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VIII. STABILITY

For the past two years, the central question in the Sherwood business

has been the stability of the various proposals which are under development.

It is not enough to demonstrate that a specific proposal has a sufficiently

long single particle containment, and that a steady state configuration

(omitting diffusion and inherent geometrical leaks) exists in which the

plasma pressure drops to zero on some fixed surface in the magnetic region.

There will always be small fluctuations about this steady state, or .

equilibrium, solution.  It is also necessary that the time behavior of tlid-

system be such that these perturbations die away in time or oscillate

around the equilibrium solution.      In   such  a   case, the equilibrium   is   said  to

be stable.  If the perturbations grow in time, the equilibrium is unstable.

It is generally found that if instabilities exist in a plasma the   -

amplitude of the perturbations e-fold in a time comphkable with the time. it

takes a sound wave to cross some dimension of the plasma.  At thermonucld*ir

temperatures this is of the order of microseconds-  Consequently, if

instabilities exist they are much more serious than normal loss or diffuslod

rates.  It is imperative that the instabilities be predicted, if they exist,

and that methods of overcoming them be devised.

The problem of stability of fluid motions in ordinary hydrodynamics

is an exceedingly complicated subject.  The situation is perhaps even more

difficult when attention is focused on the behavior of an ionized gas in

magnetic and electric fields. The interaction  of a hydrodynamic fluid  with-

electromagnetic fields forms the new and interesting subject of hydrOmagnetics.

1
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A fluid of this sort has some interesting and simplifying properties.  In all

cases of interest the conductivity of the plasma is very large and the time

during which the system  is  to. hold together is relatively short. Hence,

it is often sufficient to assume that the conductivity is infinite.

Equilibrium Solutions

Before turning to the question of the stability of this hydromagnetic

fluid, it is necessary to have an equilibrium state which is to be perturbed.

Perhaps the -simplest steady-state equations which this fluid must satisfy

are the following:

-0 -'
VP  =  /x B (8.1)\ <r J-*

g x B   =
41,1 (8.2)

--'

7..B=0        '                 (8.3)
-9 --/

where  .P  is   the' gas
pressure, 4

the current density  and  B the magnetic field.

These equations already represent a serious compromise with reality.  In

the first equation, a non-linear term involving the mass velocity of the fluid

has been omitted as well as a term representing a force due -to a possible

charge density in an electric field.  However, if attention is confined to

equilibria in which there are no mass velocities or electric fields, these

equations are almost correct.      The most important remaining discrepancy   ii ·'

the use of an isotropic scalar pressure in Eq. (8.1).  In actuality, this

term   should  be the divergence   of a stress tensor, denoted  by  T. If there      '  '  *2

are enough collisions during an instability to keep the velocity distribution

of the particles isotropic, this is a valid approximation.  In practice,
-.....,........

-
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this situation is far from true.  A later section in this chapter will dis-

cuss some rough attempts at theories with a tensor pressure.

Equations (8.1) to (8.3) do not yield a unique solution, even in a

given magnetic geometry.  This has already been pointed up in Chap. VII,

where the study of the steady-state.pinch proceeded from a consideration of

just these three equations.  It was necessary there to choose a specific

pressure distribution in order to obtain a solution.   In an actual situa- -

tion, one must include particle sources, diffusion losses, and finite plasma

conductivity in order to obtain a unique solution. Kruska134 has shown that
the complete set of steady-state equations may be expected to yield a unique

solution.  Nevertheless, it is customary to use only Egs. (8.1) to (8.3) aha

assume as simple a pressure distribution as possible in order to study the

stability of the resulting equilibrium.

Normal Mode Analysis 0..7

1'

The earliest hydromagnetic problems treated in the Sherwood Program  --

were first, an analogy to.the Rayleigh instability problem of hydrodynamics

and second, the stability of the pinch.  These situations were analyzed

by Kruskal and Schwarzschild using the normal mode analysis.  The starting
22

point of this method is the time-dependant e<dationd of motion of the plasma.

