S CoNF-Q501107 -]
Ros-2925

Los Alamos National Laboratory is operated by the University of Califomia for the United States Department of Energy under contract W-7405-ENG-36

TITLE: NETWORK IMPROVEMENT PROBLEMS
AUTHOR(S): S.0. Krumke, H. Noltemeier, K.U. Drangmeister, M.V. Marathe, S.S. Ravi
SUBMITTED TO: ACM Symposium on Discrete Algorithms
Atlanta, GA
January, 1995

By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive royaity-free license to publish or reproduce
the published form of this contribution or to allow others to do so, for U.S. Govemment purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

Los Alamos Lshemes k’.:mz'x%s%%%

Zubmtled f2 SODA 95

Network Improvement Problems

S. O. Krumke! H. Noltemeier! K. U. Drangmeister! - M. V. Marathe? S. S. Ravi®

July 14, 1995

Abstract

We study budget constrained optimal network improvement problems. Such problems aim at finding
optimal strategies for improving a network under some cost measure subject to certain budget con-
straints. As an example, consider the following prototypical problem: Let G = (V, E) be an undirected
graph with two cost values L(e) and C(e) associated with each edge e, where L{e) denotes the length
of e and C(e) denotes the cost of reducing the length of e by a unit amount. A reduction strategy
specifies for each edge e, the amount by which L(e) is to be reduced. For a given budget B, the goal
is to find a reduction strategy such that the total cost of reduction is at most B and the minimum

cost tree (with respect to some measure M) under the modified L costs is the best over all possible
reduction strategies which obey the budget constraint. Typical measures M for a tree are the total
weight and the diameter.

We provide both hardness and approximation results for the two measures M mentioned above.
For the problem of minimizing the total weight of a spanning tree, we provide an algorithm that,
for any fixed 7,6 > 0, finds a solution whose weight is at most (1 + -,17) times that of a minimum
length spanning tree plus an additive constant of at most € and the total cost of improvement is at
most (1 + v) times the budget B. This result can be extended to obtain approximation algorithms
for more general network design problems considered in [GW, GG+94]. For the problem of obtaining
a minimum diameter tree, we present an approximation algorithm that finds a spanning tree with
diameter at most O(logn) times the diameter of a budget constrained optimal diameter spanning
tree by spending at most O(logn) times the budget B, where n denotes the number of nodes in the
network.

'Department of Computer Science, University of Wiirzburg — Am Hubland, 97074 Wiirzburg, Germany. Email:
{krumke,noltemei,drangmei}Qinformatik.uni-wuerzburg.de.

2Los Alamos National Laboratory P.O. Box 1663, MS M986, Los Alamos NM 87545. Email: madhav@c3.lanl.gov. The
work is supported by the Department of Energy under Contract W-7405-ENG-36.

3Department of Computer Science, University at Albany — SUNY, Albany, NY 12222. Email: ravi@cs.albany.edu.

DISTRIBUTION OF THIS DOCUMENT IS UNLIM},TEDm, M ASTER

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

1 Introduction

Given a graph G, the problem of finding a spanning tree minimizing some measure M is one of the
classical problems in computer science. Typical measures M for the tree T' include the total weight
w(T'), the diameter dia(T’), the weighted sum w(z,T) of the distances to a fixed node z, etc. However,

there has been little work on how to modify a graph G such that the lightest spanning tree with respect
to the measure M in the resulting graph has minimum weight. In this paper, we study network design
problems where the goal is to find optimal improvement strategies for modifying a given network.

Such problems arise in diverse areas such as design of high speed communication networks [K.J83],
video on demand [KPP93], teleconferencing [KPP92, Komp], VLSI design [CK+92, CR91, ZPD94],
database retrieval [Ra94], etc. For example, consider the following problem which arises in the design of
high speed communication networks. We are given a communication network (modeled as an undirected
graph) which needs to be upgraded due to the availability of faster communication links. The cost value
C(e) denotes the cost incurred in improving the delay in sending packets using edge e by one unit. The
constraint is that the total cost of improving the network cannot exceed a given budget B. The goal of
the budget constrained optimal improvement problem is to find a way to upgrade the communication
network so that the total upgrading cost is at most B and the cost of a minimum spanning tree in the
modified network is minimized.

Most of the network improvement problems considered in this paper are N'P-hard. Given these
hardness results, we aim at finding efficient approximation algorithms for these problems. Define an
(o, B)-approximation algorithm as a polynomial-time algorithm that produces a solution within « times
the optimal function value, violating the budget constraint by a factor of at most 8. The main contribu-
tion of the paper is a framework for formulating such network improvement problems and a collection of
efficient (v, B)-approximation algorithms for several versions of network improvement problems. In the
next two sections we formally define the problems considered in this paper and summarize our results.

2 Definitions and Preliminaries

Let G = (V, E) be an undirected graph. Associated with each edge e € E, there are three nonnegative
values as follows: L(e) denotes the length or the weight of the edge e, C(e) denotes the cost of reducing
the length of edge e by one unit and Ly,;,(e) denotes the minimum length to which the edge e can be
reduced. Consequently, we assume throughout the presentation that Lyn(e) < L(e). For each edge
e € E, let A(e) be defined by A(e) := L(e) — Lmin(€). \

Given a weighted graph G as above and a budget B, we define a feasible reduction to be a nonnegative
function r defined on £ with the following properties: For all edges e € E, L(e) — r(e) > Lnpin(e) and
Seen(e) - Cle) < B.

