of this initiative. 

B. Specific Aim 1: Automated Generation and Curation of Genome-Scale Metabolic 

Reconstructions 

B.1. MetRxn: A Knowledgebase of Metabolites and Reactions Spanning Metabolic Models 

and Databases 

The work in this section has been published [17]. 

B.1.1 Background 

`The ever accelerating pace of DNA sequencing and annotation information generation [18] is 

spearheading the global inventorying of metabolic functions across all kingdoms of life. 

Increasingly, metabolite and reaction information is organized in the form of community [19], 

organism, or even tissue-specific genome-scale metabolic reconstructions. These reconstructions 

account for reaction stoichiometry and directionality, gene to protein to reaction associations, 

organelle reaction localization, transporter information, transcriptional regulation and biomass 

composition. Already over 75 genome-scale models are in place for eukaryotic, prokaryotic and 

archaeal species [20] and are becoming indispensable for computationally driving engineering 

interventions in microbial strains for targeted overproductions [21-24], elucidating the organizing 

principles of metabolism [25-28] and even pinpointing drug targets [29, 30]. A key bottleneck in 

the pace of reconstruction of new high quality metabolic models is our inability to directly make 

use of metabolite/reaction information from biological databases [31] (e.g., BRENDA [32], 

KEGG [33], MetaCyc, EcoCyc, BioCyc [34], BKM-react [35], UM-BBD [36], Reactome.org, 



Rhea, PubChem, ChEBI etc.) or other models [37] due to incompatibilities of representation, 

duplications and errors, as illustrated in Figure B.1.1. 

A major impediment is the presence of metabolites with multiple names across databases 

and models, and in some cases within the same resource, which significantly slows down the 

pooling of information from multiple sources. Therefore, the almost unavoidable inclusion of 

multiple replicates of the same metabolite can lead to missed opportunities to reveal (synthetic) 

lethal gene deletions, repair network gaps and quantify metabolic flows. Moreover, most data 

sources inadvertently include some reactions that may be stoichiometrically inconsistent [38] 

and/or elementally / charge unbalanced [39, 40], which can adversely affect the prediction quality 

of the resulting models if used directly. Finally, a large number of metabolites in reactions are 

partly specified with respect to structural information and may contain generic side groups (e.g., 

alkyl groups -R), varying degree of a repeat unit participation in oligomers, or even just 

compound class identification such as “an amino acid” or “electron acceptor”. Over 3% of all 

metabolites and 8% of all reactions in the aforementioned databases and models exhibit one or 

more of these problems. 

There have already been a number of efforts aimed at addressing some of these 

limitations. The Rhea database, hosted by the European Bioinformatics Institute, aggregates 

reaction data primarily from IntEnz [41] and ENZYME [42], whereas Reactome.org is a 

collection of reactions primarily focused on human metabolism [43, 44]. Even though they 

crosslink their data to one or more popular databases such as KEGG, ChEBI, NCBI, Ensembl, 

Uniprot, etc., both retain their own representation formats. More recently, the BKM-react 

database is a non-redundant biochemical reaction database containing known enzyme-catalyzed 

reactions compiled from BRENDA, KEGG, and MetaCyc [35]. The BKM-react database 

currently contains 20,358 reactions. Additionally, the contents of five frequently used human 

metabolic pathway databases have been compared [45]. An important step forward for models 

was the BiGG database, which includes seven genome-scale models from the Palsson group in a 

consistent nomenclature and exportable in SBML format [46-48]. Research towards integrating 

genome-scale metabolic models with large databases has so far been even more limited. Notable 

exceptions include the partial reconciliation of the latest E. coli genome scale model iAF1260 

with EcoCyc [49] and the aggregation of data from the Arabidopsis thaliana database and KEGG 

for generating genome-scale models [50] in a semi-automated fashion. Additionally, ReMatch 

integrates some metabolic models, although its primary focus is on carbon mappings for 

metabolic flux analysis [51]. Also, many metabolic models retain the KEGG identifiers of 

metabolites and reactions extracted during their construction [52, 53]. An important recent 

development is the web resource Model SEED that can generate draft genome-scale metabolic 

models drawing from an internal database that integrates KEGG with 13 genome scale models 

(including six of the models in the BiGG database) [54]. All of the reactions in Model SEED and 

BiGG are charge and elementally balanced. 

In this work, we describe the development and highlight applications of the web-based 

resource MetRxn that integrates, using internally consistent descriptions, metabolite and reaction 

information from 8 databases and 44 metabolic models. The MetRxn knowledgebase (as of 

October 2011) contains over 76,000 metabolites and 72,000 reactions (including unresolved 

entries) that are charge and elementally balanced. By conforming to standardized metabolite and 

reaction descriptions, MetRxn enables users to efficiently perform queries and comparisons 

across models and/or databases. For example, common metabolites and/or reactions between 

models and databases can rapidly be generated along with connected paths that link source to 

target metabolites. MetRxn supports export of models in SBML format. New models are being 

added as they are published or made available to us. It is available as a web-based resource at 

http://metrxn.che.psu.edu. 



B.1.2 Construction and Content 

MetRxn construction 

The construction of MetRxn largely followed the following steps, as illustrated in Figure B.1.2:  

1) download of primary sources of data from databases and models, 2) integration of metabolite 

and reaction data, 3) calculation and reconciliation of structural information, 4) identification of 

overlaps between metabolite and reaction information, 5) elemental and charge balancing of 

reactions, 6) successive resolution of remaining ambiguities in description. 

Step 1: Source data acquisition. Metabolite and reaction data was downloaded from BRENDA, 

KEGG, BioCyc, BKM-react and other databases using a variety of methods [6,52-57] based on 

protocols such as SOAP, FTP and HTTP. We preprocessed the data into flat files that were 

subsequently imported into the knowledgebase. All original information pertaining to metabolite 

name, abbreviations, metabolite geometry, related reactions, catalyzing enzyme and organism 

name, gene-protein-reaction associations, and compartmentalization was retained. For all 44 

initial genome-scale models listed, the online information from the corresponding publications 

was also imported. The source codes for all parsers used in Step 1 are available on the MetRxn 

website. 

Step 2: Source data parsing. The “raw data” from both databases and models was unified using 

standard SQL scripts on a MySQL server. The description schema for metabolites includes 

source, name, abbreviations used in the source, chemical formula, and geometry. The schema for 

reactions accounts for source, name, reaction string (reactants and products), organism 

designation, associated enzymes and genes, EC number, compartment, reversibility/direction, and 

pathway information. Once a source has been imported into the MySQL server, a data source-

specific dictionary is created to map metabolite abbreviations onto names/synonyms and 

structures and metabolites to reactions. 

Step 3: Metabolite charge and structural analysis. We used Marvin (Chemaxon) to analyze all 

218,122 raw metabolite entries containing structural information (out of a total of 322,936, 

including BRENDA entries). Inconsistencies were found in 12,965 entries typically due to wrong 

atom connectivity, valence, bond length or stereo chemical information, which were corrected 

using APIs available in Marvin. A final corrected version of the metabolite geometries was 

calculated at a fixed pH of 7.2 and converted into standard Isomeric SMILES format. The 

structure/formula used corresponded to the major microspecies found during the charge 

calculation, which effectively rounds the charge to an integer value in accordance with previous 

model construction conventions. This format includes both chiral and stereo information, as it 

allows specification of molecular configuration [55-57]. Metabolites were also annotated with 

Canonical SMILES using the OpenBabel Interface from Chemspider. The canonical 

representation encodes only atom-atom connectivity while ignoring all conformers for a 

metabolite. Using bond connectivity information from the primary sources and resources such as 

PubChem and ChemSpider we used Canonical SMILES [58, 59] to resolve the identity of 34,984 

metabolites and 32,311 reactions. Another 6,100 metabolites and 11,401 reactions involved, in 

various degrees, lack of full atomistic detail in their description (e.g., use an R or X as side-

chains, are generic compounds like “amino acid” or “electron acceptor”). Over 25,000 duplicate 

metabolites and 27,000 reaction entries were identified and consolidated within the database. The 

metabolites and reactions present in the resolved repository were further classified with respect to 

the completeness of atomistic detail in their description. 

Step 4: Metabolite synonyms and initial reaction reconciliation. Raw metabolite entries were 

assigned to Isomeric SMILES representations whenever possible. If insufficient structural 

information was available for a downloaded raw metabolite then it was assigned temporarily with 

the Canonical SMILES and revisited during the reaction reconciliation. Canonical SMILES retain 



atom connectivity but not stereo-specificity and are used as the basic metabolite topology 

descriptors as many metabolic models lack stereo-specificity information. After generating the 

initial metabolite associations, we identified reaction overlaps using the reaction synonyms and 

reaction strings along with the metabolite SMILES representations. Directionality and cofactor 

usage were temporarily ignored. During this step, reactions were flagged as single-compartment 

or two-compartment (i.e., transport reactions). MetRxn internally retains the original 

compartment designations, but currently only displays these simplified compartment 

designations. In analogy to metabolites, reactions were grouped into families that shared 

participants but in the source data sets occurred in different compartments or differed only in 

protonation. 

Step 5: Reaction charge and elemental balancing. Once metabolites were assigned correct 

elemental composition and protonation states, reactions were charge and elementally balanced. 

To this end, for charge balancing we relied on a linear programming representation that 

minimizes the difference in the sum of the charge of the reactants and the sum of the charge on 

the products. The complete formulation is provided in the documentation at MetRxn. 

Step 6: Iterative reaction reconciliation. Reactions with one (or more) unresolved reactants 

and/or products were string compared against the entire resolved collection of reactions. This step 

was successively executed as newly resolved metabolites and reactions could enable the 

resolution of previously unresolved ones.  After the first pass 164 metabolites were resolved, 

while subsequent passes (up to 18 for some models) helped resolved a total of 8,720 entries. 

Reactions with significant (but not complete) overlapping sets of reactants/products are 

additionally sent to the curator GUI including phonetic information. Briefly, the phonetic tokens 

of synonyms with known structures were compared against the ones without any associated 

structure. The algorithm suppresses keywords/tokens depicting stereo information such as cis, 

trans, L-, D-, alpha, beta, gamma, and numerical entries because they change the phonetic 

signature of the synonym under investigation. In addition, the algorithm ignores non-chemistry 

related words (e.g., use, for, experiment) that are found in some metabolite names. Certain tokens 

such as “-ic acid” and “-ate” are treated as equivalent. PubChem and Chemspider sources were 

accessed through the GUI so that the curator gets as much information as possible to identify the 

data correctly. Phonetic matches provided clues for resolving over 159 metabolites. The iterative 

application of string and phonetic comparison algorithms resolved as many as 8,879 metabolites 

after 18 rounds of reconciliation. 

Upon completion of this workflow, all genome-scale models are reformatted into a computations-

ready form and Flux Balance Analysis [60] is performed on both the source model and the 

standardized model in MetRxn to ascertain the ability of the model to produce biomass before 

and after standardization. We performed the calculations using GAMS version 12.6. MetRxn is 

accessible through a web interface that indirectly generates MySQL queries. In order to facilitate 

analysis and use of the data, a number of tools are provided as part of MetRxn. 

Data export and display 

MetRxn supports a number of export capabilities. In general, any list that is displayed contains 

live links to the metabolite or reaction entities. These lists can consist of an entire model, data 

from a comparison, or query results. All items can be exported to SMBL format. In addition, the 

public MySQL database will be made available upon request. Because of licensing limitations, 

the BRENDA database cannot be exported and is not part of the public MySQL database. 

However, we plan to provide Java source code that allows for the integration of a local copy of 

the public MySQL database with the BRENDA database (provided upon request). 

 



Source comparisons and visualization 

In addition to listing the content (number of metabolites, reactions, etc.) of the selected data 

source(s), MetRxn contains tools for comparing two or more models and visualizing the results. 

These associations can be for metabolites or reactions. During these comparisons compartment 

information and reversibility are suppressed. Comparison tables are generated by comparing the 

associations between the selected data source(s) using the canonical structures. 

MetRxn Scope 

An initial repository of reaction (i.e., 154,399) and metabolite (i.e., 322,936) entries were 

downloaded from 8 databases and 44 genome-scale metabolic models. We compiled a non-

redundant list of 42,540 metabolites and 35,474 reactions (after consolidating duplicate entries) 

containing full atomistic and bond connectivity detail. Another 6,100 metabolites and 11,401 

reactions have partial atomistic detail typically containing generic side-chains (R) and/or an 

unspecified number of polymer repeat units. Finally, 5,436 metabolites in metabolic models and 

8,000 metabolites in databases are retained with no atomistic detail. In some cases lack of 

atomistic detail reflects complete lack of identity specificity (e.g., electron donor) whereas in 

other cases even though the chemical species is fully defined, atomistic level description is not 

warranted (e.g., gene product of dsbC protein disulfide isomerase II (reduced)).  Figure B.1.3 

shows the distribution of metabolite resolution across models and databases in MetRxn. In 

general, metabolites without fully-specified structures tend to participate in a relatively small 

number of reactions. 

  The workflow followed in the creation of the MetRxn knowledgebase identified a 

number of inconsistencies. For instance, the same metabolite name may map to molecules with 

different numbers of repeat units (e.g., lecithin) or completely different structures (e.g., AMP 

could refer to either adenosine monosphate or ampicillin). Notably, even for the most well-

curated metabolic model, E. coli iAF1260 [49], we found minor errors or omissions (a total of 17) 

arising from inconsistencies or incompleteness of representation in the data culled from other 

sources. For example, the metabolite abbreviation arbtn-fe3 was mistakenly associated with the 

KEGG ID and structure of aerobactin instead of ferric-aerobactin. The number of inconsistencies 

is dramatically increased for less-curated metabolic models. We used a variety of procedures to 

disambiguate the identity of metabolites lacking structural information ranging from reaction 

matching to phonetic searches. For example, in the Corynebacterium glutamicum model [61], 

7,8-aminopelargonic acid (DAPA) has no associated structural information. Reaction matching 

found the same reaction in the E. coli iAF1260 model. 

C. glutamicum DAPA + ATP + CO2 <=> DTBIOTIN + ADP + PI 

iAF1260  [c] : atp + co2 + dann --> adp + dtbt + (3) h + pi 

which implies that 7,8-aminopelargonic acid (DAPA) is identical to 7,8-Diaminononanoate 

(dann). Examination of pelargonic acid and nonanoate reveals that they were indeed known 

synonyms. In many cases, we were also able to assign stereo-specific information to metabolite 

entries in models (e.g., stipulate the L-lysine isomer for lysine). We made use of an iterative 

approach that allowed us to map structures from models with explicit links to structures (e.g. to 

KEGG or CAS numbers) to models that only provided metabolite names. Furthermore, by using a 

phonetic algorithm that uses tokens for equivalent strings in metabolite names (e.g., ‘-ic acid’ and 

‘-ate’ are equivalent) we were able to resolve more than an additional 159 metabolites. For 

example, phonetic searches flagged cis-4-coumarate and COUMARATE in the Acinetobacter 

baylyi model [62] as potentially identical compounds. Additional checks revealed that indeed 

both metabolites should map to the same structure. A more complex matching example involved 

1-(5'-Phosphoribosyl)-4-(N-succinocarboxamide)-5-aminoimidazole from the Bacillus subtilis 



model [63] and 1-(5'-Phosphoribosyl)-5-amino-4-(N-succinocarboxamide)-imidazole from the 

Aspergillus nidulans model [64]. We note that the phonetic algorithm only makes suggestions and 

orders the possible matches for the curator. Next, we detail three examples that provide an insight 

into the type of tasks that MetRxn can facilitate. 

B.1.3 Utility and Discussion 

1. Charge and elementally balanced metabolic models 

The standardized description of metabolites and balanced reactions afforded by MetRxn enables 

the expedient repair of existing models for metabolite naming inconsistencies and reaction 

balancing errors. Here we highlight one such metabolic model repair for Acinetobacter baylyi 

iAbaylyiv4 [62]. We identified that 189 out of 880 reactions are not elementally or charge 

balanced. Most of the reactions with charge balance errors involved a missed proton in reactions 

involving cofactor pairs such as NAD/NADH. For example, a proton had to be added to the 

reactants side in the reaction (R,R)-Butanediol-dehydrogenase in which butanediol reacts with 

NAD to form acetoin. In addition, the stoichiometric coefficient of water in GTP cyclohydrolase I 

was erroneously set at -2 which resulted in an imbalance in oxygen atoms. The re-balancing 

analysis changed the coefficient to -1 (as listed in BRENDA) and added a proton to the list of 

reactants (absent from BRENDA) in order to also balance charges. 

We performed flux balance analysis (FBA) on both the published and MetRxn-based 

rebalanced version of the Acinetobacter baylyi model using the uptake constraints listed in [62] to 

assess the effect of re-balancing reaction entries on FBA results. We found that the maximum 

biomass using the glucose/ammonia uptake environment decreased by 9% primarily due to the 

increased energetic costs associated with maintaining the proton gradient. This result 

demonstrates the significant effect that lack of reaction balancing may cause in FBA calculations. 

Overall, we found that nearly two-thirds of the models had at least one unbalanced reaction, with 

over 2,400 entities across all models that were either charge or elementally imbalanced. 

Frequently, the same reaction was imbalanced in multiple models (each occurrence was counted 

separately). 

2. Contrasting existing metabolic models 

At the onset of creating MetRxn, we conducted a brief preliminary study to quantify the 

extent/severity of naming inconsistencies by contrasting the reaction information contained in an 

initial collection of 34 of the most popular genome-scale models spanning 21 bacterial, 10 

eukaryotic and three archaeal organisms. Across all branches of life, most metabolic processes are 

largely conserved (e.g., glycolysis, pentose phosphate pathway, amino acid biosynthesis, etc.) 

therefore we expected to uncover a large core of common reactions shared by all models. 

Surprisingly, we found that only three reactions (i.e., phosphoglycerate mutase, phosphoglycerate 

kinase, and CO2 transport) were directly recognized as common across those 34 models using a 

simple string match comparison. Even when examining models for only a few bacterial 

organisms (Bacillus subtilis, Escherichia coli, Mycobacterium tuberculosis, Mycoplasma 

genitalium, and Salmonella Typhimurium) simple text searches recognized only 40 common 

reactions (out of a possible 262, which is the size of the M. genitalium model). The reason for this 

glaring inconsistency is that differing metabolite naming conventions, compartment designations, 

stoichiometric ratios, reversibility, and water/proton balancing issues prevents the automated 

recognition of genuinely shared reactions across models. Using the glucose-6-phosphate 

dehydrogenase reaction as a representative example, Table 1 reveals some of the reasons for 

failing to automatically recognize common reactions across selected models [30, 49, 52, 53, 64-81]. 

As many as nine different representations of the same reaction exist due to incomplete elemental 

and charge balancing, alternate cofactor usage among different organisms, and lack of universal 

metabolite naming conventions. We have found that this level of discord between models is 

representative for most metabolic reactions. This lack of consistency renders direct pathway 



comparisons across models meaningless and the aggregation of reaction information from 

multiple models precarious. This deficiency motivated the development of MetRxn. Given 

standardization in metabolite naming and elementally / charge balanced reaction entries MetRxn 

allows for the identification of shared reactions as well as differences between any two metabolic 

models (assuming that all the metabolites in the compared reaction entries have full atomistic 

information). When making the comparison of those same metabolic models, MetRxn found an 

additional 15 reactions in common (for a total of 55 — a 38% increase) and that 142 reactions are 

shared by B. subtilis, E. coli and Salmonella Typhimurium. 

The Web interface of MetRxn allows for any number of models to be simultaneously 

compared. As a demonstration of this capability we selected to contrast the metabolic content of 

two clostridia models: Clostridium acetobutylicum [82] and Clostridium thermocellum [83]. 

Figure B.1.4 shows the results in the form of a Venn diagram. Some of the differences between 

the clostridia species are not surprising arising due to their differing lifestyles (C. acetobutylicum 

contains solventogenesis pathways and a CoB12 pathway, whereas C. thermocellum contains 

cellulosome reactions). However, we found many differences that appear to reflect different 

conventions adopted when the two models were generated rather than genuine differences in 

metabolism. In particular, in the C. thermocellum model [83] charged/uncharged tRNA 

metabolites are explicitly tracked whereas they are not included in the C. acetobutylicum model 

[82]. Surprisingly, both clostridia models are more similar, at the metabolite level, to the Bacillus 

subtilis iBsu1103 model [63] rather than to each other (see Figure B.1.4). Charged/uncharged 

tRNA metabolites account for most of the increased overlap between C. thermocellum and B. 

subtilis. Most of the reaction overlaps are in the amino acids biosynthesis pathways, carbohydrate 

metabolism, and nucleoside metabolism. It is important to note that 48 reactions in C. 

acetobutylicum, 67 reactions in C. thermocellum, and 120 reactions in B. subtilis lack full 

atomistic information (see Figure B.1.3) and thus were excluded from any comparisons. It is 

possible that additional shared reactions between the two models can be deduced by further 

examining comparisons between not fully structurally specified metabolite entries. The string / 

phonetic comparison algorithms described under Step 6 along with assisted curation could be 

adapted for this task.    

3. Using MetRxn to Bio-Prospect for Novel Production Routes 

A “Grand Challenge” in biotechnological production is the identification of novel production 

routes that allow for the conversion of inexpensive resources (e.g., various sugars) into useful 

products (e.g., succinate, artemisinin) and bio-fuels (e.g., ethanol, butanol, biodiesel etc.). 

Selected production routes must exhibit high yields, avoid thermodynamic barriers, bypass toxic 

intermediates and circumvent existing intellectual property restrictions. Historically, the 

incorporation of heterologous pathways relied largely on human intuition and literature review 

followed by experimentation [84, 85]. Currently, rapidly expanding compilations of 

biotransformations such as KEGG [86] and BRENDA [87] are increasingly being prospected 

using search algorithms to identify biosynthetic routes to important product molecules. Several 

optimization and graph-based methods have been employed to computationally assemble novel 

biochemical routes from these sources. OptStrain [88] used a mixed-integer linear optimization 

representation to identify the minimal number of reactions to be added (i.e. knock-ins) into a 

genome-scale metabolic model to enable the production of the new molecule. However the 

combinatorial nature of the problem poses a significant challenge to the OptStrain methodology 

as the number of reaction database entries increase from a few to tens of thousands. At the 

expense of not enforcing stoichiometric balances, graph-based algorithms have inherently better-

scaling properties for exhaustively identifying all min-path reaction entries that link a source with 

a target metabolite. Hatzimanikatis et. al. [89] introduced a graph-based heuristic approach 

(BNICE) to identify all possible biosynthetic routes from a given substrate to a target chemical by 

hypothesized enzymatic reaction rules. In addition, the BNICE framework was used to identify 



novel metabolic pathways for the synthesis of 3-hydroxypropionate in E. coli [90]. Based on a 

similar approach, a new scoring algorithm [91] was introduced to evaluate and compare novel 

pathways generated using enzyme-reaction rules. In addition, several techniques such as 

PathMiner [92], PathComp [93], Pathway Tools [94, 95], MetaRoute [96], PathFinder [97] and 

UM-BBD Pathway Prediction System [98] have been used to search databases for bioconversion 

routes. 

We recently published [99] a graph-based algorithm that used reaction information from 

BRENDA and KEGG to exhaustively identify all connected paths from a source to a target 

metabolite using a customized min-path algorithm [100]. We first demonstrated the min-path 

procedure by identifying all synthesis routes for 1-butanol from pyruvate using a database of 

9,921 reactions and 17,013 metabolites manually extracted from both BRENDA and KEGG. 

Here, we re-visited the same task using the full list of reactions and metabolites present in 

MetRxn to assess the discovery potential of using MetRxn. Figure B.1.5 illustrates all identified 

pathways from pyruvate to 1-butanol before MetRxn (29, shown in blue) and the ones discovered 

after using MetRxn (112, shown in green). As many as 83 new avenues for 1-butanol production 

were revealed as a consequence of using the expanded and standardized MetRxn resource. In 

addition, the search algorithm recovered known [101-105] synthesis routes using E. coli for the 

production of 1-butanol (shown in orange). The first pathway involves the fermentative 

transformation of pyruvate and acetyl-CoA to 1-butanol using enzymes from C. acetobutylicum 

[15]. The second pathway uses ketoacid precursors [101]. This example demonstrates how the 

biotransformations stored in MetRxn can be used to traverse a multitude of production routes for 

targeted bioproducts. 

B.1.4 Conclusions 

MetRxn enables the standardization, correction and utilization of rapidly growing metabolic 

information for over 76,000 metabolites participating in 72,000 reactions (including unresolved 

entries). The library of standardized and balanced reactions streamlines the process of 

reconstructing organism-specific metabolism and opens the way for identifying new paths for 

metabolic flux redirection. Moreover, the standardization of published genome-scale models 

enables the rapidly growing community of researchers who make use of metabolic information to 

understand metabolism at an organism-level and re-deploy it for various biotechnological 

objectives. By removing standardization and data heterogeneity bottlenecks the pace of 

knowledge creation and discovery from users of this resource will be accelerated. MetRxn is 

constructed in a way that allows for quick updating and tracking of changes that occur in the 

primary databases, as well as available parsing tools that allow for rapid import of new genome-

scale metabolic models as they become available. By having exports in SBML, MetRxn’s output 

can be directly interfaced with software packages such as the COBRA toolbox. 

During the construction of the initial release of MetRxn, we managed to associate 

structures for over 8,800 metabolites and re-balanced more than 2,400 reaction instances across 

44 metabolic models. This enables the genuine comparison of metabolic content between 

metabolic models. Preliminary results reinforce that that discrepancies between metabolic models 

echo not only genuine differences in metabolism but also assumptions and workflow followed by 

the model creator(s). Going forward, we will continue to expand MetRxn to include more 

genome-scale metabolic models and add additional tools to aid in their analysis. Because we 

anticipate that the scope and number of models will rapidly expand, we plan to invite and 

encourage the community to offer comments about metabolite and reaction information as well as 

provide feedback on MetRxn itself. 

B.1.4 Availability and Requirements 



MetRxn is available at http://metrxn.che.psu.edu. Its use is freely available for all non-

commercial activity. 

 

 

 
Figure B.1.1: Typical incompatibilities and inconsistencies in genome-scale models and databases. 

Roadblocks to using genome-scale models and databases include ambiguities and differences in naming 

conventions, lack of balanced reactions, and incompleteness of structural information. 

 



 
Figure B.1.2: Flowchart outlining the construction of MetRxn. After download of primary sources of data 

from databases and models, we integrated metabolite and reaction data, followed by calculation and 

reconciliation of structural information. By identifying overlaps between metabolite and reaction 

information, we generated elemental and charge balancing of reactions. The procedure for developing 

MetRxn was iterative with subsequent passes making use of previous associations to resolve remaining 

ambiguities. 

 



 

Figure B.1.3: Various levels of structural information was available for models (main) and 

databases (inset). For every model, the majority of metabolites had full atomistic detail (blue). 

The smaller number of metabolites with partial atomistic detail (orange) such as genetic side 

chains, or with no atomistic detail (green) such as gene products, participated in few reactions. 

 

Figure B.1.4: Comparison of metabolite and reaction overlaps for C. acetobutylicum and C. thermocellum 

(A). Although the organisms are same genus, the models of these two species had significant numbers of 

unique metabolites (left) and reactions (right). Additional comparisons revealed that there was more 

similarity in metabolite usage with a model of B. subtilis than with each other. In part, these overlaps were 

driven by the explicit accounting for charged tRNA species in C. thermocellum and B. subtilis models, 

which was also reflected in the reaction overlaps through reactions involving these metabolites. 



 

 

 

Figure B.1.5: Pathways from pyruvate to 1-butanol. Using the MetRxn knowledgebase, we identified a 

large number of new pathways (green) as well as previously established ones (orange) and those identified 

found in a previous study (blue). 

 



 

B.2. OptCom: A Multi-Level Optimization Framework for the Metabolic Modeling and 

Analysis of Microbial Communities 

The work in this section has been published [106]. 

B.2.1. Introduction 

Solitary species are rarely found in natural environments as most microorganisms tend to function 

in concert in integrative and interactive units, (i.e., communities). Natural microbial ecosystems 

drive global biogeochemical cycling of energy and carbon [107] and are involved in applications 

ranging from production of biofuels [108, 109], biodegradation and natural attenuation of 

pollutants [110-112], bacterially mediated wastewater treatment [113, 114] and many other 

biotechnology-related processes [115, 116]. The species within these ecosystems communicate 

through unidirectional or bidirectional exchange of biochemical cues. The interactions among the 

participants in a microbial community can be such that one or more population(s) benefit from 

the association (e.g., through cooperation), some are negatively affected, (e.g., by competing for 

limiting resources), or more often than not a combination of both. These inter-species interactions 

and their temporal changes in response to environmental stimuli are known to significantly affect 

the structure and function of microbial communities and play a pivotal role in species evolution 

[117-122]. 

Recent advances in the use of high-throughput sequencing and whole-community 

analysis techniques such as meta-genomics and meta-transcriptomics promise to revolutionize the 

availability of genomic information [122-124]. Despite the growing availability of this high-

throughput data, we still know very little about the metabolic contributions of individual 

microbial players within an ecological niche and the extent and directionality of metabolic 

interactions among them. This calls for development of efficient modeling frameworks to 

elucidate less understood aspects of metabolism in microbial communities. Spurred by recent 

advances in reconstruction and analysis of metabolic networks of individual microorganisms, a 

number of metabolic models of simple microbial consortia have been developed. Efforts in this 

direction started with the development of metabolic model for a mutualistic two-species microbial 

community [19]. The metabolic network of each microorganism was treated as a separate 

compartment in analogy to eukaryotic metabolic models [125, 126]. A third compartment was 

also added through which the two organisms can interact by exchanging metabolites. The same 

approach was employed for the metabolic modeling of another syntrophic association between 

Clostridium butyricum and Methanosarcina mazei [127]. Lewis et al [128] have also described a 

workflow for large-scale metabolic modeling of interactions between various cell lines in the 

human brain using compartments to represent different cells. Similarly, Bordbar et al [129] 

developed a multi-tissue type metabolic model for analysis of whole-body systems physiology. 

