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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT
THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO CITIZENS' SUMMARY

CITIZENS’ SUMMARY

INTRODUCTION

The UMTRA Project consists of two phases. Phase | is the Surface Project, and phase |l is
the Ground Water Project.

For the UMTRA Project site located near Durango, Colorado (the Durango site), the Surface
Project cleanup occurred from 1986 to 1991. The mill tailings and radioactively
contaminated soils and materials resulting from uranium processing were removed from
their original location and taken about 1.5 miles (2.4 kilometers) southwest to a disposal
cell in a mountain vailey near Bodo Canyon. The surface cleanup reduced radon and other
radiation emissions and minimized further contamination of ground water beneath the
Durango site.

The Ground Water Project will evaluate the nature and extent of ground water
contamination resulting from uranium processing, and will determine a strategy for ground
water compliance with the Environmental Protection Agency’s {(EPA) ground water
standards established for the UMTRA Project. This ground water strategy must protect
public health and the environment from radiological and nonradiological hazards. A risk
assessment is one of the tools used to evaluate these hazards.

A risk assessment is the process of describing a source of contamination and showing
how that contamination may reach people and the environment. The amount of
contamination that people or the environment may be exposed to is calculated and used to
characterize the possible health or environmental effects that may result from this
exposure.

For the Durango site, an evaluation was made to determine whether exposure to ground
water contaminated by uranium processing could affect people’s health. Exposure could
occur from drinking water pumped from a hypothetical well drilled in the contaminated
ground water area. In addition, environmental risks may result if plants or animals are
exposed to contaminated ground water, or surface water that has mixed with
contaminated ground water.

This risk assessment report is the first site-specific document prepared for the UMTRA
Ground Water Project at the Durango site. The results of this report and further site
characterization of the Durango site will be used to determine what is necessary to protect
public health and the environment, and to comply with the EPA standards.

RISK SUMMARY

There are currently no human health risks associated with the Durango site contaminated
ground water, since no one is currently using the water for domestic purposes. In
addition, no one is using the contaminated ground water for crop irrigation. This favorable
risk situation will continue if land and water uses on or near the Durango site do not
change. Changes of land and water uses may or may not create future human health and
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environmental risks. When specific future land and water uses are determined for the
Durango site, these uses should be evaluated to identify potential health and environmental
risks from the contaminated ground water.

Vegetation growing above contaminated ground water may or may not be taking up
contaminants through roots extending into the shallow contaminated ground water. The
impact to these vegetation, if any, is not known. Although contaminated ground water
probably discharges into the Animas River, the effect of the contaminated ground water on
the river water is not measurable due to its great dilution by the river.

Because future land and water uses at or near the Durango site are not known, this risk
assessment evaluates a hypothetical worst-case future scenario of a hypothetical well
drilled in the most contaminated portion of the aquifer beneath the Durango site. In this
hypothetical future scenario, the hypothetical well would be the only source of drinking
water for people and wildlife, and the only source of water for crop irrigation. Drinking
this contaminated ground water could cause health problems for these people and wildlife.
Crops could also be harmed by the contaminated ground water. Based on the findings of
this risk assessment, the most contaminated ground water beneath the Durango site
should not be used. In addition, before any other Durango site ground water is used, its
possible effects should first be evaluated.

GROUND WATER QUALITY

The Durango site’s geology has influenced the formation of the aquifers and their location.
A geologic fault separates the Durango site into two distinct areas. Further, the Durango
site includes the former mill tailings and the former raffinate ponds areas. The Lightner
Creek and the Animas River flow near the Durango site. In the former mill tailings and
the former raffinate ponds areas, the depth to ground water is similar and ranges from 5
feet (ft) (2 meters [m]) adjacent to the rivers to 47 ft (14 m) away from the rivers.

ackground water quali

Background ground water quality is considered to be the quality of water that would exist
in the Durango site former mill tailings and former raffinate ponds areas if uranium milling
had never occurred. Background water quality under the former mill tailings area is poor
with high hardness, iron, and manganese concentrations and moderately high salinity.
Background water quality in the former raffinate ponds area is similar to the background
water quality found in the former mill tailings area. At both areas, however, the
background water quality located in the area nearer the streams is potable.

ite-rel round water guali

Predominantly tailings from the uranium processing were disposed of in the former mill
tailings area, whereas liquid wastes were disposed of in the raffinate ponds area.
However, similar contamination is found in ground water under both areas of the Durango
site. The main contaminants in the ground water are arsenic, cadmium, chloride, lead,
manganese, molybdenum, selenium, sodium, sulfate, and uranium. The contamination
appears to be confined within the area bordered by the Lightner Creek and the Animas
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River. If any contaminated ground water discharges into the Animas River, it is quickly
diluted to near background levels.

HUMAN HEALTH RISK ASSESSMENT

Methods

A risk assessment begins by identifying constituents present in ground water contaminated
by the uranium milling process. First, water quality in wells drilled on the Durango site is
compared to water quality in wells from background areas. Second, possible human
health problems resulting from drinking the water containing these constituents, from
eating domestic garden produce irrigated with this water, and from eating meat from game
that have drunk the contaminated ground water are evaluated.

Both current and possible future health risks are evaluated. To evaluate possible current
risks, it must be determined whether anyone is now drinking the contaminated ground
water. To evaluate possible future human health risks, it is assumed that their sole source
of water for drinking or irrigating is from a hypothetical well drilled into the most
contaminated area under the Durango site.

Health risks, other than cancer, were evaluated for children because the ratio of
contaminants to body weight is the greatest for children. Children 1 to 10 years old are
the most likely population group to experience health problems from drinking contaminated
water. Infants, O to 1 year, generally drink less water than children, but are sensitive to
contaminants like sulfate. To estimate cancer risks a lifetime exposure was assumed and
these risks were evaluated for adults.

Possible health effects vary in seriousnass because the levels of contaminants in ground
water vary from one well sampling to the next; and people vary in their body weight, how
much water they drink, and how their body reacts to chemical exposures. Whenever
possible, these differences are all considered in this risk assessment.

This risk assessment provides a series of graphs that show the different exposure levels
that might occur and the most current scientific information on the types of health effects
that may result from the hypothetical exposure.

Results

Because no one uses the contaminated ground water from the Durango site area for
drinking, bathing, or irrigating there are currently no health problems occurring from it.
This favorable situation will remain the same in the future if there are not changes in land
and water uses at the Durango site.

Additionally, in the future, it is unlikely that people will ever use the contaminated ground
water from either the former mill tailings or former raffinate ponds areas for drinking.
Ground water quality in this region is considered poor, and good quality water is available
from the municipal water supply system or the Animas River. If anyone used the
contaminated ground water for drinking, based on the concentration of contaminants
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found in the most contaminated wells, there are possible human health risks. Table CS-1
provides information on the nature of possible health problems that could be expected.