For a feasible reduction r, we denote by r(G) the graph cons1stmg of the same nodes and edges as G
with each edge e having length Ly, (e) given by Lyi,(e) = L(e) — r(e).

For some versions of the problems that are discussed in the sequel, we impose some additional con-
straints on permissible reductions. Thus we obtain the following three cases:

1. For each edge e, the reductions are required to either shorten the length of the edge to Lnin(e) or
not to change the length of edge e at all. Formally, we require each (feasible) reduction to satisfy
the condition r(e) € {0, A(e)} for all e € E. These reductions will be referred to as 0/1-reductions.

!

2. The reduction = must be an integer valued function; i.e., for each edge e, r(e) must be an integer
in [0, A(e)]. We denote this type of reductions by I-reductions (integer reductions).

3. The third case is the least restricted one. Here we allow a reduction r to take on rational values;
i.e., for each edge e, the reduction can be a rational value in [0, A(e)]. We refer to these reductions
as C-reductions (continuous reductions).

An alternative way to view a 0/1-reduction r is to use it to model the insertion of alternative edges to
the graph G, with the reduction of the edge e corresponding to the construction of a new edge é parallel
to e with length Lnin(e).

Let G be a graph and T be a spanning tree of G. The total length of T' under the weight function
L, denoted by wr(T"), is defined to be the sum of the lengths of the edges that are in 7. The diameter
of T under the weight function L, denoted by diay(T¢), is the length of a longest simple path in T'. We
denote the total weight of a minimum total length spanning tree and the diameter of a minimum diameter
spanning tree by M ST(G) and M DST(G) respectively. We are now ready to state the problems studied
in this paper.

Definition 2.1 The Budget Minimum Total Cost Spanning Tree Problem (BMST) is to find a feasible
reduction v such that MST(r(G)) has the least possible value (under the Ly, function).

Definition 2.2 The Budget Minimum Diameter Spanning Tree Problem (BMDST) is to find a feasible
reduction r such that MDST(r(G)) has the least possible value (under the Ly, function).

Let f : N — Q be a function. We say that an algorithm A has a relative performance guarantee of
f(n), if for each instance given by an n node graph G, the reduction r provided by A satisfies

MST((G))

st (@) =T (1)

Here r* denotes an optimal edge-reduction on G' and n denotes the number of nodes in G.

For the remainder of the paper, we use the following convention: Given a problem P, let 0/1-P, I-P

and C-P denote the problems when the reduction r is restricted to be a 0/1-reduction, I-reduction and
C-reduction respectively.
Example: Consider the graphs given in Figure 1. Figure 1(a) shows a graph G where each edge is
associated with the three values (L, Lyin, C)- The result of a modification of G is shown in Figure 1(b).
The edges belonging to the minimum spanning tree are drawn as dashed lines. The modification cor-
responding to Figure 1(b) involves a cost of 24 and the weight of the resulting tree is 7. Figure 1(c)
shows the graph with edge lengths resulting from a reduction that is optimal among all reductions of
cost no more than 22. There, the weight of the spanning tree resulting from the reduction is 4. Thus,
the reduction of Figure 1(b) is a (7/4,24/22)~approximation to an optimal solution.

3 Summary of Results

The results obtained in this paper are summarized in the following tables.

(7,2,3)

(a) The original graph G

[g

7

(b) Modification of G
with cost 24

(c) Optimal Modification
for a budget of 22

Figure 1: An example of a graph modification via edge reductions.

BMSsT Problem
0/1 I C
Trees weakly A'P-hard easy (Greedy) easy (Greedy)
Fpas
General Graphs | N'P-hard N7P-hard N7P-hard
(L-+1/7,1+y)-approx.® | (1+1/y,1+v)-approx.® | (1+1/7,1+ v)-approx.}

| BMDST Problem
0/1 I c
Trees weakly A'P-hard open open
General Graphs | strongly N'P-hard strongly N"P-hard open
also hard to approx. within | also hard to approx. within | open

(11/10 — ¢, (1/8 — €') log n)

(11/10 — €,(1/8 — &') logn)

(O(log n), O(log n))-
approx.

(O(logn), O(logn))-
approx.

(O(logn), O(log n))-
approx.

The approximation algorithm for C-BMST can be extended significantly. For example, using our ideas
in conjunction with the results of Goemans et. al. [GG+94], we can obtain similar approximation results
for finding budget constrained minimum-cost genera.liz}ad Steiner trees, minimum-cost k-edge connected

subgraphs and other network design problems specified by weakly supermodular functions introduced in

that paper.

The remainder of the paper is organized as follows. In Section 4 we briefly discuss the structure of
an optimal solution. Section 5 contains the hardness results for the various problems considered in the

paper. Sections 6 and 7 contain our approximation algorithms.

The length of the spanning tree produced is at most (1 + 1/v) times that of an optimal tree plus an addxtwe constant

of ¢ that can be made arbitrarily close to zero.

