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The (Lal .xSrx)3Mn207 compounds are layered materials that exhibit higher magneto-

resistance than the corresponding 3D manganite perovskites, Quasi-elastic neutron

scattering on a polycrystalline sample of Lal .QSr1.6Mn2@ shows that the spin fluctuation

spectrum of the these layered CMR materials is qualitatively similar to those found in the

perovskite manga.nites (La,Ca)MnOq; their concentration, lifetime, and coherence length

increase as T decreases to Tc. Unlike the perovskites we fmd a lower spin-diffusion

constant above TC of-5 meV A2.
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The close interplay among charge, spin, and lattice degrees of freedom in the

colossal magneto-resistive (CMR) manganite oxides is widely believed to play an important

role in the mechanism of transport in these itinerant ferromagnets. Among the current

models of transport in the three-dimensional magneto-resistive perovskite materials is that

magnetic polarons-mobile lattice distortions carrying spin—play a fundamental role, at

*‘2 Supporting evidence for this model have beenleast above the Curie temperature (Tc). .

provided recently by DeTeresa, et al. from in-field small angle neutro,n scattering

2 In this paper we report inelastic neutronexperiments on the perovskite La2/qCa@ln%

scattering measurements from the layered CMR material Lal.QSrl .6Mn2@.

Inelastic neutron scattering data were taken from a 15g, single phase polycrystalline

sample of Lal.4Srl.61Mn2@using the time-of-flight chopper spectrometer PHAROS at

MLNSC, Los Alamos National Laboratory. Data were measured as a function of

temperature, using an incident energy Ei=12.1 meV, except for data measured at 115 K

where incident energies of 12.1 and 8.1 meV were used to extend “the Q-range of the .

measurement. Neutron powder diffraction data were measured as a function of temperature

from 20-300K, using (SEPD) at IPNS at the Argonne National Laboratory. This

polycrystalline sample was characterized using a.c. susceptibility and resistivity; a

transition from a PI-FM was observed at 116K.

Fig. 1 shows the spectrum at 115 K and 30 K, with a gaussian fit to each: while

there is little statistically significant deviation from the gaussian at 30 K, at 115 K the

gaussian is clearly unable to fit the data. The addition of a lorentzian term L(8)=

BIr/rc(&2+~) to fit the quasi-elastic component gives a much better fit to the data (e is the

energy transfer, B the Bose-Einstein factor, I the integrated intensity, and r the half-

width at half maximum). This gives an intensity and a lifetime (z = h/r) for the spin

correlations at each temperature (Fig. 2). The quasi elastic scattering diverges as Q+O,

suggesting that the nature of the scattering is ferromagnetic. Similar observation have been

made by Lynn et d. 3 for the three dimensional perovskite manganites.

The intensity of the quasi-elastic scattering increases as the sample is cooled from

322 K to Tc, then decreases below Tc, with similar behavior for the lifetime. Fitting the

intensity as a function of IQIgives a correlation length of-12 ~ at 128 K, while fitting the

energy width as a function of IQIgives a spin-diffusion constant of -5 meV ~z. This value

is substantially lower than the 30 meV A2 measured for La0.6TCao.qqMn@3 and may

reflect the effect of reduced dimensionality on the dynamics of spin fluctuations.

Neutron powder diffraction measurements from the same sample used for the

inelastic scattering measurements, show that a relaxation of the lattice occurs at Tc. For the

perovskite materials this has been interpreted as the relaxation of localized lattice distortion
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from lattice polarons. The close correlation of the spin-dynamics (i.e. the increase of the

quasi elastic scattering as T+Tc), with the relaxation of the lattice suggests that these two

phenomena are coupled. This observation is qualitatively similar to results reported by De

Teresa et al.
2

for LaYjCa[13MnOj. However, magnetic scattering from layered

Lal.qSrIbMn2@ is complicated by the fact that in two-dimensional magnetic systems critical

magnetic fluctuations can be enhanced well above Tc (e.g. K2CUF44).Work is currently

underway to decouple the expected 2-D ferromagnetic fluctuations from any additional

signal that may emerge from magnetic polarons.

In conclusion, we observe a quasi-elastic magnetic scattering in Lal.&l.bMnZ@,

between 0.7<TC<2.8Tc. The intensity of the scattering and the lifetime of spin

fluctuations increases as T decreases to Tc. This phenomenon correlates strongly with the

electronic (insulator-metal) and structural transition at the onset of 3D magnetic ordering.

This work was supported by the U.S. Department of Energy, Basic Energy

Sciences-Materials Sciences under contract W-7405-ENG-36 (TMK, DNA, RAR) and W-

31-109-ENG-38 (JFM, RO, JDJ).
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Figure captions:

Fig.1: Quasi-elastic specmmfrom LalgSrl,~n2~a t30K(top)m dl15K (bottom").

The solid curves are gaussian fits.
●

Fig. 2: (a) Temperature dependent resistivity and magnetization (determined from Rietveld

refinement of neutron powder data) (b) Intensity of the quasi-elastic component as a

function of temperature. (c) Lifetime (=h/l_’)as a function of temperature.
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