Only people whose sole source of drinking water comes from a hypothetical well placed in
the most contaminated ground water would be expected to experience the health problems
described in Table CS-1. Consequently, the table provides the upper limit of possible risks;
real future risk would probably be lower.

Sulfate is the most notable possible health hazard in the contaminated ground water of the
upper aquifer at both the former mill tailings and former raffinate ponds areas. Sulfate
ingestion in the amounts found in the contaminated ground water could result in severe
diarrhea, especially in infants. This effect would terminate after the substitution of
contaminated ground water with water that is low in sulfate. However, if ingestion of the
contaminated ground water were to continue, life-threatening dehydration could resuit,
especially in infants. These effects could develop shortly after drinking the contaminated
ground water. However, these sulfate levels make the water taste and smell very
unpleasant, thereby discouraging human use. Furthermore, the levels of sodium chloride
could lead within a short period of time, to high blood pressure in people sensitive to
sodium chloride intake.

Mild health problems could resuit from the other contaminants if people were to drink the
ground water obtained from a well in the most contaminated portion of the ground water
beneath either of the former mill tailings and former raffinate ponds areas. The manganese
levels could affect the nervous system, causing memory loss, muscle rigidity, or tremors;
lead could cause blood problems such as anemia and neurobehavioral effects including
decreased performance on intelligence quotient (1Q) tests; and molybdenum could lead to
mineral imbalances resulting in copper loss from the body. The increased cancer risk from
these levels of uranium may exceed the maximum acceptable value recommended by the
EPA.

In addition, the levels of arsenic, cadmium, and selenium present in the ground water
occurring beneath the raffinate ponds area could cause mild health problems if people were
to drink the worst ground water for a iong period of time. The increased skin cancer risk
from these levels of arsenic may exceed the maximum acceptable value recommended by
the EPA. These cadmium levels could cause proteinuria, indicating cadmium-induced
kidney problems; and these selenium levels could result in suffering from hair and nail
brittleness or loss. All of these health problems could be worse in people having kidney
disease.

The potential health effects from ingestion of produce or meat could not be estimated with
existing data. The UMTRA Project is conducting additional plant-uptake of contaminants
studies, and the results will be used to better characterize these exposures.
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Table CS-1 Hypothetical future human health effects from drinking contaminated ground
water from the Durango site

Possible effects from drinking water from the upper aquifer®

Former mill tailings area Former raffinate ponds area
Contaminant Short-term Long-term Short-term Long-term
Arsenic None None None Excess lifetime skin cancer

risk exceeds the upper end
of the range recommended
by EPA as acceptable.

Cadmium None None None Mild kidney problems

manifested as proteinuria

Lead None Blood and None Biood and neurobehavioral
neurobehavioral problems, especially in
problems, especially children
in children

Manganese None Neurological None Neurological symptoms
symptoms include include memory loss,
memory loss, irritability, muscle rigidity,
irritability, muscle tremors.
rigidity, tremors.

Molybdenum None Mild effects include None Mild effects include
mineral imbalance. mineral imbalance

Selenium None None None Mild effects include hair

and nail brittleness and/or
loss.

Sodium and  None Hypertension in Hypertension Hypertension in sensitive

chloride sensitive people. in sensitive people.

people.

Sulfate Severe diarthea, None Severe Unknown

particularly in diarrhea,
infants. particularly in
infants.

Uranium None Health problems not Health problems not
expected from expected from chemical
chemical toxicity; toxicity; increased lifetime
increased lifetime cancer risk exceeds the
cancer risk exceeds maximum recommended
the maximum by EPA as acceptable.

recommended by
EPA as acceptable.

3These effects could vary from person to person depending on the amount of water a person drinks, body
weight, dietary habits, and individual sensitivities such as the preexisting kidney, liver, or heart diseases,
and other factors.
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ECOLOGICAL RISK ASSESSMENT
Methods

The ecological risk assessment presented in this document is a screening level assessment
that relies on limited environmental sampling and literature information. The field of
ecological risk assessment has many uncertainties because of limited scientific knowledge.
Information is lacking on how some chemicals affect plants and animals. Also, the impact
on plants and animals of a mixture of chemicals is poorly understood.

The possible effects of the contaminants on wildlife and agricultural crops are being
evaluated. This evaluation is done by comparing the concentration values of contaminants
in ground water from the upper aquifers with available guideline values from regulatory
agencies and literature. The contaminants present in surface water and in sediment from
the Animas River are also being evaluated because the Durango site-contaminated ground
water probably discharges into the Animas river. Plant uptake from the upper aquifers is
evaluated by assuming that plant roots take up the most contaminated ground water. It is
also assumed, that a pond filled with the most contaminated site ground water could be
created.

Agricultural results

There are currently no health risks to crops from the contaminated ground water beneath
the Durango site, because currently crops are not irrigated with that water. If in the future
the most contaminated ground water beneath the Durango site were used as a sole
irrigation water source, some contaminants including arsenic, cadmium, lead, manganese,
and selenium could hinder the normal growth of sensitive crops such as spinach or
soybean.

fogical r

In the areas where the depth to ground water is shallow, some vegetation growing on the
Durango site may have roots extending into soils that contain contaminated ground water.
Based on literature, some contaminants such as arsenic, cadmium, lead, manganese, and
selenium found in the contaminated ground water may be concentrated by plants.
Therefore, these elements could enter the food chain, because these plants are eaten by
wild animals. However, data are not available to assess this possible impact to the food
chain. The potential for these contaminants to present a hazard in the current food chain
is probably low due to limited area of possibly affected vegetation.

If in the future, a pond were created using the most contaminated ground water the levels
of some contaminants including arsenic, cadmium, chloride, lead, manganese, and
selenium could adversely affect plants and animals living in or drinking from the pond.

Although contaminated ground water discharges into the Animas River, based on limited
data, it appears that the Durango site would not create health risks to plants and animals
living in or drinking from the river.
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CONCLUSIONS

Ground water contamination beneath the Durango site is limited to the upper most aquifer
under the former mill tailings and former raffinate ponds areas. The contamination appears
to be confined within the Durango site area. Lightner Creek and the Animas River probably
create a barrier for the contamination. Currently, there are no drinking water or irrigation
wells drilled into the ground water at the Durango site. Consequently, there are no current
human health risks associated with Durango site contaminated ground water.

This risk assessment has determined that there could be certain health problems in people
if, in the future, contaminated ground water were used for drinking. Therefore, no one
should use contaminated ground water for this purpose. The contaminated ground water
could also be harmful to plants with roots in the shallow ground water or to crops irrigated
with the contaminated ground water. Consequently, contaminated ground water should
not be used for irrigation.