[
:i:f-? ()
N
Q..
\\'%..-(U:;,‘Uq)
N T
A SR
(v2,v4) &~ _ ~o.._§vz,v4)
e < 9.
Sl (v1,v4)
('U[,Uz) S~o o e
S el Ty
5 \g._._....._';-~._‘:.. _____
4 . ™ "®
5 10 15 Budget

Figure 2: Remaining weight of the trees T} and 75 as a function of the budget.

4 Structure of an Optimal Solution

In this section we comment on the structure of optimal solutions to both BMsST- and BMDsT-problems.
We also look at special cases of these problems that can be solved in polynomial time.

First, suppose that the given budget B is zero. Then BMsT reduces to the well known minimum
spanning tree problem (with length function L(e)), and is known to be optimally solvable by classical
algorithms, e.g. Prim’s algorithm [CLR]. Also, BMDST can be solved in polynomial time, e.g. by solving
the so—called “Absolute 1-Center Problem” (cf. [Ha95]).

Similarly, if B = +oco (i.e., there is no bound on the cost of upgrading the network), the BMsT
and BMDST problems again reduce to the minimum spanning tree problem and the minimum diameter
spanning tree problem respectively (with length Lpin).

Optimal solutions to BMsT and BMDST problems also exhibit some structure in the general case
(i.e., B ¢ {0,4o00}). Due to lack of space, we restrict our discussion to the BMsT-problem. A similar
argument can be given for the BMDsT-problem.

Any (feasible) reduction r induces a tree in the natural way, namely a minimum spanning tree T; in
the modified graph r(G). Observe that the quality of the solution produced via the reduction r depends
solely on the weight of T}, so all the cost incurred in upgrading edges not in 7, is wasted. Moreover,
for any fized tree T in G, the Greedy-strategy that successively reduces a cheapest available edge is an
optimal (continuous or integer) reduction strategy. Thys, if we already knew a minimum spanning tree
T, corresponding to an optimal reduction 7*, we could solve C~-BMST and /-BMST in polynomial time.

This observation also suggests a very simple exponential time algorithm for solving the two versions
of the BMST problem mentioned above: Enumerate all spanning trees in G, apply the Greedy strategy
to each of them and then select the best solution. Unfortunately, a graph G with n nodes can have n»—2
different spanning trees.)

We now discuss the sensitivity of optimal (continuous) reduction strategies to changes in the given
budget B. If we fix a spanning tree and plot the weight of that tree as a function of the money spent on
it in a Greedy manner, we see that this function is piecewise linear and convex. Each piece corresponds

to a budget range, where one particular edge e is shortened. Thus it is easy to see that the piece has
slope —1/C(e).

Figure 2 shows the plots corresponding to the tree T} consisting of the edges (vs,v3), (ve, v4), (v1,v2)
and the tree T consisting of the edges (v3,v4), (v2,vs) and (vi,vs) taken from the example graph of
Figure 1. As can be seen from Figure 2, the plots for different trees can cross each other multiple times.
If we plot the weights of all spanning trees on the same set of axes, the lower envelope gives the optimal
remaining weight per budget. It is easy to see that the lower envelope can have an exponential number
of linear pieces. :

As far as we know, the problems considered in this paper have not been previously studied. Berman
[Be92] considers the problem of shortening edges in a given tree to minimize its shortest path tree
weight. Phillips [Ph93] studies the problem of finding an optimal strategy for reducing the capacity of
the network so that the residual capacity in the modified network is minimized. The problems studied
here and in [Ph93, Be92] can be broadly classified as types of bicriteria problems. Recently, there has
been substantial work on finding efficient approximation algorithms for a variety of bicriteria problems
(see [KP95, Ha92, MRS*95, RR+93, Ra94, Wa92, ZPD94] and the references therein).

5 Hardness Results

5.1 Hardness of the BMsT—Problem

It is easy to see that when G is a tree, C-BMsT and /-BMST problems can be solved optimally in
polynomial time by a Greedy-type algorithm that simply keeps on reducing the length of the cheapest
available edge. In contrast, 0/1-BMST is hard even for trees as indicated in the following proposition
which can be proven using a reduction from the KNAPSACK problem [GJ79).

Proposition 5.1 0/1-BMSsT is N'P-hard, even if the underlying network G is a tree. This result re-
mains true, even if C(e) =1 and Lyin(e) =1 for alle € E. a

We now turn to the complexity of BMST for general graphs. Again using a reduction from KNAPSACK,
we can prove the following.

Proposition 5.2 For general graphs, I-BMsT is N'P-hard, even if C(e) =1 for alle € E. a

While it might be not surprising that the discrete versions of BMST turn out to be hard, it is also
the case that the continuous version, C-BMST, cannot be solved optimally in polynomial time, even for
very restricted classes of graphs, unless P = N'P. \

Proposition 5.3 C-BMST is N'P-hard, even when restricted to series-parallel graphs.

