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IV.  THE PROBLEM OF THE ENDS

One of the most obvious ways of eliminating the ends of a magnetic      •

 .                                       field  is   to  wrap  the field lines around  into a toroidal shape. H6wever,

•                                                    even  before this geometry is considered, the possibility   of   simply   using

a long solenoid should be considered.  These two geometries are considered

in the next two sections.

Solenoid Length

It is always possible to conceive of a solenoid which is so long that

leakage of particles and heat transfer to the ends becomes negligible.  An

estimate of the required length is easily obtained.  It has been demonstrated

that the diffusion and heat transfer coefficients in the direction of the

field lines are larger by a factor of (0702 than the corresponding coef-

ficients at right angles to the field direction.  Since the diffusion time

02
and heat transfer losses vary as «,t , it is clear that a solenoid whose

length is larger  than its radius by a factor of 4,12'will have equal diffusion

and heat conduction losses in the two directions.  Thus, the necessary

length L is

L 3 (4,rl') 

Pr 3.3   x   105 f

Even if the tube radius is only 10 cm, which is only borderline as far as

·                 containment time is concerned, the required length b'ecomes

L  2 33 km
-     Such  dimensions seem outside the realm of feasible  devices „ especially  when

it is realized that the .yolume must be highly evacuated and filled with

a magnetic fidld of 20 kilogauss or larger.
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The Tbrus:  Particle Drift in a Inhomogeneous Field

The idea of eliminating the ends of a magnetic field by wrapping it  ,

into a torus is a rather obvious one and was proposed back in 1945 by

9 Robert R. Wilson.  At first glance, this trick appears to eliminate con-

tainment problems.  The trouble is that the magnetic field in a toroidal

geometry is necessarily nonuniform, as is illustrated in Fig. 4.1.  By

b «

r            p

f B
-Y 2

Fig. 4.1

'

Toroidal Field Produced by Solenoidal Windings

-*
Maxwell's equations, the integral of the curl H over the area contained in-

side the dotted line can be written as

n.-> 9 r 4
S (' x ')."  -    6  9:,I. J

*ttdA

constant

Hence

»           0 1,1 = 21crH constant

                               and                                                                                                                                                                '

H  = constant/r (4.1)

Thus the field in a torus is nonuniform and falls off as the reciprocal

power of the radius r.  Unfortunately, a charged particle in a nonuniform
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magnetic field .experiences a drift in a direction which is at right. angles

to both the field gradient and the field direction itself.  Fermi called

attention to the existence of this phenomengh <which had been known to

astrophysicists  for  some time) immediately after Wi].soli ps suggestion,   and

showed that the resultant drift rates were enormously faster than could be

tolerated.  To demonstrate this fact, it is necessary to derive an expres-

sion for the drift rate in an inhomogeneous field:

It will be assumed in this derivation that the magnetic field is

entirely in the.positive·z-direction and varies in magnitude in the x-

direction only.  The equations of motion of a charged particle in the x-y

plane take the form:

dvX
m- f

vyH(x)
(4.2a)

'dt C

dvy              -    vxH(x) (4.2b)m
·dt        c

It  is  convenient «to define  a new coordinate s, defined by,the relation

-0:
eH(x)

s dt (4.3).mc /1. :i

0 ·

Note that x is an implicit function.of t.  Note further that the integral
„

in Eq. (4.3) cannot be evaluated, in general, since to do so would require

1mowledge   of the particle's orbit, whith  ist 'as yet unknown. Nevertheless,
D

-               this change of variable makes possible a series 'solution for the mo
tion.

By means of Eq. (4.3), we may rewrite Eq. (4.2) as follows:

dvX (4.4a)
ds

VY

dv
(4.4b)-1 =-VX

ds
:.. :..... :  ......... : :.. : :.. 4.. pa<
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These equations may be solved immediately to yield:

VX  = A sin s+B cos s (4.5a)

I
v  = A cos s-B sin s (4.5b)y

The constants may be immediately identified as the initial values of the

components of the velocity at t = 0.  Thus, since when t = 0, s = 0,.one

has

B = v O
A=v

Y0

Furthermore, by squaring ind adding Eq. (4.5) it is clear that.

vx2   +  vy2   E    „12      -     A2   +  82     -     Yx«2   +  vyo2      -     .1 o (4.6)
2

.

Hence, the scalar·velocity, or what is the same thing, the energy, is a

constant of the motion.  This result is obvious since a magnetic field,

for which the forde is always at right angles to the particle velocity, can

do no work on the particle.