Alternatively, others proceeded to identify and model synthetic interactions among different 

mutants of the same species using genome-scale metabolic models. For example, Tzamali et al 

[130] computationally identified potential communities of non-lethal E. coli mutants using a 

graph-theoretic approach and analyzed them by extending dynamic flux balance analysis model 

of Varma and Palsson [60]. The same researchers have recently extended their study to describe 

the co-growth of different E. coli mutants on various carbon sources in a batch culture [131]. 

Wintermute and Silver [132] identified mutualistic relationships in pairs of auxotroph E. coli 

mutants. Each pair was modeled using an extended form of the minimization of metabolic 

adjustment (MOMA) hypothesis [133]. More recently, the concept of inducing synthetic 

microbial ecosystems not by genetic modifications but rather with environmental perturbations 

such as changing the growth medium was introduced [134].  



All these studies aimed primarily at modeling communities where one or both species 

benefit from the association while none is negatively affected. The first study to characterize a 

negative interaction between two microorganisms using genome-scale metabolic models was 

published by Zhuang et al [135] where similar to [130, 131] an extension of the dynamic flux 

balance analysis [136] was employed to model the competition between Rhodoferax 

ferrireducens and Geobacter sulfurreducens in an anoxic subsurface environment. The same 

procedure was also employed in a study that characterized the metabolic interactions in a co-

culture of Clostridium acetobutylicum and Clostridium cellulolyticum [137]. A wide range of 

methods beyond flux balance analysis have been used to model microbial communities [138-

149]. For example, Taffs et al [150] proposed three different approaches based on elementary 

mode analysis to model a microbial community containing three interacting guilds. Other studies 

have drawn from evolutionary game theory, nonlinear dynamics and the theory of stochastic 

processes to model ecological systems [143, 144, 147]. 

Despite these efforts, all existing methods for the flux balance analysis of microbial 

communities are based on optimization problems with a single objective function (related to 

individual species), which cannot always capture the multi-level nature of decision-making in 

microbial communities. For example, the flux balance analysis model described in [19] is 

applicable only to syntrophic associations, where the growth of both species is coupled through 

the transfer of a key metabolite. The dynamic flux balance analysis models introduced by Zhuang 

et al [135] and Tzamali et al [130, 131] rely on solving separate FBA problems for each 

individual species within each time interval. In all cases these methods cannot trade off the 

optimization of fitness of individual species versus the fitness function of the entire community. 

Therefore, there is still a need to develop an efficient modeling procedure to address this issue 

and to analyze and characterize microbial communities of increasing size with any combination 

of positive and/or negative interactions. 

Here, we introduce OptCom, a comprehensive flux balance analysis framework for 

microbial communities, which relies on a multi-level optimization description. In contrast to 

earlier approaches that rely on a single objective function, OptCom’s multi-level/objective 

structure enables properly assessing trade-offs between individual vs. community level fitness 

criteria. This modeling framework is general enough to capture any type of interactions (positive, 

negative or combination of both) for any number of species (or guilds) involved. In addition, 

OptCom is able to explain in vivo observations in terms of the levels of optimality of growth for 

each participant of the community. We first analyze a simple and well-determined microbial 

community involving a syntrophic association between D. vulgaris and M. maripaludis [19] to 

demonstrate the ability of OptCom in recapitulating known interactions. Next, OptCom is 

employed to model the more complex ecological system of the phototrophic microbial mats of 

Octopus and Mushroom Springs of Yellowstone National Park and compare our results with 

those obtained using elementary mode analysis [150]. OptCom identifies the level of sub-optimal 

growth of one of the guilds (SYN) in this community to benefit other community members and/or 

the entire population. Finally, we use OptCom to elucidate the extent and direction of inter-

species metabolite transfers for a model microbial community [151], identifying the proportion of 

metabolic resources apportioned to different community members and predicting the relative 

contribution of hydrogen and ethanol as electron donors in the community. Addition of a new 

member to this community is also examined in this study.  

B.2.2. Methods 

OptCom postulates a separate biomass maximization problem for each species as inner problems. 

The inner problems capture species-level fitness driving forces exemplified through the 

maximization of individual species’ biomass production. If preferable, alternate objective 

function (e.g., MOMA [133]) could be utilized in the inner stage to represent the cellular fitness 



criteria. Inter-species interactions are modeled with appropriate constraints in the outer problem 

representing the exchange of metabolites among different species. The inner problems are 

subsequently linked with the outer stage through inter-organism flow constraints and optimality 

criteria so as a community-level (e.g., overall community biomass) objective function is 

optimized. Figure B.2.1A schematically illustrates the proposed concept. OptCom is solved using 

the solution methods previously developed for bilevel programs [21, 88, 152, 153] (see Text S1 

for details of the optimization formulation and solution). Note that since OptCom yields a (non-

covex) bilinear optimization problem, all case studies presented in this paper were solved using 

the BARON solver [154], accessed through GAMS, to global optimality.  

It is important to note that OptCom can be readily modified to account for the case when 

one or more organisms show a form of cooperative behavior that benefits the whole population, 

but comes at the expense of growing at rates slower than the maximum possible [121, 155]. To 

quantify the deviation of community members from their optimal behavior, we introduce a metric 

called optimality level for each species k (i.e., ck). The optimality level for each one of the 

microorganisms is quantified using a variation of OptCom which we refer to as descriptive. 

Descriptive OptCom incorporates all available experimental data for the entire community (e.g., 

community biomass composition) as constraints in the outer problem and all data related to 

individual species as constraints in the respective inner problems while allowing the biomass flux 

of individual species to fall below (or rise above) the maxima (

 

vopt biomass

k
) of the inner problems 

(see Figure B.2.1B). We note that here the optimum biomass flux for each species (

 

vopt biomass

k
) is 

community-specific as it is computed in the context of all microorganisms striving to grow at 

their maximum rate (using the formulation given in Figure B.2.1A). An optimality level of less 

than one for a microorganism k implies that it grows sub-optimally at a rate equal to 100ck % of 

the maximum (

 

vopt biomass

k
) to optimize a community-level fitness criterion while matching 

experimental observations. Alternatively, an optimality level of one implies that microorganism k 

grows exactly optimally at a rate equal to 

 

vopt biomass

k
 whereas a value greater than one indicates 

that it achieves a higher biomass production level than the community-specific maximum (i.e., 

super-optimality) by depleting resources from one or more other community members. It is worth 

noting that super-optimality is achievable for a species only at the expense of sub-optimal 

behavior of at least one other member in the community. The identified combination of sub- 

and/or super-optimal behaviors of individual species is driven by the maximization of a 

community-level criterion (e.g., maximize the total community biomass).  

OptCom can capture various types of interactions among members of a microbial 

community. Symbiotic interactions between two (or more) populations can be such that one or 

more species benefit from the association (i.e., positive interaction), are negatively affected (i.e., 

negative interactions), or combination of both. Mutualism, synergism and commensalism are 

examples of positive interactions, whereas parasitism and competition are examples of negative 

interactions. A pictorial representation of how these interactions can be captured within OptCom 

by appropriately restricting inter-organism metabolic flows is provided in Figure B.2.2 (see Text 

S1 for implementation details). 

B.2.3. Results 

Modeling a mutualistic microbial community 

We first explore the capability of OptCom to model and analyze a relatively simple and well-

characterized syntrophic association between two microorganisms, namely Desulfovibrio vulgaris 

Hildenborough and Methanococcus maripaludis. Syntrophy is a mutualistic relationship between 

two microorganisms, which together degrade an otherwise indigestible organic substrate. A 

prominent example of syntrophic interactions is interspecies hydrogen transfer, where the 



hydrogen produced by one of the species has to be consumed by the other to stimulate the growth 

of both microorganisms [156-159]. In these communities degradation of a substrate by 

fermenting bacteria is energetically unfavorable as it carries out a reaction, which is endergonic 

under standard conditions. However, if this fermenting bacteria is coupled with a hydrogen 

scavenging partner such as methanogenic bacteria, the organic compound degrading reaction can 

proceed [160]. Methanogens use hydrogen and energy gained from the first reaction and reduce 

CO2 to methane [158, 160]. 

Here we focus on such a syntrophic association between Desulfovibrio vulgaris 

Hildenborough and Methano- coccus maripaludis S2, for which genomes-scale metabolic models 

as well as experimental growth data for the co-culture are available [19]. With lactate as the sole 

carbon source and in the absence of a suitable electron acceptor for the sulfate reducer, M. 

maripaludis provides favorable thermodynamic conditions for the growth of D. vulgaris by 

consuming hydrogen and maintaining its partial pressure low. Stoylar et al [19] modeled this 

microbial community as a multi-compartment metabolic network and employed FBA to identify 

community-level fluxes by maximizing the weighted sum of the biomass fluxes of two 

microorganisms.  

Comparing the OptCom predictions with experimental results 

First, we examined whether our model is capable of predicting the relative abundance of species 

(i.e., composition) in the community by maximizing the community biomass as the outer problem 

objective function. Each microorganism was allowed to maximize its own biomass yield in the 

inner problems. Consistent with Stoylar et al [19], the lactate uptake rate was set to 48 µM/h and 

formate and hydrogen accumulation were set to zero, so as all formate and hydrogen produced by 

D. vulgaris is utilized by M. maripaludis. Lower and upper bounds on all other reactions (except 

for the uptake and export fluxes of the shared metabolites) were taken from [19]. The ratio of the 

biomass yields for D. vulgaris and M. maripaludis was predicted to be 2.28 based on our 

simulations. This is consistent with in vivo observation that D. vulgaris dominates in the co-

culture by a ratio of at least 2:1 [19]. Throughout this and the following studies we assume that 

the biomass flux for each species is proportional to its biomass abundance in the community.  

We next explore how well OptCom performs in predicting various metabolic activities 

across different stages of syntrophic growth. To this end, we applied OptCom for each time 

interval and compared the model predictions for acetate, methane and carbon dioxide evolution 

rates as well as total biomass production rates with experimental measurements [19]. A separate 

run was performed for each time interval where lactate uptake and hydrogen evolution rates were 

fixed at their experimentally determined values in that interval [19]. The results of this 

comparison are illustrated in Figure B.2.3. We can see that OptCom predictions are generally in 

good agreement with experimental data especially for the acetate and methane production rates. 

The predicted CO2 evolution rate, however, is lower in all time intervals (except for 62-76 hr) 

than the measured values. Between 62 hr and 76 hr the experimental data show that the CO2 

evolution rate is close to zero, which may indicate that all CO2 produced by D. vulgaris is 

consumed by M. maripaludis [19]. In addition, OptCom predicts an increase in the biomass 

production of the whole community over time with increasing lactate uptake rate as expected, 

although, all of predicted yields are higher than experimental measurements. This inconsistency 

could be due to missing regulatory information, incorrect modeling of ATP utilization and 

maintenance energy requirements and/or the presence of futile cycles in the metabolic models of 

one or both species. It is worth noting that all predictions by Stolyar’s multi-compartment 

approach are also very close to the results obtained by OptCom. This is because in this syntrophic 

microbial community the growth of both species is coupled and uniquely dependent on the 

exchange of hydrogen and/or formate. This allows for a single fitness function to describe the 

behavior of the entire community. 



 

The role of hydrogen and formate in interspecies electron transfer 

 Hydrogen and formate are primary shuttle compounds for interspecies electron transfer. There 

are two enzymes in D. vulgaris that are involved in production of hydrogen and formate namely 

pyruvate oxidoreductase and pyruvate-fomrate lyase [19, 161]. While both of these enzymes 

convert pyruvate to acetyl-CoA, the former produces reduced ferredoxin, which is then used for 

hydrogen production, whereas the latter produces formate, which can be secreted to the medium. 

For an uptake rate of 10 µmol/hr, OptCom predicts that a total of 18.6 µmol/ hr of electron 

transfer in the form of hydrogen and/or formate transfer are required to achieve the maximum 

growth for both species and community. To investigate the relative contribution of formate and 

hydrogen in interspecies electron transfer, we examined what portion of the total required 

electron transfer could be carried by hydrogen or formate while maintaining the maximum 

biomass yield for both species. This analysis showed that hydrogen could be used as the sole 

electron carrier to support the maximum growth for both microorganisms even if no formate is 

secreted by D. vulgaris. Formate, on the other hand, could only account for up to 26% (4.9 µmol/ 

hr) of the total electron transfer to maintain the biomass productions at their maximum. In 

addition, OptCom results show that formate exchange rates of more than 5.5 µmol/hr (~30%) are 

not able to support growth for any of the two species. Using OptCom we find that D. vulgaris is 

unable to produce sufficient formate to meet the minimum electron transfer required to maintain 

the redox balance in the absence of hydrogen. 

When hydrogen production by D. vulgaris is constrained to be at most 13.7 µmol/hr (i.e., 

the rest of 4.9 µmol/hr electron transfer is assumed to be carried out by formate if possible), 

OptCom predictions show that in a co-culture consisting of D. vulgaris and a mutant of M. 

maripaludis the growth rate of both D. vulgaris and M. maripaludis is reduced by 26%. The 

simulation results also show that no fomrate is produced by D. vulgaris in this case, which was 

expected, as it cannot be consumed by the M. maripaludis mutant. Despite no formate production 

by D. vulgaris, OptCom reveals that the flux through pyruvate formate lyase is higher compared 

to the community having the wild-type strains. Further investigation of the in silico flux 

distributions shows that the entire amount of formate produced by the pyruvate formate lyase 

reaction is directed towards CO2 production. This in turn results in an increased consumption of 

CO2 by the M. maripaludis mutant and consequently a lower accumulation of CO2 in the 

extracellular environment compared to the community with the wild-type strains. The predictions 

by OptCom for the community with mutant of M. maripaludis are in agreement with 

experimental results by Stolyar et al [19] who established a syntrophic association between D. 

vulgaris and the M. maripaludis mutant MM709 lacking the two annotated formate 

dehydrogenase enzymes. It was observed that this co-culture is able to grow, confirming that 

hydrogen alone can support the syntrophic growth of both species. Nevertheless, the growth rate, 

biomass yield and lactate uptake rates were lower compared to the syntrophic growth between the 

wild-type strains [19]. Notably, OptCom predictions suggest that if the wild-type D. vulgaris in 

Stolyar’s experiment is replaced with a mutant lacking pyruvate-formate lyase, so as all electron 

equivalent is produced in the form of hydrogen, then the co-culture should be able to restore 

growth to that of wild-type species community as hydrogen alone can carry all required electron 

equivalents. 

Assessing optimality levels in a phototrophic microbial community 

Here we examine the applicability of OptCom for modeling a more complex microbial 

community containing three interacting guilds, the phototrophic microbial mats of Octopus and 

Mushroom Springs of Yellowstone National Park (Wyoming, USA) [162]. The inhabitants of this 

community include unicellular cyanobacteria related to Synechococcus spp (SYN), filamentous 



anoxygenic phototrophs (FAP) related to Chloroflexus and Roseiflexus spp and sulfate-reducing 

bacteria (SRB) as well as other prokaryotes supported by the products of the photosynthetic 

bacteria [150, 162]. Diel (day-night) variations in metabolic activities of members of this 

community were observed before [163-165]. During the day when the mat is oxygenated 

cyanobacteria appear to be the main carbon fixer, consuming CO2 and producing storage products 

such as polyglucose as well as O2 as a by-product of photosynthesis. High levels of O2 relative to 

CO2 stimulate the production of glycolate. Glycolate is then used as a carbon and energy source 

by other community members such as photoheterotrophic FAP. At night, the mat becomes anoxic 

and cyanobacteria start to ferment the stored polyglucose into small organic acids such as acetate, 

propionate and H2. FAP can incorporate fermentation products photoheterotrophically while SRB 

oxidizes the fermentation products under anaerobic condition and produces sulfide [162, 166-

168]. A schematic diagram representing the interactions in this community is given in [150].  

This microbial community has been previously modeled and analyzed by Taffs et al 

[150] using a representative microorganism for each guild: Oxygenic photoautotrophs related to 

Synechococcus spp were chosen to represent the mat’s primary carbon and nitrogen fixers. FAP 

from the family Chloroflexaceae, were selected to represent metabolically versatile 

photoheterotrophs that capture light energy as phosphodiester bonds but require external reducing 

equivalents and carbon sources other than CO2. A SRB guild representative whose metabolic 

behavior was based on several well-studied sulfate-reducing bacteria was also included in the 

community model description [150]. The metabolic networks representing central carbon and 

energy metabolism for each guild were then constructed and three different modeling approaches 

based on the elementary mode analysis were employed to elucidate sustainable physiological 

properties of this community [150]. Here, we focus only on daylight metabolism (for which more 

experimental data is available) to assess the efficacy of OptCom in describing carbon and energy 

flows and the biomass ratio between guilds.  

Analysis of the daylight metabolism 

The relative abundance of various species in a microbial community (i.e., composition) is of 

significant ecological importance. The ratio of cyanobacterial (SYN) to FAP biovolumes in a 

Mushroom Spring mat was determined experimentally to be 1.6:1 [169]. It was assumed that 

biomass formation rates and biovolume of species in the community are directly related [150]. In 

another study the biomass ratio in the top 1 mm of Octopus and Mushroom Spring mats was 

estimated to range from 1.5:1 to 3.5:1 based on the relative abundances of metagenomic reads 

[150]. We used OptCom to model this community postulating that each guild strives to maximize 

its biomass and examined if the biomass ratio of SYN/FAP can be correctly predicted. We chose 

as the outer problem objective function to maximize the total community biomass (i.e., SYN 

biomass + FAP biomass + SRB biomass). During the day O2 competes with CO2 for the rubisco 

active site, leading to production of glycolate (O2 + ribulose − 5 − P + ATP → glycolate + triose 

phophate + ADP) instead of additional reduced carbon (CO2 + ribulose−5−P + ATP → 2 triose 

phophate + ADP) [150]. The flux ratio of these two reactions (O2/CO2) was measured for the 

Octopus and Mushroom Spring microbial mats and reported to vary approximately between 0.03 

and 0.07 [150, 170]. We incorporated this information into our modeling framework by fixing the 

flux ratio of these reactions at different values between 0.03 and 0.07 (using a constraint in the 

inner problem of SYN). Lower and upper bounds on all reactions (except for the uptake and 

export fluxes of the shared metabolites) were taken from [150]. Under these conditions, the 

SYN/FAP biomass ratio was predicted to range from 7.94 (for O2/CO2 flux ratio = 0.07) to 20.26 

(O2/CO2 flux ratio = 0.03), which are significantly higher than the experimentally determined 

values of 1.5 to 3.5. This suggests that the reason for the discrepancy in prediction may be that 

the SYN guild does not maximize its biomass. Therefore, we decided to test this hypothesis by 

using the descriptive mode of the OptCom procedure (see Figure B.2.1B) and establish the 



optimality level of SYN and other members of this community. To this end, we added a 

constraint to the outer problem to fix the SYN/FAP biomass ratio at different values in the 

experimentally observed range (1.5 to 3.5). The objective function of the outer problem was 

assumed to be maximization of the total community biomass. We determined the optimality 

levels across different values of SYN/FAP biomass and O2/CO2 flux ratios in their experimentally 

determined ranges (see Figure B.2.4). OptCom finds that the observed SYN/FAP biomass ratios 

are consistent with SYN guild growing sub-optimally at 61-82% of its community-specific 

maximum with lower values corresponding to higher O2/CO2 flux ratios (see Figure B.2.4A). On 

the other hand, FAP guild appears to benefit from this sub-optimal behavior of SYN by growing 

at rates, which are approximately 4.5 to 8.5 times higher than its community-specific maximum 

(see Figure B.2.4B). 

SYN grows sub-optimally in this community to benefit other community members (e.g., 

FAP) and optimize a community-level fitness criterion (e.g., maximize the total community 

biomass). We investigated the effect of sub-optimal growth of the SYN guild on the total 

community biomass production across different values of SYN/FAP biomass and O2/CO2 flux 

ratios (see Figure B.2.4C). As illustrated in Figure B.2.4C, at higher O2/CO2 flux ratios, the total 

community biomass is higher compared to the case when SYN grows optimally. The metabolic 

reason for this lower growth of SYN is that fixing more carbon (manifested by 3-7 times more 

predicted glycolate and acetate production) to supply other guilds and increase the overall 

community biomass imposes extra energy demands on the SYN guild. In contrast, for low 

O2/CO2 flux ratios the maximum community biomass when SYN grows sub-optimally is lower 

compared with when it grows optimally (i.e., both dashed lines lie below the solid line in Figure 

B.2.4C). A possible reason for this discrepancy is that the experimental measurements for 

SYN/FAP biomass ratio were performed when the O2/CO2 flux ratio was high. This could also be 

a consequence of the experimental underestimation of glycolate production due to consumption 

of radio-labeled photosynthate during incubation as stated in [150]. Alternatively, SYN may grow 

sub-optimally so that it can divert some resources towards polysaccharide production to fuel 

night-time maintenance energy and morning nitrogen fixation. This is another type of a 

cooperative behavior by SYN. 

Notably, two different cases were considered by Taffs et al [150] using the elementary 

modes and compartmentalized approach: a selfish criterion where each guild attempts to 

maximize its own biomass and an altruistic criterion where the guilds strive to maximize the total 

community biomass. It was concluded that predictions using the first criterion are in better 

agreement with experimental data. OptCom, on the other hand reveals that a trade-off between 

these two criteria appears to be driving the metabolism in this community. While some guilds 

strive to maximize their own growth, others (e.g., SYN) grow sub-optimally to maximize the 

biomass of entire community or benefit the nighttime metabolism, or a combination of both, 

depending on O2/CO2 flux ratio and environmental conditions.  

Elucidating trophic and electron accepting interactions in sub-surface anaerobic 

environments 

In a recent study, Miller et al [151] established a model microbial community to better understand 

the trophic interactions in sub-surface anaerobic environments. This community was composed of 

three species including Clostridium cellulolyticum, Desulfovibrio vulgaris Hildenborough, and 

Geobacter sulfurreducens. Cellobiose was provided as the sole carbon and energy source for C. 

cellulolyticum whereas the growth of D. vulgaris and G. sulfurreducens were dependent on the 

fermentation by-products produced by C. cellulolyticum. D. vulgaris and G. sulfurreducens were 

supplemented with sulfate and fumarate, respectively, as electron-acceptors to avoid electron 

acceptor competition [151]. The experimental measurements for the biomass composition of the 

community showed that, as expected, C. cellulolyticum was the dominant member in the co-



culture and confirmed the presence of D. vulgaris and G. sulfurreducens. It was, however, not 

possible to quantify experimentally the flow of shared metabolites among the community 

members as their concentrations were below the detection limits. Therefore, the authors proposed 

an approximate model of the carbon and electron flow based on some measurements of the three 

species community at steady-state, pure culture chemostat experiments and data from the 

literature [151].  

Here, we model this microbial community by making use of the corresponding bacterial 

metabolic models and employ OptCom to elucidate the inter-species interactions. The metabolic 

models of C. cellulolyticum (i.e., iFS431) and G. sulfurreducens were reconstructed by Salimi et 

al [137] and Mahadevan et al [171], respectively. A basic metabolic model of D. vulgaris 

containing 86 reactions was introduced by Stolyar et al [19], however, this model had only a 

compact representation of the central metabolism. For example, the model was not able to support 

growth in the presence of acetate or ethanol as the sole carbon source. Therefore, we expanded 

this model by adding new reactions from a first draft reconstructed model in the Model Seed [54] 

and the KEGG database [86] using the GrowMatch procedure [152] (see Text S1 for details). The 

updated model of D. vulgaris consists of 145 reactions and is capable of supporting growth on 

acetate as well as ethanol. This model is available in the supplementary material (Table S1).  

Fumarate consumption by G. sulfurreducens 

FBA simulations showed that the metabolic model for G. sulfurreducens [171] is not able to 

capture the experimental observation that the amount of fumarate consumed is higher than the 

amount of succinate produced. In addition, the model predicts that no malate is produced under 

the examined conditions. An inspection of the metabolic model of G. sulfurreducens revealed that 

the only included uptake pathway for fumarate is through mutual dicarboxylic acid transporter 

(fumarate[e] + succinate[c]  fumarate[c] + succinate[e]) implying that the amount of succinate 

produced must be equal to the amount of fumarate consumed. Interestingly, in support of the 

observations by Miller et al [151], a recent study [172] has confirmed that the fumarate 

consumption rate by G. sulfurreducens is higher than the succinate production rate and 

demonstrated using 13C-based metabolic flux analysis that fumarate can be used as an additional 

carbon source through the TCA cycle where it is converted to malate by fumarase, and 

oxaloacetate via malate dehydrogenase. These findings suggest that the dcu gene family 

(responsible for the uptake of dicarboxylates such as fumarate) in G. sulfurreducens may have a 

dual function, i.e., they can act both mutually (with exchange of another compound such as 

succinate) or independently (i.e., protonated), similarly to those in E. coli [173]. This was verified 

by performing a bi-directional BLAST analysis that revealed high sequence similarity between 

the dcu gene families in G. sulfurreducens and E. coli. It is worth noting that addition of an 

alternative succinate transporter to the model could also have been another way of explaining the 

experimental data, however this hypothesis was not supported by the BLAST analysis. Therefore, 

in the absence of any other experimental data, we decided to add a protonated transport reaction 

for fumarate to the model. In our simulations we restricted the flux of this reaction to 15.5% of 

the fumarate transfer by dicaboxylic acid transporter based on the metabolic flux data under 

electron acceptor limited conditions [172]. 

Uncovering the inter-species metabolite transfers in the community 

While the relative molar abundance of each species was measured experimentally by Miller et al 

[151], the metabolite flows across community members were untraceable. We thus chose to use 

OptCom to gain insight into inter-species metabolite trafficking. To this end, we employed the 

descriptive mode of OptCom (see Figure B.2.1B) first to establish the optimality levels of species 

participating in this community, by fixing the biomass composition of the community at the 

values obtained experimentally by adding constraints to the outer problem. The objective function 



of the outer problem was maximization of the total community biomass. Descriptive OptCom 

revealed that the experimentally determined biomass composition in this community was 

consistent with optimal growth for all microorganisms (i.e., optimality level of one for all species 

involved). Upon verifying that biomass maximization was driving metabolism in this community, 

we used OptCom to make predictions about inter-organism flow rates with a basis of 1 

mole/gDW.hr of cellobiose uptake by C. cellulolyticum so that we can directly compare our 

results with the estimates in Miller et al [151]. The lower bound and upper bounds on all 

reactions (except for the uptake and export fluxes of the shared metabolites) were taken from the 

publications of the respective metabolic models [19, 137, 171]. Because D. vulgaris has a much 

more efficient enzymatic process for hydrogen consumption than G. sulfurreducens, we initially 

allowed G. sulfurredcens to take up only a small portion (between 1 to 10%) of the total hydrogen 

produced by C. cellulolyticum. However, the total predicted acetate and CO2 accumulation in the 

extracellular environment deviated significantly from the experimental observations by Miller et 

al [151]. Therefore, we decided to perform the remaining simulations assuming that D. vulgaris 

consumes all hydrogen produced by C. cellulolyticum (even though this may not be the only way 

of reconciling model predictions and the experimental data). OptCom found that under these 

conditions 1 mol/gDW.hr of cellobiose leads to 2.48 moles/gDW.hr of acetate and 3.22 

moles/gDW.hr of CO2 in the extracellular environment which agree well with 2.7 and 3.3 

moles/gDW.hr of acetate and CO2, respectively, observed in the supernatant of the bioreactor (per 

mole of cellobiose) by Miller et al [151]. We note, however, that the predicted level of acetate 

production by C. cellulolyticum metabolic model (1.65 mol/gDW.hr) is lower than what was 

estimated in Miller’s model (2.9 mol/gDW.hr). In general, however, the predicted allocation of 

metabolic resources to different members of the community by OptCom is in good agreements 

with estimations in Miller [151] (see Figure B.2.5). For example, OptCom suggests that about 

13% of the acetate produced by C. cellulolyticum is directed towards G. sulfurreducens, which is 

very close to the 15.5% value estimated in [151].  

OptCom results also show that hydrogen and ethanol produced by C. cellulolyticum can 

be completely utilized by D. vulgaris to reduce sulfate to hydrogen sulfide. A rough estimate for 

the ratio of hydrogen to ethanol, which serve as electron donors for D. vulgaris, is given in by 

Miller et al [151] (H2/Ethanol = 20) based on the pure culture data under similar conditions. The 

simulations with OptCom using genome-scale metabolic models of the community members, 

however, indicate a much higher contribution of ethanol in inter-species electron transfer 

(H2/Ethanol = 2.34). We performed a flux variability analysis to see if this ratio can change under 

the examined condition, while maintaining the maximum community biomass, but no changes in 

this ratio were possible. This suggests that under the observed experimental condition, a 

H2/Ethanol ratio of 2.34 is needed to support the maximum growth for each species as well as for 

the community as a whole. While acetate serves as the only carbon substrate for both G. 

sulfurreducens and D. vulgaris, it was not possible to determine experimentally if D. vulgaris 

directly uses the available acetate in the medium released by C. cellulolyticum or it derives 

acetate from ethanol. OptCom results support the latter scenario (see Figure B.2.5). This is more 

likely to happen because acetate is already available internally to D. vulgaris from the cytosolic 

oxidation of ethanol. OptCom also identifies that 77.6% of the converted ethanol to acetate is 

secreted to the medium by D. vulgaris, while the rest is incorporated into biomass (see Figure 

B.2.5). This is in good agreement with the estimate by Miller et al [151] suggesting that D. 

vulgaris does not consume any acetate produced by C. cellulolyticum and that it exports 62.5% of 

the assimilated ethanol to the medium as acetate. Elucidation of the metabolic interactions among 

the members of this community was achieved by OptCom after verifying that all species appear 

to grow optimally based on the in vivo observations for the community biomass composition.   

