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light are photons (individually) 
and EM waves collectivel ) 



Light Amplification by Sti'mulated 
Emission of Radiation LASER 

FEl gain med'ium is relativistic 
electrons traversin ler 



Resonance Wavelength 

Wiggler Radiation 
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Undulator Radiation 

Energy Transfer in FEl 



Electron Beam Velocity and 
Motion inside a Wi ler 

Energy Exchange between 
Electrons and 0 tical Field 
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Evolution of Energy Change with 
ct to Resonance Ener 

Evol.ution of Electron Phase 

- .. - --. 
~~------.:.--E, 

dB =(k +k)v-OJ 
dt IV Z 

dB kc ( 2) -~k c-- l+a 
dt w 2 2 w YR 



Trajectory in Phase Space 
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Pendulum Equation 



Ph,ase-space Motion of Electrons 
in Ponderomotive Wave 

Electrons are microbunched with 
~eriods of radiation wavelen th 
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FEL (Bunched Beam) Radiation 

Basic features of FEL 



How an RF-linac FEL works 
RF linac-driven 

RF-linac FEl Pulse Format 



Brilliance 

Transverse Emittance 



Lo'ngitudin:al Emittance 

FEL and SR Peak Brilliance 
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linac Coherent light Source 
Wi ler Undulator 



Magnetic Flux Density 8 and 
Ma netizin Force H 

8-H Curve of Magnet Materials 
B 

Normal working point 

2nd quadrant 1st quadrant 

H 

(BH)max Remanence He Coercivily 
(kJ/m3) (mT) (kNm) Hardness 

170 800-1000 2400 High 

220 1000-1100 2000 Medium 

300 1100-1400 1400 Low-
Medium 



Permanent Magnet Wiggler 
Desi 

Hybrid Wiggler Design 



Planar wigglers focus e- beams 
in the vertical lane 

Betatron Motion 



B(y) I 

Single-Plane Focusing 

Two-Plane Weak Focusing 
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Transverse and longitudinal 
Velociti:es 
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Figure 8 motion 

Double Bessel JJ Factor 
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Spontaneous Emission Spectrum 



· 
Number of Coherent Photons in 

S ontaneous Emission 

Spontaneous emission has several 
harmonics of fundamental fre 
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Madey's Theorem 
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Phase-space Illustration of 
Made's Theorem 



low-Gain, Small-Signal (Low-Field) 
Gain S ectrum 



Gain Saturation 
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FEL Gain (Pierce) Parameter 



High-Gain FEL 

Exponential growth 

High Gain Spectrum 



FEL Extraction Efficiency 

Tapering Wiggler Period/Field 



Ponderomotive Potential 

Tapered Wiggler Phase Space 



Efficiency Enhancement with a 
Linearl Ta ered Wi ler 
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Efficiency Enhancement with 
Ener Recove 
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Gain & mirror relectivity 
determine 0 tical architecture 



SASE Power vs. Length 

plpEb 
~at =---'--

e 

1010 A. = 1.5 A 
E= 14 GeV 
YEx,y = 0.4 .urn (slice) 
Ipk =3.0 kA 
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Exponentialgro~h 

• 

Saturation 

• measurements (04/26/09) 
----- GENESIS simulation 
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SASE output is chaotic 
tem orall and s ectrall 

150 

~ 100 
e. ..., 
.§. 
iii 
II 
w SO 
1:J 

250 ~O_20 
~ [f5] 
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Seeded Amplifier 
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Less chaotic 
temporal profile 

Narrower spectrum 

Seeded amplifier reduces wiggler 
len th need'ed to saturate 

SASE 
1010.-------------, 
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Seeded Amplifier Experiments 
with Different Seed Power 
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Three orders of magnitude FEL 
gain was observed. 

Prebunched Amplifier 



Pre-bunched Amplifiers also 
Have Shorter Saturation Len ths 
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Optical Klystron 
Magnetic Field in 
Vertical Direction eld 

Single Electron Motion 
in Horizontal Direction 



High Gain Harmonic Generation 
~~ttJ:;~~~,~!~_:~ 

blGIiiG is a way' to generate short wavelength radiation using a low 
energy electron 6eam anS~ ~ long-wavelength seed. HGHG requires high 
~uality electron 6eams (ones with low emittance and energy spread). 

'.-, . 
" ~ . . . . .. II •• 

energy modulator. 

Modulator is tuned Harmonic bunching is 
to seed loser energy. optimized in chicane. 

. . -. ... . . 
coherently at harmonic of seed 
in long radiator undulator. 

Radiator is tuned to seed 
harmonic (now fundamental). 

Regenerative Amplifier 

mirror 
mirror 



RAFEl saturates with a few electron 
bunches throu h the wi ler 

RAFEl output power peaks at 
low feedback 

1.E+08 
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Oscillator 

Optical Resonator 



Slippage and Lethargy in FEL 

Cavity Length Detuning 

1.0 

.0.8 
~ 

cO 
...: 
~ 0.6 
o 
a. 