These are:

34.  M. D. Kruskal, The Steady State Plasma Equations for the Stellarator
Under Diffusion, NYO-7307, PMS-17,   (May,   1955).     - -

-<=SECRET
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a -4 -4 -D -'dv

/p ·ds            'f  x   B    +  C E    -   gp   + /6g (8.4)

i                                                                -

F. . foR    k-     at                                                                                   -(8 0 5)

-9' I.
--'V 1       -'    4
E+ -x B

P  :(COL    -
€v) (8.6)

C

1 dE  Z  12
(8.7)

P dt  p dt
-*                       -*

0.9
, , 1 BEV x B 4'v t- - (8.8)ah C Bt

I.A

V·B = 0 (8.9)

-0-g

Vx E (8.10)
EL FhB

c  Bt

-                                                 -0
--'

V ' E 4* .6 (8.11)

The first equation represents the force equation.  Note that a scalar

pressure has been assumed and that a possible gravitational term has been -
-ID

added.  Herep is the plasma density, g the gravitational acceleration, e the
--D

charge density, and v the mass velocity of the plasma.  The electromagnetic

quantities are in mixed.Gaussian units and the conductivity 6-is in esu.  The

Euldibian derivative is denoted  by  d/dt,   and

L=  11    + 7.9 (8.12)dt    Bt

The second equation is the mass conservation relation, while the third is

the generalized Ohm's law.  In most applications 6-will be taken to be infinite

----*.-/--*.: ......=.---.A RET..........»...,.
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and the right hand side of this equation set equal to zero.  It should be

noted that some additional terms, which are usually small, have been omitted

in Eq. (8.6).  These terms may be found in Spitzer's book. The fourth35

equation states that the motion is adiabatic.  Here 7 is the ratio of specific

heats   of the plasma. This equation implies that heait transfer within   the

plasma is negligible.      If  this   is  not  true  some more complicated relation

must be used. Finally, the last four equations are the familiar Maxwell'.-
-* #- -9

equations.  Note that no distinction need be made between B and H, and D and
--'
E,.since all currents and charge dendities in the medium are treated explicitly.

It is adsumed in these equations that there are no particle or heat lossis

fromthe plasma and no particle or energy sources within it. Otherwise,'one

must include the appropriate equations.

Equations (8.4) to (8.11) represent a formidable set of relations,

particularly since   they are non-linear in character. Hence, the first   st60U
in  treating  them  is to linearize the 'equations .     This  ishaccomplished  by          - 

writing each physical variable as the sum of the unperturbed equilibrium value

(denoted by a subscript zero) and a small perturbed part, thus for example:

4 -4 -1
B  =  Bo + Bl, (8.13)

and then neglecting all terms. of second order or higher in the perturbed

variables in the resulting equations.

35.  L. Spitzer, Jr.:,'Physics of Fully Ionized Gases, p..21, Interscience 9
Publishers,   Inc..., (New  York. (1956)...
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Further progress ia made by taking a Fourier transform of the perturbed
'. ;.13 +quantities  in  time  and.in  as mg.ny spatial variables as possibie:  .Thus,  for

example, in the case of the pinch the unperturbed solutions are functions of

the radial distance r, only.  Hence, one can write, for example,

-9
-'               dt      i (me+kz)

Bl  = Bl(r) e e (8.14)

where m must be an integer in order that the solutions be single-valued did

k may have any real value. The' final step consists in solving. the set ofn
coupled, homogeneous ordinary differential equations resulting from the < b
substitution of·Eq. (8.14) in the linearized relations subject to the proper

boundary conditions. The final result   is    in   the   form   of a single "characteris -

tic" equation which  is a function  of  (D,  k,  m,  and the unperturbed variables.
The system is unstable or stable depending on whether or not there exist 1...':
solutions   of this "characteristic" equation  with CU having   a real positive
part.

22The results of Kruskal and Schwarzschild for the case of the ordinafy

pinch have already been described in Chap. 'VII.   The m=l mode, which corfespdnds
to the "kink" perturbation, was found to be unstable  for all wavelengths  ki :'
The   m   =0 mode, which   is the "s-ausage" instability,    is also unstab le   for   all

wavelengths while the higher modes m 2 2 are unstable only for sufficieRtly
24

small wavelengths.  The first problem treated in Ref. 22 was the case of an

infinitely conducting fluid supported against gravity  by a magnetic field 7'  7
This equilibrium, in complete analogy to the Rayleigh instability problem,

was also found to be unstable.