Addition of a new member to the microbial community 



As mentioned earlier, 2.48 moles/gDW.hr of acetate was predicted to be available in the 

extracellular environment (per mole of cellobiose consumed) which could be utilized by other 

trophic anaerobic bacteria [151]. Therefore, an acetate utilizing methanogen such as 

Methanosarcina species, which are known to be avid consumers of acetate, can be envisioned as 

an additional member of this community. We chose Methanosarcina barkeri for this analysis as 

its metabolic model has been reconstructed by Feist et al [74]. Another inner problem was added 

to the OptCom to account for addition of M. barkeri to this community. Consistent with other 

community members the objective function for this inner problem was to maximize the biomass 

flux of M. barkeri, whereas the objective function of the outer problem was to maximize the total 

community biomass. The acetate uptake rates by G. sulfurreducens and D. vulgaris were fixed at 

the values obtained by OptCom for the tri-culture. D. vulgaris and M. barkeri were suggested to 

compete in anoxic environments for hydrogen [174], however, we assumed that all H2 produced 

by C. cellulolyticum is consumed by D. vulgaris, as it has been reported to have much more 

favorable kinetic parameters for H2 metabolism than methanogens [175-177]. In addition, it was 

demonstrated that Methanosarcina species can not only consume but also produce hydrogen 

when growing on organic substrates such as acetate [178, 179]. Therefore, we allowed D. 

vulgaris to consume the hydrogen produced by M. barkeri (if any) in addition to that produced by 

C. cellulolyticum.  

The biomass flux of M. barkeri is strongly dependent on the value of growth-associated 

maintenance (GAM), which was found to be a function of the proton translocation efficiency of 

the Ech hydrogenase reaction [74]. The range of GAM values for 0.2-2 protons translocated/2e- 

that result in a growth yield consistent with in vivo observations was computed by Feist et al [74]. 

Here, we examined the variability in growth yields and relative abundance of M. barkeri in the 

tetra-culture community across different GAM values associated with 0.2-2 protons 

translocated/2e-. This analysis showed that M. barkeri is capable of consuming the entire 2.48 

moles of acetate produced by C. cellulolyticum and D. vulgari. Depending on the GAM value and 

the proton translocation efficiency, M. barkeri was predicted to constitute 2.5 to 10.4% of the 

total community biomass (assuming that the biomass fluxes are proportional directly with the 

abundance levels of species in the community) with the other three members growing at rates 

similar to the ones obtained for the tri-culture. C. cellulolyticum still dominates the co-culture as 

before with biomass fractions ranging from 69.6 to 75.7% (depending on M. barkeri’s biomass 

flux). The methane evolution rate by M. barkeri was predicted by OptCom to range from 2.36 to 

2.45 moles/gDM.hr. It is important to note that previous studies have reported that the internal 

carbon and electron flow of M. barkeri could be altered by D. vulgaris in a co-culture grown on 

an organic substrate such as acetate, [180]: It was suggested that D. vulgaris strives to keep the 

partial pressure of hydrogen low enough to shift the catabolic redox system of methanogen so that 

more H2 is produced by M. barkeri (compared to pure cultures) and more acetate is oxidized to 

CO2 instead of methane [180]. Even though we allowed D. vulgaris to take up all hydrogen 

produced by M. barkeri (in addition to that produced by C. cellulolyticum), no such shift in 

methanogenesis was observed for the tetra-culture according to the OptCom predictions. A 

possible reason might be that enough hydrogen (as well as ethanol) is already available to D. 

vulgaris from C. cellulolyticum, obviating the need to alter methanogenesis in order to gain the 

reducing equivalents. This hypothesis is supported by the experimental observation that if excess 

H2 is added to the co-culture of M. barkeri and D. vulgaris, it is completely consumed by D. 

vulgaris and the acetate catabolism by M. barkeri is no longer affected [180].  

Even though 3.22 moles/gDW.hr of CO2 produced by C. cellulolyticum and G. 

sulfurreducens is available in the medium, OptCom predicts that it remains completely unused in 

the tetra-culture. This was expected as growth of M. barkeri on CO2 relies on presence of 

hydrogen, which we assumed that it was consumed completely by D. valgaris. In order to 

examine if M. barkeri is indeed capable of utilizing the available CO2 as a carbon source (in 



addition to acetate), we temporarily allowed M. barkeri to take up the hydrogen produced by C. 

cellulolyticum. For this case, OptCom revealed that if the entire hydrogen produced by C. 

cellulolyticum is available to M. barkeri, it can support growth on CO2 only for proton 

translocation efficiencies of less than one/2e-. Notably, for proton translocation efficiencies of 

more than one, even though no CO2 is assimilated by M. barkeri, OptCom shows that the 

availability of hydrogen will lead to an increase in the methane production by about 26-28%.   

B.2.4. Discussion 

Here, we introduced OptCom, a comprehensive computational framework for the flux balance 

analysis of microbial communities using genome-scale metabolic models. We demonstrated that 

OptCom can be used for assessing the optimality level of growth for different members in a 

microbial community (i.e., Descriptive mode) and subsequently making predictions regarding 

metabolic trafficking (i.e., Predictive mode) given the identified optimality levels. Unlike earlier 

FBA-based modeling approaches that rely on a single objective function to describe the entire 

community [19, 134] or separate FBA problems for each microorganism [130, 131, 135, 137], 

OptCom integrates both species- and community-level fitness criteria into a multi-level/objective 

framework. This multi-level description allows for properly quantifying the trade-offs between 

selfish and altruistic driving forces in a microbial ecosystem. Species and community level fitness 

functions are quantified by maximizing the biomass formation for the respective entity.  We note, 

however, that the physiology of microbial communities is highly context and environment 

dependent and a universal community-specific fitness criterion does not exist. Studies similar to 

those conducted for mono-cultures that examine and compare various presumed hypotheses on 

cellular objective function [181-186] or algorithms that identify/test a relevant objective function 

using experimental flux data [187, 188] are needed in the context of multi-species systems. 

An important goal of studying natural and synthetic microbial communities is their 

targeted manipulation towards important biotechnological goals (e.g., cellulose degradation, 

ethanol production, etc.). This has motivated researchers to construct simple synthetic microbial 

ecosystems, which are amenable to genetic and engineering interventions, for biotechnology- and 

bioenergy-related applications. As an example, Bizukojc et al [127], have proposed a co-culture 

composed of Clostridium butyricum and Methanosarcina mazei to relieve the inhibition of 

fermentation products and increase production of 1,3-propanediol (PDO) by Clostridium 

butyricum. Mixed cultures have been also established for overproduction of 

polyhydroxyalkanoates (PHA) [189, 190] and ethanol [191-195]. For example, Clostridium 

thermocellum, which is used for ethanol production, has been found to be capable of utilizing 

hexoses, but not pentose sugars generated from breakdown of cellulose and hemicellulose [195]. 

Therefore, cultivation of C. thermocellum with other thermophilic anaerobic bacteria capable of 

utilizing hexoses as well as pentose to produce ethanol (e.g., Clostridium thermosaccharolyticum 

and Thermoanaerobacter ethanolicus) has been previously examined in vivo [191-195]. The 

multi-objective and multi-level structure of the OptCom procedure, introduced here, can help 

assess the metabolic capabilities of such synthetic ecosystems. Taking a step further, OptCom can 

be readily modified to identify the minimal number of direct interventions (i.e., knock-

up/down/outs) to the community leading to the elevated production of a desired compound (e.g., 

by considering the overproduction of desired compound as the outer problem objective function), 

thus extending the applicability of strain design tools such as OptKnock [21], OptStrain [88], 

OptReg [24] and OptForce [196]. It is worth noting that a key bottleneck to the modeling and 

analysis of microbial communities is the paucity of genome-scale models for all participants in a 

complex microbial community. Overcoming this barrier would require the development of high-

throughput metabolic reconstruction tools such as the Model Seed [54] resource. Given that 

microbial communities change with time (e.g., day/night cycle) and also location (e.g., nutrient 

gradients), approaches that would be able to capture temporal and spatial varying inter-species 



metabolic interactions are needed. For example, the separate FBA problems for each individual 

species in the dynamic flux balance analysis methods of Zhuang et al [135] and Tzamali et al 

[130, 131] can be integrated with OptCom to account for inter-species interactions and 

community-level fitness driving forces within each time interval.  

 

 

Figure B.2.1. Schematic illustration of OptCom. (A) The multi-level optimization structure of the 

OptCom. A separate biomass maximization problem is defined for each species as inner problems. These 

inner problems are then integrated in the outer stage through the inter-organism flow constraint to optimize 

a community-level objective function. (B) Structure of the Descriptive OptCom to determine the optimality 

level of each species (ck), given a set of experimental data. The available experimental data for the entire 

community and the individual species are described using constraints in the outer and inner problems, 

respectively, whereas, sub- or super-optimal behavior of each microorganism is captured by using a 

constraint for the respective inner problem.   

 



 

Figure B.2.2. Pictorial illustration of the customized OptCom for various types of interactions. 

OptCom (top panel) can be readily customized for each type of interaction through properly adjusting the 

inter-organism flow constraints as demonstrated for a typical microbial community composed of two 

interacting members. 



 

 

 

 

Figure B.2.3 Comparison of the predicted metabolic activities during the syntrophic growth with 

experimental data. Experimentally determined (gray diamond) and predicted production fluxes by 

OptCom (black square) for (A) acetate, (B) carbon dioxide (C) methane and (D) total community biomass 

in the syntrophic growth of D. vulgaris and M. maripaludis. All experimental data were obtained through 

personal communications with authors of [19]. A separate simulation was performed for each time interval 

wherein lactate uptake and hydrogen evolution rates were fixed at their experimentally determined values 

for that interval. Error bars for experimental values indicate the bounds of 95% confidence intervals [19]. 

The error bars for OptCom predictions were calculated by performing the simulations on the upper and 

lower bounds of the 95% confidence intervals for measured lactate and hydrogen flux rates. 

 

 



 

Figure B.2.4. Optimality levels for the SYN and FAP guilds and their effect on the total community 

biomass. Optimality levels for (A) SYN and (B) FAP as a function of the SYN/FAP biomass ratio across 

different values of the O2/CO2 flux ratio (C) Comparison of the predicted total community biomass (1/h) 

for the case when SYN grows sub-optimally and when it grows optimally. Note that, to compute the total 

community biomass when SYN grows optimally only O2/CO2 flux ratio was fixed at values in the 

experimentally determined range (i.e., 0.03 to 0.07), whereas for all other cases, in addition to O2/CO2 flux 

ratio, SYN/FAP biomass ratio was also fixed at values measured experimentally (i.e., 1.5 to 3.5). Lower 

and upper dashed lines in (C) represent the maximum and minimum predicted community biomass (when 

SYN grows sub-optimally) across various SYN/FAP biomass ratios.   

 



 

Figure B.2.5. Comparison of the predicted fluxes by OptCom with estimates in the proposed model of 

[151]. The total predicted acetate and CO2 production rates by OptCom are in good agreement with 

experimental measurements by Miller et al [151]. Note that it was not possible to determine experimentally 

how much of the total acetate or CO2 available in the supernatant of the bioreactor is produced by which 

microorganism (the values provided by Miller et al [151] for the acetate and CO2 production by each 

species as well as all inter-organism flow rates are estimates and not experimental measurements). The 

values associated with the biomass of each microorganism represent fluxes (1/h) for OptCom predictions 

and concentrations (M) for experimental measurements [151].   

 

B.3. Zea mays iRS1563: A comprehensive genome-scale metabolic reconstruction of maize 

metabolism 

The work in this section has been published [197]. 

B.3.1 Introduction 

Zea mays, commonly known as maize or corn, is a plant organism of paramount importance as a 

food crop, biofuel production platform and a model for studying plant genetics [198]. Maize 

accounts for 31% of the world production of cereals occupying almost one-fifth of the worldwide 

land dedicated for cereal production [199]. Maize cultivation led to 12 billion bushels of grain in 

the USA alone in 2008 worth $47 billion [200]. Maize is the second largest crop, after soybean, 

used for biotech applications [199]. In addition to its importance as a food crop, 3.4 billion 

gallons of ethanol was produced from maize in 2004 [200]. Maize derived ethanol accounts for 

99% of all biofuels produced in the United States [200]. However, currently nearly all of this 

bioethanol is produced from corn seed [201]. Ongoing efforts are focused on developing and 

commercializing technologies that will allow for the efficient utilization of plant fiber or 

cellulosic materials (e.g. maize stover and cereal straws) for biofuel production. Maize is the most 

studied species among all grasses with respect to cell wall lignification and digestibility, which 

are critical for the efficient production of cellulosic biofuels [202]. A thorough evaluation of the 

metabolic capabilities of maize would be an important resource to address challenges associated 

with its dual role as a food (e.g., starch storage) and biofuel crop (e.g., cell wall deconstruction).  



This decade we witnessed significant advancements towards mapping plant genes to 

metabolic functions culminating with the complete genome sequencing and partial annotation of a 

number of plant species, namely, Arabidopsis thaliana [203], Oryza Sativa [204, 205], Sorghum 

bicolor [206], Zea mays [207] and Theobroma cacao [208]. Nevertheless, attempts to engineer 

plant metabolism for desired overproductions have been met with only limited success [209]. 

Genetic modifications seldom bring about the expected/desired effect in plant metabolism 

primarily due to the built-in metabolic redundancy circumventing the imposed genetic changes 

[210, 211]. This necessitates the development of genome-wide comprehensive metabolic 

reconstructions capable of taking account of the complete inventory of metabolic transformations 

of a given plant organism. 

Genome-scale metabolic reconstructions are available for an increasing number of 

organisms [212, 213]. At least 40 bacterial, 2 archaeal and 15 eukaryotic reconstructions are 

available to-date [209, 212, 214, 215] while many others are under development. Recently 

Poolman et al (2009) and Dal’Molin et al (2010) independently constructed the first two genome-

scale metabolic reconstructions for a plant organism (i.e., Arabidopsis thaliana). The model by 

Dal’Molin et al identifies the set of essential reactions, accounts for the classical photorespiratory 

cycle and highlights the significant differences between photosynthetic and non-photosynthetic 

metabolism. The model by Poolman et al includes ATP demand constraints for biomass 

production and maintenance and suggests strategies for the construction of metabolic modules as 

a consequence of variation in ATP requirement. Both models make a significant step forward 

towards assessing the metabolic capabilities of plants establishing production routes for key 

biomass precursors and major pathways of Arabidopsis primary metabolism. In addition, two 

recent efforts involved the reconstruction of plant models with an emphasis on specific 

physiological conditions or tissue types [216, 217]. Model C4GEM [217] focused on C4 plants 

such as maize, sugarcane and sorghum and investigated flux distributions in mesophyll and 

bundle sheath cells during C4 photosynthesis. Grafahrend-Belau et al developed a metabolic 

network of only primary metabolism in barley seeds and studied grain yield and metabolic fluxes 

under a variety of oxygen availability scenarios and genetic manipulations [216]. Pilalis et al. 

reconstructed a multi-compartmental model of the central metabolism of Brassica napus 

(Rapeseed) and simulated seed growth during the stage of oil accumulation and subsequently 

studied network properties of seed metabolism via Flux Balance Analysis, Principal Component 

Analysis and reaction deletion studies [218].  

In this section, we describe the construction of a genome-scale in silico model of maize 

metabolism (i.e., Zea mays iRS1563). This is, to the best of our knowledge, the first attempt of 

globally characterizing the metabolic capabilities (both primary and secondary metabolism) using 

a compartmentalized photosynthetic model of an important crop and energy plant species. The 

development of a genome-scale model for maize is a significant challenge due to its genome size 

which is 14 times larger [207] than that of Arabidopsis thaliana (157 million base pairs) [219]. 

The constructed model contains 1,563 genes and 1,825 metabolites participating in 1,985 

reactions from both primary and secondary metabolism of maize. For 42% of the reaction entries 

direct literature evidence in addition to homology criteria for their inclusion to the model was 

identified. We found that as many as 676 reactions and 441 metabolites are unique to Zea mays 

iRS1563 in comparison to the AraGEM model by Dal’Molin et al. We chose the AraGEM model 

as a basis of comparisons as at the onset of this study it was the most comprehensive genome-

scale compartmentalized model of a plant species capable of recapitulating basic plant 

physiological states. In order to deduce the genuine differences between maize and Arabidopsis 

irrespective of annotation chronology we also reconstructed an up-to-date model of Arabidopsis, 

A. thaliana iRS1597. A. thaliana iRS1597 contains 1597 genes, 1798 reactions and 1820 

metabolites. In comparison to A. thaliana iRS1597, Zea mays iRS1563 has 445 new reactions and 

369 new metabolites. Notably, 893 reactions and 674 metabolites are included in Zea mays 



iRS1563 that are absent from the maize C4GEM model. All reactions present in Zea mays 

iRS1563 are elementally and charged balanced and localized into six compartments including 

cytoplasm, mitochondrion, plastid, peroxisome, vacuole and extracellular space. Provisions for 

accounting that photosynthesis in maize (i.e., a C4 plant) occurs in two separate cell types (i.e., 

mesophyll cell and bundle sheath cell) are included in the model. GPR associations are delineated 

from the available functional annotation information and homology prediction accounting for 

monofunctional, multifunctional and multimeric proteins, isozymes and protein complexes. A 

biomass equation is established that quantifies the relative abundance of different constituents of 

dry plant cell biomass.  Biomass production under three different physiological states (i.e., 

photosynthesis, photorespiration and respiration) is demonstrated and the model is tested against 

experimental data for two naturally occurring maize mutants (i.e., bm1 and bm3). 

B.3.2. Results 

The metabolic model reconstruction process follows three major steps: (1) Reconstruction of draft 

model via automated homology searches for the identification of native biotransformations; (2) 

Generation of a computations-ready model after defining biomass equation and system boundary 

and establishing GPR; (3) Model refinement via GapFind and GapFill [220] to unblock biomass 

precursors as well as reconnect unreachable  metabolites. Upon construction of the model, key 

features such as physiological constraints, network connectivity, light reactions, carbon fixation 

and secondary metabolism and uniqueness compared to AraGEM and maize C4GEM are 

described. In addition, model predictions are contrasted against experimental observations. 

Construction of Auto & Draft models 

The B73 maize genome [207] has 32,540 genes and 53,764 transcripts in the Filtered Gene Set 

(FGS). Out of 32,540 genes, 30,599 (93%) are evidence-based [221], while the remaining 2,141 

(7%) are predicted by the Fgenesh program [222].  13,726 genes (42% of total) do not have any 

functional annotation information or are identified as proteins with no or hypothetical/putative 

functions. Of the remainder, 1,361 (7%) genes encode proteins that do not participate in specific 

metabolic transformations but rather are involved in transcription, signal transduction, DNA 

repair, DNA binding, DNA/RNA polymerization, protein folding and adhesion. Because the B73 

maize genome is not completely annotated we first established Gene-Protein-Reaction (GPR) 

mappings for the AraGEM genome-scale model of A. thaliana [209] to be used as a proxy. Using 

these GPRs as a point of comparison we next identified Arabidopsis gene orthologs in maize and 

transferred the corresponding GPRs via the AUTOGRAPH method [39]. This step was followed 

by annotation of the remainder maize genes by bidirectional protein BLAST (i.e., BLASTp) 

searches against the NCBI non-redundant (nr) database.  Out of a total of 1,567 metabolic or 

transport reactions of AraGEM, GPRs were established for 1,254 reactions via 1,467 genes and 

653 enzymes by making use of information from several online databases such as AraCyc, 

KEGG, Uniprot and Brenda (see File S1). Bidirectional BLASTp searches for each one of the 

1,467 genes included in AraGEM model were carried out against the B73 maize genome using a 

stringent cutoff value of 10-30. This fully automated process generated an initial model, termed as 

‘Automodel’, containing 946 genes and 1,365 unique metabolites participating in 1,186 reactions 

(see Table 1 and File S2) exclusively derived from AraGEM. Out of 1,186 reactions, 32 are inter-

organelle transport reactions for which homologs were found in maize. 

Genes not included in the automodel were scrutinized further by comparing them against 

the NCBI non-redundant protein database using the same BLASTp cut-off. This increased the 

model size to 1,485 genes and 1,703 unique metabolites involved in 1,667 reactions by pulling 

functionalities absent in AraGEM. This is referred to as the ‘Draft model’ (see Table 1 and Files 

S2 and S3). As described in Table 2, orthologous genes were found in Oryza Sativa (Rice), 

Arabidopsis thaliana (Arabidopsis), Sorghum bicolor (Sorghum) and less frequently in other 

plant species such as wheat, tobacco, spinach, soya bean, etc. (See File S3). Notably, 802 



orthologous genes from A. thaliana were added in the model Zea mays iRS1563 that were absent 

from AraGEM primarily due to recent annotation updates. Reactions associated with these genes 

were subsequently extracted from on-line databases such as KEGG and BRENDA. Table 2 shows 

the total number of reactions as well as the number of new reactions included in the draft model. 

Seven reactions having KEGG reaction IDs R00379, R00381, R06023, R06049, R06082, R06138 

and R06209 were excluded since they involve generic groups and were not elementally fully 

defined. Figure 1 shows the distribution of the newly added reactions in the draft model based on 

their orthologous gene of origin. 

Generation of computations-ready model 

A computations-ready model requires a fully characterized biomass equation, assignment of 

metabolites to reactions, establishment of GPR associations, localization of reactions in 

compartment(s), and inclusion of intra- and extracellular transport reactions [223]. 

(i) Establishing a fully characterized biomass equation: A biomass equation that drains all 

necessary precursors present in maize was derived (see File S4 and Table 3). We used the 

biomass composition of young and vegetative maize plants as measured by Penningd et al. and 

expressed on a dry weight basis [224]. The amino acid and lignin composition were derived based 

on the data from [225, 226]. The composition of hemicellulose was approximated using data for 

Orchard Grass [227], another monocot grass species, as no corresponding information was found 

for maize. Based on these compositions we also defined aggregate reactions such as ‘Amino acid 

synthesis’, ‘Protein synthesis’, ‘Carbohydrate synthesis’, ‘Hemicellulose synthesis’, ‘Lignin 

synthesis’, ‘Lipid synthesis’, ‘Material synthesis’, ‘Nitrogenous compound synthesis’, ‘Nucleic 

acid synthesis’ and ‘Organic acid synthesis’ to produce necessary biomass precursors (i.e., amino 

acids, protein, carbohydrates, hemicellulose, lignin, lipids, materials, nitrogenous compounds, 

nucleic acids and organic acids respectively). The biomass equation also contains a non-growth 

associated ATP maintenance as in the latest Arabidopsis model AraGEM [209].  

(ii) Assignments of genes, reactions, metabolites and compartments. All metabolic and inter-

organelle transport reactions in the draft model have full gene associations. During this step all 

reactions were elementally balanced and metabolites were assigned appropriate protonation states 

corresponding to a physiological pH of 7.2. We included an additional 86 reactions to the model 

without enzyme association information based on direct literature evidence [209]. For example, 

reactions with KEGG IDs R08053, R08054 and R08055 involved in chlorophyll metabolism are 

included in the model. Reaction localization information for maize can in some cases be found in 

database PPDB (a plant proteome database of maize and Arabidopsis) [228]. Because only 

limited reaction localization information exists for maize, we adopted the compartment or 

organelle reaction location of the corresponding orthologous gene/enzyme in Arabidopsis using 

the Arabidopsis Subcellular Database, SUBA [229] and also PPDB [228]. As in AraGEM, 

reactions for which no such information is available we assumed that they are present only in the 

cytoplasm.   

(iii) Identification of system boundary. The entire reaction network (i.e., system boundary) was 

distributed across five different intracellular organelles enveloped by the cytoplasmic membrane. 

Exchange reactions were added in the model to ensure that gaseous metabolites (i.e., carbon 

dioxide and oxygen), inorganic nutrient metabolites (i.e., nitrate, ammonia, hydrogen sulfide, 

sulfate, phosphate, potassium and chloride), sugar metabolites (i.e., glucose, fructose, maltose and 

sucrose), water and photons could enter and leave the system whenever necessary depending on 

the physiological state. As shown in Table 4, constraints on these exchange reactions as well as 

reactions involved with enzyme RuBisCO (Ribulose-1, 5-bisphosphate carboxylase oxygenase) 

were established to define three different physiological states (i.e., photosynthesis, 

photorespiration and respiration) by allowing the selective uptake/release of certain metabolites. 



Even though photorespiration is limited in C4 plants (i.e., maize, sorghum, etc.), literature 

evidence [230-232] alludes that it is still present. Therefore, we made sure that the model is 

capable of simulating this condition. 

The stoichiometric matrix of the draft model (see Table 1) contains 1,901 rows (i.e., total 

metabolites after taking account of their compartmental appearance) and 1,682 columns (i.e., 

metabolic reactions, inter-organelle transport reactions and exchange reactions). 970 reactions 

have one-to-one GPR associations whereas 712 map to more than one gene.  532 reactions map to 

both isozymes and protein complexes while 4 of them map to only protein complexes, 36 to only 

isozymes, and 140 to only multimeric proteins. 

Network connectivity analysis and restoration 

The draft metabolic model inherently contained gaps, unreachable metabolites, omitted transport 

mechanisms and missing biomass components. We used the procedures termed GapFind and 

GapFill [233] to correct for these pathologies. We first concentrated on resolving problems with 

the participation of components in the biomass equation followed by network connectivity.   

We found that 723 out of the 1,683 reactions in the draft model could not carry any flux 

(i.e., blocked reactions) under any of the relevant three physiological states (e.g. photosynthesis 

(PS), photorespiration (PR) and respiration (R)). As a result, these blocked reactions prevented 

the formation of some of biomass precursors. GapFind [233] revealed that only 21 out of 64 

biomass components could be synthesized using the draft model.  GapFill [233] was applied for 

bridging the gaps through the addition of metabolic and inter-organelle transport reactions and the 

relaxing of irreversible of existing reactions in the model.  GapFill suggested the addition of 94 

metabolic and 35 inter-organelle transport reactions in the model to unblock the production of all 

64 biomass components. These putative additions to the model were tested by performing an 

additional round of BLASTp searches for the corresponding genes against the maize genome.  

We found that 54 (out of 93) metabolic reactions could be assigned to maize gene(s) if the 

expectation value cut-off for BLASTp was lowered to 10-5. In light of the critical need of 

restoring biomass formation the less stringent cut-off for inclusion was accepted for these genes. 

Addition of these reactions ensured the production of biomass under all relevant physiological 

states validating the use of the term ‘Functional’ for the updated model (see Table 1).  

Upon ensuring biomass formation GapFind was also applied to assess network 

connectivity and 715 blocked metabolites were found in the functional model. By applying 

GapFill connectivity of 322 (45%) blocked metabolites was restored through the addition of 159 

metabolic and 3 inter-organelle transport reactions. Table 5 shows the distribution of blocked 

metabolites into four intracellular organelles before and after applying GapFill. BLASTp searches 

allowed us to assign 31 (20% of GapFill suggestions) metabolic reactions with specific maize 

genes (File S2). Biological evidence of the occurrence of such additional reactions in maize or 

other plant species was sought whenever possible. For example, as shown in Figure 2 

phenylacetaldehyde appears to be a “no-consumption” [233] metabolite in the functional model 

as no reaction can consume it.  Using GapFill we found a homolog in maize (i.e., BLASTp score 

of 10-24) and also literature evidence [234] that  Arabidopsis thaliana has a aldehyde 

dehydrogenase activity that catalyzes the conversion of phenylacetaldehyde to phenylacetic acid.  

Hence, by adding this chemical transformation to Zea mays iRS1563 a consumption pathway for 

phenylacetaldehyde is established. After adding these reactions to the functional model and 

following charge and elemental balancing and GPR association checking the ‘Final’ Zea mays 

iRS1563 model (see Table 1) is derived. 

Zea mays iRS1563 model 



The Zea mays iRS1563 metabolic reconstruction contains 1,825 unique metabolites and 1,985 

reactions associated with 1,563 genes and 876 proteins. Of these reactions 1,898 are metabolic 

reactions, 70 are inter-organelle transport reactions and 15 are exchange reactions between intra- 

and extracellular environments. GPR associations are established for all entries (see Table 1). 

Notably, we identified that the fraction of multifunctional proteins (19% of the total number of 

proteins) in Zea mays iRS1563 is similar to the ratio found in E. coli [235]. Zea mays iRS1563 

accounts for the metabolic functions for all three physiological states. Photosynthetic as well as 

photorespiration metabolism was modelled by including light mediated ATP and NADPH 

production via separate charged balanced reactions in the electron transfer system of the 

thylakoid membrane [236]. Furthermore, the ratio of fluxes for the carboxylation and oxidation 

reactions associated with enzyme RuBisCO was kept at 1:0 thus ensuring complete carbon 

fixation during photosynthesis. This ratio was shifted to 3:1 during photorespiration to model 

simultaneous carbon fixation and oxidation [237]. Because sucrose is the main growth substrate 

during respiration for higher plants [238], the aforementioned  reactions were inactivated and the 

exchange reaction for sucrose uptake was activated. Under all these three conditions, inorganic 

nutrients required for plant growth, e.g. sulfate, nitrate, ammonia, hydrogen sulfide, phosphate, 

potassium and chloride, were allowed to be freely taken up from the environment via 

extracellular exchange reactions.  

