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ABSTRACT

Module temperature is modeled using a transient heat-
flow model. Module temperature predicted in this fashion
is important in the calculation of cell temperature, a vital
input in performance modeling. Parameters important to
the model are tested for sensitivity, and optimized to a
single day of measured module temperature using
simultaneous non-linear least squares regression. These
optimized parameters are then tested for accuracy using a
year’s worth of data for one location. The results obtained
from this analysis are compared with modeled data from a
different site, as well as to results obtained using a steady-
state model. We find that the transient model best
captures the variability in module temperature, and that
the transient model works best when calibrated for a
specific location.

1. INTRODUCTION

Cell temperature is the second most important factor, after
irradiance, in determining the performance of a typical
photovoltaic (PV) system. Models used to predict PV
performance typically calculate cell temperature as a
function of irradiance at the plane of array, ambient air
temperature, wind speed, and a temperature offset
representing the difference between back-of-module and
cell temperatures. These formulations generally assume
that cell temperature varies directly with these variables in
a steady-state manner (e.g., changes in irradiance result in
immediate and corresponding changes in cell
temperature). While this approach was designed for and
may be adequate when performance models use hourly
averaged inputs, such as Typical Meteorological Year
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(TMY) data, field measurements of module temperatures
at higher sampling rates indicate that module and cell
temperatures vary more slowly than irradiance and
therefore a transient model of module (and cell)
temperature may be more appropriate when performance
is calculated at short time intervals.

This paper is organized as follows: In Section 2, we
briefly describe the transient module temperature model
first developed by Jones and Underwood [1] and which
we consider in this evaluation. This model simulates
module temperature as a balance between incoming heat
and heat losses from electrical conversion, radiation, and
convective heat transfer. The challenge in applying such
a model lies in defining appropriate parameters to
describe the module’s thermal behavior.

In Section 3, we identify key input parameters that are
generally unknown or difficult to estimate from the data
provided on a manufacturer’s data sheet. We run a set of
parameter sensitivity analyses by independently varying
selected parameters and illustrating how simulated
module temperatures compare to field measurements
made in Lanai, Hawaii.

In Section 4 we apply a multi-parameter, simultaneous,
nonlinear optimization solver to estimate an optimal set of
parameters that fit the model to temperature data
measured on a single day in Lanai.

In Section 5, we test these optimal parameters by
simulating approximately one year of module temperature
data from Lanai and comparing these results with
measured module temperatures. Additionally, we simulate
one month of module temperature data from



Albuquerque, New Mexico using the optimal parameter
values found in Lanai to test the importance of site-
specific optimization.

In Section 6, we compare transient model results to those
obtained using a steady-state model.

2. MODEL DESCRIPTION

Traditionally, steady-state models have been used to
predict module temperature, using measured weather
conditions. These models are simple to implement, yet are
generally only applicable with hourly-averaged data since
they cannot represent the transient heat flow processes at
shorter time scales. Eq. (1) shows one such steady-state
model developed at Sandia National Laboratories [2].

Toaute = E - {ea+b-WS} + Tambient (€Y)

This model uses ambient temperature Tampient, irradiance
E, and wind speed WS as inputs to calculate module
temperature. The coefficients a and b (both less than zero)
are empirically determined from observations, and are
specific to the composition and construction of the
module as well as to the mounting configuration (e.g.,
open rack vs. roof mount). Eq. (1) is the steady-state
model that will be used in comparison with the transient
temperature model [1] shown below in Eq. (2).

