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ABSTRACT

The Taylor test can be conveniently divided into three fairly
distinct stages. The first stage is initial transient behavior
after impact characterized by nonlinear plastic wave
propagation. The second stage is quasi-steady propagation of
the plastic wave front. The duration of this stage is a function
of the specimen caliber and material. The final stage is
terminal transient behavior, during which most of the
deceleration of the undeformed section takes place.

After the initial transient is complete, which varies with the
strain at which the plastic wave front propagates, the motion
is very well behaved, in the sense that a one-dimensional
analysis can be effectively applied. This paper contains such
an analysis. The results are supported by an example from
which the state of stress for an OFHC copper specimen is
deduced.

INTRODUCTION
The motion of Taylor impact specimens has been discussed

in some detail by the authors {1-3]. In this series of papers, -

estimates for plastic wave speed, stress, and other key
material properties were given. These estimates were
developed using two different viewpoints [1,2] and were
verified with a continuum calculation [3]. The purpose of this
paper is to introduce a new estimate for the maximum strain-
rate after the initial transient. This estimate, along with the
equation for stress at constant strain [1-3] for the plastic
material, allows us to deduce the state of stress at strain-rates
exceeding 10%sec. A stress/strain-rate diagram at 10%
compressive strain for OFHC copper is included as an
example at the end of the paper.

The success of the analysis presented in this paper is based
on the observation that the particle velocity u of the material
at the plastic wave front is proportional to the current speed
of the undeformed section v after the initial transient is over.
This means that

u=pv (1)

where B is the constant of proportionality. This hypothesis
was first introduced by the authors in [4] without any
supporting evidence. Strong supporting evidence for this
assumption comes from continuum mechanics code
calculations., Figure 1 shows such a calculation for an OFHC
copper cylinder, impacting a hardened 4340 steel anvil. The
impact velocity is 176 m/s and after the initial transient the
relationship between u and v is perfectly linear throughout
the period of quasi-steady deformation and the terminal
transient. Notice that the slope of the line in Figure 1
corresponds to a value of B approximately 0.85. In [2], this
value of corresponds to a strain at the plastic wave front of
about 7% in compression.

The notation used in this paper is the same as that used in all
of our previous papers, e.g. {4]. For convenience, Figure 2
shows deformed and undeformed specimens. The position of
the plastic wave front relative to the fixed anvil face is A. The
current undeformed section length is £. The displacement of

the back end of the specimen is s, with s=v. The
engineering strain across the plastic wave front is
e=Ag/A-1, where A is the original cross-sectional area of
the specimen and A is the deformed cross-sectional area.

Conservation of mass (assuming constant density p across
the plastic wave front) is given by

el=v-u=(1-p)v . )

The equations of motion for the undeformed section ¢
introduced in [1-2] are:

piv=0y 3)
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FIGURE 1. The relationship between particle velocity at
the plastic wave front, u, and undeformed secton velocity,
v. Notice that the relationship is completely linear, after a
period of initial transient behavior..
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FIGURE 2. A taylor impact specimen of original length L
undergoing plastic deformation.

and

pé(v—u):#‘e—cg . 4

In these equations G¢ is the quasi-static yield stress in

compression for the specimen material and ¢ is the dynamic
compressive yield stress. By using equations (1) and (2), we
can write equation (4) in the form

, 2
0‘=(1+e)[0’0 +-———(1_eﬁ) pvz] . &)

which expresses the dynamic yield stress in terms of the
quasi-static yield stress and the current velocity, a fact which
will be useful later.

EVALUATION OF KEY PARAMETERS

The philosophy behind following a plastic wave of
constant strain ¢ has been fairly well documented by the
authors [1-3]. In [2], it was shown that post-test
measurements of recovered Taylor cylinders could be used to
determine the key parameters in the test. Two fundamental
relationships were devised from kinematic considerations and
a detailed examination of the particle velocity during the
initial transient [5]. Without further discussion, these
relations are:

hf—i7=—(1+1"ﬁ)(sf—§) ()

e

and
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where % is the position of the plastic wave front at the end of
the initial transient (see Figure 2). The distance 5= vyt is
the displacement of the undeformed section at the end of the
initial transient. The time 7 will vary for differing strains, as
will the distance & . Figure 3, incladed here with the

permission of the authors [6], shows reduced EPIC code
calculations from a Taylor cylinder test on OFHC copper.

For low strains, % is large while 7 is smail. For large
strains, & is small while 7 is large. The distances h; and s;
can be measured from a recovered specimen for the strain
prescribed. The impact velocity vg is known from test
instrumentation.