SECKSr
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24Kruskal and Tuck then added a magnetic field to the pinch in the

longitudinal direction both inside the plasma and out.  It was found that

this  stabilized the short wavelength instabilities. Finally, the recent  work

by Rosenbluth25 (using a form of the variational technique to be described

in the next section) considered' the combined effect of an internal longitudinal

field and an external conducting shell.  The results indicated that there

were indeed regions of complete' stability of the pinch but with some strong

restrictions on the maximum compressidn of the pinch and on the maximum

value of the external longitudinal field. .»       /

A diagram of some of the results given by Rosenbluth is shown in Fig. 8.1.

/26 o: f 1 l    -    -  -  . --    l-I - l - i - / -An =O  ·STABLE

I

6          ·rAs/6 ,rn =0 UNSTABLE

-lAB - AS3         9
13 6/*  e
0 1
/.0 a. 0 3.0 4.0 r. 0

R/n-

Fig. 8.1.  Stability Zone for No External Bz

This result is for the case of no longitudinal field external to the pinch.

The quantity B is the ratio of the constant material pressure.in the pinch to

the external magnetic pressure at the boundary.  Hence,

---=SECRET-- -
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8*p            Bz2
B = 1- (8.15)

B82(r) 8;2 (r)

The external conductor radius is denoted by R and the pinch radius by r.  It

was   found   that   the  m   =  0  mode was unstable,for: any compression   if   0  7 0.5 0

In addition, the m=1 mode is unstable at a given value of B for any compres-

sion greater than a number varying between 1 and 5.  No stability at all

exists  for R/r ·7 5.   The region of complete stability is indicated by the

shaded zone in Fig. 8.1.  A similar diagram may be drawn for any other given

value  .of the external Bz field. The general nature of these redulti   is   that
. , ...   i ..ithe zone of stability shrinks to the left of the diagtam as the external 'Bz

field increases in value. For example,   when Bz2 external is equal   to   2   be2(r),

there is no stability at all for R/r greater than about 1.85 and the maximum

compression for B of 0.5 is about 1.2.

It is of. interest to note that the stabilizing tendency of the Bz field

is entirely dependant   upon its being embedded   in the plasma. A receht 'calcula-

tien by R. J. Mackin and A. Simon (unpublished) considered the case Of'a

linear coaxial cylinder of plasma with longitudinal fields existant in the

hollow center   of the cylinder,    in the plasma itself and external   to   th'6«     ""'"

cylinder.  It was found that the trapped magnetic field in the hollow center

of the pinch did not contribute to stability  (in fact,  it had no effeat .at    "

all on the m=0 instabilities) and that this function is entirely performed

by the longitudinal field in the plasma itself.

  Smm r--' 
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The Variational Method

The method of normal mode analysis was historically the first to be

applied to Sherwood stability problems.  In particular, it was and is a good

method for analyzing simple geometried, such as the pinch, in which one can

solve the resulting differential equations to obtain the eigenmodes.  The

method is considerably less flexible when more complicated geometries are

considered.

Interest in more complicated geometries was aroused by Edward Teller at

the 1954 Princeton meeting when he expressed doubts that any of the systerha:.i.

we were dealing  with were stable. He Iikened containment  of the plasma 'bjr»:'.
magnetic fields to containment bf a gas by a large number of rubber bands,

which would be highly unstable,'and illustrated his remarks  by the folldwing

example.     Let the magnetic. field be excluded  from the plasma  and  let the system

be cylindrically symmetric with a bulge as shown in Fig. 8,2.  The dotted

-)3

.,14':21- e.P

i- ,--- .--- LL_

Fig. 8,2.  Magnetically Confined Bulge

--SR[TRFT.P
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line is the axis of symmetry of the system and the trace of the surface in

the  plane  of the paper°  is  a   line of magnetic flux. Assume  that a small

ripple occurs on the surface, and that this ripple occurs all along its

included flux lines.  Thus a cross section of the plasma at any axial point

has the form shown in Fig. 8.3.

..

„
1../.    I

Fig. 8.3.  Surface Ripple.