Cmodule % = Qw + qsw + Qconv — Pout (2)

Here, Chodule 1S the heat capacity of the module, g, is heat
transfer due to long-wave radiation, g, is heat transfer
due to short-wave radiation, qony iS cOnvective heat
transfer, and P is electrical power generated by the
module. dTque/dt is the time derivative of module
temperature. This time derivative is solved using the
Euler method to calculate module temperature as a
function of time:
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In Eq. (3), step represents the time step between each data
point. This will usually be a constant value depending on
the sampling rate, but is not required to be constant. The
components of Eq. (2) are broken down as follows, with a
list of nomenclature at the end of this paper.
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Pour = Cpr
In Eq. (7) the forced convection, h foyceq represents the
rate of heat loss from the module by convection. In the
field this quantity is likely a function of wind speed across
the module surface, and possibly thermal properties of the
air. For this modeling analysis we assume that A forceq

can be represented as a simple linear function of wind
speed:

hc,forced = hforced X WS (9)

3. SENSITIVITY ANALYSIS

Most of the parameters in the transient temperature model
are either measured weather inputs, or can be found on
the module manufacturer’s data sheet. For our analysis we
assumed parameter values given in [1], except as noted
below. Some parameters, however, are either not readily
measured nor accessible; these include the module’s heat
capacity, Cpoquie, the temperature and emissivity of the
sky, &gy and Ty, the absorptivity of the module surface, «,
and the forced convection coefficient, hyyeq. The
sensitivity of the transient model to each of these
parameters is illustrated via a set of “one-off”” analyses
where one parameter is varied while keeping all other
parameters fixed. Table 2 and Figures 1 — 7 show the
results of these analyses. For each figure, the transient
model is run for a typical day in Lanai, HI (in this case,
March 25", 2010) for a wide range of values of the
targeted parameter. The predicted module temperature
corresponding to high and low extremes for each
parameter is plotted along with the measured module
temperature for that day, in addition to predicted module
temperature corresponding to the ‘best-fit” value of the
parameter being tested, where applicable. The best-fit



value is determined independently for each parameter by
minimizing the root mean square error (RMSE) between
predicted and measured module temperature. In Section
4, a simultaneous multi-parameter optimization analysis

to rigorously determine the most accurate value for each

parameter is described and the results are presented.

The following table shows the default (initial) values used
for each parameter in the analysis; for example, when
testing the sensitivity of the model to the absorptivity, a,
the values used as inputs in the model for Cpogue; Ntorceds
sy and Ty, (Sky conditions) were taken from the table
below. The module modeled in this analysis is
constructed of crystalline silicon (cSi), polymer laminate,
and glass.

TABLE 1: DEFAULT PARAMETER VALUES

Parameter Value
o 0.75
Cmodule 16,500 J/K
hforced 6.67
Sky conditions ‘cloudy’
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Fig. 1: Sensitivity of model to changes in module heat
capacity.

Figure 1 shows an example of how heat capacity affects
the modeled temperature variability. A module with low
heat capacity will experience more temperature variations
with irradiance changes than a module with a high heat
capacity.
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Fig. 2: Sensitivity of model to module heat capacity.

Figure 2 shows that unrealistically large or small values
for the module’s heat capacity result in a comparatively
poor fit to measured temperatures. There appears to be a
reasonable range of values (between 15000 and 30000
J/K) that produces an acceptable match to measured
temperatures as measured with the RMSE statistic.
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Fig. 3: Sensitivity of model to type of sky conditions, i.e.
‘clear’ or ‘cloudy.’

Figure 3 shows how differences in the emissivity and
temperature of the sky between clear and cloudy
conditions affect the model results. Notice very little
change in predicted module temperature between these
two sky conditions; however, Table 2 shows that the
RMSE values indicate that “cloudy” conditions results in
a slightly better fit.

TABLE 2: SENSITIVITY RESULTS FOR SKY
EMISSIVITY

Sky Condition Esky Toky RMSE
Clear 0.95 Tambient — 3.65
20K
Cloudy 1.0 T ambient 2.95




While the appropriate sky condition should be applied to
the model if possible, this may prove difficult if using
real-time data. From Table 2, the improvement in model
accuracy by varying ‘clear’ or ‘cloudy’ sky conditions is
not significantly large when compared with the effects of
other parameters (absorptivity, Fig. 5, and forced
convection coefficient, Fig. 7) that selection of clear or
cloudy conditions is likely to be of primary concern.
Incorrectly choosing clear’ as the sky condition for the
example day shown would only increase the RMSE by
less than 1 degree K.
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Fig. 4: Sensitivity of model to changes in absorptivity of
module surface.

