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Bayesian Model Selection for Good Prediction of Future Reliability
Using a Generalized Linear Model

Adam L. Pintar', Christine M. Anderson-Cook?, Huaiging Wu’

'National Institute of Standards & Technology
*Los Alamos National Laboratory
lowa State University

Generalized linear models such as probit and logit regression are important tools for assessing
reliability; however, what explanatory variables to include is an important consideration. In the
Bayesian paradigm, if unimportant explanatory variables are included, posterior distributions
will have inflated variance. If important explanatory variables are excluded, posterior
distributions can be biased and miss their (true, but unknown) target. Several model selection
methodologies currently exist for this setting, including selection of the model with smallest
deviance information criterion, the model with largest posterior probability, or the model
containing all terms with posterior probability greater than 0.5. A common theme to all of these
methodologies is that they consider only the observed data. However, if one is interested in
predicting future reliability, a different strategy is suggested because it is possible that the best
model for prediction is dependant on age range. We propose a model selection methodology that
focuses on good prediction over a user-specified distribution on the covariate space. The
methodology quantifies the prediction ability of all models under consideration at covariate
points sampled from the user-specified distribution. Then, a best model is identified by
graphically comparing the distributions of prediction abilities. The methodology is illustrated
via an example, and a simulation study highlighting its performance is presented.

KEY WORDS: Model Selection; Reliability; Bayesian Information Criterion; Deviance
Information Criterion; Posterior Probability; Bayesian Model Averaging
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Intraduction

Motivation

» When the prediction of reliability over a particular part of the
covariate space is the goal of model building, it should
influence the selection process

» Consider a population of missiles:

» Will the population of missiles require maintenance in the next
5 years or not?

» Answering that question requires prediction the reliability of
the missiles 5 years into the future

» Because extrapolating inflates the prediction variance, a model
with less terms may be preferred

> Statisticians know well the dangers of extrapolation

» When possible, extrapolation should be based on underlying
scientific or engineering understanding
> The methodology is not restricted to extrapolation
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Intraduction

Related Work

» Model selection
» Deviance information criterion
» Stochastic search variable selection
» Median probability model
» Rank with posterior probabilities
» Model Averaging
» Graphical tools used in experiment design literature

» Boxplots
» Fraction of design space plots
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Intraduction

Procedure Overview

1. Characterize the relationship between covariates, and use that
characterization, as well as the study goal, to select the
covariate distribution of interest (DI)

2. Randomly sample new points from the DI

3. Calculate a statistic (presented on the next slide), on which
comparisons are based, at all newly sampled points for all
models considered

4. Compare models numerically and graphically using those
statistics

5724

Introduction

The Measure of Prediction Ability |

» The best possible posterior distribution for prediction is a
point mass at p(xpew) the true reliability, if it is known
» Xpew IS @ sampled point from the DI
» Let Fx,,, be a cumulative distribution function (cdf)
representing a point mass at p(Xpew)
» Fx,., steps from 0 to 1 at p(Xpew)
» Let Fym be the posterior cdf of p™(x7,)

» The discrepancy between the cdfs can be quantified by the
following expression

X

i () = Fxpe ()"
du

V' V(Xnew)

Dh(xiun) = § [

— 0

» Need a surrogate for p(Xpew)
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Introduction

The Measure of Prediction Ability Il

» lllustrations with k =1 and V(xpen) =1
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Missile Example

Example Introduction

v

Response
» Y = pass/fail of test coded as 1/0
Two Covariates

v

» X; = Age in years
» X, = Usage in time in ready mode
Goal
» The observed Xj values are between 2.23 and 24.97
» Predict future reliability for X; € [25,30]
Full model (probit model)
» Y ~ bernoulli(p)
» V=p(l-p)
» p(X) = O(fo + 51 X1 + o Xo + PuiXP + P2 XF + P12 X1 X2)
» Number of models, Npog = 2° = 32

v

v
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Missile Example

Covariate Distribution of Interest
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» Black circles depict the observed (X1, X3) pairs

» Red circles depict points sampled from the DI

» Increasing spread and a slightly positive trend
9/2

Missile Example

The Posterior cdf of Reliability for Model m |

> The prior distribution
= Can use an informative prior if prior information is available
» A conjugate prior is not available
» We use the non-informative g(3™) o< 1 in the absence of prior
information
» The posterior distribution of 3™ is unavailable in closed form,
so we use a Markov Chain Monte Carlo (MCMC) algorithm
> Let (8™ (8™, ... (8™)(NmcmC) be a sample from the
posterior distribution of 3™
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Missile Example

The Posterior cdf of Reliability for Model m |l

» A sample from the posterior distribution of reliability for
model m at Xpey is then

(P (xpew)) V) = (X, (B™))
(P™ (X)) = (X (B™)?)