The Durango site evaluation is ongoing and will include further study of the ground water.
This risk assessment and future investigations will be used to determine how to deal with
the contaminated ground water. In addition, if specific plans for land and water uses at
the Durango site are determined, the possible risks from those uses should be evaluated.
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1.0 INTRODUCTION

The purpose of this baseline risk assessment is to determine whether ground water
contamination at the Durango, Colorado, uranium mill tailings site could adversely affect
human health or the environment. The Durango site is one of 24 designated uranium mill
tailings sites undergoing remediation in accordance with the requirements of the Uranium
Mill Tailings Radiation Control Act (UMTRCA) (42 USC §7901 et seq.) under the oversight
of the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA)
Project. The remediation of surface contamination at the Durango processing site was
complieted in May 1991.

This risk assessment is a baseline risk assessment in the sense that it describes
preremediation ground water conditions at the site; ground water contamination was only
partially characterized. This document evaluates the potential for public health or
environmental risk that may need attention before the site is fully characterized. This risk
assessment is based on available ground water data from wells at the processing site.
Major exposure pathways have been identified and examined for this risk assessment.

This risk assessment follows the basic framework outlined by the U.S. Environmental
Protection Agency (EPA) (EPA, 1988a) for evaluating hazardous waste sites to assess
potential health and environmental impacts. The risk assessment framework consists of
the following steps:

® Data evaluation.
- Combining existing data from various site investigations.
- Comparing sample resuits with background and tailings source data.
- Selecting appropriate chemical data for the risk assessment.
® Exposure assessment.
- Characterizing exposure settings.
- ldentifying exposure pathways.
- Quantifying exposure.
® Toxicity assessment.
- ldentifying toxicity values.
- Evaluating noncarcinogenic effects.
- Evaluating carcinogenic effects from radionuclides and chemical carcinogens.
® Public health risk characterization.
- Comparing toxicity ranges to predicted exposure ranges.

- Combining risks across exposure pathways and multiple contaminants.
- Characterizing uncertainties.

DOE/AL/62350-175 13 SEPTEMBER 1995
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® Environmental risk.

- Characterizing potential biota exposure pathways.
- ldentifying potential ecological receptors.
- Evaluating environmental risk qualitatively.

This framework is incorporated in the methodology developed to evaluate current human
health risk at UMTRA Project sites and to estimate risks from potential future use of
contaminated ground water or surface water near the former processing site (DOE, 1994).

This risk assessment will support decisions made for the UMTRA Ground Water Project.
The DOE was authorized to conduct ground water remediation under the 1988 UMTRCA
Amendments Act (42 USC 87922 et seq.) and will determine site-specific ground water
compliance strategies for each site. This risk assessment provides information to assist in
determining the site-specific ground water compliance strategy for the Durango site.

DOE/AL/62350-175 13 SEPTEMBER 1995
REV. 1, VER. 1 DUROOSF1.WP1
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2.0 SITE DESCRIPTION

The former Durango uranium ore processing site consists of two geographically
contiguous, but hydrogeologically distinct, areas: the mill tailings area and the raffinate
ponds area. Both areas are located on the west bank of the Animas River immediately
southwest of the intersection of Routes 160 and 550 southwest of the city of Durango, in
La Plata County, Colorado (Figure 2.1). Contaminated material from the processing site
was relocated from 1986 to 1991 to a disposal site located approximately 1.5 miles (mi)
(2.4 kilometers [km]) farther to the southwest in a mountain valley near Bodo Canyon.

2.1

SITE BACKGROUND

A lead smelter, located at the former mill site near the south end of the mill
tailings area, operated from 1880 to 1930. Slag from the smelter operation
was dumped at the southeast corner of the area along the edge of the Animas
River.

A mill was constructed in 1941 to produce vanadium; uranium production began
in 1943. The mill was operated on the same site until 1963. it processed
approximately 1.6 million tons (1.4 million metric tons) of ore averaging 0.29
percent uranium oxide and 1.60 percent vanadium oxide. The ore was delivered
to the mill from various mines in the Uravan mineral belt.

The milling process involved two separate stages. In the first stage, ores were
roasted with sodium chloride, then treated with a sodium carbonate solution to
produce an alkaline solution containing both uranium and vanadium. This
solution was filtered to separate the solution from the tailings, then treated to
remove uranium and vanadium. The alkaline-leach tailings were washed with
water and stored for use in the second stage of processing. Precipitation of
uranium and vanadium from the alkaline-leach solution was carried out by
adjusting the pH and the oxidation-reduction potential using an acid (sulfuric or
hydrochloric acid), a base (sodium hydroxide), and an oxidant (sodium chiorate).
The uranium was recovered as uranium dioxide and soluble vanadium was
recycled through the process and precipitated as red cake (Tame et al., 1961;
Merritt, 1971).

The second stage of processing used the tailings from the first stage. The
tailings were leached using an acid solution containing both hydrochloric and
sulfuric acids. The leachate was then separated from the acid-leach tailings and
oxidized using potassium permanganate, and the pH was adjusted by adding
sodium carbonate. Uranium and vanadium were removed from this solution by
solvent extraction using an immiscible organic solvent consisting primarily of
tertiary amines, di-2 (ethylhexyl) phosphoric acid, heptadecyl phosphoric acid,
and primary decyl alcohol, dissolved in kerosene (Merritt, 1971). After the
uranium and vanadium were removed from the aqueous solution, the spent
solution (raffinate) was disposed of. Uranium and vanadium were stripped and
precipitated from the organic solvent using a sodium carbonate solution (Tame
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2.2

et al., 1961) and the organic solvent was recycled. Thus, the processing waste
solutions contained sulfate (S0,2°), sodium (Na *), chioride (CI'), potassium
(K*), and manganese (Mn< %) derived from processing reagents.

Before 1959, all aqueous waste solutions and acid-leach tailings were
discharged into the Animas River (Tsivoglou et al., 1960). Beginning in 1959,
overflow water from the stored alkaline leach tailings and slurried acid-leach
tailings were mixed in a settling pond atop the former large tailings pile adjacent
to the mill. Overflow from this pond was treated with barium sulfate and a
flocculent and settled in a second pond atop the former small tailings pile at the
mill tailings area. Overflow from this pond was discharged into the Animas
River at a rate of about 97 gallons (gal) (370 liters [L]) per minute (Tsivoglou et
al., 1960). Spent alkaline-leach solutions from the first stage of uranium-
vanadium recovery were discharged directly into the Animas River at a rate of
about 256 gal (969 L) per minute (Tsivoglou et al., 1960).