Proof: We use a reduction from CMC-KNAPSACK® (c.f. [GJ79] p. 247). An instance of CMC—KNAPSACK
is given by a finite set U of n items, a size s(u) and value v(u) for each item, a partition Uy U --- U Uy
of U into disjoint sets and two integers S and K. The question is, whether there is a choice of a unique
element u; € Uj, for each 1 < 7 < k, and an assignment of rational numbers 7;,0 < r;.< 1 to these
elements such that 38 | rs(u;) < § and 35| riv(w;) > K.

Given an instance of CMC-KNAPSACK we construct a graph G = (V, E) in the following way: We let
V=UU{X,T,Ti,...,Tk}, E:= BiUEy U B3 with By := {(X,v) :v € U}, By := {(v,T) : u € Uj,i =

Figure 3: Graph used in the reduction from CONTINUOUS MULTIPLE CHOICE KNAPSACK.

1,...,k} and B3 := {(T},T) : i = 1,... ,k}. The graph constructed this way is obviously series—parallel
with the terminals X and T.

Define D := max{v(u) : v € U}. For each edge (z,u) € B, let L(z,u) := D, Lmin(z,u) =
D — v(u),C(z,u) = s(u)/v(v). For all edges e € Ey we let L(e) := Liin(e) := C(e) := 0, and for all
edges e € E3 we define L(e) := Lpin(e) := 3D and C(e) := 0. Set the bound B on the total cost to be S.

The graph is shown in Figure 3. The dotted edges are of weight 0 while the dashed ones have weight
3D. Any MST in G has weight kD + 3D.

By the construction, any feasible reduction can only reduce the length of the edges in E;. Assume
that r is a feasible reduction. Observe that the MST in r{G) will always include all edges from E5 (which
are of weight 0) and ezactly one edge from Ej3, regardless of which edges from E; are affected by the
reduction. Observe also that for any fixed i € {1,... ,k} the MST in r(G) will contain ezactly one of the
edges of the form (X, u’) (' € U;). Consequently, reducing the length of more than one edge (X, ') and
v’ € U; will not improve the quality of the solution, but cost money from the budget B. We thus have:
Observation: If r is a feasible reduction for the instance of BMST defined above and the weight of an
MST in r(G) is C, then there is always a feasible rediction ', which for each i € {1,... ,k} reduces at
most one of the edges (X,u), u € U; and the weight of an MST in v'(G) is also equal to C.

Let r be any reduction as defined in the above observation and for ¢ = 1,... ,k let e; = (X, u;) be
the unique edge from z to U; affected by the reduction. The weight of an MST in /(G) is then given by

k k
3D + Z(L(ei) —r(e;)) =3D+k-D = r(es). . (2)

i=1 i=1
The cost of reduction r is given by

k

Z r(e;)Cle;) = Z r(e;) -

=1 i=1

s(u;
v(y;

k
=529 o) < B. ®)

5CoNTINUOUS MULTIPLE CHOICE KNAPSACK

We now prove the following: There is a feasible reduction r such that an MST in r(G) has weight
at most (3 4 k)D — K, if and only if there exists a choice of a unique element u; € Ui, 1 <i1<kand
an assignment of rational numbers r;,0 < r; < 1 to these elements such that Y5, r;s(u;) < B and
Y rv(u) > K.

First, assume that there is a feasible reduction r such that the MST in r(G) has weight at most
(3+k)D — K. Without loss of generality, we can assume that r has the properties as stated in the above
observation. Then for i = 1,... ,k there is at most one edge e; = (X, u) with u € U; such that r(e;) > 0.
If there is such an edge e;, we deﬁne

) (e
1 0(ws) L) = Longnle) @

and let u; := w. If for all edges (X,u) with u € U; we have r(e;) = 0, we simply let r; := 0 and
choose u; € U arbitrarily. It follows readily from the definition and the feasibility of the reduction r that

€ [0,1]. Moreover, using Equation (3) we see that Y%, r;s(%;) < B < By. Using Equation (2) and
the fact that the weight of the MST in r(G) is no more than (3 + k)D — K we obtain that

Zr,v) Z:EZ =Y rle) >

=1

Conversely, if we can pick unique elements u; from the sets U; and find rational numbers r; € [0, 1] such
that % ris(w;) < B and Y7 lr,v(u,) > K. We can define a reduction r by r(X,v;) := riv(y;) =
7i(L(z,1;) — Lmin(z,v;)) for i = 1,... ,k and r(e) := 0 for all other edges. It follows that r is indeed
feasible, and using Equation (2) we see that the MST in (@) is no heavier than (3 +k)D — K. O

5.2 Hardness of the BMbDsT—Problem

"As in the case of the BMsT-problem, we obtain the following:
Proposition 5.4 0/1-BMDST is N'P-hard for trees and even if C(e) = 1 for all e € E. O

The proof is again by a reduction from KNAPSACK and is omitted in this extended abstract. The
following proposition presents a negative result concerning the approximability of I-BMDST and 0/1-
BMDsT. A proof of this proposition is included in the appendix.

Proposition 5.5 Let € > 0 be any positive constants If there is o polynomial time approzimation

algorithm A for I-BMDST (0/1-BMDST) with a performance guarantee of (11/10 —€), then P = N'P.