Figure 4 shows an example of how changes in module
absorptivity affect simulated module temperature. The
best-fit value for o is in between the high and low
extremes possible — a low absorptivity results in almost
no temperature variation, while a high absorptivity results
in too much variation.
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Fig. 5: Sensitivity of model to absorptivity of module
surface.

From the results shown in Figure 5, it appears that o

around 0.6 is the most accurate; this value will vary
depending on the material of the module.
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Fig. 6: Sensitivity of model to changes in the forced
convection coefficient.

Figure 6 shows an example of how changes in the forced
convection coefficient affect simulated module
temperature. Lower values for hgceq result in generally
higher module temperature due to less convective
cooling; similarly, higher values for hceq result in lower
module temperature.
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Fig. 7: Sensitivity of model to the forced convection
coefficient.

From the results shown in Figure 7, the best-fit value for
htorced 1 9.8. There appears to be a reasonably large
coefficient range (between roughly 7.5 and 14) that
produces RMSEs of about the same value.

4. MODEL CALIBRATION

In this section we describe an effort to estimate the values



of &, Cinodules aNd hyoreeq Simultaneously by applying a
nonlinear least-squares optimization routine to the data
measured on March 25", 2010 in Lanai, HI.

The best-fit values obtained from the sensitivity study in
Section 3, shown below in Table 3 along with the
constraints placed on each parameter for the optimization,
were used as initial parameter guesses. While these
parameter values are the most accurate when taken
independently of other inputs to the model, this is not
necessarily the case when multiple inputs are varied
simultaneously. Using these values should, however,
provide a reasonable initial guess.

TABLE 3: SENSITIVITY STUDY RESULTS AND
PARAMETER CONSTRAINTS

Parameter Initial Value Upper-Lower
Bounds
Chnodule 18276 JIK 3,000 — 300,000
a 0.6 0-08
Sky conditions ‘cloudy’ N/A
torced 9.8*WS 1-50

We then applied the nonlinear least-squares solution
algorithm, Isgnonlin, from Matlab’s Optimization
Toolbox. This optimization algorithm converged and the
results are shown below in Table 4.

TABLE 4: OPTIMIZATION CONSTRAINTS AND
RESULTS

Parameter ‘Optimal’ value
Crnodule 22,280 J/K
o 0.8
Niorced 10.65xWS

Figure 8 compares the model error (measured-modeled)
over time for the optimized set of parameters.
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Fig. 8: Optimized model error over time for March 25",
2010, Lanai, HI.

For the majority of the representative day, the modeled
module temperature obtained using the results from the
optimization study is reasonably accurate, generally

staying within 5 degrees K of the measured module
temperature.

5. VALIDATION

The transient model was tested using the optimized results
from Table 4 with data from Lanai, HI for each day in
2010. Weather data (i.e., irradiance, air temperature, and
wind speed) were measured at 1-minute intervals; back-
of-module temperature was also measured at 1-minute
intervals. Figure 9 shows the RMSE between measured
and modeled module temperature for each day of the year
for which data is available (292 days).
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Fig. 9: RMSE of module temperature for days in 2010,
using data from Lanai, HI. Generally, the RMSE is
approximately 4 degrees K or less with few exceptions.

Figure 10 below repeats the same procedure using the
optimized results for Lanai, except applied to one month
of data collected in Albuquerque, NM. The results show,
clearly, that parameter values optimized for one location
are not necessarily applicable to other locations.
However, from Figure 9 it appears that this calibration
must be done only once using a representative day in
order to produce consistent and reasonable results on a
yearly basis.
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Fig. 10: RMSE for most of March 2011 using optimized
Lanai results applied to Albuquerque. The model is
neither accurate nor consistent in its level of accuracy.