Assume that the ripple preserves the volume of the plasma.  In that case

the plasma pressure and hence the plasma energy is unchanged.  Assume further

that the flux lines which were in the shaded region above the dotted line are

now moved into the newly available volume in the trough of the ripple and

under the dotted line, and that the remainder of the magnetic field is un-

disturbed.  Owing to the curvature of the bulge, the area in the shaded

region above the dotted  line  must be   somewhat smaller  than  the  area in thdA'-

trough below the dotted   line   if the total volumes   are   to be equal. Hence"; '-t]ie

magnetic field strength is red-uced s6mewhat in the trough and the total   -

magnetic field energy is reduced.· The total potential energy of the systom

has decreased as a result of this ripple and so the system is unstable top

this perturbation.

SECRET
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It was shown almost immediately that Teller's--particular argument  was

wrong, but that his intuitive idea was correct.  The only error in his

argument is the extension of the ripple all along the included lines of

magnetic flux.  The regions of-reverse curvature at the left and right of the

bulge in Fig. 8.2 have a reverse effect on the potential energy change and

actually overcome the instability produced by the central section of positive

curvature . The system is unstable to little "flutes" or ripples which  donot

extend the whole length along a line of force but terminate before the

curvature changes sign.

Perhaps another way to see the instabil£ity of the plasma is by an arguioidht

due to Conrad Longmire.     If the  flutes  are  very  thin they leave  the  rest  of

the magnetic field undisturbed moving  6nly a little  flux and keeping  the       -

plasma pressure constant .     Sincd the field decreased outward because of its--

curvature the same gas pressure-meets a lower magnetic pressure at the top of

the very thin flute and the flute continues to grow.

Since the instability problem was serious for almost all geometries of 'i.':.'

interest a general theory seemed desirable.  A very powerful technique is  "

available by use of variational' methods  and this is known as  the  W  formalism.
-4--D

Consider a displacement perturbation      (r )   of
the material  of the plasma.

Imagine pincers from outside displacing every element of plasma through a
4 -'

distance    p (r). Since the matter is nearly infinitely conducting the lines   of

force are frozen in the plasma.  From their varying density one can calculate

the new field strength at the end of the displacement.  In addition, knowing

-SECRm -
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the varying density of the plasma and assuming adiabatic compression allows

one to calculate the change in gas pressure.  These two results allow a cal-

culation of the change in total potential energy of the system.

Let the total Potential energy be denoted by W.  Then,

W = j-- 31 + -,P- „ (8.16)
8*

where the integration is over all space.  It can be shown that the change in

W due to a displacement   (7) is

Sw 1
=      rjl    (I'llv x    (7.  4 1 2   + 2.   4   x   IV x    c p x   8)3

=P
-9 .0

-* 1+ 4*yp(v.p)2
+4*(*·VP)(7·7) dl-

(8.17)

where  B  and  P are equilibrium.values.     If  SW is positive external  work  must  be

done to carry  out the displacement  and the system is stable  to  this    %(r).
If 6w is negative the system is unstable.

It may be shown that the ratio

SW
12  =  -                                    (8.18)

& f p,2,7

where    is  the
equilibrium density, is stationary (i.e., maximum, minimum,  or

r.-

saddle point) with regard  to the poshible displacement functions    f (;)  when--*

ever  & (r) corresponds to an eigenmode of the system.  In such cases, the

.........'-Il... „
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time behavior of the displacement is

45 -..

/(r,t)      =      (r) elOt (8.19)

and

22
A                   =        a

Hence, if a displacement is found which makes Gw negative, one is assured

that there exists at least one unstable eigenmode of the system with an eigen-
i   ·,3 ,·

value £32 which   is

c,)2  1 12, (8.20)

where 12 is the ratio given by Eq. (8.18) for this displacement.  Hence, a

minimum value  can be found  f br the blowup  rate. The precise value  can  only

be   found by actually determining the stationary displacements   for the systani- -

It is important to note that the existence of an instability can be detected

simply by finding any *(r) which makes SW negative and that is not necessary

to obtain the stationary values unless information on 632 and the shape of

the eigenmodes is required.