This results remains true even if C(e) = 1 for all e € B. Moreover, unless NP C DTIME(n!°81087) the
above hardness results hold even if the algorithm A is allowed to spend puBlog, B units of money instead

of B for any fized p, 0 < p < 1/8. 0

6 Approximation Algorithms for BMsT—Problems

In this section, we present our approximation algorithm for the BMST problem. As mentioned earlier,
the approximation algorithm extends easily to a broad class of network improvement problems where the
objective to be minimized is the total cost of a connected subnetwork (e.g. the case of budget constrained

Procedure Heuristic-BMST(7, €)
(n—l)(gg L(e)=min Linin(e))

1 Use binary search to find the smallest integer j' € [0,] such

e
(n-1) mig Linin(e)
that for C' := ‘E,Y + j'e the procedure Test(C’) returns Yes.

2 Let T' be the tree generated by Test(C').
Define the reduction r by r(e) := 0 if e is not included in T" and by r(e) := £, otherwise.
4 returnr and T.

[

Figure 4: Main Procedure for the approximation of BMsT

Procedure Test(C)

1 Let p:= %
2 for each edge e let h(e) = min (L(e) +t(xC(e) — 1)).

t€[0,A(e)]
Also, let t, be the value of ¢t which achieves the value h(e). (See Section 6.1.1)
3 Compute 2 minimum spanning tree T' in G using the weight h(e) for each e € E.
4 if wp(T) < (1 +)C then return Yes else return No.

Figure 5: Test procedure used for the approximation of BMsT

minimum Steiner tree problem). The approximation algorithm uses a parametric search technique similar

to the one devised in [MRS*95].
Our approximation algorithm for 0/1-BMsST is shown in Figure 4. This algorithm uses the test
procedure given in Figure 5.

6.1 Correctness and Performance Guarantee

The performance guarantee provided by the algorithm Heuristic-BMST is summarized in the following
theorem.

Theorem 6.1 For any fized v, > 0, Heuristic-BMST is a polynomial time approzimation algorithm for
0/1-BMsT (I-BMST and C-BMST respectively) that finds a solution whose length is at most (1 + %)
times that of a minimum length spanning tree plus an additive constant of at most €, and the total cost
of improvement is at most (1 +«y) times the budget B.

The proof of Theorem 6.1 relies on several lemmas pr'éqented below.

Imagine the (possibly infinite) graph G = (V, E) that has the same node set V as G but for each edge
e € E has a number of parallel edges e, one for each possible value t € [0, A(e)] to which the length L(e)
can be reduced. In the case of integer-reductions, we restrict ¢ to the integers in the range [0, A(e)]; for
0/1-reductions, we restrict ¢ to the two element set {0, A(e)}.

To be precise, let £ = Ueeg Ee, where B, := {¢* : 0 <t < A(e)}. Define length(e!) := L(e) — t and
cost(e') := tC(e). Now we can view the problem of finding an optimal reduction for our original graph
as finding a spanning tree 7" in G that has cost(T") < B and has minimum total length lerigth(T) among
all spanning trees obeying the cost—constraint. We will base our proofs on G rather than on G to make
the argument a little bit easier.

For a fixed value of i denote by T}, := M ST,(G) the minimum spanning tree of G with respect to the
single weight function h(ef) := length(e!) + 1 - cost(e!) = (L(e) +t(uC(e) —1)). Let t, € {0,A(e)} be

chosen so that (L(e) + t(xC(e) — 1)) is minimized. Observe that any spanning tree can include at most
one of the edges from each set E,. Using these facts, the following lemmas can be proven.

Lemma 6.2 If T, includes an edge from E,, this edge must be e'. |
Lemma 6.3 The function R(C) = M is monotonically nonincreasing on Q\ {0}. O

Proof of Theorem 6.1: Let r* be an optimal feasible reduction and let T be a minimum spanning tree
in 7*(G) of weight w(T*). Consider the call to the procedure Test when C is some rational number C*
satisfying C* = w(T™*)/v + ¢ with 0 < & < e. Observe that by Step 1 of the algorithm, which searches
the interval [% (n—-1) rcrélg Lnin(e), %(n -1) max L(e)] with a spacing of ¢, such a call will be made.

For each edge e € T* we can identify the corresponding edge e”" () in G. This way, we obtain
a tree T in G of h-weight no more than w(T™*) + pB = w(T*) + %B. Consequently, the minimum
spanning tree with respect to h that is found by the procedure during this call has h-weight at most
W) +C* = (2 4 &) — e’ + (D &) < (1 +7) (L2 4 &) = (1 +)0,

Thus, we observe that the procedure will return Yes and that R(C*) < 1+ . Further, the value C’
found by the algorithm satisfies C' < C*, since C' is the minimum value such that Test(C') returns Yes.

Let T¢y be the minimum spanning tree found by Test when C equals C’'. Then we have

* C' * * * w(T*)] 1 *
“’L/en(TC’) S wh(Ter) < w(TY) —I—-EB L w(T*) +C* = w(T") +T +e <1+ :;) -w(T*) +e.

