
LA-UR- IJ-03/~O 
Approved for public release; 
distribution is unlimited. 

~Alamos 
NATIONAL LABORATORY 
--- EST. 1943 ---

Title: Bayesian Model Selection for Good Prediction of 
Future Reliability Using a Generalized Linear 
Model 

Author(s): Adam Pintar 
Christine Anderson-Cook 
Huaiquig Wu 

Intended for: Quality and Productivity Research Conference 
Roanoke, VA 
June 8-10,2011 

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC 
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance 
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the 
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests 
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National 
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not 
endorse the viewpoint of a publication or guarantee its technical correctness. 

Form 836 (7/06) 



Bayesian Model Selection for Good Prediction of Future Reliability 
Using a Generalized Linear Model 

Adam L. Pintar' , Christine M. Anderson-Cook2, Huaiqing Wu3 

'National Institute of Standards & Technology 
2Los Alamos National Laboratory 

3Iowa State University 

Generalized linear models such as probit and logit regression are important tools for assessing 
reliability; however, what explanatory variables to include is an important consideration. In the 
Bayesian paradigm, if unimportant explanatory variables are included, posterior distributions 
will have inflated variance. If important explanatory variables are excluded, posterior 
distributions can be biased and miss their (true, but unknown) target. Several model selection 
methodologies currently exist for this setting, including selection of the model with smallest 
deviance information criterion, the model with largest posterior probability, or the model 
containing all terms with posterior probability greater than 0.5. A common theme to all of these 
methodologies is that they consider only the observed data. However, if one is interested in 
predicting future reliability, a different strategy is suggested because it is possible that the best 
model for prediction is dependant on age range. We propose a model selection methodology that 
focuses on good prediction over a user-specified distribution on the covariate space. The 
methodology quantifies the prediction ability of all models under consideration at covariate 
points sampled from the user-specified distribution. Then, a best model is identified by 
graphically comparing the distributions of prediction abilities. The methodology is illustrated 
via an example, and a simulation study highlighting its performance is presented. 

KEY WORDS: Model Selection; Reliability; Bayesian Information Criterion; Deviance 
Information Criterion; Posterior Probability; Bayesian Model Averaging 
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Introduction 

Motivation 

~ When the prediction of reliability over a particular part of the 
covariate space is the goal of model building, it should 
influence the selection process 

~ Consider a population of missiles: 
~ Will the population of missiles require maintenance in the next 

5 years or not? 
~ Answering that question requires prediction the reliability of 

the missiles 5 years into the future 
~ Because extrapolating inflates the prediction variance, a model 

with less terms may be preferred 

~ Statisticians know well the dangers of extrapolation 

~ When possible, extrapolation should be based on underlying 
scientific or engineering understanding 

~ The methodology is not restricted to extrapolation 

Introduction 

Related Work 

~ Model selection 
~ Deviance information criterion 
~ Stochastic search variable selection 
~ Median probability model 
~ Rank with posterior probabilities 

~ Model Averaging 

~ Graphical tools used in experiment design literature 
~ Boxplots 
~ Fraction of design space plots 
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Introduction 

Procedure Overview 

1. Characterize the relationship between covariates, and use that 
characterization, as well as the study goal , to select the 
covariate distribution of interest (DI) 

2. Randomly sample new points from the DI 

3. Calculate a statistic (presented on the next slide) , on which 
comparisons are based , at all newly sampled points for all 

models considered 

4 . Compare models numerically and graphically using those 
statistics 

Introduction 

The Measure of Prediction Ability I 

~ The best possible posterior distribution for prediction is a 
point mass at p(xnew) the true reliability, if it is known 

~ Xnew is a sampled point from the 01 
~ Let FXnew be a cumulative distribution function (cdf) 

representing a point mass at p(xnew ) 
~ FXnow steps from 0 to 1 at p(xnew ) 

~ Let Fxm be the posterior cdf of pm(X;ew) 
new 

~ The discrepancy between the cdfs can be quantified by the 
following expression 

~ Need a surrogate for p(xnew) 
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Introduction 