(™ (x5 )) M) = (g, (87) M)

new new

> Letting (p7 (X)), (P (X7ew )P, - (P (X7, ))[Miactec]
be the ordered posterior draws of reliability,

Nmcme

Fm, (1) = 3 (" (xmen ) < (P (e D)

new
i=1

approximates the posterior cdf of reliability
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Missile Example

A Surrogate for p(X ew)

» Let P(M = m|y) be the posterior probability of model m

» Let p™(x™,,) be a point prediction from the posterior
distribution of p™(x7.,,)

» The weighted average

Nmod

xnew Z 'D = ’|y ( Z:ew)

can be used as a surrogate for p(Xpew)
» Options for calculating P(M = m|y)
» The BIC approximation

exp{ FBIC,}

P(M=m) =~
SO exp{ SLBIC;}

» Use an MCMC algorithm
» Carlin and Chib (1995)
» Dellaportas et al. (1998)

» Reversible Jump MCMC
12/24



Missile Example

Table of Summary Statistics

95th Percentile Mean
# terms Model value rank value rank
0 6] 173898  1(20) | 009757  1(15)
1 X, (17) 173076  3(19) | 0.7332 U7
1 X2 (3) 177032 4(21) | 1.01064  2(17)
2 X1, X, (25) 080833  1(2) | 0.46930  1(1)
2 Xp. X2 (19) 1.39035  3(7) | 0.67146  2(3)
2 Xy, X; X, (18) 158853  6(13) | 0.69645  3(4)
2 Xy, X2 (13) 1.20248  2(5) 0.8725  4(11)
3 X1, Xo, X2 (27) 075447 1(1) | 0.48818 1(2)
3 X1, X, X2 (29) 0.88400  2(3) | 070358  2(5)
3 Xy, X2, X, X% (20) 1.49895  5(12) | 071121  3(6)
3 Xy, X. Xy X, (26) 2.262 8(25) | 0.79937  4(10)
4 Xy, X, X2, X2 (31) 0.98176 1(4) 0.76852 1(8)
4 Xy, X, X2, X1 X, (28) 168413  2(17) | 070353  2(9)
5 Xi. Xp. X2, X2 XX, (32) | 1.8545  1(22) | 1.02201  1(18)

» The values are summaries of D,’;,(x,,ew) across the sample of

points from the DI

» Local ranks (with the same number of terms): outside

parentheses

Global ranks (over all models): inside parentheses

» Ordered locally according to mean

Missile Example

FCD Plot

FCD plot of lower 95% of discrepancy values with k=1

1.2

discrepancy with k=1
08 10

0.6
1

04

FCD

» Choose 25 (X; and X;) as best

13/24
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Missile Example

Results From Other Selection Procedures

[ # terms model DIC |

3 X1 Xz, X1 %5 (26) 157.72

4 X1. Xp. X2, X1 X, (30) 159.67

2 Xy. X, (25) 159.84

4 Xi. Xp. X2. X1 X (28) 160.08

3 X1, X, X2 (29) 160.21

Posterior Probability

2 X1, Xz (25) 0.51

3 X1, Xy, X1 Xp (26) 0.19

2 Xy, X2 (13) 0.14

3 X, Xp. X2 (29) 0.05

3 Xy, Xp. x? (27) 0.04

term [ X | X% | X7 X2 [ XX |

| Posterior Probability | 0.824 [ 0.998 | 0.229 | 0.064 | 0.229 |

Model 26 leads to the smallest DIC

Model 25 has the highest posterior probability

The median probability model is 25

There are similarities and differences between the 4 selection
algorithms

y¥Ywvy
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Avoiding High Predictions

When Direction of Error Matters

» In the missile example, a prediction of reliability that is too
high may be viewed as more costly than a prediction of
reliability that is too low

» A prediction that is too high can lead to too many
malfunctions in the field
» A prediction that is too low can lead to unnecessary
maintenance expense
» Avoiding high (or low) predictions can be incorporated into
the selection algorithm

S D,’;, treats discrepancy between the posterior cdf for model m
and ideal cdf, below the true reliability, equal to the
discrepancy above the true reliability

» To discourage high predictions, the discrepancy above the true
reliability is penalized more harshly than the discrepancy below

16 /24



Avoiding High Predictions

Modification of ijq and Results

F;nm (1) = Fxpey (1)

M (xnew) = i
new
k 1/k
du} | -
i :
24 B

Fem (1) = Fxpew (¥)
new

A/ V(Xnew)

+ bellu < f(Xnew)]

k
acl[u > I:’-(Xnew)]
{/R AV4 V(Xnew)

Moo

» Model 25 (X; and X3) is highlighted as best when (a., b¢) =
(1, 1) and (2, 1), and model 29 (X1, Xz, and X?) is
highlighted as best when (ac, bc) = (3, 1)
» the boxplots are over the sampled points from the DI
» The largest predicted reliability for both models is about the
same
» The median of the predicted reliabilities for model 29 is less
than that of model 25 172

Simulation Study

Overview

» 9 simulation scenarios in all
» Commonalities across scenarios
» Three covariates, Xy, X5, X3
» The full model includes the main effects, the two factor
interactions, and the three factor interaction, so 27 = 128
possible models
= N, = 200 observations
* N,yew = 1,000 sampled points from the DI
» Differences between scenarios
» The data generating model (3 models)
» p(X) = (0.75X;)
> p(X) = ¢(075X1 — 02X2)
> p(X) = ¢(075X1 — 02X1X2)
» The value of b. (3 values)
» b.=1,2,3
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Simulation Study