6. STEADY STATE MODEL COMPARISON

Figure 11 compares measured module temperatures with
simulated results from both a selected steady-state model
and the improved transient model developed here. The
comparison in Figure 11 uses the same data collected in
Lanai for March 25, 2010 at a 1-second time interval. The
transient model uses input parameters resulting from the
previous optimization study; the predicted module
temperature calculated using the steady-state model is
based off of Eq. (1) with a =-3.56 and b = -0.075. Both
models use the same weather data (irradiance, wind
speed, and ambient temperature) as inputs. It is clear that
the steady-state model greatly overestimates the
variability in module temperature. If such a steady-state
model was applied to the prediction of PV power output
(e.g., for a grid integration study), it would overestimate
the variability in power to some degree, due to
exaggeration of the predicted module and cell temperature
fluctuations. Using the improved transient module
temperature model developed here provides a better
representation of module temperature variability, which
may be significant when making predictions with a short

time step.
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Fig. 11: Comparison of steady-state and transient module
temperature models.

Figure 12 shows the temperature errors for each model.
Although both models tend to over-predict temperature
during clear-sky periods, it is clear that the transient
model more accurately predicts module temperature. The
negative bias in Figure 12, especially evident in the
steady-state model results, will result in generally higher
module temperatures and consequently lower predicted
module efficiency.
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Fig. 12: Errors between measured and predicted module
temperature for each model.

7. SUMMARY AND CONCLUSIONS

We have shown that a transient model for module
temperature [1] can reasonably predict module
temperature when calibrated using site-specific data. We
compared the calibrated transient temperature model to a
steady-state temperature model and found that the steady-
state temperature model exaggerates the variability in



predicted module temperature. This variability in
predicted module temperature can translate into calculated
cell temperatures that are artificially high; depending on
the degree of temperature over-prediction, expected
performance for a system can be either marginally or
significantly lower than actual performance. The
transient temperature model offers a greatly improved
representation of the variability in module temperature
which may significantly improve the quality of PV power
simulations at short time scales.

8. FUTURE WORK

We have not determined how much site-specific data is
required to calibrate the transient model. Convective
cooling will be influenced by environmental conditions
other than wind speed that affect the heat transfer
properties of air, e.g., relative humidity. Because the
transient model’s accuracy is sensitive to forced
convection, it may be necessary to obtain measured
temperatures and concurrent weather for various weather
conditions (e.g., humid and dry) to properly calibrate the
model. Additionally, we assumed a simple linear
relationship between the forced convection and wind
speed; for improved model accuracy, this relationship
may in fact be more complicated.

Our parameter estimation process minimized RMSE but
in one instance (Figure 12) a residual bias in model
predictions is evident. Future efforts may examine the
parameter estimation process in order to address model
biases.

9. NOMENCLATURE

a absorptivity of module surface

Bsurface tilt angle of module from horizontal

€ground emissivity of the ground surface

Emodule emissivity of the module

Esky emissivity of the sky dome

c Stefan-Boltzmann constant (5.669 x
10 W/m?K*)

o} total incident irradiance on module
surface (W/m?)

Pm density of material (kg/m?)

a steady-state model coefficient that

determines the upper boundary for
module temperature at high irradiance
and low wind speeds

b steady-state model coefficient that
determines the rate at which module
temperature drops as wind speed
increases

A module area (m?)

Cer fill factor model constant (1.22 K m?

Cn specific heat capacity of material (J/kg
K)

E Solar irradiance incident on module
surface (W/m?)

E. incident irradiance (W/m?)

he forced forced convection (W/m? K)

Nrorced forced convection coefficient (J/m* K)

Ne free free convection (W/m? K)
Equal to 1.31 [W/m? K*?] «(Tmodgute [K] —
Tambient [K])1/3

ky constant, 10° m*wW

tm thickness of material (m)

Tambient ambient temperature (K)

Tground ground temperature (K)

Tnodule module temperature (K)

Tsky effective sky temperature (K)

WS wind speed at height of 10 meters (m/s)
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