Further progress can now be made by assuming that the magnetic field

does not vary appreciably in magnitude in a distance of the order of the

Larmor radius.  In that case, it is permissible to expand the expression

for the field strength   in a power series in.-the field gradient,

H(x)  =  H(0)+E x. + . . . . . . (4.7)

and keep only the lowest terms.  By use of Eq, (4.7), Eq.  (4.3) maybe

rewritten as
....

.....395//4 -... 4.-c: : :. -:-I::::'04... :. : :
... --t
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- eH(o)     e  
       t

S = t+- H'(o)
 

x d t + . . . (4.8)  *mc mc

1 0

The superscript prime on H denotes a spatial derivative of H.
D

Using Eq. (4.8), Eq. (4.5b) may be rewritten as

v  = A cos

f,H(o) t  + 'H'(0)1, x dt    - B sin  H(o) t  + 'H' (0)«i'x dt,       '(4.9)
y             mc mc

J
mc mc

0 0

Now

sin   e+x    =  sine +x cose + . . . . .

C

cos 2+XD =  cos8 -x sin8 + . . . . (4.10)

where the omitted terms are of higher order in x. Hehce Eq.  (4.9) may be

rewritten as:
t

... C                   t

vy = A  cosS}ot - sinQot (l o    x dt   -   sinlot + cosujot (00)'   x dt   (4.11)
0                                      0

where 4)0 =.eH(0)/mc and (00)' represents the same expression with H(o) re-

placed by H'(0).

For the expression to be evaluated consistently, the value of x used

in the integral should be of zero order in an expansion in powers of the

field gradients.  This result is easily obtained from the zero order ex-

pansion of Eq. (4.5a).  Thus

vx-   A sinG)ot  +B cosclot

.. X =

   vxdt    -    -  -   cos"ot  + 3-   sin«),t  + c (4.12)
0             0

-
p«C

......................
..                         ..    e.
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where c is the constant of integration.  The origin of coordinates about      •

which the field expansion has been made may always be chosen so that

A'                                   x  = - -a t t=0
63.0

In this case c=0 and

x     -     -  L  cosit   +3- sin46t (4.13)
6)0                0

Next,

t

   x
dt

- 2> si"'1'1  -  <2  "suot  +3 (4.14)

0

Substituting this expression in Eq. (4,11), one.obtains

.

vy=  A  cost,)ot   -  B   sinCOot   + tz  (6)6)'   sinfi t   + 32  (00 )'   cos©ot

2AB                                         B2

4' e 600)' sinOot cosGot -· 9(4)0)' sinJot - (I)'2(6.} )'
coslot (4.I5.)

0

After averaging over time, the result becomes

5:  =  A2 +82  (6)0)' -   r*2mc
dli

(4.16)

2 4'2                                                     2,1'2       dx            i

Similarly, the first order result for vx may be shown to be entirely
periodic in time, and thus .

vx     0                              (4.17)

In vector terms, these two results may be written as

-„.--*
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VH x H (4.18)vg     - 2eH3

This proof may be pushed even further, although the details will not
1.

be given here, to show that no further drifts occur even if second deriva-

tives of the field magnitude in the x- and y-directions are considered.

One final drift remains.  The coordinate system has been chosen so

that the :z-axis is in the direction of the magnetic field.  This implies

that  1«  ==
0. However, the second derivative may not vanish and to be

consistent with the results above, the possible influence of such a term

must be considered.  The effect of this term is f6und rather easily.  The

second derivative in z corresponds to a curvature of the magnetic field
I.

..        ·   lines.  A particle moving along a curved path experiences a centrifugal force

Y                             which  acts in every  way  as an actual external force  does. An external force            '
A                                                                         ,

produces a net drift as has already been shown in Eq. (3.6).  Thus,

2mg' .,     --V
F    = -r (4.19)centri R

--9

where  r  is  a unit vector  in the direction of curvature. of the field.    The

radius of curvature is R and v„ is the particle velocity along the field

lines.  Substituting this expression in Eq. (3.6), one has

2
cmv

$ T 1         -9,
v            rxH (4.20)
D     eH R

Equations (4.18) and (4.20) constitute the expression for the drift velocities

of a particle in an inhomogeneous magnetic field.
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0