Moreover, $cost(Ter) < wh(Ter) < C'(L + 7); that is, cost(Ter) < (1+7)B. 0

6.1.1 Running Time

We now show that the algorithm can be implemented to run in polynomial time. For this, it suffices
to show that each execution of procedure Test(C) can be completed in polynomial time. Consider the
execution of the procedure Test for a given value of u. Observe that in Step 2, we choose a value of
t = t, to minimize f.(t) := (L(e) + t(pC(e) — 1)). By the linearity of f. it follows that the value of ¢
that minimizes f, is either 0 or A(e). As an immediate consequence, we get that Step 2 of Procedure
Test can be carried out in constant time. Let the graph have m edges and n vertices. Then the total
running time of Procedure Test is O(n + mlog B(m,n)) (using the algorithm of Gabow et. al. [GGS86]

for finding a minimum spanning tree), where S(m,n) = min{s | log® n < m/n}. Let Ly = max Lfe).
(S
Since the total number of calls to Procedure Test is bounded by O(log(ﬁ?gi)), the total running time of

. p L
the algorithm is O(log(M,re Y(n+mlog B(mn))). Since % and e are fixed, the running time is polynomial
in the size of the problem instance.

7 Approximation Algorithms for BMDsT—Problems

Next, we discuss our approximation algorithms for BMDsT—problems. For this we first recall the following
theorem from [MRS*95].

Theorem 7.1 There is a polynomial-time algorithm that, given an undirected graph G on n nodes with
nonnegative integral cost d and ¢ on its edges, a bound D, and a fized € > 0, constructs a spanning tree
of G of diameter at most 2[logy n]D under the d-costs and of total c-cost at most (1 + ¢)[log, n] times
that of the minimum-c-cost of any spanning tree with diameter at most D under d. (]

We can obtain an approximation algorithm for 0/1-BMDST using Theorem 7.1. We sim-
ply double® each edge e; the first copy has length L(e) and cost 0, while the second one has
length Lpin(e) and cost C(e). Then we perform a binary search and locate the minimum D €
[(n—1) ?élg Lnin(e), (n — l)reneachm,-n(e)] such that the algorithm referred to in Theorem 7.1 returns

a tree of cost at most (1 + €)[log, n]B. By inspecting which copy of an edge e is included in the tree, we
decide whether or not we should reduce the length of e. Using this approach, we can approximate the
optimum diameter within a factor of 2[log, n].

Using scaling techniques, we can extend the above idea to obtain an (O(logn), O(logn)) approxima-
tion algorithm for the /-BMDST and the C-BMDST problems. Due to lack of space, we just sketch the
main ideas behind the algorithm.

For each edge e in the graph let b, be chosen so that 2% < L(e) — Lpin(e) < 2%+1. We now add
parallel edges eF for k = 0,... , b, where edge e* has length L(e) —2* and cost 2¥C(e). We add one more
parallel edge ! of length L(e) and cost 0. Let G be the original graph and G’ be the graph obtained
as a result of the transformation. Observe that G’ can be computed in polynomial time. Let B’ := 2B.

We again perform a binary search over the range of possible diameter values to obtain the smallest
diameter D such that the algorithm referred to in Theorem 7.1 finds a tree of cost at most (1+¢)[log, n]B'.
As before, we obtain the reduction by examining which of the parallel edges ef is included in T

We now argue that this algorithm will result in an (O(logn), O(log n))-approximation for both I-
BMDST and C-BMDsST problems. Let * denote the optimal reduction involving a cost of at most B,
T* is a minimum diameter spanning tree in 7*(G). Recall that §* = dia(Tr*(G.)) denotes the optimal
L-diameter of T*. Also, ¢+ = dia(T}) denotes minimum diameter of a spanning tree in G’ for the
budget B'.

Let us first understand the relationship between B’ and B and that between 6* and dg. Consider
the tree T* in r*(G). We can define a tree 7' in G’ in the following way: For an edge e € T* that is
reduced by r*(e) we select an edge in G’ of length L(e) — b(e), where b(e) is selected in such a way that
b(e)/2 < r*(e) < b(e). Observe that all the edges selected in the above fashion have their lengths reduced
by at most L(e) —2-7*(e). Using this fact, the following claim can be proven.

Claim 7.2 The cost of tree T' is at most 2B. The diameter of tree T' in G' is at most §*. a

Hence we have demonstrated a witness tree 7" such that if the bound on the cost of this tree is B’ := 2B
then we will have a diameter of at most 6*. Consequently an optimum diameter tree 7' in G' under the
bound B’ on the cost will have diameter at most 6*. \

Since the diameter of a graph is a non-increasing function of the total budget on the cost of im-
provement, it follows that performing binary search yields the desired solution. Specifically, for our
algorithm sketched above, the diameter § of the MDST in r(G), where r is the reduction returned by
the heuristic, is bounded from above by logyn - dia(T) < logy n - 0*. As seen before, the total cost of
such a solution is no more than logn - B’ < 2logn - B. This shows that the algorithm indeed yields an
(O(log n), O(log n))~approximation for the /-BMDST problem.

It can be argued that the same algorithm also provides a performance of (O(logn), O{logn)) for the
C-MDST problem, i.e., when the reduction is a rational function. Thus, we have the following theorem.

SAlthough the algorithm referred to in Theorem 7.1 does not work for multi-graphs, it can be easily modified to handle
multi-edges.

