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Understanding of interface structures, defects, and mechanical properties at general
fce-bece interfaces using “tunable” potentials
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Technology, Cambridge, MA 02139

Abstract:

Nanolayered Cu-Nb composites exhibit high strength and enhanced radiation damage
tolerance. To understand the relevance of interface structures to interface properties in
general fcc-bee systems, “tunable” potentials offer a fairly simple way to selectively vary
parameters independently. In this work, the parameterization of the EAM interatomic
potentials in fce-bee system is modified to understand the interface structures, defects,
and mechanical properties. We first change the dilute heats of mixing between Cu and
Nb and investigate the effect on interface structures. We also demonstrate that the
variation in heats of mixing has a strong influence on both the interfacial shear strength
and the active shear plane at the interface. To understand the interface behavior in
different lattice misfit geometries, the relative lattice constants ratio between Cu and the
bee crystal is varied. Interface dislocation analysis based on Frank-Bilby formulation is
to be presented, together with atomistic simulation results. Finally, the effect of the
interface dislocation contents on defect-interface interaction is discussed, in the context
of effort to construct the figure-of-merit of radiation damage tolerance at interfaces.
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Interface Structure

Relevance to

Deformation Radiation damage
«Control deformation by interacting with « Catalyst for point defect annihilation.
dislocations CuNb interfaces attract, absorb and annihilate

Unit processes radiation-induced point defects

- nucleate dislocations - block dislocations
- store dislocations - annihilate dislocations

Important for understanding
- yield strength - work hardening
- recovery - fracture

* Preferred sites for impurity adsorption.
CuNb interfaces absorb noble gasses and delay
bubble nucleation in He-implanted Cu-Nb nanolayers

o X.-Y. Liu, R.G. Hoagland, J. Wang, T.C. Germann, A. Misra, Acta Mater. 58, 4549 (2010).
M.J. Demkowicz, R.G. Hoagland, J.P. Hirth, Phys. Rev. Lett. 100, 136102 (2008).

J. Wang, R.G. Hoagland, J.P. Hirth, A. Misra, Acta Mater. 56, 5685 (2008).

A. Misra, M.J. Demkowicz, X. Zhang, R.G. Hoagland, JOM 5§9(9), 62 (2007).

Goals

« Based on our knowledge learned from Cu-Nb interface, investigate general
fcc/bce material systems.

» Predictive atomic-scale designs for mitigating radiation damage and high
strength in nanolayered composites.



How to represent heterophase interface?

Geometry Thermodynamic energetics
* Crystallography (orientation » Heats of mixing and stability of
relationships) interface

e Lattice mismatch: coherent,
semi-coherent, incoherent,
interface misfit dislocations

Interface energy / enthalpy

» Defect formation energies at
interface

* Phase transformations due to

_interface
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Manipulating Interface Properties via Tunable
Potentials

» Keep geometry constant, systematically vary heats of mixing

» Or keep heats of mixing constant, systematically vary geometry
w Tune the parameterizations of the interatomic potential fcc-bcc

* Interface energetics (heats of mixing) « Variation of lattice mismatch (or misfit)
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The dependence of interface shear strength
on the dilute heats of mixing

Potentials dH{(Nb in Cu) (eV) dH(Cu inNb) (eV) acsci(A)  Besci(GPa)

Expt./VASP 1.02 1167 0.48 [16] 3.22 (vasp) 168 (vasp)
EAM-dHI 1.40 0.800 3.19 188
EAM-dH2 (Cu-Nb) 1.03 0.436 3.19 188
EAM-dH3 0.76 0.351 3.17 188
EAM-dH4 0.26 -0.004 3.16 188

EAM-dHS5 -0.39 -0.61 3.16 188




Heats of mixing (HOM): dilute HOM and layer HOM

How good is dilute HOM (single impurity atom in host matrix) in
defining the interface bond change? Check with layer HOM calcs.

Nb layer

Cu

Layer heat of mixing (Nb in Cu, eV)
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Dilute heat of mixing (Nb in Cu, eV)



f fcc/bece interfaces reveals multiple states of

deling o
tructures with nearly degenerate format

Atomistic mo
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Atomistic modeling of fcc/bcc interfaces reveals multiple states of
atomic structures with nearly degenerate formation energy

Configuration KS, KS, KS..in

Interface energy (J/m?) 0.5687 0.5675 0.5414

Areal density(atoms/nm?) 17.74 17.58 16.82




Shear strength of interfaces depends on their
atomic structures and is anisotropic

KS» Oyz ‘[1TO] Stress unit: MPa
—e— K§S,
—a— KSnin
g -
/

Two-dimensional flow strength of Cu/Nb interfaces

Shear strength is lower than the theoretical shear strength in Cu and Nb.