The participation of Zea mays iRS1563 metabolites across different compartments is 

shown in Figure 3. The five intracellular organelles differ notably in terms of mutual 

connectivity, metabolite uniqueness and number of metabolites. As shown in Figure 3a, 

approximately 90% of these metabolites are unique to cytoplasm. In addition, cytoplasm contains 

all metabolites shared between any two organelles because any metabolite needs to be transported 

through cytoplasm in order to be exchanged between organelles. Among the remaining 

metabolites, cytoplasm shares the highest number with the plastid (i.e., 63) where photosynthesis 

and photorespiration occur. It also shares a significant number of metabolites with mitochondrion 

(i.e., 27) and peroxisome (i.e., 22) that are involved in energy production and fatty acid 

biosynthesis, respectively. Figure 3b shows the distribution of other non-cytoplasmic Zea mays 

iRS1563 metabolites in terms of how many organelles they participate. 

Light reactions, carbon fixation and secondary metabolism 

In plants photosynthesis reactions include light dependent and light independent or carbon 

fixation reactions [239]. Zea mays iRS1563 includes charged balanced light reactions culled from 

a number of literature sources [236, 240-242]. The overall photosynthesis reaction cascade 

produces two NADPH, three ATP and one O2 whenever nine photons are absorbed and fourteen 

H+ are transferred via the electron-transport system. This defines the following overall balance 

equations: 

12 H+[c] + 2 H2O[c] + 2 NADP[c] + 9 hvi[c] → 14 H+[p] + 2 NADPH[c] + O2[c] + 9 hvo[c] 

3 ADP[c] + 14 H+[p] + 3 Pi[c] → 3 ATP[c] + 14 H+[c] 

Here, [c] and [p] represent cytoplasm and plastid and hvi and hvo signify input and output 

photons respectively. Carbon fixation in maize (C4 plant) is more complex compared to 

Arabidopsis or other C3 plants [239]. Zea mays iRS1563 captures these differences by accounting 

for (i) direct carboxylation of phosphoenol pyruvate and CO2 fixation to form C4 acids such as 

oxaloacetic acid [ATP: oxaloacetate carboxy-lyase (ocl)] and malic acid [Oxaloacetate: NADPH 

hydrogenase (oha)] in mesophyll cells, (ii) transport of malic acid from mesophyll cell to bundle-

sheath cells, (iii) decarboxylation of malic acid [Malate:NADP+ oxidoreductase (mor)] in bundle-

sheath cells to produce pyruvic acid and CO2, which enters the Calvin cycle, (iv) transport of 

pyruvic acid from bundle-sheath cells to mesophyll cells, and (v) production of phosphoenol 

pyruvic (i.e., C3) acid [ATP:pyruvate,phosphate phosphotransferase (ppt)] from pyruvic acid 



[239]. Figure 4, pictorially shows the localization of reactions and organelles between mesophyll 

and bundle sheath cells. In addition, to differences in carbon fixation reactions, the peroxisome 

activity is primarily present in bundle-sheath cells and largely absent from mesophyll cells [243]. 

Based on this localization information a standalone metabolic model can be developed for the 

photosynthetic tissue of maize.  Because RuBisCO that operates in the Calvin cycle cannot come 

in direct contact with atmospheric oxygen during day time (see Figure 4), photorespiration is 

restricted providing an advantage for survival in hot and arid environments for maize and other 

C4 plants. This comes at the expense of higher (ATP) requirements as C4 carbon fixation involves 

additional steps [239]. 

In addition to photosynthesis, secondary metabolism plays a key role in the physiology of 

maize. For example, phenylpropanoid metabolism produces monolignols (i.e., p-coumaroyl 

alcohol, coniferyl alcohol and sinapyl alcohol) that are used in the generation of three major 

lignin subunits H-lignin, G-lignin and S-lignin, respectively [244]. Many of these enzymes such 

as hydroxycinnamoyl transferase (HCT), ferulate 5-hydroxylase (F5H) and caffeic acid 3-O-

methyltranferase (COMT) along with their associated reactions are unique to C4 plants and are 

not present in the lignin biosynthesis pathways of A. thaliana [244]. HCT is involved in the early 

stages of lignin biosynthesis by controlling the flux from p-coumaroyl-CoA towards caffeoyl-

CoA while F5H and COMT regulate fluxes from coniferaldehyde and coniferyl alcohol to 

sinapaldehyde and sinapyl alcohol, respectively [244]. Zea mays iRS1563 contains all these 

enzymes and associated reactions thus providing a comprehensive lignin biosynthesis pathway 

for a C4 plant. 

In addition to phenylpropanoid metabolism, Zea mays iRS1563 provides a detailed 

description of flavonoid biosynthesis pathways. Flavonoids are pigments occurring in plant as 

secondary metabolites and mostly function in the recruitment of pollinators and/or seed dispersers 

[245]. For example, maize is known to produce 3-deoxyanthocyanins, which are a specialized 

class of flavonoids [246, 247]. Zea mays iRS1563 contains the dihydroflavonol 4-reductase 

(DFR) enzyme that catalyzes the reaction for flavan-4-ols biosynthesis that channels flux towards 

3-deoxyanthocyanins production [247]. The model also accounts for isoflavone 7-O-

glucosyltransferase (IF7GT) and associated reactions that are involved in the production of 

necessary intermediates for pterocarpin phytoalexin conjugates such as medicarpin 3-O-

glucoside-6’-O-malonate (MeGM) and maackain 3-O-glucoside-6’-O-malonate (MaGM) 

involved in plant defense against fungal elicitation [248]. 

Comparing Zea mays iRS1563 with Arabidopsis thaliana and maize C4GEM models 

Figure 5a compares the total number of genes, reactions and metabolites between Zea mays 

iRS1563 and the A. thaliana AraGEM genome-scale-models [209]. Approximately, only 61% of 

genes in Zea mays iRS1563 are present in AraGEM. This yields a surprisingly low degree of 

matching between these two models of 64% and 76%, respectively in terms of reactions and 

metabolites. In the interest of elucidating the true differences between maize and Arabidopsis 

irrespective of annotation chronology we constructed a more up-to-date genome-scale model for 

Arabidopsis by appending onto AraGEM newly annotated genes as well as full GPR annotations. 

We refer to this updated model containing 1,597 genes, 1,798 reactions and 1,820 metabolites as 

A. thaliana iRS1597 (see File S1). The newly added 228 reactions (absent from AraGEM) are 

involved in various pathways in primary (i.e., glycolysis, TCA, fatty acid and amino acid 

biosynthesis, starch and sucrose metabolism) and secondary (i.e., biosynthesis of steroid, 

ubiquionone, streptomycin, thiamin, riboflavin, terpenoid, brassinosteroid, phenylpropanoid, etc.) 

metabolism of Arabidopsis. 

 A direct comparison of Zea mays iRS1563 with A. thaliana iRS1597 reveals, as expected, 

an increased degree of matching of 72%, 76% and 80% in terms of genes, reactions and 



metabolites, respectively (see Figure 5b). We find that 445 reactions are unique to maize with no 

counterpart in A. thaliana. Secondary plant metabolism including flavonoid, mono- and 

diterpenoid, brassinosteroid, phenylpropanoid, anthocyanin, zeatin biosynthesis, riboflavin and 

caffeine metabolism account for 185 of the maize-specific reactions.  In addition, a variety of 

primary metabolism reactions dispersed throughout central metabolism, photosynthesis, amino 

acid and fatty acid biosynthesis account for the remaining 260 reactions. This comparison implies 

that about one third of the differences between Zea mays iRS1563 and AraGEM are caused by the 

incompleteness of AraGEM model especially in terms of secondary metabolism while the 

remaining two third reflect genuine differences between C3 (i.e., Arabidopsis) and C4 (i.e., maize) 

plant metabolism. 

 Figure 5c shows a similar comparison between Zea mays iRS1563 and maize C4GEM 

genome-scale-models. Degrees of matching between these two models are 39%, 53% and 63% in 

terms of genes, reactions and metabolites, respectively. This surprisingly low degree of matching 

is caused primarily due to the fact that maize C4GEM includes only metabolites and reactions in 

leaves during photosynthesis.  Therefore, there are 893 reactions in Zea mays iRS1563 absent 

from maize C4GEM. 343 of these reactions describe secondary plant metabolism such as 

brassinosteroid, phenylpropanoid, carotenoid, flavonoid, mono- and diterpenoid, and 

glucosinolate metabolism. The remaining 550 reactions are found in a wide range of primary 

metabolism pathways such as central metabolism, photosynthesis, benjoate degradtion, starch and 

sucrose metabolism, lipid metabolism, nitrogen metabolism amino acid and fatty acid 

biosynthesis. Conversely, 116 (out of 149) new reactions in maize C4GEM have untraceable EC 

numbers and gene loci.  

Zea mays iRS 1563 model testing  

Zea mays iRS1563 allows for the production of biomass under all three different physiological 

states (see Files S5 and S6 for detailed information of the model). Due to limited photorespiration 

C4 plants usually have higher photosynthetic efficiency [239]. Under higher light intensity and 

photosynthetic condition, Zea mays iRS1563 produces 0.0008 mole biomass/mole CO2 whereas 

A. thaliana iRS1597 yields 0.0006 mole biomass/mole CO2.  Thus, the model predictions match 

with findings reported in literature [239]. We also investigated the model’s ability to predict the 

effect of suppressing genes in the lignin biosynthesis pathway observed in naturally occurring 

brown midrib (bm) maize mutants (i.e., bm1, bm2, bm3 and bm4) [244, 249-251]. These maize 

mutants are Mendelian recessives that are characterized by brown vascular tissue in leaves and 

stems due to a changed lignin content and/or composition [252]. The specific genetic background 

for two of these mutants (bm1 and bm3) was elucidated based on the analysis of cell wall 

composition [251]. Mutants bm1 and bm3 were found to have disrupted enzymatic activity for 

cinnamyl alcohol dehydrogenase (CAD) and caffeic acid 3-O-methyltranferase (COMT). Both of 

these enzymes are involved in the last stages of the monolignol pathway [251] that controls lignin 

synthesis and composition (i.e., the ratio of three major subunits, H-lignin, G-lignin and S-lignin) 

[253]. 

 We simulated mutants bm1 and bm3 using Zea mays iRS1563 under photosynthetic 

conditions by restricting the flux of the reactions catalyzed by enzymes CAD and COMT to 10% 

of the wild-type values. It is expected that the disruption of the activity for these genes will 

directly affect lignin content and composition (see File S7 to find literature data used for bm1 and 

bm3 mutants). We were interested to see whether the Zea mays iRS1563 metabolic model will be 

able to correctly propagate this disruption across the metabolic pathways and correctly predict the 

effect on other key metabolites. Table 6 contrasts experimental results by (Marita et al (2003), 

Vanholme et al (2008) and Sattler et al (2010)) with in silico predictions for the maximum 

theoretical yield of lignins, sugars and crude protein in terms of whether they increased, 

decreased, or remained the same in the mutant strains. Out of 21 compared components Zea mays 



iRS1563 correctly predicted the direction (or absence) of change for 17 cases.  

 In Figure 6 we highlight two cases that describe the availability of glucose and galactose to 

cell wall for mutants bm1 and bm3, respectively.  ‘Carbohydrate synthesis’ and ‘Hemicellulose 

synthesis’ are aggregate reactions that describe the utilization ratios of sugar molecules such as 

arabinose, fructose, galactose, glucose ribose, mannose, sucrose, and xylose for the production of 

carbohydrate and hemicellulose present in the plant cell wall. For simplicity, we have simulated 

the model under the photosynthetic condition where CO2 can be uptaken with a maximum 

allowable rate of 1000 mM/gDW-h along with photons in excess. In Figure 6a, wild-type and 

bm1 mutant flux values for reactions involving glucose as reactant including ‘Carbohydrate 

synthesis’, ‘Hemicellulose synthesis’, ‘Alpha,alpha-trehalose glucohydrolase’ [R00010], ‘Sucrose 

glucohydrolase’ [R00801], ‘Sn-Glycerol-3-phosphate: D-glucose 6-phosphotransferase’ 

[R00850] and  ‘Cellobiose glucohydrolase’ [R00306], are highlighted. For the wild-type case, the 

maximum theoretical yield of glucose is predicted to be 1.66 moles/mole of CO2 but it is reduced 

to 0.93 moles/moles of CO2 for the bm1 mutant. The reduced capability of the bm1 mutant to 

direct flux towards ‘Carbohydrate synthesis’ and ‘Hemicellulose synthesis’ implies that less 

glucose is available for the formation of cell wall components which is consistent with the 

experimental finding of Table 6. 

 Figure 6b contrasts the wild-type and bm3 mutant maximum theoretical yields for all 

reactions involving galactose including ‘Hemicellulose synthesis’, ‘ATP: D-galactose 1-

phosphotransferase’ [R01092] and ‘Galactosylglycerol galactohydrolase’ [R01104], ‘3-O-alpha-

D-Galactosyl-1D-myo-inositol galactohydrolase’ [R01194] and ‘alpha-galactosidase’ [R03634]. 

A reduction of the maximum theoretical yield of galactose from 0.81 to 0.65 moles/mole of CO2 

for the bm3 mutant is observed. In addition, the maximum theoretical yield for reaction 

‘Hemicellulose synthesis’ decreases by 4-fold compared to wild-type in line with the 

experimental finding. However, the experimentally observed increase of glucose availability in 

mutant bm3 and xylose availability for both bm1 and bm3 mutants are in contrast with the model 

predictions (see Table 6). As reported by Guillaumie et al (2007) several gene expression levels 

were changed during bm1 and bm3 mutations implying that additional regulatory constraints may 

be needed to capture these changes. 

B.3.3. Discussion 

Maize, apart from its central role a food crop, is also a promising plant biomass target for 

cellulosic biofuels production. Plant cell wall cellulose, hemicellulose and lignin polymers are 

major contributors of plant biomass [244, 254]. Therefore, controlling the amount and 

composition of cell wall polymers is important in developing cellulosic maize for biofuel 

production. In cell wall, lignin provides rigidity by forming a matrix where cellulose and 

hemicellulose are imbedded via cross-linking bonds [249, 255]. This makes digestion of cellulose 

and hemicellulose by microbial enzymes (i.e., cellulases) difficult during dilignification, one of 

the critical steps in cellulosic biofuel production [256]. Many genetic modification strategies have 

been explored to improve maize food crop and/or biofuel characteristics. For example, cellulosic 

biomass yield improvements have been pursued before by altering the lignin content and 

composition [257, 258], genetically manipulating the cellulose biosynthetic pathway [259] and 

over-expressing the gene encoding phosphoenolpyruvate carboxylase (PEPC) to improve CO2 

fixation rate [260].  At the same time, grain yield enhancements have been attempted by up-

regulating ADP-glucose pyrophosphorylase (AGP) that catalyzes the rate limiting step in starch 

synthesis [261].  

Unfortunately, existing genetic engineering strategies to reduce lignin content are 

problematic as lignin reductions are usually achieved at the expense of plant viability and fitness 

[256]. It is becoming widely accepted that focusing on a single pathway at a time without 

quantitatively assessing the system-wide implications of the genetic disruptions may be 



responsible for not preserving the agronomic properties of the plant. By accounting for both 

primary and some secondary metabolism pathways of maize, Zea mays iRS1563 can be used to 

explore in silico the effect of genetic modifications aimed at plant cell wall modification and/or 

starch storage on the overall metabolic state of the plant (e.g., biomass precursor availability, 

cofactor balancing, redox state, etc.). Moving a step further, the use of computational strain 

optimization techniques [196, 262] can be customized for engineering plant metabolism. By 

taking full inventory of plant metabolism optimal gene modifications could be pursued for a 

variety of targets in coordination with experimental techniques. These may include (i) increase 

cellulose and hemicellulose production, (ii) starch yield, (iii) tolerance against biotic stress (e.g., 

fungal elicitation), or (iv) disruption of the production of lignin subunits (H/G/S) while enhancing 

the production of easily digestible lignin precursor (e.g., rosmarinic acid, conferyl ferulate, 

tyramine conjugates, etc).  

In this section, we introduced the first comprehensive genome-scale metabolic model 

(Zea mays iRS1563) for maize metabolism. The model meets (or exceeds) the quality and 

completeness criteria set out [263, 264] for genome-scale reconstructions. In analogy to the 

human genome-scale model Recon 1 [265], Zea mays iRS1563 can be viewed as a 

mathematically structured database enabling systematic studies of maize metabolism.185 of 

unique to maize reactions accounting for a fraction of secondary metabolism were delineated. As 

a by product of this effort a more up-to-date version of AraGEM [209] was constructed including 

GPR associations. Comparisons between Zea mays iRS1563 and maize C4GEM also revealed the 

detail in description of primary and secondary metabolism. Model predictions of Zea mays 

iRS1563 for two widely occurring maize Mendelian mutants were tested against experimental 

observations with very good agreement in the direction of changes. By making use of high 

throughput enzymatic assays, proteomic and transcriptomic data across different parts of the 

maize plant, Zea mays iRS1563 could serve as the starting point for the development of tissue-

specific maize models [217, 266, 267]. Furthermore, Zea mays iRS1563 could also serve as the 

stepping stone for the development of genome-scale models for other important C4 plants such as 

Sorghum and switch grass. 

B.3.4. Materials and Methods 

A number of recent publications [212, 223, 263] have outlined the general steps necessary for the 

metabolic reconstruction process. In the following section, we highlight the specific methods used 

in the reconstruction of Zea mays iRS1563 and subsequent model simulations in more detail. 

Model reconstruction 

The maizesequence database [207] provided the filtered gene set (FGS) which has been generated 

from the working gene set upon removing pseudogenes and low confidence hypothetical models. 

The FGS of B73 maize genome (release 4a.53) was downloaded from maizesequence database on 

February 17, 2010. Once maize genes were obtained, we used sequence comparison tools [268] 

such as stand-alone BLAST (version 2.2.22, NIH) and BLAST+ (version 2.2.22, NIH) for 

performing homology comparisons. Marvin (version 5.3.3, ChemAxon Kft) was used to calculate 

the average micro-species charge to determine the net charge of individual metabolites at pH 7.2 

assumed for all organelles. In the final step of the model reconstruction, we implemented 

GapFind and GapFill [233] for analyzing and subsequently restoring metabolic network 

connectivity. 

Model simulations 

Flux balance analysis (FBA) [269] was employed both in model validation and model testing 

phases. Zea mays iRS1563 was evaluated in terms of biomass production under three standard 



physiological scenarios: photosynthesis, photorespiration, and respiration. Flux distributions for 

each one of these states were approximated using FBA:   

Maximize   

 

vBiomass 

Subject to 

                

    

 

Sijv j =  0 i   1,.....,  n
j=1

m

           (1) 

                
    

 

v j,min   v j   v j,max   j   1,.....,m         (2) 

Here, Sij is the stoichiometric coefficient of metabolite i in reaction j and vj is the flux value of 

reaction j. Parameters vj,min and vj,max denote the minimum and maximum allowable fluxes for 

reaction j, respectively. As mentioned in Table 4, the three physiological states were represented 

via modifying the relevant minimum or maximum allowable fluxes and the following constraints: 

                    

 

voxi =  0                         (3) 

                    

 

vcarboxi   3voxi
             (4) 

                    

 

vcarboxi =  0                         (5)                

where vBiomass is the flux of biomass reaction and voxi and vcarboxi are the fluxes of carboxylation and 

oxidation reactions associated with enzyme RUBISCO. For photosynthesis and photorespiration, 

constraints (3) and (4) were respectively included in the linear model, whereas for respiration 

both constraints (3) and (5) were included.    

Once the model was validated, it was further tested for two maize mutants (i.e., bm1 and 

bm3) under the photosynthetic condition. The following two constraints were included 

individually in the linear model to represent the mutants:  

                     

 

vbm1   wWFbm1
                       (6) 

                     

 

vbm3   wWFbm3
                       (7) 

Here, w represents the percent of residual activity of 10%. vbm1 and vbm3 are the fluxes of reactions 

catalyzed by CAD and COMT, respectively and WFbm1 and WFbm3 are the corresponding wild-

type flux values under the photosynthetic condition.  

CPLEX solver (version 12.1, IBM ILOG) was used in the GAMS (version 23.3.3, GAMS 

Development Corporation) environment for implementing GapFind and GapFill [233] and 

solving the aforementioned optimization models. All computations were carried out on Intel 

Xeon E5450 Quad-Core 3.0 GH and Intel Xeon E5472 Quad-Core 3.0 GH processors that are the 

part of the lionxj cluster (Intel Xeon E type processors and 96 GB memory) of High Performance 

Computing Group of The Pennsylvania State University. 

 



 

Figure 1. Species origin of newly added reactions in the draft model. 

 

 

 

Figure 2: Example of connectivity restoration for phenylacetaldehyde. 

 



 

Figure 3: Distribution of metabolites based on their number of appearance in different organelles. (a) 

cytoplasmic Zea mays iRS1563 metabolites in cytoplasm and other organelles, and, (b) non-cytoplasmic 

Zea mays iRS1563 metabolite-organelle participation.  

 

Figure 4: Compartment and localization information for Zea mays iRS 1563. Mitochondrion and 

vacuole compartments are present in both cell types whereas peroxisome is only present in bundle-sheath 

cell [40]. Plastidic reactions are distributed between mesophyll and bundle-sheath cells.  



 

 

Figure 5: Venn diagram for genes, reactions and metabolites. (a) between Zea mays iRS1563 

and AraGEM, (b) between Zea mays iRS1563 and Arabidopsis thaliana iRS1597, and (c) 

between Zea mays iRS1563 and maize C4GEM. 

 



  

 

 

Figure 6: Maximum theoretical yields of (a) glucose and (b) galactose for wild-type vs bm1 mutant 

and wild-type vs bm3 mutant, respectively. Here the numeric values represent reaction fluxes and have 

the unit of mM/gDW-h. 

 

B.4. Metabolic reconstruction of the archaeon methanogen Methanosarcina Acetivorans 

The work in this section has been published [270].  

B.4.1 Introduction 

Genome-scale metabolic models (for recent reviews, see [37] and [271]]) are increasingly 

becoming available for an expanding range of organisms. There exists at least forty completed 

bacterial and thirteen eukaryotic metabolic reconstructions with many more under development 

[37]. In the past decade, several studies [272] have demonstrated a variety of uses ranging from 

strain optimization [21, 273, 274] pathogen drug target identification [275, 276], bacterial 

community metabolic interactions [19] and identification of human disease biomarkers [277]. In 

contrast to the extensive interest devoted towards bacterial and eukaryotic metabolism 

reconstruction, efforts to construct archaeal metabolic models have been noticeably limited [53, 

74]. This is partly due to the current relative paucity of -omics datasets available for species from 

the Archaea domain. This dearth of data, however, is likely to change in the near future as recent 



interest in methanogenic archaea has led to several sequencing efforts [278-280], as well as 

transcriptomic and proteomic analyses [281-285]. Furthermore, it is increasingly becoming 

apparent that archaeal metabolism has significant implications to the earth’s climate [286] thus 

motivating the need to globally assess their true metabolic capabilities by reconstructing high 

quality  metabolic models. 

 Methanogens (def., methane-producing) constitute the largest group of the Archaea domain 

of life [287]. Methanogens are terminal organisms in anaerobic microbial food chains (i.e., 

consortia) that break down organic matter to methane in diverse anaerobic environments  in a 

process that helps regulate the global carbon flux [288] . The process plays a surprisingly 

significant role in global warming accounting for about one billion tons of the annual methane 

production [286, 289]. Recently, Cheng and coworkers used a consortia of methanogens to 

convert electricity into methane thereby paving the way for converting electric current generated 

by renewable energy sources into renewable biofuels [290]. On the evolutionary front, 

methanogens are amongst the most ancient form of life on earth and their role as the progenitors 

of the first eukaryotic cell has been suggested under two separate hypotheses [291, 292]. In 

addition, unique biochemical properties such as broad substrate specificity, participation of novel 

coenzymes in the methanogenesis pathways and the presence of unique lipids in their cell wall set 

these organisms apart from the bacterial and eukaryotic branches of life [293]. Therefore, the 

reconstruction of archaeal methanogen metabolic models could help paint a more complete 

picture of life’s metabolic processes.  

 Feist and coworkers first developed a genome-scale model (named iAF692) [74] for the 

fresh-water methanogen, Methanosarcina barkeri using a draft version of its genome. In this 

work, we reconstruct a genome-scale metabolic model for the marine methanogen, 

Methanosarcina acetivorans. M. acetivorans is an aceticlastic methanogen that was first isolated 

from marine microbial communities that degrade kelp into methane [294]. At over 5.7 million 

base pairs [280], it has the largest reported genome of all sequenced Archaea (about 20% larger 

than the M. barkeri genome) alluding to an expanded metabolic repertoire. This repertoire 

includes unique methanogenic pathways, broad substrate specificity than other methanogens and 

a large number of duplicate genes [280, 283-285, 295, 296]. Recent studies have shown that M. 

acetivorans uniquely exhibits both methanogenic and acetotrophic growth on carbon monoxide 

[296]. All these unique metabolic characteristics and planet-wide carbon balance impact [286, 

289] provide the motivation to globally assess its metabolic capabilities. 

  Draft metabolic reconstructions generated using homology-based comparisons unavoidably 

contain some omissions and misclassifications. These errors are manifested either as unreachable 

metabolites or as in silico predictions that are in contrast with observed in vivo behavior [152, 

220]. In response to these challenges, Suthers et al., proposed a computational workflow to 

generate and curate the metabolic models and applied it to the metabolic reconstruction of 

Mycoplasma genitalium [223].  The proposed workflow makes use of two separate model 

correction procedures. GapFind and GapFill identify and subsequently restore connectivity to 

unreachable metabolites [220] and GrowMatch that reconciles in silico growth predictions with in 

vivo growth data [152]. In this work, we streamline this workflow for the generation of an 

archaeal metabolic model and customize it to the available types of data. 

 We first generated a draft reconstruction of M. acetivorans using homology comparisons 

with the published model [74] of the fresh-water methanogen, M. barkeri. We then deployed a 

modified version of the workflow presented in Suthers et al., by combining the GapFind/ GapFill 

and GrowMatch steps of the procedure [223], which was included in the first year progress report 

of this grant. The completed model accounts for 1007 genes, 835 reactions and 790 metabolites. 

The model also predicted substrate specific phenotypes of M. acetivorans and captured unique 

bioenergetics exhibited by the organism across different conditions.  



B.4.2 Results 

The metabolic model reconstruction workflow consists of four steps. Step 1 refers to the 

draft model generation using bidirectional BLAST homology (BBH) and database/literature 

searches. Step 2 involves model modifications to ensure biomass formation for growth under all 

known substrates. Step 3 applies GrowMatch [152] to restore growth prediction inconsistencies 

and Step 4 applies GapFind  and GapFill [220] to restore connectivity. 

Step 1: Generating Draft model 

BBH searches for each of the 692 genes included in the iAF692 model were conducted 

against the latest genome sequence of Methanosarcina acetivorans C2A strain [280]. At this stage 

of the reconstruction process, we included only open reading frames (ORFs) that have e-values 

(in both directions) of at most 10-30. This process yields an initial conservative model for M. 

acetivorans that has 820 genes. Based on the primary TIGR annotation of M. acetivorans [297] 

this accounts for 18.1% (820/4540) of all ORFs in the M. acetivorans genome. The mapping of 

the metabolic genotypes between these two very closely related organisms is surprisingly 

complex. Specifically, 369 one-to-one mappings, 1,113 one-to-many mappings and 1,050 many-

to-many mappings  (M. barkeri to M. acetivorans) were generated. The large number of one-to-

many and many-to-many mappings is consistent with the incidence of a high number of gene 

duplicates in the M. acetivorans genome [280] [298].  

We use multiple sources to annotate the remaining 3,720 ORFs in the genome. 

Specifically, we assigned metabolic annotation to seven genes based on the information available 

at an organism-specific annotation effort for M. acetivorans [299], 51 genes based on SEED 

annotations [300] and 110 genes based on TIGR annotations. Interestingly out of these 168 genes 

as many as 68m code for isozymes. Predicted or hypothetical proteins account for the remaining 

2,411 ORFs not included in the model after the annotation step. Approximately 46% of all genes 

in M. acetivorans (upon excluding hypotheticals and predicted proteins) were present in the draft 

metabolic model. The methanogenesis pathways in the M. acetivorans model were modified to 

account for known differences documented in the literature. Specifically, we added reactions 

carbonic anhydrase (abbreviation in iVS1007: CAM), multiple resistance/pH regulation Na+ /H+ 

antiporter (abbreviation in iVS1007: MRP) and an electron transfer complex which oxidizes 

ferredoxin and exports sodium ions (abbreviation in iVS1007: RNF). We removed the ECH and 

VHO hydrogenases The added reactions are involved in ATP synthesis and replace the activities 

of ECH and VHO hydrogenase, which are observed in H2/CO2-utilizing fresh-water methanogens 

[295]. In contrast with other archaeal models [53, 74], we delineated methyltransferase specificity 

[298, 301] for different substrates observed in M. acetivorans .  

We generated the Gene-Protein-Reaction mappings for the M. acetivorans model using as 

a starting point the iAF692 model based on the AUTOGRAPH method developed by Notebaard 

and coworkers [39]. All exchange reactions and non-gene associated intracellular reactions 

available in the iAF692 model were also appended to the model, as we did not find any evidence 

to the contrary [see Methods]. Upon conclusion of Step 1, a draft model with 988 genes, 820 

reactions and 792 metabolites was generated. 

