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U N C L A S S I F I E D 

 During shock release, voids 
nucleate, grow and coalesce to 
produce spall failure 

 Grain 
boundaries 
possible sites of 
nucleation 

Motivation: Understand Role of a Soft, 
2nd Phase on Damage Evolution 

 2nd-phase particles, inclusions compared to grain boundaries, 1-xtal 
during defect nucleation under dynamic loading (shock in this case) 
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Material Microstructure Characteristics Span 
Multiple Length Scales 
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Copper 

Typical Features in High Purity Metals: 
 Grain size, orientation 
 Grain size, orientation of neighbors 
 Grain Boundaries 

Complex physics occurring through 
a range of length scales 
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1 % Pb, 1 hr 600 C 
Grain Size = 60 µm 

1hr 600 C 
Grain Size = 60 µm 

Cu Ni Ag Pb Sn Zn Fe 
98.75 0.01 0.01 1.24 0.01 0.01 0.01 

As-annealed Cu  
Chemistry (wt-%) 

Ave. slightly < 70 % 

Cu–1 wt-% Pb As Model Material 
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U N C L A S S I F I E D 

  Non-Homogeneous distribution of Pb: 

  Mostly at grain boundaries and triple points 
  Mesoscopic stringers in some regions, but not other 

Pb 
stringers 

Pb 

Lead Distribution Inhomogeneous  

 100 µm 
        10 µm        

 Pre-loading EBSD images 
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Lead “stringers” and voids/cavities:   
Micron scale 

 X-ray tomography 

Pb 

void 
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Cu/Pb interface, relaxed structures 

Colored by centrosymmetry parameter 

γ111/111 = 0.58 J/m2	

 γ100/100 = 0.80 J/m2	
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Orientation Relationship 
Between Cu and Pb 

TEM gives 
[111]/[111] 
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Pb predominantly at 
non-Σ3 boundaries 

Distribution of Pb  
Tracked by Grain Boundary Type 

Min Max Fraction 
–––––– 5 ° 58 ° 0.421 
–––––– 59 ° 61 ° 0.564 
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U N C L A S S I F I E D 

 Quasi-static 
response of the 
Cu-Pb alloy is 
similar to as-
annealed Cu:  No 
effect? 

Role of Pb under Relatively Low, Uniaxial 
Stress  
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Spalled CuPb with Line Visar Probe 
shows a decrease in peak velocity 

11 

  Change in the velocimetry data in middle of probe 
  Correlate change to microstructural features 
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Effects Possibly Associated with 
Pb Distribution 

12 

3 mm zQ on 4mm Cu/Pb 
@ 122 m/s 

X-ray Tomography shows 
voids nucleating along 
Pb stringers 
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Shock & Microstructure: 
Shock MD Simulations of Cu GBs 

Germann, Holian, Lomdahl, Ravelo 
(2000) 

• Sample shocks in <100>, <111>, and 
<110> crystallographic directions 

• Atoms shaded in proportion to the 
transverse displacement from initial 
lattice positions 

• Shrinking periodic boundary 
conditions, with a piston velocity up 0.2 
cL (longitudinal sound velocity) 

•  cL per directions: √72, √96, and √90, 
respectively. 

<100> 

<111> 

<110> 
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MD Simulations of Cu GBs 
Davila et al. (2005): 
Evolution of void 
collapse  

•  8 GPa shock 
Void radius R=1.5 nm 
up = m/s1200 

•  vacancies. Only 
defective atoms are 
shown. Numbers in 
boxes indicate 

•  time in ps after shock 
was applied; emission 
of loops starts at 3 ps 

• Snapshots from an MD simulation with Rvoid =2 
nm/s, 2850 vacancies.  8-GPa shock. Shear loops 
grow with a velocity 

•  v/c0 , 0.15, where c0 is the sound speed at normal 
conditions. Snapshot from a similar MD 
simulation for sbd a 21-GPa shock. Loops grow at 
nearly the sound speed c0. 
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Interface strength and damage 
sensitive to strain-rate 

• Low strain rate (long time): 
heterogeneous nucleation, failure 
reorients along GB 

•  Simulations of dynamic ductile failure in Cu predict void 
nucleation, growth, and coalescence 
Ravelo et al. 