Raffinates from the second stage of processing contained most of the
radioactivity. This waste solution was pumped to a tank above the mill and,
from there, discharged into a 3000-foot (ft) (300-meter [m]) long ditch that
carried the waste to the raffinate ponds area. An additional 3000 ft (900 m) of
ditch carried the raffinate through a series of ponds on the terraced slope of the
raffinate ponds area. The raffinate evaporated and percolated into the
underlying alluvium, colluvium, and sandstone bedrock. Raffinates were
discharged into the ditch between the mill and the ponds at a rate of about 50
gal (190 L) per minute. However, only about 40 gal (150 L) per minute reached
the ponds due to seepage losses within the 6000 ft (2000 m) of ditch
{Tsivoglou et al., 1960). Using a value of 50 gal (190 L) per minute of
continuous discharge over 3 years, it is estimated that nearly 82 million gal
(310 million L) of raffinate were discharged into the ditch and pond system.

The DOE began relocating the tailing piles, mill debris, and contaminated soils
from the mill tailings area and raffinate ponds area to the Bodo Canyon disposal
site in November 1986; remedial action was completed in May 1991. A total of
2.5 million cubic yards (yd3) (1.9 million cubic meters [m3]) of contaminated
materials were relocated to the Bodo Canyon disposal cell. The mill tailings area
and the raffinate ponds area were contoured and planted with grasses after the
tailing piles and contaminated soils were removed.

CLIMATE

The semiarid climate of the Durango area is characterized by severe winters and
moderate summers. The annual mean temperature is 50 degrees Fahrenheit
(°F) (10 degrees centigrade [°C]), with monthly averages varying from 19°F
(-7°C) in January to 70°F (21°C) in July. Precipitation is predominantly from
heavy rainstorms (May through October) and winter snowfall. Precipitation
averages approximately 19 inches (48 centimeters [cm]) per year. Annual
potential evapotranspiration exceeds precipitation by about 30 inches (76 cm).
However, during December, January, and February, precipitation is twice the
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2.3

2.4

2.4.1

potential evapotranspiration, resulting in ample moisture available for infiltration

(Tsivoglou et al., 1960). The prevailing wind direction is west-northwest down

the river valley. The average annual wind speed was 6.6 mi (11 km) per hour in
1982 (DOE, 1985)

PHYSIOGRAPHIC SETTING

The mill tailings area encompasses approximately 40 acres (ac) (16 hectares
[ha]). It is located on a bedrock-supported river terrace between Smelter
Mountain to the west, the Animas River to the east, and Lightner Creek to the
north (Figure 2.2).

The raffinate ponds area occupies approximately 20 ac (8 ha) on another river
terrace approximately 1500 ft (500 m) south of the mill tailings area along the
west bank of the Animas River. A narrow terrace above the Animas River
connects the two areas.

Lightner Creek flows along the north edge of the mill tailings area. The Animas
River flows along the eastern sides of the mill tailings and raffinate ponds area.
A small, intermittent creek (called South Creek in this study) forms the southern

boundary of the raffinate ponds area. '

The topography of the processing site was modified during the removal of the
tailings and contaminated soils. The property slopes steeply down from Smelter
Mountain, but becomes relatively level near Lightner Creek and the Animas
River.

HYDROGEOLOGY

In general, hydrostratigraphic units at the processing site include several
consolidated bedrock units overlain by unconsolidated surficial deposits.
Different bedrock units underlie different areas of the site because of the dip of
the bedrock and fauiting. Together the surficial hydrostratigraphic units
(alluvium and colluvium) and the various bedrock units (Point Lookout
Sandstone, Menefee Formation, and the uppermost few feet of weathered,
fractured Mancos Shale) directly under the surficial deposits comprise the
uppermost aquifer at the processing site. The characteristics and distribution of
these hydrostratigraphic units comprising the uppermost aquifer are discussed in
detail in the following sections.

Mill tailings area

The mill tailings area is underlain by dark gray to black Mancos Shale which is
more than 1700 ft (500 m) thick. The Mancos Shale is truncated by the
Smelter Mountain fault south of the mill tailings area. The present topography
at the mill tailings area is shown in Figure 2.3.
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT
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Along the base of Smelter Mountain, the Mancos Shale is directly overlain by up
to a 25 ft (9 m) thick layer of colluvium. The colluvium consists of poorly
‘sorted, silty soil from Smelter Mountain.

Closer to Lightner Creek and the Animas River, deposits of river-laid sand and
gravel up to 15 ft (5 m) thick occur over the shale bedrock and under the
colluvium (Figure 2.4). These well-sorted, sands and gravels may represent
glacial outwash and/or alluvial river gravels. A layer of the vitreous lead smelter
slag as much as 25 ft (7.6 m) thick remains along the bank of the Animas River
near the southeast corner of the mill tailings area.

Ground water in the colluvium near the base of Smelter Mountain is recharged
primarily by runoff from the mountain and by infiltrating precipitation. The
drainage basin upslope of the mill tailings area is small because of a steep cliff
along the east side of Smelter Mountain. Therefore, the amount of recharge
from this area is relatively small.

Sand and gravel deposits receive recharge from Lightner Creek and the Animas
River. During spring runoff when the river stage is high, water flows into the
aquifer. When the river stage is lower, the ground water flows from the aquifer
back into the Animas River. The ground water flow pattern on 2 June 1994,
during high river stages, is shown on Figure 2.3. Some of the ground water
may flow down through the colluvium into the underlying Mancos Shale.
Ultimately, water from the site that moves through the shale discharges into the
Animas River. Because the permeability of the Mancos Shale is very low, only a
small quantity of water passes by this route to the river as compared to the
route through the more permeable colluvium.

The high topographic relief and high ground water elevations in wells on the
east side of the Animas River (Figure 2.5) indicate that ground water on the east
side flows toward and discharges into the Animas River. This flow pattern will
prevent migration of ground water from one side of the river to the other.

Slug-removal aquifer tests were conducted in monitor wells DUR-01-612, -615,
-616, -619, and -621 (Figure 2.2) before the tailings piles and contaminated
soils were removed (BFEC, 1983). These wells were screened predominantly in
the gravels above the bedrock. The hydraulic conductivity calculated from four
of these tests is approximately 20 ft per day (7 x 103 cm per second), although
the tests in well DUR-01-621 in the terrace gravels near Lightner Creek indicate
a hydraulic conductivity of approximately 300 ft per day (1 x 10" em per
second).