Step 2: Model correction to enable biomass formation  

We determine the metabolic capabilities of the assembled draft model to grow on known 

methanogenic substrates by first specifying the biomass equation and then specifying the 

composition of the minimal medium. The first requirement is addressed by assuming that the set 

of components that make up the biomass equation in M. acetivorans is identical to that used in the 

iAF692 model. However, we changed the stoichiometric coefficients of the nucleotide 

components (datp, dgtp, dctp, dttp, ctp and gtp) to reflect the difference in the G/C contents of the 



two organisms. The utilization of the same biomass component set is supported by experimental 

data on the minimal medium (Ferry et al., unpublished data). The minimal growth medium six 

additional vitamins and trace elements (pyridoxine-HCL, sodium molybdate, thioctic acid, nitrilo 

tri acetic acid and boric acid) over the one used in iAF692 [74]. We chose to exclude them from 

our model as no metabolic role for them was identified based on literature searches or gleaned by 

the model. 

Equipped with the biomass composition and the minimal medium, we tested the 

capability of the draft model to enable growth on the following known methanogenic substrates: 

carbon monoxide, acetate, methanol and monomethylamine, dimethylamine and trimethylamine 

[294]. The draft model did not exhibit growth on any of these substrates motivating the use of 

GapFind [220] to identify the biomass precursor metabolites that could not be produced using 

these substrates in a minimal medium. GapFind revealed that the same precursor metabolite 

Adenosylcobalamin-HBI could not be produced for all substrate choices in the draft model. We 

used GapFill [220] to restore flow through this metabolite. This was achieved under all 

aforementioned substrate conditions by adding an exporter for the cofactor, 

tetrahydrosarcinapterin. No evidence was found in the literature for the presence of a 

tetrahydrosarcinapterin exporter. However, it is possible there exists an enzyme outside the cell 

wall that utilizes the cofactor as a substrate.  

Step 3: Evaluating and improving model performance using GrowMatch 

After ensuring in silico growth on a defined medium across different substrates, we 

further examined the model by testing for growth prediction agreement with experimental data 

across different genetic/environmental perturbations.  Using literature searches, we assembled a 

dataset consisting of in vivo growth data for 66 different conditions (See Table B.4.2).   As shown 

in Table B.4.2, growth data was assembled for 29 genetic perturbations for growth on methanol, 

thirteen on acetate, seven on carbon monoxide as carbon and energy source, and 22 on 

methylamines as carbon substrates. Not surprisingly, most of these gene deletions are in 

methanogenesis pathways (Table B.4.2) indicative of the significant attention this pathway has 

received before.  

In line with previous approaches [302] the growth cutoff for classifying a mutant as a 

“Growth” or a “No-Growth” mutant was chosen to be 1/3rd of average growth across the dataset. 

Using this cutoff and the terminology introduced in the GrowMatch procedure [152] we arrive at 

43 GG (in silico and in vivo “Growth”) fifteen GNG (in silico “Growth” and in vivo “No-

Growth”) and eight NGNG (in silico  and in vivo “No-Growth”)  cases. Notably, the incidence of 

only GNG model/experimental discrepancies indicates that the draft model tends to over-predict 

the metabolic capabilities of the organism when in error.  A closer examination reveals that in 32 

out of 43 GG cases the deleted genes correspond to isozymes while the remaining eight 

correspond to deletions of methyltransferases.  In all these cases both the model and the 

experiment agree that the deleted genes are non-essential.  Of the nine GNG cases that could be 

resolved, eight were resolved by conditionally suppressing one additional reaction and one was 

resolved by carrying out a single global suppression.  

M. acetivorans. As shown in Figure B.4.1(A), the genes encoding for Methyl Coenzyme 

reductase (the reaction that forms methane) under growth on Carbon Monoxide are non-essential 

in silico and essential in vivo [303]. GrowMatch suggests suppressing either the reaction 

catalyzed by acetate kinase (ACKr) or phosphotransacetylase (PTAr) to restore consistency to 

this mutant. These hypotheses are consistent with the bioenergetics when M. acetivorans grows 

on CO as the sole energy source [296]. Both the acetogenic (acetate forming) and methanogenic 

(methane forming) branches of the methanogenesis pathway are energy yielding. Flux in the 

methanogenic branch results in a proton and sodium ion gradient which is then used to synthesize 



ATP catalyzed by the proton translocating ATP synthase. Alternatively, flux through the 

acetogenic branch results in ATP synthesis using substrate level phosphorylation when acetyl 

phosphate is converted to acetate by acetate kinase. When Mcr is deleted there is no mechanism 

to recycle HS-CoM for another round of methylation and the Mtr-catalyzed methyl transfer 

reaction coupled to generation of the sodium gradient is also deactivated thereby diverting CH3-

THSPT towards synthesis of acetate and ATP.  Therefore suppressing ACKr (or equivalently 

PTAr) in a mutant lacking Methyl coenzyme reductase (and consequently, the methane forming 

branched pathway) ensures that both energy yielding pathways are deactivated thereby halting 

growth. 

In the second case (Figure B.4.1(B)), deleting ATP synthase results in a GNG mutant 

when the organism grows on methanol as the sole carbon and energy source [284]. This deletion 

negates proton- coupled generation of energy via methanogenesis leaving substrate level 

generation of energy via acetogenesis. GrowMatch suggests restoring consistency to this mutant 

by suppressing the sodium proton antiporter (abbreviation in iVS1007: Nat3_1). Suppressing this 

reaction in this mutant metabolic network deactivates flux in the sodium-dependent reaction 

methyl-THSPT:coenzyme M methyltransferase (abbreviation in iVS1007: MTSPCMMT) which 

results in no flux in the acetogenesis pathway (Figure B.4.1B)).  

Step 4: Network connectivity analysis and restoration 

After evaluating and improving the model using in vivo gene deletion data, we used the 

automated procedures GapFind and GapFill [220] to identify and rectify any remaining network 

connectivity inconsistencies. Using GapFind, we identify 95 metabolites (i.e., 12.2% of all 

metabolites in model) that cannot be produced for any choice of carbon substrate. Not 

surprisingly, none of the 95 no production metabolites were present in the methanogenesis 

pathway alluding to the completeness of its reconstruction. Interestingly, of the 161 metabolites 

present in the M. acetivorans model but absent in iAF692, 101 can be produced whereas 60 have 

blocked production routes. Notably, GapFind revealed that 35 out of these 95 metabolites could 

also not be produced in the iAF692 model of M. barkeri.  

Flow restoration to all 95 metabolites was attempted using GapFill by adding reactions 

from KEGG [86]. In this step, we restored consistency to only 21 of the 95 no production 

metabolites. Flow through two of these 21 metabolites was restored by treating two existing 

reactions (cob(I)alamin-HBI adenosyltransferase and hydroxyethylthiazole kinase) as reversible. 

Flow through the remaining nineteen metabolites was restored by adding three reactions from the 

iAF692 model and thirteen reactions from the KEGG database. In accordance with the prescribed 

systematic cutoffs (see Methods section) reactions are added only when they have e-value lower 

than 10-10 against the M. acetivorans genome.  

Model characteristics for iVS1007 

Table B.4.2 contrasts the model statistics for the iVS1007 model against previously 

constructed archaeal models. The iVS1007 model is characterized by a large number of entries 

with high confidence scores due to the stringent cutoffs prescribed at each step. Furthermore, the 

inclusion of seven regulatory constraints that allow for substrate specific activation of 

methyltransferases and the addition of reactions using multiple pieces of evidence are unique 

features of this model. Finally, in contrast to the remaining models, the iVS1007 model 

documents global and conditional suppressions based on systematic evaluation of model 

predictions with in vivo growth data and network gap correction. 

We compared flux values through the methane forming reaction catalyzed by Methyl 

Coenzyme Reductase and the biomass equation to ascertain the extent of coupling between flux 

in the methanogenesis pathway and in silico growth rates. We identified the range of methane 



production flux by maximizing and minimizing flux through the MCR reaction for different 

values of biomass formation. Conversely, we identified the range of biomass production for 

different values of required methane production. Figure B.4.2 shows these plots for growth on 

methanol, acetate and carbon monoxide.  

As shown in Figure B.4.2 (A) and (B), a positive biomass flux implies a non-zero MCR 

flux for growth in methanol and acetate but not the reverse. Using the terminology introduced in 

[26], this implies that the flux in biomass reaction is directionally coupled to the flux in MCR. 

This is consistent with the indispensability of the methanogenic branch when M. acetivorans 

grows on acetate and methanol [295, 303]. Moreover, the maximum biomass formation is reached 

at when the flux through MCR is fixed at 74% of its maximum value for growth on methanol and 

86% for growth on methanol. At maximum biomass production, the ratio of biomass to methane 

production is 0.016 GDW/mmol and 0.005 GDW/mmol for growth on methanol and acetate, 

respectively. This higher biomass yield is qualitatively consistent with the higher energetic yield 

per mole of methanol observed for  M. acetivorans [304]. 

Figure B.4.2(C) illustrates the predictions of the iVS1007 model for growth on carbon 

monoxide as the sole carbon and energy substrate. The model prediction that the methanogenic 

branch is dispensable when M. acetivorans grows on carbon monoxide is consistent with the 

mechanism proposed in [291, 296]. Notably, the maximum biomass production is achieved at 

58% of the maximum flux in the MCR reaction and the ratio of the two fluxes is 0.033 

GDW/mmol. It has been previously established that the acetogenic and methanogenic branches of 

the pathway are energy yielding when M. acetivorans grows on carbon monoxide [296]. Using 

the coupling analysis described above, we find that the acetogenic and methanogenic branches are 

not coupled This supports the independence of the energy yielding branches for growth on carbon 

monoxide.  

B.4.4 Summary 

Metabolic reconstruction technology has been used extensively to document the 

metabolic fingerprints of organisms in the Bacteria  and the Eukarya domains [305]. Here, we 

take advantage of the increased availability of experimental and -omics datasets for archaeal 

organisms to build the metabolic model, called iVS1007, of the archaeon with the largest known 

genome, Methanosarcina acetivorans. The iVS1007 model is constructed using a systematic 

procedure that enables sequential evaluation and improvement of model capabilities.  The model 

consists of 835 reactions, 790 metabolites and 1007 genes; the latter accounting for 45% of all 

ORFs in M. acetivorans with putative annotations [297]. The completed model has 716 

metabolites (91%) that can be produced and it has a high agreement of 91% against in vivo 

growth data across environmental and genetic perturbations with specificity of 74% (i.e., percent 

of correctly identified essential genes) and selectivity of 86% (i.e., percent of correctly identified 

non-essential genes). Additionally, the model recapitulates substrate-specific energetic 

characteristics such as ATP synthase indispensability for growth on acetate/methanol and its 

dispensability for growth on carbon monoxide. 

The number of reactions included in the draft model under Step 1 is quite sensitive to the 

adopted BLAST cutoff. The number of reaction entries increases to 1,090 when the cutoff is 

relaxed to 10-20 from the 820 entries for the adopted cutoff of 10-30. This more stringent cutoff 

was chosen to ensure that the draft model did not contain any falsely added reactions. We have 

found that it is much easier to find and add missing functionalities than correctly identifying and 

removing erroneous ones. Interestingly, all but one reaction in the methanogenesis pathway 

known to occur in M. acetivorans were included in the draft model using the most stringent 

cutoff. Reaction ECH Hydrogenase which is known to occur in M. barkeri but not in M. 

acetivorans was excluded from the draft model.  



This constructed iVS1007 model represents the most comprehensive up-to-date effort to 

catalogue methanogenic metabolism. Given the attention methanogenic consortia have received 

and the growing amount of metagenomic data [306], this model can be used to assess the 

biological impact on carbon balance of methanogenic communities. This organism-specific 

compilation of the metabolic repertoire of M. acetivorans can serve as the framework for fusing 

additional experimental data on methanogens as they become available. 

B.4.4 Materials and Methods  

B.4.4.1 Generation of initial model  

We generate the initial model for M. acetivorans by taking advantage of an existing genome-scale 

metabolic model for the marine methanogen M. barkeri (iAF692). The iAF692 model is based on 

a draft version the M. barkeri fusaro genome [74]. We first mapped the genes from iAF692 onto 

the current genome-sequence of M. barkeri to restore consistency with the most up-to-date 

genomic information. For every gene in the iAF692 model, we retrieved the corresponding 

protein sequence (personal communication with Adam Feist of UCSD) and conducted 

bidirectional BLAST (BBH) (BLASTp [307]) searches against the current genome sequence of 

M. barkeri. This mapping is available in the submitted paper. 

The draft reconstruction for M. acetivorans is generated by conducting bidirectional 

BLAST (BLASTp) searches for each one of the 692 genes in iAF692 against its genome and 

including only those genes/protein/reaction associations with an e-value of better than 10-30. We 

used multiple sources to annotate the remaining genes in M. acetivorans. Specifically, we 

incorporated in the following order updated annotations made available as part of an ongoing 

effort at the University of Maryland (carried out in the Sowers Lab at the Center for Marine 

Biotechnology), extracted from the SEED database [300], and ones available at TIGR [297].   

Upon obtaining annotations for the remaining genes, we pinpointed metabolic genes by 

searching each annotation against the KEGG ligand [86] database and retrieving corresponding 

reactions. For annotations with no synonyms in the KEGG ligand database, we use their Enzyme 

Commission Number (if available) to search the Swiss- Prot database [308] and retrieve the 

metabolic reaction(s) (if at all) they are associated with.  Finally, we also included reactions that 

are known to be present in M. acetivorans but absent in M. barkeri  (e.g., reactions for CO 

metabolism. We use the AUTOGRAPH procedure developed by Notebaard et al., to generate the 

gene-protein-reaction (GPR) associations [39]. This procedure uses bidirectional BLAST hits 

(BBH) to generate GPR’s for new metabolic reconstructions (M. acetivorans in our case) using 

the GPR’s of related metabolic models (M. barkeri). We also added non-gene associated 

reactions and exchange reactions in iAF692 to the model unless we found evidence to contrary. 

B.4.4.2 Model fidelity improvement using available data sources 

Upon the generation of the draft model the next step involves the systematic elimination of 

network gaps using GapFind/GapFill [220] and growth prediction inconsistencies using 

GrowMatch [152]. These procedures are deployed in a synergistic manner to provide mutually 

corroborating evidence for model correction. 

Step 1: We generate the draft model as discussed above. 

Step 2: We test the ability of the model to grow on known substrates. If it doesnt, we use 

modified versions of GapFind and GapFIll respectively to identify biomass precursors that cannot 

be produced and ensure their production. We allow for addition of functionalities at this step only 

if the BLAST e-value is lower than 10-2. Upon completion of this step all biomass components 

are available in iVS1007. 



Step 3: We compare in silico biomass production in iVS1007 against available in vivo 

growth data across different environmental/genetic perturbations. Mutants are classified as 

Grow/Grow (GG), No-Grow/Grow (NGG), Grow/No-Grow (GNG) and No-Grow/No-Grow 

(NGNG) following the definitions proposed in [152]. GNG mutants are resolved by identifying 

global/conditional suppressions in the iVS1007 network using GrowMatch. NGG mutants are 

corrected by globally or conditionally adding reactions in iVS1007 using GrowMatch. These 

reactions are  preferentially chosen from model iAF692 followed by additions from external 

databases such as KEGG [86] using a BBH e-value cutoff of 10-10. Upon completion of this step, 

all in silico/ in vivo growth inconsistencies that could be corrected by either removing or adding 

reactions available in databases resolved. 

Step 4: We next identified metabolites that cannot be produced or consumed using 

GapFind. Using GapFill, we restore connectivity to them by appending only reactions that have 

BBH e-values of less than 10-10. 

In addition, we mined for all published articles having the word “Acetivorans” anywhere in their 

content in the Web of Science and PubMed databases and download these articles using 

EndNoteWeb. We used the mdfind command on a MacBook TM , search for articles that have loci-

names of M. acetivorans genes included in the iVS1007 Model. This enables a relatively quick 

search for literature evidence supporting (or not) annotations in the iVS1007 Model. We update 

the model to resolve any incorrect annotations identified in this step and consolidate information 

from articles not included in the above search domain but have information regarding 

methanogenesis [301]. 

Figure B.4.1. A) GrowMatch 

resolution of the GNG mutant 

characterized by deleting Methyl 

Coenzyme Reductase with carbon 

monoxide as the carbon source. B) 

GrowMatch’s resolution of the 

GNG mutant characterized by 

deleting ATP Synthase with 

methanol as the carbon source. 
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Figure B.4.2 S Flux coupling analysis between flux in Methyl 

coenzyme reductase and biomass for cellular growth on A) 

methanol, B) acetate, C) carbon monoxide. All values of fluxes are 

in mmol/gDW hr-1 and are normalized to the respective substrate 

uptake rates fixed at 1000 mmol/gDW hr. 

 



Table B.4.1 In vivo gene deletion data used evaluate and improve iVS1007’s predictive 

capabilities.  

 Substrate 

Gene deletions  acetate carbon monoxide methanol MMA DMA TMA 

ackR NGNG GNG GG - - - 

ATP synthase NGNG  GNG - - - 

DMTsD GG GG GG - - GG 

mtsD+mtsF GG GG GG - - GG 

mtsD+mtsH GG GG GG - - GG 

mtsF GG GG GG - - GG 

mtsH GG GG GG - - GG 

mtsF+mtsH GG GG GG - - GG 

lysK - - GG - GG GG 

lysS - - GG GG GG GG 

MCR NGNG GNG NGNG GNG GNG GNG 

mtaA1 - - NGNG  - - 

mtaA1 + MT1 GNG - - - - - 

mtaA2 - - GG - - - 

mtaCB1 - - GG - - - 

mtaCB1 + mtaCB2 - - GG - - - 

mtaCB1 + mtaCB2 

+ mtaCB3 - - GNG - - - 

mtaCB2 - - GG - - - 

mtaCB3 - - GG - - - 

mtbA - - - 
NGN

G 
NGN

G - 

mtbA - - - - - GG 

ppylR - - GNG - - - 

ppylT GG - GG GNG GNG GNG 

ptaR NGNG GNG GNG - - - 

Rnf complex GNG - - - - - 

 

 

 

 



 

 

Table B.4.2 Comparison between iVS1007 and other available Archaeal models 

 Methanosarcina acetivorans Methanosarcina barkeri Halobacterium salinarum 

Genome size 5.7 Mb 4.8 Mb 2.7 Mb 

ORF's 1007 5072 2867 

Metabolic genes 1007 692 490 

    

Unique proteins 1007 542 490 

Isozymes 140 31 - 

Multidomain proteins 145 65 - 

    

Reactions 835 619 711 

gene-associated 726 509 568 

non gene-associated 109 110 133 

transport reactions  88 111 

Metabolites 790 558 557 

    

Gaps  35  

    

Consistency with growth data 91% 69% - 

 

 

 

 

 

 

 

 

C. Specific Aim 2: Automated Generation of Genome-Scale Isotope Mapping Models 

C.1 Automated generation of complete atom mappings for MFA using genome-scale 

metabolic reconstructions 

The work in this section was recently published [309].  

C. 1.1 Introduction 



Metabolic flux analysis (MFA) [310] has emerged as a critical tool to understand the 

physiological state of a cell [311-313]. Using isotopically labeled substrates with different 

labeling patterns, experimental techniques such as NMR [314, 315] and GC-MS [316] are used to 

measure the amounts of different isotope forms of select metabolites. The fluxes in a metabolic 

network are directly coupled to the relative isotopic abundances of different metabolites through a 

system of nonlinear algebraic equations [317]. Details of the same can be found in literature in a 

recent review [318]. Briefly, these nonlinear equations are constructed using mapping matrices 

that trace the path of each atom and subsequently each isotopomer (isotope isomer) in a metabolic 

reaction. This information was initially represented using atom mapping matrices (AMM) [319] 

that track the transfer of carbon atoms from reactants to products. This concept was subsequently 

generalized in the form of isotopomer mapping matrices (IMM) [320] that enumerate all possible 

product isotopomers that can be created from each reactant isotopomer. 

Two separate computational challenges arise during flux elucidation based on MFA. The first 

challenge involves the automated generation of isotope mapping matrices for genome-scale 

metabolic reconstructions while the second involves the efficient solution of the corresponding 

system of nonlinear equations for the unknown fluxes while accounting for measurement error.  

The challenge of flux elucidation has been previously addressed using a variety of computational 

techniques including the cumomer concept [321], theoretical bondomer [322], the elemental 

metabolic unit (EMU) framework [323] and FluxCalc [324]. However, the application of these 

methods has been restricted to models that were at least an order of magnitude smaller than 

genome-scale reconstructions as a consequence of the aforementioned challenges. Typical isotope 

mapping models contain 25-50 reactions [318], 76 reactions [325] or 238 reactions [324], which 

is the largest to-date model (developed in our group). A key shortcoming of using lumped 

metabolic abstractions to perform flux elucidation is that they may erroneously lead to the 

conclusion that the available GC or MS data is sufficient for unique flux elucidation [326]. The 

inferred metabolic fluxes may then inherently reflect the biases/assumptions built-in during the 

lumped metabolic map creation step. In addition, by utilizing a genome-scale model for 

simulation/strain design purposes and a separate lumped metabolic model for flux elucidation 

could complicate the seamless integration/transfer of results. 

Motivated by these shortcomings, here we introduce a largely automated workflow for 

constructing isotope mapping matrices using as input full genome-scale metabolic 

reconstructions. This is a formidable challenge as it requires a detailed mapping of atom 

transitions for all reactions in a metabolic network and has so far remained organism-specific and 

labor intensive. Atom mapping matrices are obtained by tracing the origin and destination of 

atoms through each individual reaction in the metabolic network. In addition to tracing 

isotopically labeled carbon atoms (typically preferred in MFA experiments) we also trace the path 

of O, N, P, S atoms as well as of metal/non-metal ions. Tracing atoms from reactants to products 

requires the ability to topologically superimpose the structures of reactant and product molecules. 

This involves the identification of all “common” substructures between the two molecules. 

Techniques relying on pattern recognition concepts from graph theory, which have been 

extensively employed in cheminformatics [327-329], can be used to topologically align and 

compare a reactant with a product molecule. These techniques essentially apply two mathematical 

operations on the molecular graphs of the two compounds to be aligned. A molecular graph is a 

mathematical representation in which nodes correspond to atoms and edges to molecular bonds. 

The first mathematical operation combines the two molecular graphs into a single association 

graph (AG). The second operation identifies the largest clique (i.e., connected graph) within the 

AG. In the maximum common edge subgraph (MCES) procedure, the edges of the AG 

incorporate bond-type information (single, double or triple bond) of the compared molecules. 

[330] adopted the MCES approach to match two randomly chosen (not part of a biochemical 



reaction) structurally complex chemical compounds with reasonable accuracy. Unfortunately, the 

MCES method does not scale well for genome-scale level reaction compilations requiring 

prohibitive computational time [331].  

The maximum common subgraph (MCS) approach [332], formulates the edges of the AG without 

considering the bond-type data of the two compounds involved. As a consequence, the MCS 

approach is more computationally efficient and thus more suitable for mapping atoms 

participating in a large number of reactions [333]. In addition, the accuracy of atom mappings 

produced through this procedure is quite high for most biochemical reactions.  However, to 

date it has only been used to contrast pairs of compounds [333] or trace only carbons [334] within 

the KEGG/LIGAND database [335, 336]. Also, the atom transitions listed in KEGG are 

inadequate for flux analysis using MFA since alternative atom transitions are not explicitly listed 

when symmetric molecular sub-structures or symmetric molecules are present in the reaction. 

Alternatively, compound matching based on an algorithm that tallies the connectivity (i.e. number 

of atoms connected to a given atom) of atoms in the compared compounds [337], has been used 

to trace atoms across reactions [338, 339]. However, this procedure requires the manual 

reordering of metabolites in reactions and has scaling limitations (i.e., it cannot detect rings of 

size greater than ten such as heme) [340].  

We chose to overcome these limitations and generate mappings for the latest metabolic 

reconstruction of E. coli [49] by first representing molecular chemical structures as graphs 

defined by a set of vertices (the atoms) connected by edges (the bonds). Subsequently, the MCS 

method [333] coupled with a modified branch and bound algorithm for clique finding [341] is 

customized to automatically generate genome scale atom mappings. 

In the next section we describe in detail the generated isotope mapping model imPR90068 for the 

E. coli strain K-12, which spans 1,039 metabolites, 2,077 reactions and contains a total of 1.37 x 

10157 isotopomers and 8.34 x 1093 13C isotopomers. Furthermore, we highlight the enhanced 

pathway resolution capability of imPR90068 with an emphasis on nucleotide salvage, cofactor 

and prosthetic group biosynthesis, glycerophospholipid metabolism and alternate carbon 

metabolism. We also provide guidelines on the application of the model for MFA using an EMU 

representation. Finally, we describe the general procedure developed for the largely automated 

generation of genome-scale atom mappings.   

C.1.2 Results and Discussion 

We first highlight the adopted molecular graph based description by reactant to product atom 

mapping for two separate example reactions. Next, the size and content statistics of imPR90068 

are reviewed followed by the application of the model for flux elucidation. 

C.1.2.1 Reaction to product atom mapping examples 

The metabolic network iAF1260 contains 304 exchange reactions, 690 transport reactions and 

1,387 metabolic reactions [49]. The atom mappings for the 690 transport reactions, which account 

for 12,325 of the traced atoms, were generated in a straightforward manner as the molecular 

graphs remain invariant upon transport. For example, the atom mappings for the 

arginine/agmatine antiport reaction, which is a reversible inner membrane transport reaction, are 

retained as arginine and agmatine as they simply transported from the cytosol to the periplasmic 

space without any bond modifications: 

ARGAGMt7pp agm[c] + arg-L[p] <==> agm[p] + arg-L[c] 

The atom mappings for the remaining 1,387 metabolic reactions, containing 77,619 of the 

mapped atoms, were created by iteratively applying for every reaction the proposed workflow 

(see Steps 1-4 in Figure C.1.1). During this process, five frequently occurring reaction motifs 



were automatically identified and stored in a database (see Table C.1.1). The atom mappings of 

these five reaction motifs, which occur in 424 different reactions, were simply copied from the 

reaction motif library (Table C.1.1). 

The following two example reactions illustrate the results obtained upon applying the four steps 

of the mapping procedure (see Figure C.1.1). The first reaction is histidinol-phosphatase, which is 

part of histidine metabolism and listed in iAF1260 as: 

HISTP  [c] : h2o + hisp --> histd + pi 

In Step 1, the reaction is parsed into reactants, products and the reaction name (i.e. HISTP). In 

Step 2, atom and bond information of water, L-histidinol phosphate, L-histidinol and phosphate 

molecules are obtained from respective MDL mol files of iAF1260. These data are used to create 

the reactant and product graphs of histidinol-phosphatase reaction (Figure C.1.2). The reactant 

and product graphs contain fifteen nodes linked through fourteen edges. Each node is associated 

with two parameters, one representing the atom number and the other representing the atom type. 

Each edge is associated with three parameters, the pair of atoms they connect and the bond type 

(Figure C.1.2). The corresponding chemical structures of the metabolites represented in the 

reactant and product graphs are also shown in Figure C.1.2. In Step 3, the six carbon, one 

phosphorous, five oxygen and three nitrogen atoms of water and L-histidinol phosphate are traced 

to atoms in phosphate and L-histidinol through 24 alternate atom mappings (grey atom traces in 

Figure C.1.2). In Step 4, known reaction chemistry information is used to prevent the oxygen 

atom in the water molecule water from being traced to the phosphate moiety (dephosphorylation 

reaction chemistry). Due to the interchangeability of all oxygen atoms in the phosphate group, 24 

separate atom mappings are generated and stored as one reaction mapping under the reaction 

name HISTP. 

Symmetric molecules introduce a number of additional complications. They are illustrated using 

the taurine dioxygenase reaction: 

TAUDO  [c] : akg + o2 + taur --> aacald + co2 + h + so3 + succ 

After parsing the reaction into the required components, MDL mol files of 2-oxoglutarate, 

oxygen, taurine, succinate, carbon dioxide, aminoacetaldehyde and sulphite are used to create the 

reactant and product graphs (Figure C.1.3). Due to the presence of symmetric molecules (i.e., 

succinate, carbon dioxide and oxygen) and interchangeable atoms within groups (i.e., sulphite), 

96 alternate mappings are generated for the taurine dioxygenase reaction. These atom mappings, 

which trace seven carbon, one nitrogen, ten oxygen and one sulfur atoms between seven 

metabolites (Figure C.1.3), are stored as a reaction mapping under the reaction name, TAUDO. A 

manual curation of the generated 96 atom mappings reveals that there are no erroneous mappings 

implying that symmetry is properly handled by our mapping procedure. 

C.1.2.2 Size statistics and content of imPR90068 

The genome-scale mapping model imPR90068 generated for the E. coli encodes the complete list 

of reactions in iAF1260 (Feist et al., 2007) as a library of 2,077 reaction mappings (see 

supplemental information for the mapping files). Each reaction mapping contains multiple atom 

mappings that trace all reactant atoms to all product atoms in the respective reaction. The model 

contains a total of 20,872 alternate atom mappings that trace the fate of 90,068 atoms through a 

network of 2,077 reactions and 1,039 metabolites. These atom mappings trace the path of C, O, 

N, P, S atoms as well as Ag, As, Ca, Cd, Cl, Co, Cu, halogens, Fe, Hg, K, Mg, Mn, Na, Ni, Se, 

W, Zn ions. Detailed information on atoms traced is provided in Table C.1.2. 