1000 x 205 x 20 nm3 

Roadrunner 

grain 
boundary 

• High strain rate (short 
time): nucleation, failure 
away from GB 

up = 400 m/s 

230 x 205 x 20 nm3 
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MD Simulations of Cu GBs 

•  High & low symmetries 
versions of Σ11 
asymmetric tilt Cu bdys 

 Shock Direction 

•  Emit different types of 
Shockley partials along 
varying slip planes 
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Shock Simulations of Cu GBs 
•  Correlation between 

spall strength and 
excess energy due to 
plastic deformation 

 Σ11 High-
symmetry 

 Σ11 Low-
symmetry 

EEx = γ plastic + γ elastic
σ f
2 ∝γ f ∝ EEx

excess E 
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MD Simulations of Cu-Pb Interfaces 

Hoyt-Garvin-Webb-Asta 
EAM Model (2003) • up in Cu target 250 m/s 

•  Impedance mismatch w/ Pb = 2.12 
up(Pb) = 0.71 up(Cu) 

Flyer Target 

Cu 

Pb 

Cu 
Pb 

void 

100 K 

• Lattice mismatch 37 % 
• No phase transformations 

Tm (Pb) = 618 K  

Tm (Cu) = 1297 K  
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Details for Molecular Dynamics 
Simulations: Interfaces 

•  Computational cell size:  
Cross-section: L: 19 Cu, 14 Pb 
Shock direction:  L: 241 Cu, 47 Pb 

•  Periodic in 2 directions 
free in 3rd  
3.5 M atoms 
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Cu 
Pb 100 K 

Cu 
[-112] 

[111] 

L L L 

[-112] 
[111] 

• Minimize misfit strain 
• NVE molecular dynamics (MD) 

Sandia LAMMPS code 
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Pb Inclusions Under Shock 

250 m/s 

•  Matrix around voids and small inclusions show 
dislocation emission on compression 

•  Larger inclusions transmit shocks 
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Pb Inclusions Under Tension 

250 m/s 

•  Pb distorts into jet on tension 
•  Independent of size 
•  Likely T dependent 

•  Cu matrix 
continues to emit 
partials 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA 
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 17.5 ps 
 Shock Direction 

Shock MD Simulations: 
Cu(111)/Pb(111) Interfaces 

•  100 K, 250 m/s 
• After shock, <T> in Cu 

~100 K and Pb ~150 K 
near bdy 

Longitudinal T 
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• Pb atoms close 
to interface 

• Smearing of 2nd 
neighbor peak 
after shock 

• Consistent with 
disordered or 
amorphous 
structure 
immediately 
after shock 

Cu(111)/
Pb(111) 

Cu(100)/
Pb(100) 
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Number Density Drops  
at Cu-Pb Interfaces 
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•  Impedance mismatch 
sets up reflected and  
transmitted waves 

• Drops interfacial 
density initially 

• Drives plastic 
response? 

• Suggests certain level 
of independence of 
response to interface 
type 
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Quasi-Static Tension Tests 

Strain-rate 
10 -3 /s 

SEM micrographs with back scatter electron   
White regions – Lead and Other – Copper 
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Conclusion 
• Equation of state not predictive of spall 

response 
Spall strength varies by ~10 % with boundary 
type & structure  

• Grain boundaries with dissimilar structures 
emit observably different Shockleys under 
shock loading 

• High T rise at bdy with & w/o void space 
• Pb carries load with little plastic response in Cu 

in bicrystals 
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Statistics From the 2D and 3D Characterizations 
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Remarkable agreement between the measurements 

3D 2D 
Grain 
Size 

# of 
voids 

Area 
(%) 

# of 
voids 

Area 
(%) 

30 236 .50 904 .49 
60 343 .25 2495 .16 

100 267 .45 .42 
200 111 .51 1262 .71 