36Using this variational method the following results were found.  Con-

sider any cylindrieally symmetric equilibrium system in which Be is zero so
.

that the lines of forcd  lie  'in planes which include  the  axis.     One of these 1.

planes is shown in Fig. 8.4 and illustrates the case of a bulge in the field-

lines.  To each line of flux in this diagram there corresponds a magnetic

360      E„   Frieman  et al., Stability. Critfria,  :Conference. on Controlled Thermo -
Nuclear Reactions, TID-7503·  (Feb.,'  1956 ) .   '
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Fig. 8.4.  Magnetic Surfaces

surface which is generated by rotating the line of flux about the axis.  Denote

the flux contained between this surface  and  the  axis  by  74.    The.quantity    -is

a natural coordinate of the problem.  Let P be the value of the pressure on

the magnetic surface, V thu volume contained inside this surface and let P' and

V' be the derivatives of these quantities with respect to lf  Then for systems

in which the gas pressure is low (small B) and also for a number of large B

cases the system is stable or unstable as M"V"/M'V' is positive or negative'; 

M"V" <-stability- 1  0  < neutral (8.21)M'V'  < unstable  ,

where

M"                            . V"             +           PI . (8.22)
M'     V'     7P

It may be shown that a system in which the magnetic lines are concave

toward the axis (which is the case illustrated in Fig. 8.4) have a negative

value of V"/V'. Hence, stability is possible only if M"/M' is positive.
-I-

.-,«.
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By Eq. (8.22).this implies that the gas pressure increases outward and this is

compatable with a confined plasma only if there is a finite pressure drop at

the boundary.  However, any such system with a finite jump in pressure at its

boundary is unstable to surface perturbations,e.g., the "flute " instabilities .

Thus   it  may be expected  that the "bulge" regions   of the Stellarator  as   well

as the central regions of the Mirror Machine will be unstable and some

stabilizing mechanism must be sought.  I€ also seems clear that the devices

with reverse curvature  of the magnetic lines,   such  as the Picket Fence  and

Cusp devices, should be inherently stable.

Stabilization of the Stellarator                                              -
-

L. Spitzer has suggested that an external magnetic field transverse to

the main BZ field of the Stellarator would' tend  to bind the lines of force
and thus stabilize the system.  This suggestion has resulted in the investiga-

37
tion  by variational techniques of a numb&r of problems involving transverse

fields superimposed   on   the   main BZ field.        In   most of these   prob lems, trans -

verse fields with helical symmetry have been used. It has been found that

the stabilizing effect of the transverse field is due to a non-uniform twist

of the field lines.  Thus if F' represents the twist or rotational transform

angle of the flux on a magnetic surface, the beneficial effect is due to the

existence   of a non-zero  F" . The result of these calculations leads   to   the

speculation that the general form for  W in such systems is

37.  E. Frieman, Recent Results on Stability, Conference on Controlled
Thermonuclear Reactions, TI5-7520   (Sept.,   1956).

&'Il'.Il'*--=.......*.=I ====--*
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SW   M"(V" - P'L') +<F")2

-2
where L' is the weighted average of B over  a  flux ltube.     Thus   one  can

achieve greater stability with systems whose F" is large.

This stabilizing action may be viewed in another way.  At the interface

the external lines of force make an angle with the internal lines of force.

If a flute tried to follow the external lines of force it would wrinkle the

internal lines.  In the same way a flute following the internal lines would

wrinkle the external  ones.     If the change in angle   (F") is large enough  the

situation becomes stable to flute instabilities.

Research is.continuing on methods· of stabilizing the Stellarater.  It

appears that modest transverse fields will stabilize systems with small B,

but not those with B = 1.  Some consideration is being given to eliminating

the figure-eight entirely and using a helical torus in its place.

Similar considerations may also apply to the Mirror Machine.  In addition,

attention is being paid to possible beneficial effects resulting from terminat-

ing the magnetic lines beyond the mirror on' a metal plate (thus tying down

the  lines)  and  to the possible effect of conduction along the field lines

smearing  out the electric fields which accompany instabilities.

Some Miscellaneous Results                                                         ,-

There   has   been a great   deal of research   on   the   prob lem of stability   in

the Sherwood Project. It would  not be possible to describe  all  the  work  in

detail in a set of survey lectures, such as these.  Instead.a few selected

topics will be briefly described in the remainder of.this chapter.