The classification of all 1,387 metabolic reactions in imPR90068 based on the number of 

alternative mappings (per reaction) is shown in Table C.1.4 and Figure C.1.4. The reaction 



mappings of 734 reactions contain a single alternative, which implies that the atoms in these 

reactions are uniquely mapped from reactants to products. The majority of these 734 reactions 

with no mapping degeneracy are isomerization, displacement or substitution reactions typically 

containing less than three reacting species. The remaining reaction mappings are degenerate to 

various degrees and contain multiple alternative atom transitions from reactants to products due 

to symmetry(ies) present in the reaction operator (Table C.1.4). A general downward trend is 

observed in the number of reactions with increasing reaction mapping degeneracy with 578, 256, 

155 reactions containing respectively 2-8, 9-128, 129-1024 alternative mappings (Figure C.1.4). 

A certain obvious clustering of reactions is observed at 17-32 alternatives and similarly at 257-

512 alternatives. This happens due to the nature of reactive groups participating in individual 

reactions such as phosphate, which typically produces 24 alternatives or diphosphate, which 

typically results in 288 alternatives. Table C.1.4 also identifies which atom type (or combination 

of atoms) is responsible for the degeneracy in the mapping. The individual reactions containing a 

modest number of mappings (i.e., from two to eight) are primarily degenerate either due to 

equivalent carbons or due to equivalent oxygens and less likely due to the presence of both 

equivalent carbons and oxygens (71% due to either only C or only O and 22% due to both C and 

O). The degenerate reactions containing equivalent O (either standalone or in combination with 

other equivalent atoms such as C, N) are predominantly due to electronic orbital resonance of the 

oxygen atoms in the carboxyl groups [342]. Degeneracy due to only equivalent C and only N 

arise as a result of backbone symmetry of the reacting species (see also Figure 4). For example, in 

reaction TAUDO (see Figure C.1.3), reactant 2-oxoglutarate can be mapped to product succinate 

in four possible ways. This multiplicity arises from two equivalent carbon atom pairs 1,2 and 8,5 

in 2-oxogluterate that can be mapped to either 17,16 or 12,13 positions, respectively present in 

the succinate product molecule. 

Surprisingly, despite the presence of nearly 60% less number of oxygen atoms in the model than 

carbons, we find that equivalent oxygen atoms are by far the most frequently occurring (resulting 

in 44% of all degenerate reactions) whereas C atoms result only in 28% of total reaction 

degeneracy. The reaction HISTP (see Figure C.1.2) illustrates the reason for the above statistics, 

where all 24 alternative mappings are due to 4 oxygen atoms (3,4,5 and 6 in the reactant graph) 

although a greater number of carbon atoms are present in the graph. Often, multiple atoms (e.g., 

C, O, N or P) simultaneously contribute in the mapping degeneracy. Fairly ubiquitous are 

reactions with multiple mappings arising from both C and O atoms. For example, in the citrate 

hydro-lyase reaction of TCA cycle, both carbon and oxygen atoms in the symmetric citrate 

molecule are mapped in multiple ways to the product cis-aconitate molecule. 

Phosphorous atoms accompanied by equivalent oxygen atoms (due to the presence of resonating 

phosphate groups) are involved in reactions with large numbers of mappings (i.e.,  more than 64). 

There exist ten reactions with number of mappings in the range of 513-1,024.  These reactions 

contain four or more reacting molecules usually with multiple symmetric operators and are 

involved in cofactor and prosthetic group biosynthesis, murein recycling and nucleotide 

synthesis/salvage pathways. For example, in the asparigine synthetase reaction ASNS2, six 

molecules containing five reaction operators (two carboxyl groups and three phosphate groups) 

bring the reaction mapping degeneracy to 864 alternatives.   

C.1.2.3 New reactions/metabolites in imPR90068 

The introduced isotope mapping model imPR90068 contains mappings for reactions that were 

previously lumped or completely absent from isotope mapping models (even in imPS1485). 

These new additions include 68 reactions involved in the metabolism of 17 different amino acids 

(all but Asparagine, Glutamine and Glutamic acid), 65 reactions involved in central metabolism, 

153 reactions in nucleotide biosynthesis and salvage pathways, 225 reactions in 

glycerophospholipid metabolism, 160 reactions in cofactor and prosthetic group biosynthesis and 



181 reactions in alternate carbon metabolism. The inclusion of all biotransformations spanned by 

the genome-scale model implies that alternate metabolic routes can now fully be taken into 

account during flux elucidation using MFA. For example, in imPR90068, the xylose isomerase 

catalyzed reaction XYLI2 that reversibly isomerizes D-glucose to D-fructose combined with the 

fructose transport reaction FRUpts2pp which converts PEP (phosphoenolpyruvate) to pyruvate 

during the transport of D-fructose, creates a pathway from glucose to pyruvate alternate to 

glycolysis. Similarly, reactions such as the amylomaltase (AMALT1-4), maltodextrin glucosidase 

(MLTG1-5), a- and b-galactosidase (GALS3, LACZ, LACZpp) reactions of the alternate carbon 

metabolism pathway, which involve alternate routes for glucose metabolism, are included in the 

genome-scale model. Further, analysis under growth on 174 carbon sources is possible in the 

imPR90068 model as opposed to growth on glucose and few amino acids studied in imPS1485. 

In addition, all biomass components are mapped in imPR90068 model. As many as 45 biomass 

components absent from imPS1485 are now part of the model. These metabolites include 

cofactors (e.g., CoA), amino acids (e.g., His and Trp), riboflavin, murein, and inorganic ions 

(e.g., Fe+3). It is important to note that new reactions in imPR90068 are not necessarily far away 

from central metabolism. Even under aerobic glucose growth conditions, as many as 35 new 

reactions are added to central metabolism that are part of Citric Acid Cycle, 

Glycolysis/Gluconeogenesis, Oxidative Phosphorylation, Pentose Phosphate Pathway and 

Pyruvate Metabolism. 

Notably, imPR90068 accounts for not only all reactions but also all metabolites present in 

iAF1260. 76 new metabolites are present in imPR90068 that were absent in imPS1485. These 

newly added metabolites link parts of metabolism previously treated before as separate. For 

example, (see Figure C.1.5) the added metabolite aicar (5-Amino-1-(5-Phospho-D-

ribosyl)imidazole-4-carboxamide) directly participates in purine meabolism and the histidine 

pathway. It is also indirectly linked to thiamine metabolism (through metabolite air), glycine, 

serine and threonine metabolism (through glycine) and in alanine, aspartate and glutamate 

metabolism (through glutamate). Thus, the incorporation of a single additional metabolite in 

imPR90068 enables for the first time the ability to fully describe histidine and purine metabolism 

as well as account for interactions between many pathways. 

C.1.2.3 Reduced and EMU based representation of imPR90068 

Armed with a complete database of all atom mappings implied by the genome-scale model 

iAF1260, it is straightforward to select only the mappings which are relevant for a given isotope 

labeling experiment. The numbers of isotopomers present upon labeling various atoms present in 

the model are detailed in Table C.1.2.  For example, by labeling only carbons we find that the 932 

carbon-containing metabolites (with a total of 20,935 carbon atoms) yield 8.34 x 1093 13C 

isotopomers. We can tailor the set of considered isotopomers to the specifics of the system under 

consideration by removing all reactions/mappings that are suppressed under the experimental 

conditions. For example, under aerobic glucose minimal media conditions 752 

blocked/suppressed reactions can be removed from the model leaving 793 metabolites containing 

33,026 tractable carbon atoms and 3.02 x 1062 isotopomers. 

An even more compact representation of the isotope mapping relations can be achieved using the 

EMU representation [323]. We have developed Python scripts that given the atom mapping 

matrices of imPR90068, the labeled substrate and measured fragments the EMU representation is 

automatically generated. The EMU representation of imPR90068 for aerobic labeled glucose 

minimal media conditions and using the 31 amino acid fragments listed in Table C.1.1 of [324] is 

provided as supplemental material. Table C.1.3 highlights the savings afforded by the EMU 

representation.  While the 17,346 carbon isotopomers of imPS1485 are reduced to 1,215 EMU 

species and 3,912 mass isotopomers (Suthers et. al., 2009), the 1093 carbon isotopomers in 



imPR90068 are reduced to 1,067,652 EMU species and 6,065,801 mass isotopomers. This is a 

tractable model size that can be handled by current solvers such as CPLEX 10 [343]. 

C.1.3 Summary 

This work introduced the computational infrastructure for tracing all atoms present in every 

reaction in the iAF1260 metabolic reconstruction of E. coli from reactants to products to create a 

genome-scale mapping database. This automated procedure can be efficiently leveraged for 

genome-scale models of other organisms to create isotope mapping databases. Common reactions 

already present in iAF1260 can be directly culled from the imPR90068 reaction-mappings 

database thus significantly reducing the effort needed to construct other organism-specific 

mapping models. The potential to improve our understanding of flux allocation in different 

organisms is alluded by the gap in the size of genome scale vs. isotope mapping models.  For 

example, there exists a 50-fold difference in the size of the genome-scale reconstruction of 

Bacilus subtilis that spans 1,020 reactions [68] and its current isotope mapping model [344] that 

accounts for only 25 reactions (all from central metabolism).  It is expected that incorporating 

reactions into the mapping model already present in the genome-scale model could shed light 

onto metabolic pathway usage patterns with many practical implications, for example for an 

industrially relevant organism such as B. subtillis. 

The ability to elucidate fluxes using the full complement of reactions and metabolites present in 

genome-scale level reconstructions comes at the expense of requiring additional labeling data. 

While lumped isotope models [318, 324, 325] typically require the analysis of spectra (i.e., NMR 

or GC/MS) for only about 20-50 fragments, using the totality of mapped isotopomers in 

imPR90068 will likely require significantly higher numbers of carefully chosen labeled 

fragments.   This makes even more pertinent the use of methods such as OptMeas [326]; Suthers 

et al. 2009) to pinpoint minimal measurement sets and compact isotope representations such as 

EMU [323] for complete flux elucidation. 

Finally, the use of molecular graph representations at a genome-scale level can be used to study 

the synthesis problem in metabolic networks [89]. An example application is in creating specific 

chemistry operations for the computational framework BNICE [89]. BNICE generates novel 

biochemical pathways and novel intermediate compounds given the bond-electron matrix (BEM) 

of the initial metabolites and a single or combination of reaction operators for each reaction in the 

pathway [89, 345]. The BEM specifies compound properties: the non-bonded valance electrons of 

all atoms in participating molecules and the connectivity, bond order (single, double bond etc.) 

between those atoms. On the other hand, the reaction operators used in BNICE are 

biotransformation rules that have been generalized based on EC reaction classification [346]. The 

molecular graph approach used to create the isotope mapping model specifies complete reaction 

rules for genome scale networks in the form of reaction mappings. Hence the data available in 

mapping files can be used to generate reaction operators required by BNICE for analysis of 

genome-scale networks. The metabolic network of E.coli (and eventually other organisms) can 

potentially be explored for hypothetical reaction steps which include novel intermediate/product 

metabolites with relative ease due to the availability of a genome-scale isotope mapping model 

[89]. 

C.1.4 Materials and Methods 

The proposed procedure used to generate imPR90068, requires as input the stoichiometry of all 

reactions present in the metabolic network and data (e.g., MDL mol files) encoding the chemical 

structure of all metabolites involved in the network. The method described below can be applied 

to any genome-scale metabolic model and is amenable to the straightforward inclusion of 

additional reactions not present in the original organism models as well as user-supplied 

metabolite structures. During the automated procedure, a library of atom mappings and recurring 



motifs is generated which can be leveraged for future isotope mapping efforts. The following four 

steps are performed on every reaction in the input network (see Figure C.1.1). 

Step 1: Automated identification of metabolites with constant labeling and elucidation of 

recurring reaction motifs 

The reaction stoichiometry, supplied as part of the input network, is parsed into reactants and 

products. Reaction stoichiometry is appropriately handled by accounting for multiple or partial 

occurrences of metabolites. Exchange reactions (i.e. a reaction in which the metabolite crosses the 

system boundary) are handled in a straightforward manner as labeling remains unaffected during 

transport. Similarly, reactions for which the same metabolite is present on both the reactant and 

product side are identified and the corresponding metabolite’s labeling is flagged as identical for 

both compartments (Fig 1). A number of reaction motifs occurring in many biotransformations 

(such as atp + h2o → adp + h + pi) are identified and their atom mappings are stored in a library 

(see Table C.1.1). Therefore, when parsing a particular reaction, metabolites that remain 

unaltered and metabolites identified as part of a reaction motif are temporarily removed before 

the molecular graph comparison step. 

Step 2: Generation of reactant and product molecular graphs 

Atom and bond information for all reactants and products in the reduced reaction is extracted 

from molecular geometry descriptors supplied as input data (i.e., MDL mol files). The chemical 

structure of each metabolite is represented as a graph where nodes depict atoms and edges refer to 

chemical bonds. The graphs of all reactants participating in a reaction are concatenated together 

(by combining atom and bond data of the individual metabolites) to yield a single reactant graph. 

Similarly, all the product molecule graphs are pooled to yield a single product graph (see Fig. 1). 

Note that reactant or product graphs are disjoint when multiple reactants or products are present, 

respectively. As a test, the total number of each atom type in the reactant graph is verified to be 

equal to that in the product graph. 

Step 3: Construction of atom mappings between reactant and product graphs 

We use the MCS method [333] to create the association graph AG between the reactant and 

product graphs. Subsequently, the branch and bound algorithm [341] is applied to detect the 

largest clique(s) in the AG. The largest clique corresponds to the largest subgraph (subset of 

nodes connected by the same set of bonds) shared between the reactant and the product graphs. In 

chemistry terms, this is the largest portion of the reacting molecules that remains invariant 

through the reaction step. The largest clique(s) encode the required mapping data for the current 

reaction (Fig. 1). The atom mappings of the metabolites with fixed labeling and those 

participating in reaction motifs (see Step 1) are generated and re-incorporated into the atom 

mapping database entry for the current reaction.  

Step 4: Elucidation of consistent mappings  

The MCS procedure often generates multiple atom mappings between reactant and product 

graphs (Fig 1). Alternate mappings are generated mainly due to the presence of many identical 

atoms within similar subgraphs between the reactant and product molecules. For example, the 

two oxygen atoms in a carboxyl group could, in principle, be routed in the same location in the 

product molecule.  In addition, the presence of symmetric reactant metabolites (e.g., succinate) 

implies that positions equidistant from the middle are equivalent labeling choices in the product 

molecule. All the atom mappings obtained are verified to be correct by visually depicted the atom 

transition between the structures of reactant and product molecules (Fig. 1). If a particular atom 

transition is prohibited due to reaction chemistry, only the atom mappings permitted by the 

reaction heuristics are retained. One such example is a dephosphorylation reaction in which water 

molecule reacts with a phosphate-containing molecule thus displacing the phosphate group. Since 



we know from reaction chemistry that the oxygen originating in the water molecule does not 

escape with the phosphate group, all such alternate mappings generated for dephosphorylation 

reactions can be automatically eliminated. Therefore, in some cases a post-processing step is 

needed to prune biologically irrelevant mappings. Using information of the reaction chemistry we 

retain only plausible mappings from the atom mapping file created in Step 3.  

The end result of the atom mapping process is a library of atom mappings for every 

reaction in the input network. The procedure described above was used to create genome-scale 

atom mappings for the latest E. coli metabolic reconstruction iAF1260 [49]. Specifically, we 

constructed and used Python modules to extract atom and bond information for all 1,039 

metabolites in iAF1260. This information was parsed from MDL mol files (whenever available) 

and from the KEGG [86] and the SDF PubChem databases. These data sets were used to create 

reactant and product graphs for all 2,077 reactions in iAF1260. The atom mappings were 

generated for each reaction separately using a cluster of Dell PowerEdge 1950 servers with dual 

3.0 GHz Intel Xeon E5450 Quad-Core Processors and 32 GB of ECC RAM. Atom mappings 

were generated for every reaction in the network tracing all non-hydrogen elements including C, 

N, O, P, S and metal/non-metal ions. The obtained atom mappings were also manually curated as 

a final check.  

The EMU representation [323] was implemented using Python modules. Briefly, given a set of 

mass isotopomer measurements and a set of source metabolites, this implementation calculates 

network fluxes through an EMU represention. The details of the procedure used to identify all 

EMU species and variables are outlined in (Suthers et al. 2009). 

Reactant and product graph definitions1 

The reactant and product graphs are defined by the following parameters. 

 

G1   Reactant graph 

 

G2    Product graph 

 

V G1( )={ui}  Vertices of G1 

 

V G2( )={vi}  Vertices of G2 

E(G1)={(ui , uj)} Edges of G1 

E(G2)={(vi , vj) } Edges of G2 

w(ui)   Atom type of vertex ui 

w(ui , uj)  Bond type between ui and uj 

 

The maximum common subgraph: (MCS) approach 

In the MCS approach, the association graph (AG) of G1 and G2 is defined by the set of vertices, 

V(AG)={(ui , vi)} , where ui  V(G1) , vi  V(G2) and w(ui)=w(vi)  

 

Two vertices (ui , vi) and (uj , vj) of the AG are connected whenever 

(ui ,uj) ∈ E(G1) and (vi ,vj) ∈ E(G2) 

or 



(ui ,uj)  E(G1) and (vi ,vj)  E(G2) 

This defines the edges of the AG. 

 

Table C.1.1: List of frequently occurring reaction motifs 

Reaction motif # of occurrences in iAF1260 # of atoms mapped 

atp + h2o → adp + h + pi 162 32 

atp + h2o → amp + h + ppi 65 32 

adp + h2o → amp + h + pi 5 32 

nad + h  nadh 110 44 

nadp + h  nadph 82 48 

 

 

 



Table C.1.2: Total number of most-prevalent atoms and their respective isotopomers 

 

 

* includes Ag, As, Ca, Cd, Cl, Co, Cu, halogens, Fe, Hg, K, Mg, Mn, Na, Ni, Se, W, Zn 

 

 

 

Table C.1.3: Comparison of the sizes of imPS1485 and imPR90068 isotope mapping models of 

E. coli 

  EMU model EMU reduced model 

Isotope mapping 

model 

13C 

Isotopomers 

EMU 

species 

EMU mass 

isotopomers 

EMU 

species 

EMU mass 

isotopomers 

       Allowing for all uptakes with a transport mechanism 

imPR90068 8.3 x 1093 1,067,652 6,065,801 621,311 2,786,978 

imPS1485 17,346 1,215 3,912 762 2,438 

       Aerobic glucose minimal growth medium with all blocked reaction removed 

imPR90068 
3.02 x 1062 748,544 3,425,876 473,495 1,978,454 

imPS1485 3,584 909 2,911 486 1,538 

 

 

 

Atom type Total # of atoms traced Total # of isotopomers 

Carbon 49,539 8.34 x 1093 

Oxygen 29,061 1.61 x 1060 

Phosphorous 3,280 1.00 x 104 

Nitrogen 2,386 2.58 x 107 

Sulfur 409 4.09 x 103 

Others* 265 4.05 x 103 

Total 90,068 1.37 x 10157 

 



 

 

Table C.1.4: Distribution of metabolic reactions present in imPR90068 based on the number of 

alternate atom mappings of individual reactions. The break down of degenerate reactions with 

respect to equivalent carbons(C), oxygens(O), nitrogen(N) and phosphorous(P) are also shown.

Alternatives 

(Degeneracy) 

Total # of 

reactions 

# of reactions with equivalent C,O,N or P 

C only O only N only C,O C,N O,N O,P C,O,N C,O,P 

1 734          

2 232 138 105 4 30 3   1 0 

3-4 117 17 48  41 2 2  4 1 

5-8 179 41 66  58 1 2  7 3 

9-16 71 2 31  33 1 1 1 1 0 

17-32 121 9 68  31 1   4 7 

33-64 35 1 14  14    3 2 

65-128 29 0 16  9   2 1 1 

129-256 19 0 5  6   8 0 0 

257-512 126 1 107  4   3 3 1 

513-1024 10 0 2  2   2 3 1 



  

Figure C.1.1: Steps 1-4 are applied to a general reaction A + B --> C + B. The molecular 

structures of A, B and C are shown in Step 4. Grey circles and squares indicate carbon atoms (C), 

red denote oxygen (O) and orange map phosphorous (P) atoms. (Step 2) The atoms of reactant 

graph are shown as colored circles and that of product graph are shown as colored squares. (Step 

3) The nodes of the AG are pairs of nodes from reactant and product graphs, and grey lines are 

the edges of the AG [see Appendix A for details]. The two cliques identified are the largest set of 

vertices that are completely connected to each other in the AG and are shown as thick green and 

blue lines respectively. (Step 4) The atom mappings are shown as lines (atom traces) between 

reactant and product molecular structures. From the visual representation we see that two 

alternate mappings exist due to symmetry of A and C molecules. 

 



 

 

Figure C.1.2: The reactant and product graphs of reaction histidinol-phosphate. The mathematical 

form of the two graphs and the molecules represented by them are shown. The grey lines between 

the reactant and product graph trace atoms from reactants to products based on the 24 atom 

mappings generated for the reaction. Grey circles are carbon atoms; red circles are oxygen atoms; 

blue circles are nitrogen atoms; orange circles are phosphorous atoms.  

 



 

Figure C.1.3: Atom mappings of Taurine dioxygenase. The atom mappings between reactant 

graph and product graph are shown as a set of grey lines connecting reactant atoms to product 

atoms. 

 

 

 

 

 

 

 



 

 

 

Figure C.1.4: The distribution of reaction mappings present in imPR90068 based on the type of 

equivalent atom(s) contributing to degeneracy in the mappings. Degeneracy arising due to 

equivalent C, O, N and P are shown respectively using blue, orange, green and yellow squares. 

The reactions are classified into three categories based on the number of alternative mappings 

present in individual reaction mappings: reactions containing 2-8, 9-128 or 129-1024 alternative 

mappings follow particular trends with respect to the reactant groups and atom types that result in 

degeneracy of mapping data. 



 

 

 

Figure C.1.5: An example of the expanded scope of the genome-scale isotope mapping model 

imPR90068. In imPS1485 Ribose-5P production was directly routed to biomass as a stand-in 

substitute for histidine. In imPR90068 R5P downstream conversion is linked to other amino acid 

synthesis pathways. 



 

 

 

D. Specific Aim 3: Metabolic Flux Elucidation Algorithms Given GC-MS or NMR data 

D.1 Identification of Optimal Measurement Sets for Complete Flux Elucidation in 

Isotopically Dynamic MFA Experiments 

D.1.1 Introduction 

Metabolic flux analysis (MFA) aims at the quantification of intracellular fluxes of metabolic 

networks.  MFA methods based on 13C labeling experiments have been successful in elucidating 

fluxes in many microorganisms under isotopic steady-state [347].  However, isotopic steady-state 

can be difficult to attain due to long duration of the experiment and high cost of the labeled 

substrates [348].  Moreover, isotopically stationary MFA (IS-MFA) cannot determine fluxes 

whose reactants and products reach steady-state isotopic distributions that are insensitive to the 

flux values.  For instance, the intracellular fluxes of the one-carbon metabolism such as 

photoautotrophic metabolism fixing CO2 are unidentifiable under IS-MFA, and this situation 

could arise in cases [349]. 

These limitations of IS-MFA are overcome in isotopically dynamic/non-stationary MFA 

(ID-MFA) experiments, which track the temporal changes in isotopic distribution of intracellular 

metabolites [350-353].  There have been several flux elucidation efforts utilizing non-stationary 

isotopic measurements [354-358].  In all these efforts, only a subset of internal fluxes and 

concentrations were determined as the available measurements were not sufficient for complete 

flux elucidation. 

Recent progress in the ability to measure fragments from an expanded list of internal 

metabolites for microorganisms such as E. coli has enabled complete flux and concentration 

elucidation using relatively comprehensive model [359-361].  Recently, we developed an integer 

programming formulation OptMeas, which identifies a minimal number of measurements that 

uniquely determine the fluxes [362] using stationary isotopic data.  Notably, the incidence 

structure analysis introduced in OptMeas does not require isotopic steady-state condition unlike 

other parameterization or linearization approaches [363]. 

In this work, we extend the OptMeas formulation to perform flux and concentration 

elucidation under isotopically transient conditions (ID-MFA).  Additional variables are introduced 

in the optimization formulation to capture metabolite concentration information.  The 

approximation gap, inherent with the incidence matrix analysis approach [362], is kept at a 

minimum through careful definition of the concentration variables.  This gap is subsequently 

closed by relying on an iterative procedure.  In addition, fast prescreening tests based on linear 

algebra are first carried out to detect infeasibility and sub-optimality.  The screened solutions are 

further queried and refined until they fully determine the system. 

The extended OptMeas formulation that can make use of isotopically non-stationary data 

is tested using a small network example producing minimal measurement sets for the complete 

determination of all fluxes and concentrations.  OptMeas also correctly predicted that the 

measurement set can be further reduced if flux identifiability is the only requirement.  OptMeas is 

subsequently applied to a medium-scale E. coli model (i.e., 75 reactions and 74 metabolites) to 

determine minimal measurement sets that resolve all identifiable fluxes. 

 

D.1.2. Materials and methods 

D.1.2.1 Overview of Mathematical Model for ID-MFA 



For the systematic representation of the fluxes, metabolites, and isotopes present in ID-MFA 

models, we use the following sets throughout the section: 

Sets: 

 

I = i    : metabolite pools (intermediate metabolites: 

 

IN  I ) 

 

J = j 
    : unidirectional fluxes 

 

Ki = k    : isotopomers of metabolite 

 

i  I  

 

T = t1,...,t T 
   : sampling time points (initial point: 

 

t0 = 0) 

We define parameters 

 

Sij  for stoichiometry and 

 

IMM
 i → i,  k →k

j

 for isotopomer mapping as in 

Chang et al. [362].  State variables of the ID-MFA models are: 

Variables: 

 

v j 0   j J
   : flux values 

 

Ci 0   i IN

   : metabolite concentrations (pool sizes) 

 

Iik t( ) 0,1    k Ki,i  I  : isotopomer fractions (known for all substrates 

 

I \ IN
) 

Using these variables, the metabolic and isotopic balances can be put forth as follows: 

 

Sijv j

jJ

 = 0        i  IN

        
 (1) 

 

Iik

kK i

 =1        i  IN

         (2) 

 

Ci

dIik

dt
= Sijv j IMM

 i → i,  k → k

j I
 i  k 

 k K  i 


 i I


 

 
 
 

 

 
 
 

j Sij 0

 + Sijv jIik

j Sij  0

         k Ki,i  IN

  (3a) 

Eq. (1) describes the metabolic steady-state where fluxes and concentrations remain constant, and 

Eq. (2) dictates that the sum of the isotopomer fractions must be equal to one.  Eq. (3a) describes 

how the isotopomer fractions change over time [see 362 for a detailed description].  Given a set 

of measured fluxes and metabolites, the remaining unknowns 

 

v j , 

 

Ci , and 

 

Iik t( ) are determined 

by solving the system of differential and algebraic equations (DAE). 

D.1.2.2 Inverse Problems of ID-MFA 

We estimate unknown fluxes and concentrations from isotopic measurements by means of a least-

squares parameter fitting (inverse problem).  The isotopic non-stationarity renders the inverse 

problem to a dynamic optimization (DO) problem.  This resulting problem has been solved before 

using iterative sequential procedures [354, 355] or evolutionary algorithms [357, 358].  These 

approaches require the repetitive simulation of Eq. (3a) which becomes very time-consuming for 

isotopomer models derived from comprehensive metabolic models. 



In this work, we discretize variables 

 

Iik t( ) in time to convert the DO problem into large-scale 

(algebraic) nonlinear programming (NLP) problems DynaCalc and DynaRange that minimize the 

sum of squared errors (SSE) (see supplementary text).  Note that least-squares methods are used 

for overdetermined systems.  We apply the incidence structure analysis [362] and find minimal 

sets of measurements that are required to fully determine the ID-MFA system. 

D.1.2.3 OptMeas Formulation for ID-MFA 

A key observation arising from Eq. (3a) is that fluxes always appear multiplicatively coupled 

with concentration variables.  One can combine the two using a single variable set after dividing 

both sides of equation (3a) by 

 

Ci  

 

dIik

dt
= wij IMM

 i → i,  k → k

j I
 i  k 

 k K  i 


 i I


 

 
 
 

 

 
 
 

j Sij 0

 − wiiIik        k Ki,i  IN

   
 (3) 

where 

 

wij  is the space velocity of influx 

 

j  to metabolite 

 

i  (

 

Sij  0
) defined as 

 

wij =
Sijv j

Ci

        i  IN , j  J
        (4) 

and 

 

wii is the sum of all the outgoing space velocities of metabolite 

 

i  

 

wii = −
Sijv j

Cij Sij 0

         i  IN

        (5) 

Note that the isotopic distribution of metabolite 

 

i  does not depend on the magnitude of each 

efflux but only on their sum 

 

wii that is the reciprocal of the residence time or turnover rate.  

Similarly, if multiple fluxes lead to the production of a metabolite using the same reactants 

through identical atom mappings, the corresponding space velocities cannot be determined 

uniquely.  Only their sum can be determined by solving Eq. (3) for the metabolite in question.  

We use Eqs. (1–5) to construct the incidence matrix of ID-MFA system (Figure D.1.1).  Note that 

one isotopomer balance for each metabolite is dropped in Eq. (3) in order to eliminate the 

inherent redundancy due to Eq. (2). 