Atomic structure of interfaces is mainly determined by
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Atomic structure of interfaces is mainly determined by
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Vector plot of the relative displacement of Cu atoms



Heat of mixing variation changes active shear mode of

interface

2500 . . S

- ——EAM-dH2 (Nb in Cu 1.02, Cu in Nb 0.436 eVs)

EAM-dHS (Nb in Cu -0.39, Cu in Nb -0.61 eVs)
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Low shear resistance results from the ease of
creation and glide of interface dislocations
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Shearing of fcc’-fcc layers at strong interface
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Why shear mode change?
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Significant stacking fault energy change at fcc layers near interface
(KS,). This provides physical basis for stacking sequence change
under stresses.



Shear strength of fcc/bcc interface (KS,)
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dh=1.40

dh=1.03

dh=0.26

1 dh=-0.39
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interfaces is dependent on HOM
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Summary of Part |

Atomistic modeling studies are carried out to understand the
heat of mixing effect on the shear response of fcc-bece
Interfaces using tunable potentials developed.

Variation of the heat of mixing does not significantly alter the
fcc-bec interface structure.

Variation of the heat of mixing has a strong influence on the
interfacial shear strength.

The active shear plane at the interface may also change as the
heat of mixing is reduced.

The spreading extent of dislocation cores within interfaces
decreases as the heat of mixing is reduced.



Part ll: relevance of fcc-bcc interface structure to defect
properties at interfaces in irradiation environment

Kurdjumov-Sachs (KS)
orientation relation -

> {1113, 1 {110}, Il
interface plane

> <110>q, 1 <111>,
in interface plane

Systematically vary atomic structure and explore the sink strength of
interfaces

» Keep heats of mixing unchanged from those of Cu/Nb,

* Vary interface misfit by changing the lattice constant of the bcc phase,

and keep the lattice constant of the fcc phase®.

* In the case of lattice constants ratio (ag./a,..) equals to 1.346, Ag/V material system is modeled.




Fitting of interatomic potentials

A series of EAM (embedded-atom-method) potentials are developed

afCC(A) abCC(A) X AH (eV) AH (eV) Eq(eV) Bege(GPa)
(bcc in fce) (fec in bee)
Expt./DFT 3.615 3.301 1.02 0.48 - 168 (VASP)

(Cu-Nb)

Cu-bcc1 3.615 3.465 1.043 1.09 0.497 -10.98 188

Cu-Nb S8-S0, 1.096 WS 0.436 -10.95 188
Cuy-bce2 3815 31437 1152 1.04 0.488 -10.60 189

Cu-bcc3 3.615 3.060 1.185 1.00 0.5601 -10.56 188

Cu-bcc4d 3.615 2,951 1.2256 1.02 0498 -10.62 188

Ag-V 4090 3.039 1.346 1.16 Q8T - -

d fee

misfit ratio x =
a

bce
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Frank-Bibly Approach (to analysis interface misfit
dislocations)

—

Unit vector [3 Is probe vector; B is total Burgers

vector.
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Vacancy formation energies change substantially at fcc-
bcc interfaces with different lattice misfits
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Vacancy formation energies change substantially at fcc-

bcce interfaces with different lattice misfits
100%

Cumulative population of sites at interface

50%

- -y=1.043
-&-y=1.095
~id-x=1.152
v y=1.185 ‘
@ X=1225 ., ' . :
-y =1.346 | aia 2v !
: 5 ,
o* :
f Y ” v i
p 'I b v "
CuNb o 4 Q- v !
. / lo !
interface ! o’ Ly /E
' S | T Ag-V
* L2 / v . i
o &Y | Interface
/ L 2 I 4
o , VI [
]

I .0
‘_’ v

1

* v g

Cu bulk

L Ag bulk

-0.8 -0.4

Vacancy formation energy at interface (eV)

!
b4 I ! !
v N [}
0.4 0.8 1.2

0

X.-Y. Liu, R.G. Hoagland, M.J. Demkowicz, M. Nastasi, A. Misra, submitted.



Vacancy formation energies change substantially at fcc-

bcc interfaces with different lattice misfits

Interfacial sites fraction with E{; < E{; (bulk) — AE
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Interstitial formation energies are significantly lower at
fcc-bec interfaces compared to bulk values
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“Interstitial loading” has significant effect on vacancy
formation, migration via interstitial emissions at fcc-
bcc interface
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90% migration barriers probed through MD
< 0.38 eV (bulk Cu 0.69 eV)

* Mechanism similar to at Cu GBs, Bai et al, Science 327, 1631 (2010).



Summary of Part I

Tunable EAM potentials are developed to model general fcc-bce
interfaces with different lattice misfits from 1.043 to 1.346, to
iInvestigate the relevance of fcc-bcc interface structure to defect

properties.

Study of Kurdjumov-Sachs orientation interfaces with different misfit
reveals:

- Vacancy formation energies decrease with increasing misfit
dislocation density,

- Interstitial formation energies are substantially below the bulk
value, and depend on the interface misfit in a complex way.

“Interstitial loading” at fcc-bcc interface lowers vacancy formation
and migration energetics via interstitial emissions, which may bear
significance for 2-3 nm layer-thickness multi-layer structures in
irradiation environments.