The Measure of Prediction Ability II 

~ Illustrations with k = 1 and V(xnew ) = 1 

~:r :7 
-3 ~ -1 0 1 2 3 ~ ~ -1 0 1 2 3 

-3 -2 -1 0 1 2 3 -3 -2 -1 0 

Missile Example 

Example Introduction 

~ Response 
~ Y = pass/ fail of test coded as 1/ 0 

~ Two Covariates 
~ Xl = Age in years 
~ X2 = Usage in time in ready mode 

~ Goal 
~ The observed Xl values are between 2.23 and 24.97 
~ Predict future reliability for Xl E [25, 301 

~ Full model (probit model) 
~ Y rv bernoulli(p) 

~ V = p(l - p) 

~ p(X) = <1>(,80 + ,8IXI + ,82X2 + ,8n Xl + ,822x'i + ,812XIX2) 
~ Number of models, Nmod = 25 = 32 
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Missile Example 

Covariate Distribution of Interest 

10 15 20 25 30 

~ Black circles depict the observed (Xl, X2 ) pairs 
~ Red circles depict points sampled from the DI 
~ Increasing spread and a slightly positive trend 

Missile Example 

The Posterior edf of Reliability for Model m I 

~ The prior distribution 
~ Can use an informative prior if prior information is available 
~ A conjugate prior is not available 
~ We use the non-informative g( f3 m) ex: 1 in the absence of prior 

information 

~ The posterior distribution of 13 m is unavailable in closed form, 
so we use a Markov Chain Monte Carlo (MCMC) algorithm 

~ Let (f3m)(l) , (f3 m )(2) , .. . , (f3 m )(NMCMc) be a sample from the 

posterior distribution of 13 m 
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Missile Example 

The Posterior cdf of Reliability for Model m II 

~ A sample from the posterior distribution of reliability for 

model m at Xnew is then 

(pm(x;:'ew )) (I) = <I>(x~ew (j3m) ( I ) ) 

(pm(x;:'ew)) (2) = <I>(x~ew(,6m) (2)) 

(pm(x;:'ew))(NMCMcl = <I>(x~ew (,6m)(NMCMC)) 

~ Letting (pm(x~ew)) [11, (pm(x~ew )) [2 1 , "', (pm(x~ew ))[NMCMcl 
be the ordered posterior draws of reliability, 

NMCMC 
F;:::,J u) = L (pm(x;:'ew))[il/(u ~ (pm(X;:'ew)) [il) 

;= 1 

approximates the posterior cdf of reliability 

Missile Example 

A Surrogate for p(xnew) 
~ Let P( M = mly) be the posterior probability of model m 
~ Let pm(x~ew) be a point prediction from the posterior 

distribution of pm(x~w ) 

~ The weighted average 

Nmod 

P(xnew ) = L P(M = ily)pm(x;:'ew) 
;=1 

ca n be used as a su rrogate for p( x new ) 
~ Options for calculating P(M = mly) 

~ The BIC approximation 

P(M = m) ~ exp{ ~BICm } 
"Nmod exp{ - 1 BIC-} 

~ Use an MCMC algorithm 
~ Carlin and Chib (1995) 
~ Dellaportas et al. (1998) 
~ Reversible Jump MCMC 

L...,= 1 2 ' 
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Missile Example 

Table of Summary Statistics 
95th Percentile Mean 

# terms Model value rank value rank 
0 

xl(H7) 
1.73898 :\2~! 0.9757 ~(.1S.J 

1 1.73076 3(19) 0.7332 1(7) 
1 Xi (3) 1.77032 4(21) 1.01064 2(17) 
2 Xl , X2 (25) 0.80833 1(2) 0.46939 1(1) 
2 Xl , Xi (19) 1.39035 3(7) 0.67146 2(3) 
2 Xl, Xl X2 (18) 1.58853 6(13) 0.69645 3(4) 
2 X2, X{ (13) 1.20248 2(5) 0.8725 4(11) 
3 Xl, X2, X~ (27) 0.75447 1(1) 0.48818 1(2) 
3 Xl , X2, Xl (29) 0.88409 2(3) 0.70358 2(5) 
3 Xl , Xi. Xl X2 (20) 1.49895 5(12) 0.71121 3(6) 
3 Xl , X2, Xl X2 (26) 2.262 8(25) 0.79937 4(10) 
4 Xl , X2, x{. Xi (31) 0.98176 1(4) 0.76852 1(8) 
4 Xl, X2, Xi, Xl X2 (28) 1.68413 2(17) 0.79353 2(9) 
5 Xl, X2, X2 , X; , Xl X2 (32) 1.8545 1(22) 1.02201 1(18) 