...J 

~ 0.4 

0.2 

~--------------~4 

o 0 
-40 -30 -20 -10 0 

Optical cavity detuning I !-1m 



Jefferson Laboratory FEL 
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Curvilinear Coordinate 

Phase Space Ellipse & Emittance 



Beam Envelope 

Electron Beam Focusing 
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Single quadrupoles focus 
electron beams in one direction 

Dipoles bend electron beams 



Beam Transfer Matrix 

2x2 Transfer Matrices of 
uadru ole 

F quad focuses 



Triplets focus electron beams 
in both x and directions 

a 

[

COS rps 
A = 

x -)k; sinrps 



Twiss Parameters 

(t/~) 112 

Dipole's dispersion spreads 
electron beam in the bend lane 
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Two dipoles translate & disperse 
electron beam into a new line 

Achromatic Bunch Compressor 



Chicane Compressor 

Coherent Synchrotron Radiation 
CSR 
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Ideal Bunch Compressor 
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CSR increases electron beam's 
emittance and ener s read 

Peak Current 
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RF Waveguide Modes 

How an RF accelerator works 



Standing-wave 1t-mode Cavity 

Single Pillbox Cavity 



Single Pillbox Cavity 

Single Pillbox Cavity 



Single Pillbox Cavity 

Single Pillbox Cavity 



Multi-cell Acceleration 

Cavity Qual,ity Factor Q 

U=7 JIH(dV 

~ =!f JIHI
2

dS 



Frequency & Shunt Impedance 

Accelerating Gradients 



SRF / NCRF Comparison 

RF Superconductivity 
Beam tube----'+Of----

Magnet ic fie ld 

Complete magnetic 
shielding by cWcWting 
surface superc .. rents 

i& 
:~ superconducling 
(J 



Surface Resistance of Niobium 

Rs ~ 2XI0-4 0 ( f )2 ~exp(-17.67)+R .d I 
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E and B Fields in SRF Cavity 



SRF Cavity Q versus Gradient 

• Low po'NOf tast 
Cavity AC72 D High power pulsed "'5t 1 Hz 

/:> High power pulsed test 5Hz 

• Acct'tlator RF tul 

Good cavity 
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loaded Q and Bandwidth 



Cryomodules 

High-Power RF System 
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Energy Recovery Linac 
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DC Injector and Booster 

- Beam Voltage 

laser Beam 

SRF Booster 

\JEI."ron Bum 

Beam voltage loss 
due to fringe field 

I 

I 
.-_______ ir 

r 
Voltage gain in booster 

1 

DC Electron Gun 



DC Injector Performance 

Gradient (MVlm) 6 

Energy (MeV) 0.35 

Bunch charge (nC) 0.135 

Average current (mA) 10 

Transverse emittance 10 

50 

GaAs 

Photon energy (eV) 2.3 
Photon wavelength (nm) 530 

Photocathode lifetime days 

GaAs Photocathodes 

I without Cs I I-r-_---,,..:...vacuum 

CB~~--";';:-- . r:~ I x 
lEg _______ I9a __ 

VB 

eHec1ive electron affinity 

X eff = X -¢BB 

-+ 
activation 
ofNEA 

I withCs I 
effect of Cs 

¢o 
CB 

VB 

Lr-----I.- vacuum 

effective electron aHinity 

X ejf = ;C-¢BB -¢D 



RF Injector Schematic 

Normal-Conducting RF Injectors 



NCRF Injector Performance 

Gradient (MVlm) 100 26 

Energy (MeV) 5 2 

Bunch charge (nC) 5 

Average current (mA) <0.001 32 

1 10 

5 20 

Photocathodes Cu K2CsSb 

Photon energy (eV) 4.6 2.3 
Photon wavelength (nm) 266 530 

Photocathode lifetime months hours 

Electron Photoemission from 
Semiconductor Photocathodes 

Conduction Band 
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Excitation 

Valence Ban 

Electron transpo 
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Emittance Compensation with 
Solenoid Ma nets in NCRF Gun 

Solenoid 
focusing 
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SRF Injector Performance 

Gradient (MV/m) 

Energy (MeV) 

Bunch charge (nC) 

Average current (mA) 

(j.LIll) 

Bunch length 
(ps) 

Photocathodes 

Photon energy (eV) 
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Physical Constants 

1 e2 

ro=--
47TEo mc2 

Maxwell Equations 

aB 
\7xE=--at 

an 
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Special Relativity 

lorentz Transformation 
I 

1 
ry = --;:::=== 

~1- {32 



Wiggler period is contracted by 'Y 
in electron beam frame 

Wiggler field transforms into 
EM field in electron beam frame 



Wiggler EM field causes electrons 
to radiate real hotons at A' 

Relativistic Doppler Shifts 



Relativistic Energy & Momentum 