Additional hydraulic tests were conducted during the summer of 1994 (TAC,
1995). These tests demonstrate that the part of the site underlain by colluvium
over the Mancos Shale (located south of the starred line in Figure 2.3) has only
limited ability to yield water to wells (piezometers DUR-01-630 and -633 in
Figure 2.3). By contrast, the sand and gravel deposits (located north of the
starred line in Figure 2.3) encountered in wells DUR-01-612 and -617 and in
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT
THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO SITE DESCRIPTION

24.2

piezometer DUR-01-631 can yield substantial amounts of water and will have a
good sustainable yield because of recharge from Lightner Creek and the Animas
River.

The bedrock has minimal ground water yield. Piezometer DUR-01-632 is
screened from 39 to 46 ft (14 to 16 m) below the top of the Mancos Shale and
at approximately the same depth below the river level (see Figure 2.4).

Raffi n r

Two bedrock units, both members of the Mesaverde Group, underlie the
raffinate ponds area (BOR, 1990). The Point Lookout Sandstone underlies the
northwestern two-thirds of the area between the Smelter Mountain fauit and
another fault that cuts through the raffinate ponds area (see Figure 2.2). The
Menefee Formation underlies the southeastern one-third of the area southeast of
the fault that cuts across the raffinate ponds area. This fault is a northeast-
southwest trending high angle that dips to the southeast at approximately

55 degrees.

The Point Lookout Sandstone consists of siltstone with interbedded sandstone
and minor amounts of shale (BOR, 1990). The Menefee Formation consists of
massive sandstone and shale, with beds of carbonaceous shale and coal. The
fault contains up to 1 ft (0.3 m) of clayey gouge.

Before site remediation, unconsolidated surficial deposits in the raffinate ponds
area consisted of colluvium from the slope of Smelter Mountain, glacial
outwash, and recent river alluvium (BOR, 1990). The surficial deposits were 20
to 30 ft (6 to 10 m) thick in the area of the ponds (Figure 2.6). As much as 20
ft (6 m) of surficial deposits were removed during site remediation. Most of the
remaining surficial material was mixed during remediation activities and now is a
mixture of clayey sands, gravels, and cobbles. Some gravel beds overlying the
bedrock remain.

Ground water below the raffinate ponds area is recharged by infiltration of
precipitation and by ground water moving through the bedrock from the west.
The elevations of both the alluvium/bedrock interface and the ground water are
higher than the water level in the Animas River. Therefore, unlike the mill
tailings area, the river does not recharge the aquifer in this area.

The water table in the eastern part of the raffinate ponds area is above the
alluvium/bedrock interface. Farther to the west, all the ground water is within
the bedrock and the alluvium is unsaturated. Ground water fiow in the Point
Lookout Sandstone and Menefee Formation is mostly through open bedding
planes and joints (BOR, 1990). Ground water also flows through the fault
cutting the bedrock (BFEC, 1983).

It is likely that surface water flowing down South Creek during wet times may
infiltrate the surficial deposits and recharge the ground water, as evidenced by
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT
THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO SITE DESCRIPTION

2.5

the large fluctuations of the ground water levels in monitor well DUR-02-607.
Infiltration from South Creek also recharges the fault near monitor well
DUR-02-607 (see Figure 2.2).

Ground water flows toward and discharges into the Animas River with an
average gradient of approximately 3 percent. An April 1990 ground water
contour map is shown in Figure 2.7.

Hydraulic conductivity tests resulted in computed average hydraulic
conductivities of 22 ft per day (8 x 103 cm per second) in the alluvium (DOE,
1991), 0.2 ft per day (8 x 109 cm per second) in both the Menefee Formation
and Point Lookout Sandstone, and 0.8 ft per day (3 x 104 cm per second) in
the fauit (BOR, 1990). These permeabilities indicate that wells could produce
more than 150 gal (570 L) per day. The yield will be sustained if pumping wells
create a sufficient cone of depression to induce recharge from the Animas River.

Based on the gradient calculated from the ground water contours (0.03), an
assumed porosity of 15 percent (Freeze and Cherry, 1979), and the measured
hydraulic conductivities of the Menefee Formation and Point Lookout Sandstone,
the ground water in the bedrock is estimated to move at a rate of approximately
15 ft (5 m) per year. It will move approximately 45 ft (14 m) per year in the
fault, assuming a gradient of 0.021 along the fault calculated from water levels
in wells completed within the fault (wells DUR-02-592 and -598). Ground
water in the alluvium during wet times could move approximately 800 ft

{240 m) per year if the bedrock surface has approximately the same slope as
the ground water gradient and the porosity is approximately 30 percent.

As with the mill tailings area, the high topographic relief and high ground water
elevations (Figure 2.5) demonstrate that ground water on the opposite side of
the river also flows toward and discharges into the Animas River. This flow
pattern will prevent migration of ground water from one side of the river to the
other. Ground water may move down into the fault and the bedrock. Regional
hydrogeologic information suggests that the rate and volume of ground water
movement in the bedrock are minimal.

SURFACE WATER

The Durango site is bordered by three surface water features: Lightner Creek to
the north, the Animas River to the east, and an unnamed ephemeral stream
(called South Creek in this document) to the south. Lightner Creek is a
perennial stream that flows from west to east along the northern boundary of
the site. Between 1927 and 19489, its mean annual flow rate was 22.6 cubic
feet (ft3) per second {0.68 cubic meter& 3 per second), and minimum daily
flow rate of 1.0 3 per second (0.03 m* per second) or less (USGS, 1993).
Lightner Creek has a total stream length of about 15 mi (24 km) (DOE, 1985).

The Animas River forms the eastern and southern boundaries of the mill tailings
area and borders the eastern edge of the northern half of the raffinate ponds
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT
THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO SITE DESCRIPTION

area. A U.S. Geological Survey (USGS) gauging station is maintained
approximately 4500 ft (1400 m) upstream of the confluence of the Animas
River and Lightner Creek. Upstream of the former processing site, the Animas
River has a drainage area of approximately 770 square miles (mi) (2000 square
kilometers [km?]) (including that of Lightner Creek), and a length of 62 mi

{100 km). The annual mean flow in the river past the Durango site between
1898 and 1992 was 812 ft3 per second (24 m3 per second) (USGS, 1993).

The record 7-day low flow was 100 3 per second (3 m3 per second) in
December 1917. Sections of both Lightner Creek and Animas River are incised
into bedrock.

South Creek, along the southern edge of the raffinate ponds area, is at the
lower end of the arroyo along the north side of the Bodo Canyon disposal site.
This creek is dry, except during heavy rainfall events, wet times, and when
treated water is released from the toe drain collection pond at the disposal cell.
During the dry periods, standing water remains in isolated depressions in the
bedrock. Water from South Creek could seep down into the bedrock and fault
beneath the raffinate ponds area. South Creek joins the Animas River
approximately 1000 ft (300 m) east of the raffinate ponds area.