Theorem 7.3 There is a polynomial time algorithm that, given any instance of 0/1-BMpsT, I-BMDST
or C-BMDST and for any positive € > 0, finds a reduction r involving cost at most 2(1 + €)[log, n] B that
yields a minimum diameter spanning tree in v(G) of diameter at most 2[log, n]6*, where §* = dia(T*)

denotes the diameter of a minimum diameter spanning tree T*inr*(G) and r* denotes an optimal feasible
reduction. O

References

(Be92

[CK-+92]

[CR91]
[CLR]
[Cu85]

[GGS86)

[GJ79]

[GW]

[GG+94]

[Ha92]
[Ha95]

[KP95]

[KJ83]

[KPP92]

0. Berman, “Improving The Location of Minisum Facilities Through Network Modification,”
Annals of Operations Research, 40(1992), pp. 1-16.

J. Cong, A. B. Kahng, G. Robins, M. Sarafzadeh and C. K. Wong, “Provably Good Perfor-
mance Driven Global Routing,” IEEE Transactions on Computer Aided Design, 11(6), 1992,
pp. 739-752.

J. P. Cohoon and L. J. Randall, “Critical Net Routing,” IEEE International Conference on
Computer Design, 1991, pp. 174-177.

T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms, McGraw-Hill
Book Co., Cambridge, MA, 1990.

W. Cunningham, “Optimal Attack and Reinforcement of a Network,” J. ACM, 32(3), 1985,
pp- 549-561.

H. N. Gabow, Z. Galil, T. H. Spencer and R. E. Tarjan, “Efficient Algorithms for Finding
Minimum Spanning Trees in Undirected and Directed Graphs,” Combinatorica, 6 (1986), pp.
109-122.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman and Co., San Francisco, CA, 1979.

M. X. Goemans, and D. P. Williamson, “A General Approximation Technique for Constrained
Forest Problems”, Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA’92), Jan. 1992, pp. 307-316.

M. X. Goemans, A. V. Goldberg, S. Plotkin, D. B. Shmoys, E. Tardos and D. P. Williamson,
“Improved Approximation Algorithms for Network Design Problems,” Proceedings of the Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’94), Jan. 1994, pp. 223-232.

R. Hassin, “Approximation Schemes for the Restricted Shortest Path Problem,” Math. of OR,
17(1), 1992, pp. 36-42.

R. Hassin and A. Tamir, “On the Minimurh Diameter Spanning Tree Problem,” Information
Processing Letters, 53 (2), Jan. 1995.

D. Karger and S. Plotkin, “Adding Multiple Cost Constraints to Combinatorial Optimization
Problems, with Applications to Multicommodity Flows,” Proc. 27th Annual ACM Symp. on
Theory of Computing (STOC95), May 1995, pp. 18-25.

B. Kadaba and I Jaffe, “Routing to Multiple Destinations in Computer Networks,” IEEE
Trans. on Commaunication, Vol. COM-31, Mar. 1983, pp. 343-351.

V. P. Kompella, J. C. Pasquale and G. C. Polyzos, “Multicasting for Multimedia Applica-
tions,” Proc. of IEEE INFOCOM 92, May 1992.

[Komp]

[KPP93]

(LY93]

[MRS*95]

[Ph93]

[RR-+93]

[Ra94]

[Wa92]

(ZPDY4]

V. P. Kompella, J. C. Pasquale and G. C. Polyzos, “Two Distributed Algorithms for the
Constrained Steiner Tree Problem,” Technical Report CAL-1005-92, Computer Systems Lab-
oratory, University of California, San Diego, Oct. 1992.

V. P. Kompella, J. C. Pasquale and G. C. Polyzos, “Multicast Routing for Multimedia Com-
munication,” IEEE/ACM Transactions on Networking, 1993, pp. 286—292.

C. Lund and M. Yannakakis, “On the Hardness of Approximating Minimization Problems,”
Proc., 25th Annual ACM Symp. on Theory of Computing (STOC'93), May 1993, pp. 288-293.

M. V. Marathe, R. Ravi, S. Sundaram, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt
111, “Bicriteria Network Design Problems,” To appear in Proc. International Conference on
Automata, Languages and Programming (ICALP’95), July 1995.

C. Phillips, “The Network Inhibition Problem,” Proc. 25th Annual ACM Symp. on Theory
of Computing (STOC93), May 1993, pp. 288-293.

R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz and H. B. Hunt III, “Many Birds with
one Stone: Multi-objective Approximation Algorithms,” Proc. 25th Annual ACM Symposium
on the Theory of Computing (STOC'93), May 1993, pp. 438-447. (An expanded version
appears as Brown University Technical Report TR-CS-92-58.)

R. Ravi, “Rapid Rumor Ramification: Approximating the Minimum Broadcast Time,” Pro-
ceedings of the 35th Annual Symp. Foundations of Computer Science (FOCS’94), Nov. 1994,
pp- 202-213.

A. Warburton, “Approximation of Pareto optima in Multiple-Objective, Shortest Path Prob-
lems,” Oper. Res., Vol. 35, 1987, pp. 70-79.