For a prescribed, compressive strain e, equations (6) and (7)
are a pair of linear algebraic equations for the determination

of B and i . We assume that the transition time 7 is known.
Notice that when % has been found, ¢ can be determined from

"h+0+5=L (8)
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FIGURE 3. EPIC code calculation showing normalized
radial displacement (R—Ap)/Ry versus time (included with
the permission of the authors [6]). The normalized
displacements correspond to 0.002, 0.010, 0.020, 0.050,
and 0.100. The highest curve corresponds to the
normalized displacement of 0.002 (0.4% compressive
strain) and the largest curve corresponds to the
normalized displacement of 0.100 (17.4% compressive
strain).

which stems from Figure 2. Also, when B has been found, the
plastic wave speed can be determined by

‘ h:_—(uﬂ)v )
e
which is the result of combining

h+i+v=0 (10)
with equation (2). Reference [2] contains a thorough
discussion of these equations and the motivation behind
them. A discussion of the post-test measurement technique is
also included in this reference.

BEHAVIOR AFTER THE INITIAL TRANSIENT
Equation (3) describes the motion of the undeformed section
¢ during the period of quasi-steady deformation following the
initial transient and the terminal transient during which most
of the deceleration takes place. Equation (3) can be integrated
directly when equation (2) is used to change the variables.
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Integration of this equation leads to

p(1-B)

2e0

v2=tn(6)+C (12)

The constant of integration C,; can be evaluated with the
conditions at the end of the event. In this case,

p(i-B)

where £¢ is the undeformed section length corresponding to

the strain e with which the plastic wave is associated and v,
is the critical velocity of the undeformed section below which
deformation at that strain can no longer be sustained. When
equations (12) and (13) are combined, we get

L= exp{p:(;e—;f)(ﬂ —vg)} )

which is the velocity dependent undeformed section length.
Notice that the critical velocity v, can be found from

- .
L=y exp{p:g—ea?—)-(vg —vg)}

because ¢ can be determined from equation (8).

Equations (3) and (14) are also the source for information
about the displacement of the undeformed section, s.
Changing the variables and separating them leads to

14

1s)

pty p(1-B)
ds=— S v2—y2 vy 16
Op exp{ 2e0y ( C) (16)
Integration of this equation gives
els p(1-8)
s+Cy =1~_—-ﬂ— exp{—z—eo_:)-—(vz—vf) (17)

The constant of integration can be evaluated from the
conditions that exist at the beginning of quasi-steady, plastic
wave propagation [4,5],

G = °ts exp{p(l—ﬁ)[

= 18
1-8 2e0y \ (18)
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and now equation (17) becomes
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Notice that at the end of the event when v = v,

sp-85= -lf%[l— exp{—e%;oﬁ(vg -v2 )H , (20

which relates the total displacement during the quasi-steady
and terminal transient stages to the change in velocity.

One useful estimate remains to be found. The terminal time
can be obtained from equations (3) and (14) by separating the
time and velocity.

Bt ol 2=B)
dr=o exp{ o (v2-v2)iav Q1)

Integrating this equation between the transition time 7 and
the current time t allows us to find

= Pty v, pll-B
t=t-—?;c—j: exp{—%;—)_;—)(ﬂ—vcz)}dv 22)

This equation estimates the current time in terms of the
current velocity, v.

ESTIMATION OF STRAIN-RATES

The strain-rate is the most difficult physical quantity to
estimate in the test. However, for a complete description of
the material -it is essential. Taylor [7] and Whiffin [8]
discussed the difficulties associated with "rate of strain
estimation" in their seminal papers. Their estimates are for
average strain-rates with which the average yield stress can be
associated. There is no strain connected with these
quantities.

Taylor's [7] strain-rate estimate is based on uniform

deceleration of the undeformed section. If one assumes that

dv/dt = const., then it follows that

1 dv 1
—y2 =54+ —y2 . 23
2V dts 2V @3

At the end of the event, this equation can be used to solve for
dv/dt.

dv_-3vg

(24)
dt L- Lf

Separating the variables in this equation and integrating

provides us with an estimate for the terminal time, £

L=l
f V0/2 ’

(25)

at which v = Q.

The post-test geometry of a recovered Taylor cylinder is
shown in Figure 4. The average engineering strain in the
deformed region of the cylinder is given by

(Lr-ts)-(L=t) L~ 26)
L-1tf L-2f

Using the terminal time estimate given in equation (25), an
estimate for the average strain-rate can be found.

(Lr=ts) $v _ 3%
L-t; L-L; L-t;

€Av =" 27

This is Taylor's estimate for the average strain-rate in a
Taylor test. Generally, it underestimates the highest rate
achieved in the test.

An’estimate similar to that of Taylor can be constructed for
the present theory. Beginning with equation (23), we modify
the result to account for initial transient behavior and find the
equivalent of equation (24).