Observations and Dls

Simulation Study

X2
-0 1 2 3
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3
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Procedure

» For a combination of b, and a true model

»
»

Generate a data set from the true model and observed X's
Find the best model according to the new algorithm, the
model with the highest posterior probability, the model with
the lowest DIC, and the MPM

» Find the best model according to our algorithm with a proxy
to the graphical approach

am m
Calculate p™(x,,

selected models

Calculate the proportion of times that the new algorithm leads
to a p™(xm,) that is lower than p(Xpew ), which is known
Calculate the proportion of times that the new algorithm leads
to a p™(xm,,) that is lower than the p™(xm, )'s from the
other selected models

Calculate 5= >y [P™(X) = P(Xnew)]? for all of the

selected models

) at each xpew sampled from the DI for the

20/24



Simulation Study

Results |
- PBMSM HPPM DIC MPM
Simulation 1  Simulation 2 Simulation 1  Simulation 2 Simulation 1 Simulation 2 Simulation 1  Simulation 2 |
b =1
Average 0.0054 0.0052 0.0059 0.0058 0.0094 0.0087 " 0.0058 0.0086 |
Median 0.0032 0.0030 0.0032 0.0030 0.0048 0.0042 0.0033 0.0031
90th Percentile 0.0124 0.0118 0.0139 0.0136 0.0240 0.0206 0.0136 0.0130
95th Percentile | 0.0174 0.0165 0.0203 0.0200 00335 00305 0.0197 0.0191
b =2
Average 0.0063  0.0056 0.0064 0.0060 0.0007 0.0089 0.0063 0.0057
Median 0.0033 0.0030 0.0033 0.0031 0.0048 0.0049 0.0033 0.0030
90th Percentile 0.0147 0.0134 0.0147 0.0146 0.0232 0.0202 0.0146 0.0135
95th Percentile 0.0220 0.0189 0.0223 0.0216 ) 0.0336 0.03% 0.0216 0.0196
be =3 ]
Average 0.0062 "0.0060 0.0058 0.0062 0,0086 0.0092 0.0056 0.0061
Median 0.0031 0.0034 0.0031 0.0030 0.0045 0.0045 0.0032 0.0031
90th Percentile 0.0146 0.0164 0.0132 0.0150 0.0211 0.0235 0.0128 0.0144
_35(h Percentile N 0.0218 0.0256 . 0.0197 0.0223 0.0299 _003_51 0.0191 0.0220
Simulation Study
Results |l
| Simulation 1 Simulation 2
be=1
Average 0.5110 0.5126
Median 0.5323 0.5303
90th Percentile 0.9947 0.9943
95th Percentile 0.9997 0.9993
b.=2
Average 0.4063 0.4368
Median 0.3193 0.4173
90th Percentile 0.9568 0.9590
95th Percentile 0.9947 0.9944
b.=3 ‘
Average 0.3980 0.3818
Median 0.3127 0.2730
90th Percentile 0.9433 0.9136
95th Percentile 0.9897 0.9745

21/24
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Simulation Study

Results Il

HPPM DIC MPM
Simulation 1 Simulation 2 Simulation 1 Simulation 2 Simulation 1 Simulation 2
be=1
Average 0.0870 0.0805 0.3504 0.3320 0.0845 0.0772
Median 0.0000 0.0000 0.1945 0.1922 0.0000 0.0000
90th Percentile 0.4402 0.3201 0.9529 0.9441 0.5210 0.2010
95th Percentile 0.6762 0.7722 0.9737 0.9641 0.6755 0.8599
be =2
Average 0.0356 0.0334 0.2544 0.2467 0.0295 0.0267
Median 0.0000 0.0000 0.0252 0.0272 0.0000 0.0000
90th Percentile 0.0537 0.0497 0.9230 0.9198 0.0497 0.0489
95th Percentile 0.1225 0.1041 0.9616 0.9608 0.0989 0.1007
b.=3
Average 0.0260 0.0274 0.1535 0.1560 0.0231 0.0229
Median 0.0000 0.0000 0.0177 0.0207 0.0000 0.0000
90th Percentile 0.0620 0.0674 0.6819 0.6470 0.0625 0.0638
95th Percentile 0.0927 0.0990 0.8929 0.9088 0.0904 0.0954

Conclusion

» The focus of the new method is good prediction over a
user-specified distribution of interest (DI) on the covariate

space

» The DI should match the study goal

v

» Select the DI
» Randomly sample points from the DI
» Calculate the measure of prediction ability at each sampled

location for all model under consideration

Different models may be preferred over different Dl's
» General four-step algorithm

» Compare models numerically and graphically based on the
measures of prediction ability

» The measure of prediction ability can be modified to avoid
high or low predictions
» The simulation study highlighted the strengths of the new
methodology
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