Q. Zhu, M. Parsa and W. Dai, “An Iterative Approach for Delay Bounded Minimum Steiner
Tree Construction,” Technical Report UCSC-CRL-94-39, Board of Computer Engineering,
University of California, Santa Cruz, Oct 1994.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of ifhe: Um;edo?tt;t;i
Government. Neither the United States Govemll.:;:;nt nor any ea;g:g;yl :;:ﬁ?a;, 3::; Z ryreSPODSi-
ees, makes any warranty, express or implied, or assum i

;rirlliit);0¥or ;he accurag;, completeness, or usefulness of any 3nforma:t10n, appar:(tlus: gl;zdl;::,f e(:
process disclosed, or represents that its use would not infringe anately own r1gt d Rt
ence herein to any specific commercial product, process, or service by .trade name, r:x cccom-
manufacturer, or otherwise does not necessarily constitute or imply its crldl;:’rsc:x?cx_nril : om-
mendation, or favoring by the United States Government or any agency tﬂ erteoﬁ.mse R
and opinions of authors expressed herein do not necessarily state or reflec

United States Government or any agency thereof.

L(e) = Lmin(e) =4

N

Figure 6: Graph used in the reduction from SET COVER.

8 Appendix

Proof of Proposition 5.1

An instance of KNAPSACK is given by n items {ai,... ,an} of weight s(a;), value u(a;) (: =1,... ,n)
respectively and two integers S and U. The question is, whether one can pick items of weight at most S
obtaining a value of at least U, i.e. whether there is a subset I C {1,... ,n} such that E s(a;) £ S and

Y u(a;) > U. It is well known (cf. [GJ79]) that KNAPSACK remains A/P-complete, even 1f s(a;) = u(a;)
iel
for all items a;.

Given an instance of KNAPSACK with s(a;)u(a;) we construct a star-shaped graph G = (V, E) in
the following way: We let V := {z,a1,--. ,ax}, B := {e1,... ,e,} with &; := (z,q;) and define L(e;) :=
1+ s(a;), Lymin(€;) =1 and C(e;) :=1,B := 8.

The weight of the MST in G is now Q :=n + Z s(a;). It is now easy to see that there is a feasible

reduction r such that the MST in r(G) has we1ght at most Q@ — U if and only if there is a subset
IcC{1,...,n}such that 3} s(a;) < S and } s(a;) 2 U. O
iel iel

Proof of Proposition 5.5

We use a reduction from SET CoVER (cf. [GJ79], SP5). An instance of SET COVER consists of a
set Q of ground elements {qi,.-. ,gn}, 2 collection Q1,... ,Qm of subsets of Q and an integer k. The
question is whether one can pick at most & sets such that their union equals Q.

Given an instance of SET COVER, we first construct the natural bipartite graph, one side of the
partition for set nodes Q;, 7 =1,... ,m, and the other for element nodes ¢;, ¢ = 1,... ,n. We insert an
edge {Qj,q:} iff i € Q;. All these edges e have length L(e) = Lnin(e) = 4. Now we add a node = and
join it with all the set nodes. For these edges e we define L(e) = 2, Lin(e) = 1. Finally, welet C =1
and choose B = k. The resulting graph G’ is shown in Figure 6.

What we have constructed above yields both an instance of I-BMDST and 0/1-BMbDsT. Without loss
of generality we can assume that there is no single set Q; covering all the elements in Q, i.e. Q; # Q for
j=1,...,m. Then in this case the spanning tree T* in G' with minimum diameter satisfies dia(T*) = 12,
and a diametric path of that tree is given between any two element nodes that are not adjacent to the
same set node.

Observe that any feasible reduction r corresponds to a choice of at most B = k sets from the collection
Ql EERR] Qm-

Given any integer reduction r it is easy to see that there is a spanning tree in r(G’) with diameter 10,
if the selection of sets corresponding to the reduction covers all the elements in @, and that the diameter
of r(G') is at least 11, if the selection does not form a cover.

Consequently, if an algorithm A has a performance guarantee of (11/10 — ¢) and there is a set cover
of size k or less then A must return a reduction A(r) yielding a MDST of diameter at most 10. On the
other hand, if there is no set cover, then the best tree we can obtain by modify the network has diameter
11. Thus an algorithm A with the properties stated in the first part of the proposition can be used to
decide an arbitrary instance of SET COVER.

We now consider the optimization version of SET COVER, which is called MIN SET COVER. It is
shown in [LY93] that MIN SET COVER can not be approximated in polynomial time within a factor of
plog, n for any fixed 0 < p < 1/8 unless NP C DTIM E(n'°8'%8™),

Given any instance I of MIN SET COVER, we construct the graph G’ as above. Then we run the
algorithm A for the budgets B = 1,... ,min{n,m}. Observe that this will still result in an overall
polynomial time. Let By, denote the minimum budget in {1,... ,min{n,m}} such that A returns a
reduction A(r) resulting in a MDST of diameter 10. By the observations from above and the fact that
the algorithm spends at most B log, B units of money, we see that there must be a set cover of size at
most uB log, B. By the choice of By, there can be no set cover of size strictly less than B,i,. Thus we
can approximate the minimum set cover by a factor of no more than plogy By < plog, n. a