~ The values are summaries of D~(xnew) across the sample of 

points from the DI 

~ Local ranks (with the same number of terms) : outside 

parentheses 

~ Global ranks (over all models) : inside parentheses 

~ Ordered locally according to mean 

Missile Example 

FeD Plot 

FCD plot of lower 95% of discrepancy values with k=1 

~ 

~ 

-
~ 

~ :3 
1; 

! 
~ c 

C 

~ 

C 

. 
C 

0.00 0.19 0.38 0.57 0.76 0.95 

FCD 

~ Choose 25 (Xl and X2 ) as best 
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Missile Example 

Results From Other Selection Procedures 

I # terms model DIC 

3 X,. X2. X, X2 (26) 157.72 
4 X,. X2. X{. X,X2 (30) 159.67 
2 X,. X2 (25) 159.84 
4 X,. x2. Xi . X, X2 (28) 160.08 
3 X,. X2. X2 (29) 160.21 

Posterior Probability 

2 X,. X2 (25) 0.51 
3 X,. X2. X, X2 (26) 0.19 
2 X2. X{ (13) 0.14 

3 X, . X2. X~ (29) 0.05 

3 X,. X2. X, (27) 0.04 

term 

Posterior Probability 

~ Model 26 leads to the smallest Die 
~ Model 25 has the highest posterior probability 
~ The median probability model is 25 
~ There are similarities and differences between the 4 selection 

algorithms 

Avoiding High Predictions 

When Direction of Error Matters 

~ In the missile example, a prediction of reliability that is too 
high may be viewed as more costly than a prediction of 
reliability that is too low 

.. A prediction that is too high can lead to too many 
malfunctions in the field 

.. A prediction that is too low can lead to unnecessary 
maintenance expense 

~ Avoiding high (or low) predictions can be incorporated into 
the selection algorithm 

~ D~ treats discrepancy between the posterior cdf for model m 
and ideal cdf, below the true reliability, equal to the 
discrepancy above the true reliability 

~ To discourage high predictions, the discrepancy above the true 
reliability is penalized more harshly than the discrepancy below 
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Avoiding High Predictions 

Modification of D~ and Results 

--

--

~ Model 25 (Xl and X2 ) is highlighted as best when (ae, be) = 
(1, 1) and (2, 1) , and model 29 (Xl> X2 , and Xl) is 
highlighted as best when (ae, be) = (3, 1) 

~ the boxplots are over the sampled points from the DI 
~ The largest predicted reliability for both models is about the 

same 
~ The median of the predicted reliabilities for model 29 is less 

than that of model 25 

Simulation Study 

Overview 

~ 9 simulation scenarios in all 
~ Commonalities across scenarios 

~ Three covariates, Xl , X2 , X3 
~ The full model includes the ma in effects , the two factor 

interactions, and the three factor interaction , so 27 = 128 
possible models 

~ No = 200 observations 
~ Nnew = 1, 000 sampled points from the 01 

~ Differences between scenarios 
~ The data generating model (3 models) 

~ p(X) = ct>(O.75X1) 

~ p(X) = ct>(O.75X1 - O.2X2 ) 

~ p(X) = ct>(O.75X1 - O.2X1X2 ) 

~ The value of be (3 values) 

~ be = 1, 2, 3 
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Si mulation Study 

Observations and Dis 

~I 0 @ N@ 
~, 

,-
';' 

'7 i---,---i--,---,---,--,-J 
-3 -2 -1 0 1 2 3 -2 -1 0 1 2 3 

X_' X_' 

-2 -1 0 1 2 3 

X_' 

Simulation Study 

Procedure 

• For a combination of be and a true model 

~ Generate a data set from the true model and observed X's 
~ Find the best model according to the new algorithm, the 

model with the highest posterior probability, the model with 
the lowest DIC, and the MPM 

~ Find the best model according to our algorithm with a proxy 
to the graphical approach 

~ Calculate pm(x;:'ew ) at each Xnew sampled from the 01 for the 
selected models 

~ Calculate the proportion of times that the new algorithm leads 
to a pm(x;:'ew ) that is lower than p(xnew), which is known 

~ Calculate the proportion of times that the new algorithm leads 
to a pm(x;:'ew ) that is lower than the pm(x;:'ew)'s from the 
other selected models 