2.6 LAND USE

The primary landowner in the region is the federal government, which controls
the San Juan National Forest to the north of Durango and holds in trust large
indian reservation lands to the south and west of Durango (about 57 percent of
the land in La Plata County) (DOE, 1983; DOE, 1985). Privately owned lands
are second in extent (about 41 percent), followed by state, county, and
municipal lands (about 2 percent combined). The Durango site is owned by the
state of Colorado. Lands in the immediate vicinity of the site are owned by the
city of Durango, the Colorado Department of Natural Resources, and private
interests. A land use map for the area surrounding the site is provided in Figure
2.8. Land use in the vicinity of the Durango site is primarily commercial,
residential (in the city of Durango), and open space. The city operates a nearby
sewage treatment plant and a city park on the east side of the Animas River.
The Department of Natural Resources controls the Bodo Canyon Wildlife Area.

Land in downtown Durango, northeast of the site, has been developed since the
late 1800s (DOE, 1983; DOE, 1985). The major land use changes near the site
have occurred in the Animas River valley. This land has been converted to
urban uses by the construction of the sewage treatment plant across the
Animas River south of the site and the construction of a commercial center
southeast of the site (Figure 2.8). Land use within the Bodo Canyon Wildlife
Area, west and southwest of the site, changed from livestock grazing to
resource conservation and recreation in the early 1970s.

Other prominent uses include transportation (U.S. Highways 160 and 550 and
the Durango-Silverton railroad yard), utility (Durango sewage treatment plant),
and industrial (Bodo Industrial Park). The Durango site lies outside the city
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT
THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO SITE DESCRIPTION

limits, about 0.25 mi (0.4 km) from the central business district of Durango. To
the north and northwest of the site (across Highway 160) are residential and
commercial/industrial properties. Smelter Mountain is on the western boundary
of the site and the Animas River is on the eastern boundary. To the east,
across the Animas River and within Durango city limits, are public lands.
Farther east, residential and commercial/industrial properties exist. A riverside
park is across the river adjacent to the sewage treatment plant. To the
southeast are additional residential and commercial properties.

Potential development plans for the former mill tailings area at the site include
construction of a visitors’ center, parking lots, and a museum or other type of
public building (Hoch, 1994). As part of the Animas-La Plata water project,
there are draft plans to construct a pumping plant in the former raffinate ponds
area of the site. This federal project would supply irrigation water to farmland;
drinking water to Durango, Farmington, and Aztec; and water to the Southern
Ute and Ute Mountain tribes (Hageman, 1994). Development of additional
water resources is a concern because the city’s water supply is not sufficient to
meet future needs. However, there is public opposition to the project
(Hageman, 1994). There are no plans to develop either portion of the site for
residential use (Hoch, 1994).

2.7 WATER USE

Approximately 13,000 people live within the Durango city limits (TAC, 1994a).
There are no known wells in use within the city limits. Development and utility
policies for the city of Durango prohibit the drilling of private wells within city
limits. However, wells can be drilled on county lands (Hoch, 1994).

The water supply system for the city of Durango is the largest in the county,
not only servicing city residents, but also selling water to neighboring water
districts and companies serving the surrounding developed areas. The city’s
primary water source is the Florida River, with additional water taken from the
Animas River during periods of high demand (generally during the summer). The
water pumping station from the Animas River is approximately 2 mi (3 km)
upstream from the northern boundary of the former mill tailings area (Figure
2.8).

The system services approximately 17,000 people, with approximately 3400
residential customers and 1100 commercial customers. Its service area extends

2 mi (3 km) to the west and south and 10 mi (16 km) to the north from the city =
boundaries (Rogers, 1994).

A survey of water use in the area surrounding the Durango site was conducted
using information from the Colorado Division of Water Resources database and
field investigations (TAC, 1994a). Aithough the city is considering developing
additional water resources to supplement the existing water supply, ground
water has not been considered as a water source for the municipal water supply
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system (Rogers, 1994). Ground water in the area is considered of poor quality
with high hardness, iron, and manganese levels (Rogers, 1994).

Table 2.1 summarizes the information obtained for domestic and commercial
wells within a 2-mi (3-km) radius of the site (Figure 2.9). Some of the listed
wells are in use, however, the status of several listed wells is unknown because
of difficulty in determining the current property owners.

The nearest known downgradient well is across U.S. Highway 550,
approximately 0.2 mi (0.3 km) southeast of the site and on the same side of the
Animas River (number 10 in Figure 2.9 and Table 2.1). However, this well is
located under a building and has never been used because of black discoloration
of the water (TAC, 1984a). Additional wells (numbers 1 through 9 in Figure
2.9) are on the opposite side of the Animas River and are at distances ranging
from 0.8 mi (1 km) to 1.5 mi (2 km) from the site. All other wells in Figure 2.9
are north of Lightner Creek. None of these wells would be affected by
contaminated ground water from the site. Contaminated ground water
discharges into the Animas River, where it is quickly diluted (refer to Section
3.6).
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT
THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO MAGNITUDE AND EXTENT OF CONTAMINATION

3.0 MAGNITUDE AND EXTENT OF CONTAMINATION

Ground water quality data from the processing site and vicinity were collected from 1982
through 1989 by the DOE and from 1990 through 1994 by both the DOE and the Bureau
of Reclamation (BOR). These data and the associated statistical reports are available
through the UMTRA Project Office (TAC, 1995). A total of 34 wells were sampled.
These wells include 14 DOE monitor wells and 1 private irrigation well located at or
upgradient of the former mill tailings area, 10 DOE monitor wells located at the former
raffinate ponds area, and 9 wells owned by the BOR located at the former raffinate ponds
area (Figures 3.1, 3.2, and 3.3). These wells were completed in several different
hydrogeologic units of the uppermost aquifer, including the surficial deposits (colluvium
and alluvium) and the Menefee Formation, Point Lookout Sandstone, and Mancos Shale
bedrock. Three wells completed in bedrock are screened across a fault that transects the
raffinate ponds area. In Table 3.1, these wells are compiled according to location (mill
tailings area or raffinate ponds area) and hydrogeologic zone of completion.

In this assessment of the magnitude and extent of contamination in the uppermost aquifer,
the mill tailings area and raffinate ponds area are treated separately for two reasons. First,
the sources of contamination were different in each area. The mill tailings area was
affected by tailings seepage, whereas the raffinate ponds area was affected by raffinates
{(waste solutions produced by acid leaching of the ores). Second, contamination in the two
areas has affected different hydrogeologic units. In the mill tailings area, the
unconsolidated surficial deposits are primarily affected, and the underlying Mancos Shale
bedrock (except the weatered zone of the Mancos Shale in the upper few feet) is not
affected. In the raffinate ponds area, the permeable sandstone bedrock is affected the
most. Finally, the two areas are hydrologically distinct, being separated by distance, a
fault, and a cut bank along the Animas River.