We assign one output variable (column) to each equation (row) based on the incidence structure 

using binary variables 

 

x , 

 

y , and 

 

z  for the rows, nonzero elements, and columns of the incidence 

matrix, respectively [362]: 

 

yrc

rRO

 = zc        c CO

yrc

cCO

 = xr        r  RO
        

 (10) 

Here, 

 

yrc =1 if and only if column 

 

c  is assigned to row 

 

r .  If column 

 

c  is not assigned to any 

row (

 

zc = 0) then column 

 

c  must be part of measurement set.  Column variable 

 

z  in the 

incidence matrix is denoted as 

 

z j ,zi,zij,zii,zik( ) and accounts for the state variables of 

 

v j , 

 

Ci , 

 

wij , 

 

wii, and 

 

Iik , respectively.  Since 

 

wij  and 

 

wii are not measured, we enforce 

 

zij =1
 and 



 

zii =1 at all times.  For the sake of economy of presentation, concentration and IDV of 

metabolites are assumed to always be measurable.  This restriction is lifted in D.1.2.5 to account 

for indirect measurement options such as lumped pool and mass isotopomer distribution vector 

(MDV). 

Total measurement cost is taken to be a linear combination of individual measurement costs as 

tabulated below.  Different cost structures are discussed in D.1.2.5. 

Parameters: 

 

q j   : flux measurement cost 

 

qCi , 

 

qIi   : metabolite measurement cost for concentration and IDV, respectively 

OptMeas aims at minimizing the total measurement cost 

 

q j 1− z j( )
jJ

 + qCi 1− zi( )+ qIi 1− ui( )( )
iI N


      

 (11) 

where binary variable 

 

ui =1 if and only if the IDV of metabolite 

 

i  is not measured, and satisfies 

 

ui  zik        k Ki          
 (12) 

In D.1.2.5, we discuss two interesting variants of OptMeas for ID-MFA: 1) OptMeas that is used 

to estimate the number of intracellular fluxes that need to be known to determine the system, and 

2) the OptMeas formulation that focuses on only flux identifiability. 

D.1.2.4 Solution Strategy 

The incidence structure analysis that OptMeas relies on may generate measurement sets that do 

not fully determine the nonlinear DAE system (1–5).  Therefore, we use an iterative procedure 

adapted from Chang et al. [362] to recover the measurement sets for unique flux and 

concentration determination. 

Step 0: Initialization.  Preprocess the network so that 

 

S  is of full row rank.  Construct OptMeas 

formulation that is updated by introducing integer cuts in the course of the algorithm.  Define set 

 

MS  containing the list of optimal measurement sets, and initialize it to be empty. 

Step 1: Solve OptMeas.  Solve the current realization of OptMeas using an integer linear 

programming (ILP) solver, and obtain 

 

J*,IN1,IN 2( ) as optimal measurement choices for fluxes, 

concentrations, and IDVs.  Here, we used CPLEX 11 [364] accessed through Concert technology 

2.5 [365]. 

Step 2: Remove linearly dependent flux measurements.  Remove columns 

 

J*
 from 

 

S .  If the 

resulting matrix has full row rank, continue with Step 3.  Otherwise, introduce the following 

integer cut into OptMeas and return to Step 1. 

 

z j

jJ *

 1

 

Step 3: Prescreen for a unique flux/concentration elucidation.  Test if unknown fluxes and 

concentrations can be uniquely determined as described in D.1.2.6.  If so, continue with Step 4.  

Otherwise, cut off the current flux and concentration measurements and return to Step 1. 



Step 4: Check for a unique flux/concentration elucidation.  Test if the measurement set 

 

J*,IN1,IN 2( ) uniquely determines all fluxes and concentrations in the network.  This is 

accomplished by solving formulation TestUniq described in D.1.2.6.  If the set determines all 

fluxes and concentrations, move to the next step.  Otherwise, go to Step 7. 

Step 5: Check for solution optimality.  Test if 

 

J*,IN1,IN 2( ) is optimal by solving TestOpt given 

in D.1.2.6.  If TestOpt marks any measurement as unnecessary, then remove it from current set 

and move to the next step. 

Step 6: Termination criterion.  If the current measurement set has a higher relative cost than a 

predefined threshold, terminate and report the current 

 

MS  as the final collection of all optimal 

measurement sets.  Otherwise, include the current measurement set in 

 

MS . 

Step 7: Search for alternative solutions.  Remove 

 

J*,IN1,IN 2( ) from the search space using the 

following integer cut and go back to Step 1. 

 

z j

jJ \ J *

 + zi

iI N \ I N1

 + ui

iI N \ I N 2

 − z j

jJ *

 + zi

iI N1

 + ui

iI N 2


 

 

 
 

 

 

 
  J \ J* + IN \ IN1 + I \ IN 2

 
 (13) 

D.1.2.5 Extension of OptMeas 

Consideration of Lumped Pool Measurements 

Metabolites X5P, R5P, and Ru5P are difficult to measure individually, but their lumped pool is 

not [358, 366].  For such measurements, we use set 

 

L = l for lumped pools and 

 

I l
 for 

constituent metabolites of pool 

 

l .  Then, the pool size 

 

Cl  and IDV 

 

Ilk  of 

 

l  are: 

 

 liCi

iI l

 = Cl         l  L

 

 

 i  k lkIi  k 

 k K i


iI l

 = Ilk        k K l ,l  L

 

We denote the additional columns in the incidence matrix as 

 

zl  and 

 

zlk.  If the relative 

measurement cost of 

 

Cl  and 

 

Ilk  is 

 

qCl  and 

 

qIl  respectively, the cost function is extended to: 

 

q j 1− z j( )
jJ

 + qCi 1− zi( )+ qIi 1− ui( )( )
iI N

 + qCl 1− zl( )+ qIl 1− ul( )( )
lL


 

where binary variable 

 

ul =1 if and only if IDV of lumped pool 

 

l  is not measured. 

Consideration of Different Cost Structures for Metabolite Measurement 

In general, the cost 

 

Qi  of measuring both concentration and IDV of metabolite 

 

i  is smaller than 

 

qCi + qIi.  We use binary variable 

 

U i that is equal to 1 if and only if we do not make the 

simultaneous measurement of metabolite 

 

i .  We substitute 

 

ui  in Eq. (12) by 

 

ui +Ui −1, and 

 

zi  

in Eq. (10) by 

 

zi +Ui −1 in order to avoid duplicate measurements, and augment the cost 

function: 



 

q j 1− z j( )
jJ

 + qCi 1− zi( )+ qIi 1− ui( )+ Qi 1−Ui( )( )
iI N


 

Conservative OptMeas 

OptMeas assigns an isotopomer variable to any equation that it participates in, which could cause 

nonlinear dependency.  If we allow only the assignment of an isotopomer variable to its own 

balance equation, then OptMeas behaves conservative in predicting identifiability and the 

propagation of measurement errors upstream in the network is prevented.  For this, we introduce 

 

zc  yrc

rRc


 

where column 

 

c  corresponds to an isotopomer variable 

 

Iik  and row set 

 

Rc  consists of Eq. (2) for 

metabolite 

 

i  and Eq. (3) for isotopomer 

 

k . 

Restriction to Flux Identifiability 

In some situations when the flux identifiability is of primary interest, we can ignore concentration 

identifiability by introducing two additional binary variables 

 

yi =1 iff concentration of metabolite 

 

i  is required to resolve any flux 

 

i =1 iff concentration measurement of 

 

i  is not necessary for flux identifiability 

Auxiliary variable 

 

i  is used to linearize the concentration measurement term in the objective 

function 

 

qCiy i 1 − zi( )
 to 

 

qCi 1−i( )
.  These variables are defined by the following constraints: 

 

Ri J y i  yrj

jJ


rR i

  y i

 

 

zi + 1 − y i( )i  

where 

 

Ri  is the set of rows corresponding to 

 

wi?. 

D.1.2.6  Sub-problems for the Proposed Procedure 

Prescreening Test for Unique Flux Elucidation 

In order to devise a fast test for identifiability of a measurement set, we rely on linear algebra 

upon expanded stoichiometric matrix 

 

ES that accounts for the participation of fluxes and 

concentrations in Eqs. (1), (4), and (5).  Matrix 

 

ES is similar to the first two columns and three 

rows of incidence matrix (Figure D.1.2).  For flux column 

 

j , 

 

ESrj = Sij if 

 

r  corresponds to Eq. 

(1) for metabolite 

 

i , 

 

ESrj = Sij if 

 

r  corresponds to Eq. (4) for 

 

wij  and 

 

Sij  0
, and 

 

ESrj = −Sij 

if 

 

r  corresponds to Eq. (5) for 

 

wii and 

 

Sij  0
.  For concentration column 

 

i , 

 

ESri =1 if 

 

r  

corresponds to Eq. (4) for 

 

wij , and 

 

ESri = vi

in

 if 

 

r  corresponds to Eq. (5) for 

 

wii where 

 

vi

in

 is the 

number of incoming fluxes of metabolite 

 

i  with distinct atom mapping.  All the unassigned 

elements of 

 

ES are set to 0. 

Then, the rank of 

 

ES indicates the maximum number of fluxes and concentrations that can be 

determined.  Moreover, if we remove measured columns from 

 

ES, the rank of the resulting 

thinner matrix 

 

ES implies the maximum number of unmeasured fluxes and concentrations that 



can be determined.  Using this property of 

 

ES, we can derive the following integer cut that 

prohibits a measurement set that does not have full column-rank of 

 

ES. 

 

2z j

* −1( ) z j − z j

*( )
jJ

 + 2zi

* −1( ) zi − zi

*( )
iI N

  0.

 

Uniqueness and Optimality Tests 

Optimization formulations TestUniq and TestOpt are similar to those for IS-MFA [362] except 

that they are DO problems with additional concentration variables: 

 

TestUniq( ) max v j − v j( )
2

jJ \ J *

 + Ci − C i( )
2

iI N \ I N1



s.t. Eqs. 1( ), 2( ), 3a( ),

Fix all the measured variables  

 

TestOpt x( )( ) max x − x 

s.t. Eqs. 1( ), 2( ), 3a( ),

Fix all the measured variables except x  

As for DynaCalc, we apply the total discretization scheme to convert these sub-problems into 

large-scale NLP problems, which are then locally solved using multiple starting points. 

 

D.1.3. Results and Discussion 

D.1.3.1 Illustrative Network Example 

We first consider the small network adapted from Nöh and Wiechert [367] as shown in 

Figure D.1.3a.  The network is simulated using MATLAB 7.6 [368] using the flux, concentration 

and substrate labeling entries used in the original paper (see Figure D.1.2b and D.1.2c).  We 

assume that external fluxes 

 

v1, 

 

v4 , and 

 

v5 , the IDV of substrate A, and the concentration and 

MDV of all internal metabolites (B, C, D, and E) can be precisely measured.  Five samples at 

time points 1, 3, 7, 15, and 31 of the simulated MDV time profiles are used for flux inference. 

The measurement set used in the original paper [367] is composed of 

 

v1 and the MDVs 

of B, C, D, E.  These measurements are sufficient to infer all the intracellular fluxes (see Table 

D.1.1).  However, because MDV measurements are conducted multiple times (five times for this 

example), measuring all four intracellular metabolites could be costly.  Based on the cost 

coefficients shown in Table D.1.2, the measurement set of the original paper [367] has a relative 

cost of 56. 

OptMeas successfully identified 48 optimal solutions with a relative cost of 27 (less than 

half of original cost).  These solutions require measurement of two external fluxes chosen from 

 

v1, 

 

v4 , or 

 

v5 .  The required metabolite measurements include: 1) MDV of D plus MDV of either 

B or E, 2) any concentration plus MDV of C or MDVs of both B and E, 3) any combination of 

two concentrations plus MDV of D, or 4) any combination of three concentrations plus MDV of 

B or E.  Flux and concentration identifiability of these suggested measurement sets were verified 

by solving TestUniq to global optimality using GAMS/BARON [369].  The DynaRange results 

for one measurement set 

 

v1,v4;CB,CD,CE;MDVE( )
 are shown in Table D.1.3. 



If only flux and not concentration elucidation is sought after then all concentration 

measurements in the optimal sets can be eliminated.  The optimal measurement sets for this case 

include any combination of two external fluxes plus the MDV of either B or E.  This example 

demonstrated that OptMeas can generate measurement sets that allow for complete flux 

elucidation at substantial reduction in cost. 

D.1.3.2 Escherichia coli Network 

Analysis of isotopomer model 

We next apply OptMeas to the metabolic network of the 1,3-propanediol (PDO) producing E. coli 

strain including 74 metabolites, 75 reactions, and 4,806 isotopomers [370].  An abridged version 

of this model was investigated before using ID-MFA [355] in order to elucidate net fluxes 

between carbon containing metabolites.  However, many exchange rates of reversible reactions 

were left non-determined using the MDV measurements of proteinogenic amino acids and the 

intermediary metabolites (AKG, Cit, Mal, Pyr, Suc). 

The model was earlier subjected to the stationary OptMeas analysis [362], which showed 

the potential redundancy of the MDV measurements used in the original paper and suggested 

novel measurement options for better flux elucidation.  Here we perform ID-MFA for improved 

flux and concentration elucidation based on OptMeas.  All fluxes are numbered and metabolites 

are named in agreement with the nomenclature scheme used in the original paper.  We modified 

the original model to account for the symmetry of glycerol. 

We summarize intracellular metabolite measurement alternatives that have been used for 

ID-MFA in Table D.1.4.  The measurement of all other metabolites was prevented (see Figure 

D.1.3). 

We first analyzed the expanded stoichiometric matrix (D.1.2.6) and detected that the 

exchange rate of the transhydrogenation reaction (reaction 64) and the branching ratio of two 

oxidative decarboxylations of malate (reactions 28 and 29) are both unidentifiable irrespective of 

substrate labeling or isotopic measurement.  This agrees with earlier observations [362].  We also 

identified ten conditionally unidentifiable exchange rates of reversible reactions for the currently 

available measurement set (see Figure D.1.4).  All of these practically unidentifiable fluxes [371, 

372] are excluded from any further analysis. 

Identification of measurements 

First we reduce the problem dimensionality by identifying groups of fully coupled fluxes [373], 

shown in Table D.1.5, thus retaining only a single flux measurement for each group.  OptMeas 

returned eight optimal measurement sets with some measurements shared amongst all of them.  

Common measurements include the rates of glucose uptake (

 

v66), glycerol uptake (

 

v68), oxygen 

uptake (

 

v72), PDO secretion (

 

v69), and CO2 secretion (

 

v71), and concentrations of Ac, Arg, Cys, 

E4P, Leu, Pro, and TA-C3.  Common isotopic measurements include IDV of PDO and MDV of 

Glu, Ile, Lys, Met, S7P, and Ser.  Other than these common measurements, OptMeas required 

two MDV measurements of Phe or Tyr and Ala or Val. 

Among these measurements, the oxygen uptake rate, IDV of PDO, and MDV of Glu, 

Met, and Phe are present in ID-MFA as they are for IS-MFA [362].  MDV of S7P and 

concentration of E4P together provide better elucidation of pentose phosphate pathway and 

determine the exchange rate of the transaldolase (

 

v16) and transketolase (

 

v14 ) reactions that were 

not determined before [355, 370].  Arg, Leu, and Pro do not produce any carbon-containing 

products as they only serve as biomass constituents in the model.  Therefore, the most cost 

effective way of elucidating their concentration is by measuring them directly.  Interestingly, both 



Cys and TA-C3 cannot be elucidated through other measurements requiring instead their direct 

measurement which is prohibited in this example. 

By investigating 80 near-optimal solutions derived by OptMeas, we observe that the 

concentration and MDV measurement of some metabolites are interchangeable.  For example, if 

one solution requires the concentration of Tyr and MDV of Phe, then another solution requires 

the concentration of Phe and MDV of Tyr.  The same is true for Ala and Val pair.  These pairs 

receive carbons from the same metabolites through similar biosynthetic reactions (Phe and Tyr 

from E4P and PEP, and Ala and Val from Pyr).  A similar observation is made for the triplet of 

Ile, Leu, and Pro, which receive carbons from TCA cycle metabolites (OAC, AcCoA, and AKG) 

respectively.  The near-optimal solutions also suggest one extra MDV measurement of 6PG, F6P, 

FBP, G6P for a better elucidation of glucosephosphate isomerase (

 

v1) and fructose-biphosphate 

aldolase (

 

v3) in glycolytic pathway and transaldolase (

 

v13) in phosphate pathway. 

Recall that the concentration measurement of Cys and TA-C3 are required but not 

allowed.  Interestingly, OptMeas replaced these concentration measurements by citrate uptake 

(

 

v67), acetate secretion (

 

v70), biomass formation (

 

v75) rates and MDV of Asp when only the flux 

identifiability is required.  This is an example where the measurement of metabolite 

concentrations directly leads to the elucidation of fluxes. 

In summery, the identified measurement set is composed of eight external fluxes 

 

v66, 

 

v67, 

 

v68, 

 

v69, 

 

v70, 

 

v71, 

 

v72, 

 

v75, seven concentrations of Ac, Ala, Arg, E4P, Leu, Pro, Tyr, one IDV of 

PDO, and eleven MDVs of Asp, F6P, FBP, Glu, Ile, Lys, Met, Phe, S7P, Ser, Val.  It is tested for 

the ability to fully identify fluxes in the metabolic model by solving DynaRange.  We found that 

this measurement set still leaves the exchange rates of 

 

v25 and 

 

v27 undetermined.  This is due to 

the symmetry of Fum and Suc and the cascade of reversible reactions in the TCA cycle that 

scramble their atom mapping.  They can only be determined by adding the MDV measurements 

of Fum, Mal, and Suc in the list. 

D.1.4 Summary 

In this work, we extended the OptMeas formulation to account for flux and concentration 

inference in ID-MFA under isotopically non-stationary conditions. OptMeas exploits the 

multiplicative coupling of fluxes and concentrations in the isotope balance equations by recasting 

the isotope balance using space velocities as new variables. OptMeas correctly identified all 

optimal measurement sets for the small network example and predicted that some of the 

measurements are dispensable if only fluxes and not concentrations are needed.  When applied to 

a medium-scale E. coli network [370], OptMeas found a set of fluxes that are unidentifiable under 

ID-MFA due to linear dependency, and suggested the measurement of intracellular metabolites 

that are distributed among the network to elucidate five more exchange rates than the previously 

reported ID-MFA results [355]. 

As demonstrated with E. coli network example, OptMeas can be improved by imposing 

the results of external analyses such as other identifiability analyses and flux/concentration 

coupling analyses [374] to refine its predictions.  Moreover, OptMeas can be modified to focus 

on the variables that are specifically interested.  For example, if certain fluxes and concentrations 

are not determined by an ID-MFA experiment, we can identify which measurements to make in 

the next experiment to pinpoint them. 

The proposed solution procedure can greatly benefit from global optimization algorithms 

that exploit the structure of metabolic networks.  We are currently exploring how to decompose 

an isotopomer network to generate sub-networks that are easy to solve and require the least 



amount of effort in connecting their solutions.  Both EMU and cumomer representations [355, 

375] will be also considered for this purpose (Suthers et al. 2010). 

We note that the incidence structure analysis used in OptMeas is also applicable to 

kinetic parameter estimation using metabolic non-stationary MFA experiments that have been 

explored recently [376-378].  We are also probing how to model the nonlinear structure of the 

mechanistic rate equations in order to help OptMeas produce the measurement sets that determine 

as many kinetic parameters as possible. 

Table D.1.1 Estimated flux ranges for the illustrative toy network using the measurement set of 

Nöh and Wiechert [367] 

Fluxes true Lobatto 5 Radau 5 

 

v1 10 10 10 

 

v2

f
 13.7 [13.61, 13.80] [13.65, 13.75] 

 

v2

b
 6.7 [6.61, 6.79] [6.64, 6.75] 

 

v3  3 [2.99, 3.00] [2.99, 3.00] 

 

v4  7 [7.00, 7.01] [7.00, 7.01] 

SSE - 1E-5a 1E-6a 

The flux ranges are obtained by solving DynaRange formulation.   They are tight enclosing the 

true value (with the relative error less than 0.2% for the unidirectional reactions and below 1% for 

the reversible reaction). 
Table D.1.2 Measurement costs for the illustrative toy network 

Type Measurements Relative cost 

external fluxes 

 

v1, 

 

v4 , 

 

v5  1 

 

v6  2 

concentrations B, C, D, E 5 

IDVs / MDVs 

B, E 20 / 10 

D 30 / 15 

C 40 / 20 

 

Table D.1.3 Identifiability results for the illustrative toy network 

unknowns 
samples used for inverse problem 

<1> <1, 3, 7, 15, 31> 

 

v2

f
 = 13.7 [13.047, 14.433] [13.609, 14.646] 

 

v2

b
 = 6.7 [6.047, 7.433] [6.609, 7.646] 

 

CC = 10 [3.58, 20a] [9.802, 10.556] 

SSE 0 1E-5 

The range of exchange rate 

 

v2

b
 is best captured by the first sample, which is most sensitive to this 

flux.  On the other hand, the concentration of C is best estimated by using multiple samples.  For 

discretization, 5th-order Lobatto nodes are used.  DynaRange was solved using (number of 

included samples)*1E-5 as the cutoff. 
aThe upper bound of the concentration. 

Table D.1.4. Metabolite measurement candidates from the literature 

Pool Concentration MDV fragments qC qMDV 

3PG c c 15 40 

6PG c, e c 15 40 



AcCoA b, e - 20 - 

AKG b, c, e a, b, c 15 40 

Cit c, e a, c 15 40 

DHAP b, e - 20 - 

E4P b, e - 20 - 

F6P b, c, e b, c 15 40 

FBP b, e b 15 40 

Fum c, e c 25 40 

G6P b, c, e b, c 15 40 

GAP b, e - 20 - 

ICit e - 20 - 

Mal b, c, e a, c 15 40 

OAC e - 20 - 

PEP b, c, e b, c 15 40 

Pyr b, c, e a, b 15 40 

R5P e - 25 - 

Ru5P e - 25 - 

S7P  b 20 40 

Suc c, e a 25 40 

P5P (R5P+Ru5P+X5P) b, c b, c 15 - 

SuccFum (Suc+SucCoA+Fum) b b 15 - 

Ala f a, b, c, d, f 10 30 

Arg f f 10 40 

Asn f f - - 

Asp b, f a, b, c, d, f 10 30 

Gln f f - - 

Glu b, f a, b, c, d, f 10 30 

Gly f a, d, f 10 30 

His f c, f - - 

Ile f a, d, f 10 30 

Leu f a, d, f 10 30 

Lys  d 15 30 

Met f a, d, f 10 30 

Phe f a, c, d, f 10 40 

Pro f d, f 10 30 

Ser f a, c, d, f 10 30 

Thr f a, d, f 10 30 

Tyr f a, f 10 40 

Val f a, d, f 10 30 
Relative costs are scaled to the external flux measurements (one for liquid flux and ten for gas flux 

measurement).  We assume that the concentration can be measured whenever MDV can be measured.  

References are (a) [370] or [355], (b) [354], (c) [357] or [358], (d) [324], (e) [379] or [380], (f) [381].  In 

addition, we assume that the IDV of Ac, CO2, and PDO are measurable at the relative costs of 50, 30, and 

100, respectively as they are metabolites transported into the extracellular medium.  Concentration 

measurement cost for these three products are assumed to be equal to 25. 

 

Table D.1.5. Flux coupling analysis of the medium-scale E. coli network 

Fully coupled fluxes 

 

v17, 

 

v18 

 

v23, 

 

v63 



 

v35, 

 

v36, 

 

v69 

 

v38, 

 

v39, 

 

v40, 

 

v42, 

 

v43, 

 

v48, 

 

v49, 

 

v50, 

 

v52, 

 

v53, 

 

v54 , 

 

v55, 

 

v56, 

 

v57, 

 

v58, 

 

v59, 

 

v60, 

 

v61, 

 

v73, 

 

v74 , 

 

v75
a 

aThis long list of coupled fluxes is due to the biomass equation. 
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Figure D.1.1. Incidence matrix of the ID-MFA system.  The incidence matrix of ID-MFA 

contains more rows and columns related to concentrations and space velocities than that of IS-

MFA, which implies that more measurements are necessary for the identifiability of the 

underlying mathematical system.  K’i is the same as Ki except that the last isotopomer of 

metabolite i is excluded.  Although denoted as INJ for notational convenience, wij is defined only 

for the (i, j) pairs that have |Sij| > 0. 



 

Figure D.1.2 Illustrative small network example.  Panel (a) shows its network representation 

together with stoichiometry and atom mapping for each reaction.  Note that metabolites leaving 

the system have been dropped for visualization purposes.  Panel (b) shows the change in the 

isotopic distribution of each metabolite when the labeled substrate (a mixture of 2% unlabeled, 

96% 1-labeled, and 2% fully labeled A) starts to feed.  Cumomer fractions are shown for easy 

comparison with the original paper (Nöh and Wiechert 2006).  Panel (c) is the MDV profile that 

is used to infer fluxes and concentrations.  The simulation is conducted given the true flux 

distribution in Table D.1.2 and concentrations CB = 4, CC = 10, CD = 7, and CE = 3. 

 



 

Figure D.1.3. Network representation of the medium-scale E. coli model.  Substrates are circled, 

and the MDV and IDV measurements are shown in shaded squares in yellow and blue, 

respectively.  Some metabolites (in dotted square) appear more than once to make the figure more 

readable. 

 

Figure D.1.4. Practically unidentifiable exchange rates of reversible reactions of medium-scale E. 

coli network using available measurements.  Reactions in solid circle are found by solving 

DynaRange for the EMU representation of the network (Antoniewicz et al. 2007a) using 

GAMS/CONOPT3 NLP solver (Drud 1994) from multiple starting points.  A pair of nodes that 

are connected by an edge correspond to alternative measurements recommended by conservative 

OptMeas for determining the system. 



 

E. Specific Aim 4: Computational Strain Design 

E.1 Identification of Non-native Production Routes and Engineering Interventions for the 

Microbial Synthesis of Long-chain Alcohols 

The work in this section was published [99].  

E.1.1. Introduction 

Increasing demands for renewable energy and environmental concerns have stimulated an interest 

towards the production of second generation biofuels from renewable sources [109]. For the past 

few decades, bio-ethanol was considered as a substitute for transportation fuels. More recently, 

long-chain alcohols (C3-C5) have also emerged as biofuel alternatives because of their higher 

energy density and ease of storage [382]. Microorganisms from diverse environments naturally 

produce ethanol during fermentation. However, the natural synthesis of higher alcohols is not as 

commonplace with the exception of certain Clostridia strains [383, 384]. One possible production 

alternative for 1-butanol and 1-propanol is to use native pathways in Clostridium acetobutylicum 

[103, 105, 385-387]. An alternative approach is to integrate non-native pathways into standard 

microbial production hosts (i.e., Escherichia coli or yeast) by exploiting the conversion of key 

intermediary amino acids into long-chain alcohols [388, 389]. In this regard, numerous efforts 

have been made in the recent past to clone and express Clostridia genes (butyryl-CoA 

dehydrogenase, bcd) responsible for the production of 1-butanol in E. coli [390-392]. Homologs 

and isoenzymes of bcd from Megasphaera elsdenii [393, 394] and crotonoyl-CoA reductase (ccr) 

from Streptomyces coelicolor [395] have been tested. Recently, enzymes catalyzing the final 

steps of the Ehrlich pathway [396] in yeast were recruited in E. coli to convert 2-ketoacids into 1-

butanol and isobutanol [15]. The global aim to converting biomass to energy has led to an 

increased interest in transferring non-native metabolic pathways and enzymes into industrial 

production hosts such as E. coli [104, 397] or Saccharomyces cerevisiae [398].  

An important goal of this research requires extending the metabolic confines of microbial hosts 

by recruiting non-native biosynthetic pathways. So far, studies concerning the incorporation of 

heterologous pathways relied largely on human intuition and literature reports followed by 

experimentation [84, 85]. Nowadays, rapidly expanding compilations of biotransformations such 

as KEGG [86] and BRENDA [87] are increasingly being prospected to identify biosynthetic 

routes to long-chain alcohols. With a combined size that accounts for over 60,000 enzymatic 

reactions and 250,000 metabolites, these databases include reactant and product designation, 

stoichiometric coefficients, organism assignment, and occasional thermodynamic information for 

pathways [399]. Several optimization and graph-based methods have been employed to 

computationally assemble novel biochemical routes from these sources. Given a set of reactions 

(i.e., Universal database) the OptStrain [88] procedure uses a mixed-integer linear optimization 

representation to identify the minimal number of reactions to be added (i.e. knock-ins) into a 

genome-scale metabolic model to enable the production of the new molecule. However, the 

developed universal database, at the time, was limited to only approximately 4,000 reaction 

entries. The combinatorial nature of the problem poses a significant challenge to the OptStrain 

methodology as the number of reaction database entries increase from a few to tens of thousands. 

At the expense of not enforcing stoichiometric balances graph-based algorithms have inherently 

better-scaling properties for exhaustively identifying all min-path reaction entries that link a 

source with a target metabolite. Hatzimanikatis et. al. [89] introduced a graph-based heuristic 

approach to identify all possible biosynthetic routes from a given substrate to a target chemical by 

hypothesized enzymatic reaction rules. Recently, a new scoring algorithm [91] was introduced to 

evaluate and compare novel pathways generated using enzyme-reaction rules. The identified 

pathways may involve conversions for which no enzymatic activity has been isolated for before. 



While this could shed light to truly novel production avenues, it may be more time-consuming to 

implement. In addition, several techniques such as PathMiner [92], PathComp [93], Pathway 

Tools [94, 95], MetaRoute [96], PathFinder [97] and UM-BBD Pathway Prediction System [98] 

are in use to search for bioconversion routes in reaction databases. Most of these methods, so far, 

have been employed to aid metabolic pathway reconstructions by matching putative enzymes 

with reference pathways while their contribution towards strain optimization has so far been 

limited.  