~ Calculate N~.w I:x neJpm(x;:'ew ) - p(xnewW for all of the 
selected models 
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Simulation Study 

Results I 

PBMSM HPPM Die MPM 
Simulation 1 Sim ulation 2 Sim ulation 1 Sim ulation 2 Sim ulation 1 Sim ulation 2 Simulation 1 Simulation 2 

be - 1 

Average 0.0054 0.0052 0.0059 0.0058 0.0094 0.0087 0.0058 0.0056 
Median 0.0032 0.0030 0.0032 0.0030 0.0048 0.0044 0.0033 0.0031 

90th Percentile 0.0124 0.0118 0.0139 0.0136 0.0240 0.0206 0.0136 0.0130 
95th Percentile 0.0174 0.0165 0.0203 0.0200 0.0336 0.0305 0.0197 0.0191 

be == 2 

Average 0.0063 0.0056 0.0064 0.0060 0.0097 0.0089 0.0063 0.0057 
Median 0.0033 0.0030 0.0033 0.0031 0.0048 0.0049 0.0033 0.0030 

90th Percentile 0.0147 0.0134 0.0147 0.0146 0.0232 0.0202 0.0146 0.0135 
95th Percentile 0.0220 0.0189 0.0223 0.0216 0.0336 0.0304 0.0216 0.0196 

b, 3 

Average 0.0062 0.0069 0.0058 0.0062 0.0086 0.0092 0.0056 0.0061 
Median 0.0031 0.0034 0.0031 0.0030 0.0045 0.0045 0.0032 0.0031 

90th Percentile 0.0146 0.0164 0.01 32 0.0150 0.0211 0.0235 0.0128 0.0144 
95th Percentile 0.0218 0.0256 0.0197 0.0223 0.0299 0.0351 0.0191 0.0220 
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Simulation Study 

Results II 

Simulation 1 Simulation 2 
be = 1 

Average 0.5110 0.5126 
Median 0.5323 0.5303 

90th Percentile 0.9947 0.9943 
95th Percentile 0.9997 0.9993 

be = 2 
Average 0.4063 0.4368 
Median 0.3193 0.4173 

90th Percentile 0.9568 0.9590 
95th Percentile 0.9947 0.9944 

be = 3 
Average 0.3980 0.3818 
Median 0.3127 0.2730 

90th Percentile 0.9433 0.9136 
95th Percentile 0.9897 0.9745 
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Simulation Study 

Results III 

HPPM o le MPM 
Simulation 1 Simu lation 2 Simulation 1 Sim ulation 2 Simulation 1 Simulation 2 

be - 1 

Average 0.0870 0.0805 0.3504 0.3320 0.0845 0.0772 
Median 0.0000 0.0000 0.1945 0.1922 0.0000 0.0000 

90th Percentile 0.4402 0.3201 0.9529 0.9441 0.5210 0.2010 
95th Percent ile 0.6762 0.7722 0.9737 0.9641 0.6755 0.8599 

be - 2 

Average 0.0356 0.0334 0.2544 0.2467 0.0295 0.0267 
Med ian 0.0000 0.0000 0.0252 0.0272 0.0000 0.0000 

90th Percent ile 0.0537 0.0497 0.9230 0.9198 0.0497 0.0489 
95th Percentile 0.1225 0.1041 0.9616 0.9608 0.0989 0.1007 

be = 3 

Average 0.0260 0.0274 0.1535 0.1560 0.0231 0.0229 
Median 0.0000 0.0000 0.0177 0.0207 0.0000 0.0000 

90th Percent ile 0.0620 0.0674 0.6819 0.6470 0.0625 0.0638 
95th Percenti le 0.0927 0.0990 0.8929 0.9088 0.0904 0.0954 

Conclusion 

~ The focus of the new method is good prediction over a 
user-specified distribution of interest (DI) on the covariate 
space 

~ The DI should match the study goal 
~ Different models may be preferred over different DI 's 
~ General four-step algorithm 

~ Select the DI 
~ Randomly sample points from the DI 
~ Calculate the measure of pred iction ability at each sampled 

location for all model under consideration 
~ Compare models numerically and graphically based on the 

measures of prediction ability 

~ The measure of prediction ability can be modified to avoid 
high or low predictions 

~ The simulation study highlighted the strengths of the new 
methodology 
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