Surface remediation removed sources of contamination, including the tailings piles,
raffinate residue, and large volumes of contaminated colluvium and alluvium. Thus, in this
risk assessment, ground water quality data collected from May 1990 through June 1994
(after surface remediation) are used to determine the magnitude of contamination and to
evaluate risks. This time period allowed for incorporation of at least 4 years of data from
each well, including the most recent information available.

Most ground water sampies were filtered prior to analysis during the period from May
1990 to 1994. One set of unfiltered samples was coliected and analyzed for nearly all
constituents from two wells at the raffinate ponds area (DUR-02-601 and -607) and from
three wells in the mill tailings area (DUR-01-612, -617, and -622). A second set of
unfiltered samples was collected from the same welis in 1993. However, a more limited
set of constituents was analyzed in this second sampling , including arsenic, cadmium,
iron, manganese, molybdenum, lead, selenium, vanadium, zinc, mercury, radium-226,
radium-228, thorium-230, and uranium. Where available, both filtered and unfiltered data
are used in this risk assessment. An analysis of paired filtered and unfiltered data
indicates that, for most constituents, there is little difference. The exceptions are iron and
lead, which are at higher concentrations in the unfiltered samples {Table 3.2) {TAC, 1995).
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT
THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO MAGNITUDE AND EXTENT OF CONTAMINATION

After remediation was completed in May 1991, three wells remained in the tailings area
{(DUR-01-612, -617, and -622) and two in the raffinate ponds area (DUR-02-602 and
-607). These wells were sampled seven times between May 1990 and June 1994. The
BOR constructed nine wells in the ponds area; these were sampled by the BOR four times
in'1993 and 1994. For three of these BOR welis (DUR-02-598, -599, and -600), the DOE
conducted two independent rounds of sampling and analysis in late 1993 and 1994. In
addition, monitor wells DUR-01-628 and -629 were installed and sampled for this risk
assessment. The last source of ground water quality data is a private irrigation well
completed in the alluvium upgradient of the mill tailings area. In June 1994, the DOE
collected and analyzed an unfiltered sample from this well.

Chemical data and supporting quality control information were obtained from the BOR for
the purposes of this risk assessment. Review of quality control information determined
that the data meet Level C quality control criteria as defined by the DOE (DOE, 1990).

In 1990, ground water from the mill tailings area (wells DUR-01-617 and -622) and from
the raffinate ponds area (well DUR-02-602) was screened for organic constituents (DOE,
1991) listed in Appendix IX of 40 CFR Part 264 (1994) of the Resources Conservation and
Recovery Act. None of these organic constituents were detected in the screening.

Surface water and sediment samples were collected from the Animas River, Lightner
Creek, and South Creek (Figure 3.1). Ten sediment samples and nine filtered and
unfiltered surface water samples were collected during November 1993 at the locations
shown in Figure 3.1.

Water samples were collected in accordance with applicable standard operating procedures
described in the Albuquerque Operations Manual (JEG, n.d.}. BOR water samples were
collected using similar procedures.

3.1 BACKGROUND WATER QUALITY SUMMARY
Mill tailings area

Background ground water quality is defined as the quality of water if uranium
milling activities had not taken place. Background ground water quality data for
conditions at the mill tailings area are available from upgradient monitor well
DUR-01-629, completed in the colluvium overlying the Mancos Shale on Smelter
Mountain, and private irrigation well DUR-01-658, completed in alluvial gravel
near Lightner Creek (Figure 3.1). Background ground water quality at the site is
of two types: ground water occurring in colluvium above the Mancos Shale
near the base of Smelter Mountain and ground water occurring in gravel near
the streams. Monitor well DUR-01-629 and private well DUR-01-658 represent
the two types of background ground water at the site.

There are two rounds of data: one from monitor well DUR-01-629 and one
from private well DUR-01-658 (Table 3.1). Because monitor well DUR-01-629
is completed in clay-rich colluvial materials, it contains very little water and
tends to pump dry during sampling events. Each time the well is pumped dry,
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the possibility of disturbance to the aquifer matrix exists and unfiltered sample
results will not be representative of ground water conditions in the well. Private
well DUR-01-658, which is completed in alluvial gravel, has been in place for
several years, is pumped regularly, and has much higher yields. Thus, private
well DUR-01-658 has been extensively developed and the aquifer matrix has
stabilized. It is therefore reasonable to compare filtered data from monitor well
DUR-01-629 with unfiltered data from private well DUR-01-658.

Background ground water quality data clearly show the two distinctly different
water types and sources that contribute to the ground water in the colluvial and
gravel materials in the Durango mill tailings area (Table 3.2). Ground water in
the colluvium close to the toe of Smelter Mountain (Figure 3.2), represented by
background monitor well DUR-01-629, is a sodium-sulfate type (containing
considerable concentrations of calcium and magnesium) with relatively high total
dissolved solids (TDS) (3500 milligrams per liter [mg/L]). The source of this
water is probably rainfall and snowmelt, which has percolated through bedrock
and colluvium. The relatively high TDS is likely related to equilibration of ground
water in monitor well DUR-01-629 with gypsum and clay minerals known to be
present in colluvial materials and bedrock. By contrast, ground water in the
gravelly alluvium closer to the river, represented by background private well
DUR-01-658, is a calcium-bicarbonate type with low TDS (not measured
directly, but estimated at 400 mg/L from concentrations of major species
measured). The source of this water is likely to be the river. The pH of ground
water in both wells is close to neutral (7.0 in well DUR-01-629 and 7.08 in well
DUR-01-658).

Raffin n r

Before remediation, ground water in the area of the raffinate ponds occurred in
both the surficial deposits and the bedrock. At present, ground water in the
raffinate ponds area occurs primarily in the bedrock units located beneath
surficial deposits. Regional ground water quality data for the Mesaverde Group
(Butler, 1986) are summarized in Table 3.3. These data are from an area of
about 600 mi (1550 km2) surrounding Durango and include 35 ground water
sampling locations. The regional data indicate that water quality is variable in
the Mesaverde Group likely reflecting variations in the distances that ground
water has moved through the rocks and variations in amounts of soluble
minerals in these rocks. For example, sulfate concentrations vary from 0.5 to
2000 mg/L, and chioride concentrations vary from 1 to 93 mg/L. Several trace
elements are present, including iron (averaging 0.89 mg/L), lead (averaging
0.033 mg/L), manganese (averaging 0.08 mg/L), and molybdenum (averaging
0.014 mg/L) (Table 3.3).