*#--
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Heating Instability  18 the Stellarator. The confining field   of  the

Stellarator is a longitudinal Bz field which undergoes a rotational transform

in a single revolution around: the device.  If a heating current is passed

through the Stellatator,.this current produces a Be field which tends to alter

the twist, or rotational transform, of the Stellarator field.  M. Kruskal38
...

has shown that there is a limiting value of this current above which ip-

stability sets in.

Actually, there are two limits dependink 60 which direction the current

is  going.     One may attribute the instability to tkfai removal  of the rotational

transform by the e-field of the current.  In one direction the rotational

16wist is removed.       In the other direction .it   is   /ushed   up   to   360   deg.       The
.. .  i

critical limits are proportional to Bz/L where L is th6 Stellarator length.

-These differing.rritical currentshave actually been observed.

i  Rayleigh's Principle and Rotation.  The success of the variational method

described earlier depends upon the existance .of a Rayleigh Principle for the

equilibrium system.  One way of stating this is that th6 Hamiltonian of the

system shall be separ#ble  into a kinetic energy term- and a potential energy

term with no cross term. Another way of stating this id to require that

there be no velocity dependant forces in the perturbed equations.  If a Ray-

leigh principle exists for the system, one is assured that the square of the

eigenvalues, 0 2, is real and hence that each eigenmode is pure oscillatory

38.  M. Kruskal, Large Scale Plasma InstabilitY in the Stellarator, PM-S-12,
NYO-6045.(April, 1954).

-..
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or purely exponelitial in its time behavior.  If a Rayleigh  principle does

not exist, the eigenvalues are complex and the simple variational methods of

Eqs. (8.17) to (8.20) are not useful.

'4

Kruskal has shown that a Rayleigh '
Principle exists  for a hydromagnetic

fluid which  has no electric fields   or mass velocity  in its equilibrium state.

This requirement has been true for all cases considered by the Princeton

group, There is, however, at least one case of interdibt fri-ihich mass velocity

does   exist   in the steady state.      H.   Snyder39  has   suggested   that   the   kink

instability of the pinch might be overcome by imparting a mechanical rotation

to the pinched fluid about its axis of symmetry.  This suggestion is being

investigated at Oak Ridge.

Owing   to   the   fact that variational techniques cannot' be   used,    the   problem

has been attacked  by a numerical scheme „ The method   is   to  make  use  of  a  high

speed digital computer (the ORACLE) to actually integrate"the perturbed

equations   in  time. The initial equilibrium is perturbed and' the subsequent                         '

behavior is watched. If unstable modes exist they should Become- dominant in

timeo The results which have been obtained  so far are somewhat -obscured
40

because of the effects of inherent numerical instabilities prbduced by the use

of a finite difference scheme and by roundoff errors.  However, there is

390  H. Snyder, Effect of Rotational Motion on Plasma Stability, Conference
on Thermonuclear Reactions, WASH-289, p. 351 (June, 1955).

40.  F. M. Rankin and A. Simon, ORACLE Calculations of Stability, Conference
on Controlled Thermonuclear Reactions, TID-7503-Tteb.,   1956).
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indication that rotation does not produce stability..   It does- appeer to have
a stabilizing influence on the low k (or long wavelength) modes.

Tensor Pressure. Perhaps  the most serious assumption  in' the- variational
method   is the assumption that there are enough collisions during - an" instability
to keep the velocity distribution of the particles isotropic and' the, pressure
a scalar. Rosenbluth has considered one aspect  of this problem' in his, paper
on stability of the pinch. He assumes a non-isotropic distribufiob bf

25

particle velocities in the equilibrium state.  One then uses th@ adiabatic

invariants of the motion to calculate the effect of a perturbation 60'-the orbit

of  a single particle,  and  then  sums  over all orbits to obtain the ·relult.
The result reduces to that obtained in the magnetohydrodynamic a ]»oxiizistion
when the velocity distribution is isotropic.  In the more general case, the
results depend  on   (Pl   -  3) where  Pl  is the pressure   in the direction· of  the
field lines and 5 the pressure at right angles to the field lines.  If

P3 7 Pl, the·pinch is less stable than in the isotropic case.   More:general

considerations along these lines have been given by Brueckner, Chew, Goldberger,

Longmire, Low, and Watson.
41

41....Series of Lectures on Physics of Ionized Gases, LA-2055 (Oct. 1956).
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