Before applying these equations to the calculation of the drift

.,

velocities in a torus, it may be profitable to show that the drift velocities

just derived can be understood on the basis of a qualitative picture similar

to that presented. in Chapter  3  for the drifts  due  to an external force.     Con-

sider a particle moving in an inhomogeneous field as sketched in Fig. 4.2.

strong field ®H
e   positive

weak field -gir'Tr
*ill->

Fig. 4.2

Note that the radius of curvature is smaller in the strong field region
0

/6

and   larger   in  the weak field' region. The resultant drift is obvious.
4

Immediate use may be made of these results to evaluate the drift

velocity  in a torus.     It  has been demonstrated above  that  H  = a/R where

a is a constant and R is measured from the center of curvature of the

torus. Hence

a -+

PH - iF r

H  4
-- r

'                                                                                                                                                                  R

Thus, by Eqs. (4.18) and (4.20),

VD (mv*2   +  2,m,„2.)c    .; x  I; (4.21)

2e R                                  
        '

Z.JE(aELZ  
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This result· niay be put in more convenient form by. recalling that for an          o

isotropic gas kT = mv 2 = mvy2 = mjz2. Hence, m 22 = 2kT and mv„2 = kT.

'.               
Thus

1,» 1 .
2ckT (4.22)

eHR

Note that the direction of drift is up out of the plane of the torus for

one sign of the charge and in the opposite direction for the other.  The

=         magnitude of the drift is readily estimated using the standard conditions
.

2(3 x 1010 (1.6 x 10-12)(104)V
D

(4.8 x 10-19)(2 x 104)R

1208/R cm/sec.
:

' ·               The drift time across the torus tube of radius r is then

rR
tD --5 sec «

10

Assuming a tube radius of 100 cm, the drift time is,

tD  = R x 10-6 sec

Hence6 it would require a torus having a radius of curvature of,at least,

1 -Rm to obtain an average containment   time   of   9.1   sec.       Such a deviee

seems impractical.

As a final blow, it should be noted that if-one attempts to correct
<1

for ·the V.H drift by the application of an electric field in the direction     '

perpendicular to the plane of the torus, there is then a drift at right

-4          -9
angles to E and H which removes particles to the outside walls.

"-SM"Rprp
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0

As a historical note, it should be recorded that almost all of the

*               items presented in the lectures up to this point were considered by a group,.

at Los Alamos in 1945 and 1946.  Soon after the torus was shown to be1

impractical, however, further work on the subject ceased, apparently as a

result of the return of most of the members to the universities.  Project

Sherwood was born in 1951 as a result of two different suggestions for

circumventing the containment problem which were contributed by.L. Spitzer

and J. L. Tuck. The details of these two proposals, as well as those of a

third proposal made somewhat later by R. F. Post, will be presented in the

next three lectures.  Before turning to these, it may be interesting to

consider some alternative proposals for achieving thermonuclear  reactions

which have arisen through the years and which have been uniformly unsuc-

w                                            cessful.

Alternate Schemes

a.  Sparks.  A frequent proposal is that a gas be heated to thermo-

nuclear temperatures by means of a high current transient discharge

through  it. The chief difficulties  in this scheme are first, the inadequate

containment time and second, the fact that this type of heating raises

'                ·              the  electron temperature quickly but  not the deuterons. The energy

transfer rate from the electrons to the ions is rather slow and the system
'.

..

disperses long before the deuteron temperature has risen appreciably.

. . An interesting point in this regard is the fact that the famous (or       '

infamous)   pro ject   of R. Richter in Argentina  ·was an attempt   to  make  use
.-..........-

of high current discharges in lithium deuteride  gas. The avowed-·scheme -

was to make use of the tail of the Maxwell distribution to obtain reactions.

.-17/31'/.'=.----
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The previous lectures have already shown how rapidly the reaction rate

4                falls with temperature and how hopeless this approach is at the tempera-4.
L .3 -

tures which could be achieved in this fashion.

b. Electrically Exploded Wires.     This
 

proposal  has  all  the  dif-

ficulties of the preceding one.  In addition, the addition of high z'com-

' ponents to the gas results in a rapid cooling owing to the increased

bremsstrahlung.

C. tMechanical Shock Heating. Imploding charges  and other  such

schemes will impart high velocities  td the deuterons. However,  when  it
8o

is recognized that the thermal velocities corresponding to 10   K are
..

in the neighborhood  of 108 cm/sec, it seems unlikely  that such devices  will
.,.

'33, : be successful.
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