ﬂ=—‘%‘(V8"V3) (28)
dt Sf-'g

Separating the variables in this equation and integrating leads
to the time estimate

,f_t‘:M (29)
Vo + Ve

under these conditions, equation (26) becomes

Ly
£y

(Lr-tr)-(2-s)  3-
=y ‘-

30

Combining equations (29) and (30), we can estimate the
average strain-rate for the particular strain in the event.

€29

The quantities necessary to make this calculation are all
contained in the previous sections. However, the results, like
equation (27) are based on uniform deceleration and are
typically low.

To improve the strain-rate estimate, we can follow Taylor's
reasoning for the current configuration of the specimen.
Assuming that the strain behind the plastic wave front is
approximately uniform, we can express the average strain-
rate as a function of the current position of the rod in the
following form.

1 (32)
t
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FIGURE 4. Deformed and undeformed taylor cylinders.
The nomenclature used to describe the deformed cylinder
is shown,

An estimate for the maximum rate achieved in the test after
the initial transient can now be easily found.

Cmay = e == — L (33)

It is tempting to use equations (14), (19), and (22)
to estimate the strain-rate as a function of velocity and then
draw stress/strain-rate diagrams [8] However, because
equation (32) utilizes uniform strain behind the plastic wave
front, it does not predict the rates very well for large times
after the initial transient. The assumption is reasonable when
the transition from initial transient behavior to quasi-steady
deformation occurs (equation (33)), because the deformation
zone is thin.

Conclusion

We conclude this paper with an example intended to clarify
the very abbreviated presentation in the previous sections,
To accomplish this, data from a Taylor test on OFHC copper
[6] is presented in Table 1. A 30 caliber rod impacts a
hardened 4340 steel anvil at 176 m/s. The axial position is
measured from the undeformed (back) end of the specimen and
the associated diameter is given at intervals of 0.050"," From
these measurements, we can approximate the undeformed
section lengths for given strains. For example, if e = -0.10,
which corresponds to a diameter of 0.316", then we can use
linear interpolation to find £, = 0.867" = 22.0 mm. For this
specimen L = 57.15 mm and Lf = 42.91 mm (See Figure 4).
This means that hf= 20.89 mm and 5= 14.24 mm. For this
impact, =14 ps is a reasonable choice, and from this
estimate § = vof =2.46 mm.

Using the information in the previous paragraph, we can
solve equations (6) and (7) for B and . The results are:
B=0768 and h =540 mm. It now follows that
£=L-h-5=49.29 mm.

We are now in a position to estimate the state of stress at
10% compressive strain.  Using equation (5) with

TABLE 1
Axial Rod Axial Rod Axial Rod
Position Diameter Position Diameter Position Diameter
!incheo! {inches) (inches) (inches) (inches) (inches}
0.000 0.300 0.800 0.308 1.275 0.380
0.050 0.300 0.825 0.310 1.300 0.384
0.100 0.300 0.850 0.315 1.328 0.388
0.150 0.300 0.875 0.318 1.350 0.392
0.200 0.300 0.900 0.321 1.375 0.399
0.250 0.300 0.925 0.324 1.400 0.404
0.300 0.300 0.950 0.327 1.425 0.405
0.350 0.300 0.975 0.333 1.450 0.409
0.400 0.300 1.000 0.337 1475 0.412
0.450 0.300 1.026 0.342 1.500 0.410
0.500 0.300 1.050 0.346 1.525 0.409
0.550 6.300 1078 0.350 1.550 0.409
0.600 0.301 1100 0.353 1.575 0.417
0.85¢ . 0.302 1.125 0.368 1.600 0.440
0.678 0.303 1.150 0.361 1.625 0.476
0.700 0.304 1.178 0.365 1.650 0.511
0.728 0.304 1.200 0.360 1.678 0.535
0.730 0.308 1.228 0.373 1.687 0.541
0.77% 0.308 1.250 0.376 :

0, =-300 MPa, we find ¢ =-404 MPa. From equation

(33) we find that this stress corresponds to a strain-rate of
-2.24x10%s71. These estimates are all very reasonable and
consistent with our earlier efforts [2, 3].

The one-dimensional analysis contained in this paper has
been successfully applied to many Taylor specimens.
Although only one example has been included, it is clear that
data at other strains can be obtained using the same analysis..
By varying the impact speed, other strain-rates can be
achieved and the stress/strain-rate diagram can be constructed
at constant strain. Some of these diagrams will be reported
later. '

It is possible to develop the constitutive behavior for the
specimen material parametrically in terms of the velocity v
[9]. Future efforts will concentrate on improving the estimate
for velocity dependent strain-rate.
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