In this work, we introduce a min-path graph procedure for in overcoming the complexity 

associated with exhaustively identifying all possible ways of linking a source with a target 

metabolite. The procedure is designed to remain tractable even when reaction database entries 

reach hundred of thousands. The first step, in this effort involved the incorporation of reaction 

and metabolite entries from both KEGG [86] and BRENDA [87] databases into a single 

repository. A customized min-path algorithm [100] is then employed to compute all possible 

pathways that enable the bio-production of a target alcohol molecule. We further scrutinize the 

identified pathways by first incorporating them into the genome-scale metabolic model of the 

production host microorganism and subsequently examining their maximum theoretical yields, 

number of enzymatic steps needed and cofactor availability. We demonstrate our integrated 

framework by exploring pathways from pyruvate (produced in E. coli) to 1-butanol. We then 

selectively add one or more of these pathways to the latest genome-scale metabolic model of E. 

coli, iAF1260 [49] and use our recent OptForce [196] procedure to predict metabolic 

interventions (i.e., up-/down-regulations and knockouts).  

E.1.2. Methodology 

The graph-based procedure discussed here is aimed at elucidating all possible biochemical routes 

from compounds found in the metabolic network of a desirable production host to a target 

molecule of interest. Alternatively, the procedure can also be used to track native routes that may 

increase productivity over known synthesis pathways by restricting the reaction entries to the 

ones present in the metabolic model of the production host. To provide the search procedure with 

known metabolic routes, we downloaded the most up-to-date version of the KEGG database [86] 

and extracted approximately 9,000 reactions and 16,000 metabolites. Unfortunately, the KEGG 

database does not contain complete production pathways of long-chain alcohols. We therefore, 

added a few hundred reaction entries from the BRENDA database [87] that are relevant to 

biofuels production to restore the metabolic connectivity to long-chain alcohols. It is important to 

note that we did not globally reconcile the entire KEGG database with BRENDA database 

(containing ~250,000 metabolites and 67,191 reactions). Instead, for all reactions in BRENDA 

associated with the synthesis of the target alcohol, we manually recorded identifiers for all the 

reactants, products and stoichiometric coefficients and integrated them with the KEGG entries 

into a single database.  

Sorting out the naming inconsistencies for compounds was the most time consuming 

step. To accomplish this, we made use of available synonym data from PubChem [400] to arrive 

at unique metabolite identifiers. Reactions with generic (e.g. metabolites named as “alcohol”, 

“aldehyde” etc.) descriptions for reactant/product compounds, unknown stoichiometry and the 

ones that involve macromolecules (e.g. RNAP) were excluded. The integrated database used in 

this work spans 9,921 reactions and 17,013 metabolites from both BRENDA and KEGG.  

We used the min-path procedure as depicted in Figure E.1.1 to trace all possible paths 

between a source and a target metabolite. We first computationally transformed the information 

contained within the stoichiometric coefficients (Sij) that track participation of metabolites in 

reactions into a directed metabolite-to-metabolite graph (Nii) where nodes represent metabolites.  

A directed arc with a weight of one exists between two nodes if one or more reactions in the 



database allow the direct bioconversion from one metabolite to the other. If no such reaction 

exists then a very large cost value is assigned to signify that their direct interconversion is 

disallowed. Small molecules (e.g. water, carbon dioxide) and cofactors (e.g. NADP, ATP) are 

involved in a large number of reactions and thus can link reaction steps that do not share any 

additional metabolites. We therefore exclude all such associated directed arcs before employing 

the shortest path algorithm. We next compute all k-shortest “loopless” pathways [100] between a 

source and a target alcohol molecule. We start from the shortest path (k = 1) and exhaustively 

sample the combinatorial space of alternative pathways by subsequently eliminating arcs, one at a 

time, belonging to the shortest pathway. We recompute the shortest path until we record all “k – 

1” shortest possible metabolic linkages to the target molecule.  

We next evaluated the multiple identified pathways based on criteria such as maximum 

theoretical yield, number of reaction steps needed and co-factor requirements. Given a choice of a 

pathway to be added, we use our recent OptForce procedure [196] to identify additional strain 

manipulations (knockouts, up/down-regulations for fluxes) that guarantee a pre-specified yield 

for the alcohol molecule. The OptForce procedure uses metabolic flux measurements available 

for the wild-type strain and identifies which fluxes must depart from the original ranges to ensure 

the overproduction target for the desired alcohol molecule. Based on these necessary network 

changes, we combinatorially identify the minimal set of engineering interventions that result in a 

new flux distribution consistent with an overproducing strain of host microbe. All lexicographic 

searches needed to integrate database entries were performed using Python (version 2.4.3) and the 

algorithm for the identification of shortest paths was coded using C++ on a 2.6 GHz AMD 

Opteron Processor with 32 GB of ECC RAM.  

E.1.3. Results 

In this section, we demonstrate our min-path procedure by identifying all synthesis routes using 

KEGG and BRENDA database entries for producing 1-butanol from pyruvate. We first select 

promising pathways and subsequently integrate them with the genome-scale metabolic model of 

E. coli, iAF1260 [49]. Using OptForce [196] we next pinpoint metabolic engineering strategies 

for overproduction. Traditionally, two distinct synthesis routes have been employed in E. coli for 

the production of 1-butanol. The first pathway involves a fermentative transformation of pyruvate 

and acetyl-CoA to 1-butanol by the action enzymes from C. acetobutylicum [397]. The second 

pathway takes advantage of enzymes with broad-range substrate specificity to convert natural 

amino acids in E. coli into ketoacid precursors [15, 104] and eventually 1-butanol. In both 

pathways, pyruvate acts as an important precursor and a branching metabolite for butanol 

synthesis [401]. The fate of pyruvate at the end of glycolysis depends on the engineering 

strategies imparted to the production host. Therefore, here we selected pyruvate as a source 

metabolite in exploring pathways to 1-butanol (sink metabolite).  

Figure E.1.2 illustrates all identified pathways from pyruvate to 1-butanol using the 

integrated reaction database. With the exception of the thiobutanoate pathway (present in the 

BRENDA database), all other pathways involved butanoyl-CoA and 1-butanal as shared 

intermediates that are converted to 1-butanol using secondary alcohol dehydrogenase (adhE) 

from C. acetobutylicum. The min-path procedure recapitulated both the fermentative and ketoacid 

pathways for 1-butanol synthesis (shown in dotted lines). In addition, the algorithm uncovered a 

number of possible transformations to butanoyl-CoA involving intermediate metabolites that are 

produced in E. coli. For example, pyruvate can be converted into acetyl-CoA using pyruvate 

dehydrogenase natively present in E. coli. However, the conversion from acetyl-CoA to butanoyl-

CoA is not favored because 1-butanal produced along the pathway is used up as a co-reactant 

along other reactions in the same pathway. This severely reduces the flux of the 1-butanol to less 

than 10 mmol/g.DW.hr which is about ten times less than the yields from existing pathways [15, 

382]. Similarly, pathways involving methylmalate and methylbutanoate as intermediates require 



cofactors, which in turn, adversely reduce the yield of 1-butanol. Upon integrating these reactions 

in the metabolic model of E. coli, we estimated that the maximum theoretical yield of 1-butanol 

synthesis was only around 32 mmol/g.DW.hr.  

The thiobutanoate pathway recruits a decarboxylase and a reductase enzyme and defines 

a novel synthesis route distinct from the two existing pathways. Instead of using dehydrogenases 

to convert butyraldehyde into 1-butanol, the new pathway proceeds with the transamination of 

methionine into 2-oxomethylthiobutanoate and eventually into 1-butanol. Notably, a native 

transaminase (E.C. 2.6.1.42) enzyme in E. coli is known to catalyze the conversion of L-

methionine to L-glutamate with 2-ketoglutarate as a co-reactant [402]. The intermediate product, 

2-methylthiobutanoate, is subsequently decarboxylated (E.C. 4.1.1.72) to 3-methylthiopropanal. 

This conversion is native in Lactococcus lactis [403]. Subsequently, 3-methylthiopropanal is 

reduced (E.C. 1.1.1.265) to 1-butanol by a reductase present in yeast [404]. It is important to note 

that the decarboxylase reaction removes a considerable amount carbon in the form of carbon 

dioxide, reducing the yield of 1-butanol by ~22% in comparison to the ketoacid pathway.   

Next, we integrate these reactions in the iAF1260 metabolic model of E. coli and use 

OptForce [196] to identify metabolic interventions to meet an imposed overproduction target. The 

identified results are contrasted against the ones derived when the ketoacid pathway is integrated 

into the E. coli model. In both the case studies, the initial strain is first characterized by estimating 

the maximal range of flux variability using the intracellular flux measurements [405] available for 

the wild-type strain of E. coli, BW25113. The OptForce employs a bilevel optimization procedure 

to first identify the reaction fluxes that must increase or decrease (MUST sets) outside the wild-

type flux ranges to meet the overproduction target. A minimal set of direct interventions (i.e. 

knock-up/down/outs) that guarantee a pre-specified yield for 1-butanol is next extracted from the 

MUST sets. All abbreviations for reactions and metabolites adhere to the iAF1260 metabolic 

model conventions.  

E.1.3.1. Case 1: 1-butanol Synthesis using Thiobutanoate Pathway 

Figure E.1.3 lists the identified MUST set of reactions considered one reaction at-a-time. The 

yield for 1-butanol was set at 95% of its theoretical maximum, while allowing the production of 

5% biomass to support growth. The thiobutanoate pathway branches away from 2-ketoglutarate 

along the oxidative arm of the TCA cycle. In order to increase the pool of oxaloacetate available 

for the TCA cycle, the fluxes of reactions in the glycolytic pathway (PGI, PGM, PGK, PPC etc.) 

increase beyond their initial ranges. Many reactions in the pentose phosphate pathway (e.g. GND, 

TKT1/2, TALA etc.) were also classified in the MUSTU sets. The increase in the fluxes for these 

reactions replenishes the glycolytic intermediary metabolites. Since, methionine is required as an 

important precursor for 1-butnaol pathway, reactions in methionine biosynthesis (e.g., CYSTL, 

METS, MTHFR2, CYSS) also members of the MUSTU set. The fluxes of reactions leading to 

competing by-products, pyruvate kinase (PYK) and pyruvate formate lyase (PFL) decrease below 

their initial ranges. Since biomass production is reduced to 5% of its theoretical maximum, 

reactions in amino acid biosynthesis that are directly coupled to growth appear in the MUSTL 

sets.  

As expected, more complex flux changes are revealed in the network of MUSTUU, 

MUSTUL and MUSTLL sets shown in Figure E.1.4. These results underscore the importance of 

increasing the flux through the oxidative arm of the TCA cycle (FUM etc.) or at the same time 

negating the drain towards by-products such as acetate and ethanol. Additionally, in the MUSTUU 

set, the flux of propanoyl CoA:succinyl CoA transferase (PPCSCT) or the flux of succinyl CoA 

synthetase (SUCOAS) must increase. Both of these fluxes are in close proximity to 2-

ketoglutarate, which is an important branching metabolite in the TCA cycle for the thiobutanoate 

pathway. We carry out this hierarchical classification by considering three reactions at-a-time 



(see Figure E.1.5). The increase in fluxes for IPPMI, IMPC and AIRC3 further boosts the 

synthesis of precursors for methionine through amino acid biosynthetic pathways.  

It is to be noted that the MUST set of reactions represent the changes that must take place 

in the metabolic network for overproduction that can be directly or indirectly imparted by means 

of metabolic interventions. OptForce identifies the minimal set of reaction interventions (culled 

from the MUST sets) that forces the target yield for 1-butanol. Figure E.1.6a shows the FORCE 

set of reactions for overproducing 1-butanol in E. coli using the thiobutanoate pathway. Up 

regulating one of the two glycolytic fluxes, glucose-6-phosphate isomerase (PGI) or 

phosphoglycerate mutase (PGM), replenishes phosphoenol pyruvate available for the anaplerotic 

conversion to oxaloacetate. The up-regulation for phosphoenol pyruvate carboxylase (PPC) 

results in increasing the amount of oxaloacetate for the TCA cycle. Increase in fluxes of PPCSCT 

or SUCOAS ensure the availability of 2-ketoglutarate for transamination along the thiobutanoate 

pathway. In addition, the FORCE sets also include knockouts for pyruvate formate lyase (PFL) to 

reduce the drain towards by-products (acetate and ethanol) and methylenetetrahydrofolate 

dehydrogenase (MTHFD) to prevent the drain of L-methionine away from the thiobutanoate 

pathway. These coordinated set of interventions lead to a guaranteed yield for 1-butanol of 73 

mmol / g.DW.hr.  

E.1.3.2. Case 2: 1-butanol using Ketoacid Pathway 

Figure E.1.6b contrasts the metabolic pathways and branching points for the ketoacid and 

thiobutanoate pathways on a metabolic map of E. coli, respectively.  hile the thiobutanoate 

pathway branches out from a TCA cycle intermediate, pyruvate serves as an important precursor 

for 1-butanol produced via the ketoacid pathway. We integrated the reactions along this pathway 

to iAF1260 metabolic model of E. coli and applied our OptForce procedure to predict the MUST 

sets and subsequently, the FORCE sets. Figure E.1.6b shows the FORCE set of eight engineering 

interventions for 1-butanol synthesis in E. coli using the ketoacid pathway. Herein, OptForce 

suggested the up-regulation in the fluxes of reactions that convert key amino acids to 1-butanol 

precursors (i.e., serine deaminase (SERD) and methylglyoxal synthase (MGSA)). Presumably due 

to the proximity of the ketoacid pathway to the synthesis routes for natural fermentation products 

(acetate, ethanol, formate, lactate etc.), the down-regulations for pyruvate formate lyase (PFL) 

and lactate dehydrogenase (LDH) are needed to reduce carbon drain. Additionally, down-

regulation of TCA cycle reactions, fumarate reductase (FRD3) and aconitase (ACONTa/b), also 

appear as essential network changes to ensure overproduction.  

A notable difference between the two cases is the down-regulation of phosphogluconate 

dehydrogenase (GND) using the ketoacid pathway. While the flux of GND must increase for the 

thiobutanoate pathway (i.e., member of MUSTU set), OptForce suggests that its flux must be 

reduced to facilitate 1-butanol synthesis when using the ketoacid pathway. In addition, while PGI 

and PGM were identified as up-regulations for the thiobutanoate pathway no glycolytic reactions 

were up- regulated in the FORCE set for the ketoacid route. Since the ketoacid pathway branches 

out from precursors synthesized at the end of glycolytic pathway, OptForce indicates that the 

depletion of carbon can be minimized through a number of down-regulations for competing 

pathways without the need of overexpressing glycolytic enzymes. However, in the thiobutanoate 

case, the anaplerotic phosphoenol pyruvate carboxylase (PPC) is required to replenish 

oxaloacetate and to sustain an increased flux through the TCA cycle.  

E.1.4. Discussion and Summary 

We have presented a graph-based min-path procedure that combines metabolic information from 

online databases (KEGG and BRENDA) to identify all possible biochemical synthesis routes to 

target biofuel candidates. The results for 1-butanol pathways reveal several new heterologous 

synthesis routes that can be computationally evaluated for overexpression and cloning 



experiments. Our algorithm was able to identify existing pathways (ketoacid and fermentative 

pathways) used for 1-butanol production. Interestingly, we the results also suggested several 

native synthesis routes to precursors of 1-butanol in E. coli. For example, seven pathways from 

pyruvate to butanoyl-CoA involved intermediate metabolites produced by naturally occurring 

enzymes in E. coli. However, the yield of 1-butanol using these pathways was limited. In 

addition, the algorithm also uncovered a new alternative route to 1-butanol synthesis through the 

thiobutanoate pathway. Although, the decarboxylation of methylthiobutanoate reduced 1-butanol 

production, the computationally derived yield was comparable to the existing strains [15, 382, 

397].  

The results suggested by our OptForce procedure [196] revealed the differing nature of 

metabolic interventions required to overproduce 1-butanol using the thiobutanoate and ketoacid 

pathway. Recruiting the thiobutanoate pathway for 1-butanol overproduction required up-

regulations for glycolytic fluxes (PGI, PGM). On the other hand, the ketoacid precursors were 

made available to 1-butanol synthesis by knocking down competing pathways (PFL, ACONTa/b 

etc.). The flux changes observed in the MUST sets for the two cases also showcased contrasting 

patterns. For example, for the thiobutanoate pathway, the fluxes of the pentose phosphate 

pathway increased so that alternative routes for glutamate and other amino acids are maintained 

to support growth. Although, none of the reactions from pentose phosphate pathway appeared in 

the FORCE sets, on the contrary, the OptForce procedure indicated that the fluxes of 

phosphogluconate dehydrogenase (GND) must be down-regulated while using ketoacid pathway 

to synthesize 1-butanol.  

Several interventions that were identified in the FORCE sets have been used in existing 

strains to produce 1-butanol. For example, recent strategies to delete host competing pathways 

encoded by the genes ldhA, frdBC, pta, pfl and adhE [15, 382, 397] have resulted in a three-fold 

increase in the yield of 1-butanol. In addition, enhancing glycolytic fluxes by overexpressing 

NADH-regenerating enzymes were implemented in an E. coli strain [406] that yielded 580 mg/L 

of 1-butanol. In addition to the existing interventions, the OptForce procedure also uncovered 

new knockouts and up-regulations that coordinate an increased synthesis of 1-butanol. For 

example, the up-regulation of glycolytic fluxes and phoephoenolpyruvate carboxylase (PPC) 

increase the amount of oxaloacetate for the TCA cycle. However, in order to effectively utilize 

the transamination pathway, OptForce suggested up-regulations for PPCSCT and SUCOAS that 

are in close proximity to the branching thiobutanoate pathway.  

The procedure detailed in this work allows for the enumeration of all possible metabolic 

routes to any target compound. Alternatively, the graph-based procedure can be used to identify 

alternative synthesis routes found entirely within the production host by selectively exploring 

pathways that are native. Currently, the procedure uses all the biotransformations found in the 

KEGG database [86, 407] and a selected set of reactions from the BRENDA [87] database. The 

min-path search procedure remains tractable for much larger compilations of 

reactions/metabolites. It is to be noted that the interventions proposed by OptForce pertain to the 

reactions. A complete mapping between the reactions and the genes is required for projecting the 

results at the gene-level. 

 



 

Figure E.1.1: Graph-based procedure to min novel pathways from reaction databases using Yen’s 

shortest path algorithm.  

 

Figure E.1.2: Pathways identified from pyruvate to 1-butanol using the graph-based procedure. 

Widely spaced dotted arrows represent the ketoacid pathway and the closely spaced arrows 

represent the fermentative pathways for 1-butanol synthesis. The thiobutanoate pathway is shown 

in grey.  



 

Figure E.1.3: MUSTU and MUSTL set of reactions for 1-butanol synthesis in E. coli using the 

thiobutanoate pathway.  

 

 

Figure E.1.4: MUSTUU, MUSTUL and MUSTLL set of reactions for 1-butanol synthesis using the 

thiobutanoate pathway. Black ovals represent reaction flux down-regulations while white ovals 

denote up-regulations.  



 

Figure E.1.5: Minimal set of network changes for triples (i.e. MUSTUUU, MUSTUUL, MUSTULL 

etc). Reactions whose fluxes must increase are shown in white ovals while reactions whose fluxes 

decrease are shown in black ovals.  

 

 

Figure E.1.6: The FORCE set of reactions for 1-butanol synthesis using the thiobutanoate (left) 

and the ketoacid (right) pathways. All the reaction interventions are shown in bold. Up-

regulations are denoted with () symbol, down-regulations are denoted with () symbol and the 

knockouts are shown with () symbol.  



 

E.1 Ground and transition state computations for enzymatic reactivity and specificity 

E.1.1. Introduction 

A challenge in enzyme design is to improve substrate specificity, active site access, and 

binding while maintaining or even improving transition state stabilization. Because of 

enzymes’ immense potential to provide solutions to challenges in biomass treatment, 

biosensing and environmental pollutants treatments, the goal of this project is to develop 

a new computational workflow utilizing highly accurate quantum mechanical methods. 

This will be done as purely (exhaustive) experimental library screening approaches 

cannot predictably lead to optimized designs within a reasonable amount of time/cost. 

We are addressing this challenge by putting forth and demonstrating an enzyme 

design workflow relying on computations at multiple states. We are fine-tuning and 

benchmarking the new computational workflow using the E. coli dihydrofolate reductase 

catalyzing the reduction of dihydrofolate to tetrahydrofolate as the test system given the 

abundance of available mutant activity data and modeled transition states. Concurrently 

we are deploying the developed IPRO computational base to re-engineer cytochrome 

P450BM-3 monooxygenase, which is functionally expressed at high levels in E. coli and 

has become a prime target for hydroxylase engineering of small alkanes towards 

alcohols. P450BM-3 is being engineered to hydroxylate ethane, a non-natural substrate. The 

reaction mechanism for P450BM-3 is well established, experimental design attempts exist 

for comparison, and the system is computationally tractable. From a practical viewpoint, 

the selective oxidation of light alkanes can produce liquid fuels or value-added chemicals 

from remote natural gas sources or less valuable refinery by-products. By studying these 

systems, our goal is to develop and demonstrate a general computational workflow that 

can create enzymatic activity for a non-natural substrate. 

E.2.2. Methodology 

We explored the application of molecular mechanics (MM) and quantum mechanically 

(QM)-parameterized MM calculations to test our computational methodology against 

existing experimental data prior to moving forward with computational design.  Arnold 

and coworkers used directed evolution to identify a mutant of P450BM-3, 535-h, which 

was capable of hydroxylating ethane to ethanol. This mutant involved 14 amino acid 

substitutions relative to the wild-type, with 3 mutations occurring in the active site region 

(Positions 78, 82, 328). Our preliminary binding calculations explored whether the 535-h 

mutant performance can be explained by improvements in enzyme-ethane binding and 

enhanced transition state stabilization. A computational saturation mutagenesis procedure 

written in Python using CHARMM was used to sequentially mutate each one of the 14 

positions identified by the Arnold lab in mutant 535-h to every possible amino acid. 

Interaction energy changes upon mutation were calculated using the generalized born 

implicit solvent model (GBSW).[408]  

E.2.3. Results 

 



In Figure E.2.1, we plot the interaction energy improvement (-∆∆Gcalculated ) compared to 

the wild-type enzyme for every position and single mutation choice. A positive value in 

Figure E.2.1 indicates stronger binding of ethane to the mutant as compared to the wild-

type enzyme. Looking at the 53-5h mutations (one at a time) arrived at through the 

directed evolution procedure we find that they are sometimes but not always the most 

energetically beneficial. In particular, for residues 78 and 328 that are in contact with the 

substrate (but not for position 82) the identified mutations are near at the interaction 

energy optimum. These results confirm that energy interactions at the ground state 

provide only part of the answer to the enzymatic activity level improvement puzzle. We 

next explored whether transition state energy interactions may provide any missing 

pieces. We applied DFT calculations to obtain the transition state structure and charge 

distribution obtained from the DFT-determined transition state to reparameterize the MM 

force-field for evaluation of transition state stability.  This QM-derived MM force-field 

was then used to estimate the impact of mutations on transition state stability. 

 

 

Figure E.2.2 illustrates the results of the computational saturation mutagenesis 

applied to the transition state, where the interaction energy was calculated exactly the 

same way as in the ground state calculations. Interaction energy improvements at the TS 

are significantly higher on average than the corresponding ones at the ground state due to 

the difference in charge distribution between the ground and transition states. We find 

that single point mutations (i.e. K94I, A290V, F205C) that had little or no effect on the 

energy interactions at the ground state provide significant stabilization at the transition 

state. Conversely, mutations that seem to not make a difference at the transition state (i.e. 

A184V, A328F) are important for energy stabilization at the ground state. These results 

demonstrate the complementary nature of GS and TS calculations for explaining and 

improving enzymatic activity levels.  

Figure E.2.1: Interaction energy improvement (-G), compared to the wild-type P450BM-3, upon single amino 

acid mutations at the 14 positions changed in mutant 535-h for the binding of the ground state (ethane) structure.  

The x-axis value represents the mutated position in the enzyme.  The blue (top) amino-acid abbreviations 

represent the computationally determined optimal mutation at that position, whereas in cases the experimental and 

computationally optimal mutant differ, red values (bottom) indicate the experimental mutation. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Building upon what we’ve learned from the mutagenic analysis above, we next 

proceeded to design the P450. We first had to select the positions to be designed. 

Therefore we proposed a new approach to systematically select design positions. In our 

approach we employed sequence, structural, and energetic factors. Shannon entropy 

analysis selected positions with intermediate sequence variability. Next, the distances of 

the entropically identified positions to the ethane were calculated, and only those within 

8Å were selected as part of the final group of design positions. Lastly, we developed and 

performed a computational alanine scanning mutagenesis mutating every sequence 

position of P450BM3 to alanine, and identifying which of the positions affected the 

interaction energy with the ethane most drastically. Design positions that changed the 

interaction energy by more than 1 standard deviation were considered in the final pool of 

design positions. Based on the sequence, structure, and energetic factors, as well as 

knowledge of the active site residues, we refined our final # of design positions to 16 

positions. 

We next used the IPRO framework running in parallel and with solvation and 

optimized the interaction energy between the P450 and the ground and the transition 

states calculated previously. IPRO generated 8 ground state and 6 transition state 

solutions that optimized the interaction energy between the P450 and the substrates 

presented in Table E.2.1. 

  

Figure E.2.2: Improvement in interaction energy (-G), compared to the wild-type P450BM-3, upon single 

amino acid mutations at the 14 positions changed in mutant 535-h for the transition state structure. Mutations 

were found that significantly improve the interaction energy between the protein and the transition state 

structure that were not found to improve the binding of the reactant state (ethane).  



Table E.2.1:  IPRO generated designs optimizing the interaction energy between the 

ground and transition states. 

Ground State Designs Transition State Designs 

260G 75D, 78K, 82G 

88G, 260G 75D, 78K, 82G, 260G 

88G, 260G, 327G, 328G 
75D, 78K, 82G, 260G, 327G,  
328G 

88G, 200K, 260G, 327G, 328G 
75D, 78K, 82G, 177G, 182K,  
260G, 327G, 328G 

88G, 177K, 182G, 200K, 
260G,  
327G, 328G 

75D, 78K, 82G, 177G, 182K,  

200K, 260G, 327G, 328G 

47K, 88G, 177K, 182G, 200K,  
260G, 327G, 328G 

47H, 75D, 78K, 82G, 177G,  
182K, 200K, 260G, 327G, 328G 

47K, 88G, 177K, 182G, 200E,  
260G, 327G, 328G 

 

47K, 94R, 88G, 177K, 182G,  
200E, 260G, 327G, 328G 

 

 

At this stage in the design process, we cannot describe any specific designs in 

detail without experimental results. Instead, we will highlight some of the general trends 

found. We are seeing that IPRO predicted more positive and more hydrophobic residues 

at the ground state. The change in charge can be explained by the partial negative charge 

on the oxygen portion of the iron-oxo species. For the transition state, the residues 

predicted were net smaller than the wild-type. Mutations to glycine can be rationalized by 

the backbone needing more flexibility to conform around the smaller ethane substrate 

compared to the large fatty acids P450 naturally hydroxylates.  

We next employed IPRO using the design positions found by Arnold and 

coworkers with directed evolution. The goal of this was to compare whether the 

experimentally-found positions would improve interaction energy and the number of 

stabilizing residue contacts within 3 angstroms to the ethane relative to the design 

position selection procedure outlined above.  

Wild-type P450 had 11 contacts within 3 angstroms of the ethane. Our best 

ground state design improved the number of contacts to 17, whereas the experimentally 

determined positions improved the number of contacts to 18. IPRO using the 

experimentally derived positions improved the interaction energy by 25.6% relative to the 

best design predicted by our systematically determined design positions. At the transition 

state, we observed just the opposite. The IPRO designs using our design positions 



improved the number of contacts to 22 from 11, whereas the designs predicted by Arnold 

and coworkers’ design positions improved the number of contacts to 16.  Our best design 

improved the interaction energy by 58.1% relative to the best design predicted with the 

Meinhold et al. design positions at the transition state. The design positions found 

experimentally improved the interaction energy the best at the ground state, whereas the 

systematically selected design positions improved the interaction energy the best at the 

transition state.  

Finally, with several designs found to improve the ground and transition state 

interactions, we confirmed that the ethane was still capable of entering the binding pocket 

of the top designs. Figure E.2.3 shows the binding pockets of the best ground and 

transition state designs using our systematically selected design positions, relative to the 

wild-type binding pocket. Clearly the substrate can still access the binding pocket to 

bind/unbind. 

 

Figure E.2.3: Visual depiction of best ground and transition state binding pockets relative to the wild-type binding 

pocket. The best designs improved the number of contacts while still allowing the substrate to bind/unbind.  

 

With the shortage of experimental data for this system, the next steps would be to 

construct the designs predicted both by both sets of design positions for experimental 

quantitative comparison. These limited number of sequence designs are offered for 

further experimental study 

We are currently carrying out the calculations described above on dihydrofolate 

reductase (DHFR) to reduce dihydrofolate to tetrahydrofolate. This system is being 

explored since there is an abundance of experimental mutagenesis data to perform 

benchmarking on both positive and negative designs. These calculations will lead to 

experimental constructs of top designs as DHFR is much easier experimental system to 



work with. Computational designs leading to improved DHFR activity will validate our 

preliminary hypothesis that ground and transition state interaction energies are 

complementary so we can proceed to experimentally construct the best P450 designs.  
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