Near the site, background water quality data for the raffinate ponds area are
available from one monitor well located in the far southwest corner of the site
and upgradient of the raffinate ponds area (monitor well DUR-02-592). This
monitor well is separated from the site by South Creek, which would have acted
as a barrier to any contaminant migration caused by development of a ground
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT
THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO

MAGNITUDE AND EXTENT OF CONTAMINATION

Table 3.3 Comparison of regional ground water quality data for the Mesaverde Group to
background water quality data from the raffinate ponds area®

Raffinate ponds area
Mesaverde Groupb Background well DUR-02-592
Minimum Maximum Mean Minimum  Maximum Mean
Depth (feet) 57 426 158 80 140 110
Depth (meters) 17 130 48 24 43 34
Parameter
Alkalinity 102 1010 515 740 820 773
Arsenic <0.001 0.003 <0.001 <0.005 <0.005 <0.005
Boron 0.02 0.42 0.18 NA NA NA
Calcium 0.6 340 63 110 120 115
Cadmium <0.001 0.004 <0.002 <0.0001 <0.005 <0.003
Chioride 1.2 93 15 62 69 66
Copper <0.001 0.017 0.003 <0.005 <0.005 <0.005
Fluoride 0.1 4.3 1 3 NA NA NA
Iron <0.01 20 0.89 0.02 0.02 0.02
Lead <0.001 0.160 0.033 <0.001 <0.005 <0.005
Magnesium <0.1 280 37 150 160 155
Manganese <0.01 1.1 0.08 0.05 0.07 0.06
Mercury <0.0001 0.002 <0.0001 <0.0001 <0.0001 <0.0001
Molybdenum <0.001 0.025 0.014 <0.01 <0.01 <0.01
Nickel <0.001 0.025 0.004 <0.001 <0.02 <0.02
Nitrate 0.09 7.1 0.7 <0.2 <0.2 .3
pH 6.3 8.7 7.5 7.6 8.0 8.0
Potassium 0.6 23 3.3 5.7 6.6 6.2
Silica 7 22 12 8.5 9.0 9 _
Sodium 8 670 238 240 250 245 )
Sulfate 0.5 2000 293 560 680 650
TDS 130 3300 976 1700 1700 1700

aAll data in milligrams per liter except for pH {standard units).

PMesaverde Group data from Butler, 1986.

NA — not analyzed.
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THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO MAGNITUDE AND EXTENT OF CONTAMINATION

3.2

water mound during operations at the raffinate ponds area. Also, the monitor
well is located in an area unaffected by surface operations associated with
former uranium processing and surface remediation. Monitor well DUR-02-592
is screened across a fault contact between the Menefee and Point Lookout
Sandstone and thus produces ground water from both units and the intervening
fault zone. A comparison of the water quality from this well to regional ground
water quality in the Mesaverde Group indicates that ground water from DUR-02-
592 is within the range of regional ground water quality for all measured
constituents (Table 3.3).

Trace elements and heavy metals are generally not present at levels above
detection limits in the background well (Table 3.3). The pH of the water is
above neutral (about 8 pH units), and the TDS is about 1700 mg/L.

MAGNITUDE OF SlTE~RELATED CONTAMINATION

Salt roasting, carbonate leaching, and acid leaching of vanadate ores contributed
sodium chloride (NaCl), sodium carbonate (Na,CO3), and sodium perchlorate
(NaClOy,) to the alkaline leach tails and hydrochioric acid (HCI), sulfuric acid
(HS04) and potassium permanganate (KMnOy) to the acid leach tails. Mixing
of the overflow from alkaline leach tails with acid tailings in the tailings piles
produced solutions that seeped through the tailings and into the ground water
system in the mill tailings area. Raffinate was disposed of in ponds and seeped
from the ponds into the ground water system in the raffinate ponds area.

Both the seepage from the tailings piles and the raffinate were chemically
analyzed in 1959 (Tsivoglou et al., 1960). The analyses indicate that while
both sources of contamination contained a similar suite of contaminants, the
tailings seepage was more diluted and had a higher pH than the raffinate (Table
3.4). Tailings seepage had a pH of 4.1 and TDS of 8450 mg/L. By contrast,
the raffinate had a pH of 0.8 and a TDS of 120,000 mg/L. Both sources of
contamination contained constituents derived from processing reagents,
including sodium, sulfate, chloride, and manganese. Other constituents, derived
from the dissolution of the ores, included arsenic, beryllium, copper, fluoride,
iron, radium-226, vanadium, and zinc (Table 3.4). Dissolved selenium was
notably absent in the contaminant sources. However, selenium was reported in
the main plant effluent (Tsivoglou et al., 1960) and occurs in contaminated
ground water at the site.

The differences in initial concentrations of contaminants in tailings seepage and
raffinate explain the similar differences in contaminant concentrations in ground
water in the mill tailings area (DUR-01-612) compared to ground water in the
raffinate ponds area (DUR-02-598) (Table 3.4). In the raffinate ponds area,
sulfate, sodium, and chloride concentrations in the ground water are less than
those reported in the raffinate. However, geochemical modeling of the effect of
neutralization and cation exchange indicates that these reactions within the
aquifer matrix can explain lower concentrations of sulfate, sodium, iron, and
manganese observed in historical data from the alluvium (DUR-02-625) and in
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recent data from the fault (DUR-02-598) (Table 3.5). Thus, ground water
quality within the contaminated aquifer at the site reflects both the source of
contamination and the reactions of the raffinate with the aquifer matrix.

Recent data (1991 and 1992) for a more complete suite of dissolved trace
metals associated with sources of site-related contamination are available for
pore fluids within the Bodo Canyon disposal cell. These pore fluids are in
contact with re-located tailings and other site-related contaminated materials
from the processing site including radium- and thorium-contaminated surficial
deposits from the raffinate ponds area. In addition to constituents derived from
the dissolution of the uranium-ores listed above, analyses of disposal-cell pore
fluids detected cadmium, chromium, lead, mercury, molybdenum, nickel,
selenium, silver, and uranium.

The primary sources of ground water contamination in the mill tailings area were
the large and small tailings piles (see Figure 3.2). Surface remediation removed
these sources of contamination. Using constituents that are known to be
related to uranium processing at the site, it appears that contamination has been
slowly moving downgradient in two primary plumes, one associated with each
tailings pile. For instance, Figure 3.4 is a November 1983 spatial distribution
map for sulfate. There is minor variability, related to remediation, but overall,
contamination is increasing in monitor well DUR-01-617 and decreasing in
monitor well DUR-01-612. Monitor well DUR-01-612 currently has the highest
levels of most constituents (Table 3.2). It can be predicted that uranium
processing constituents will continue to decline in monitor well DUR-01-612
while the first plume moves downgradient and into the Animas River.
Contaminants will increase in monitor well DUR-01-617, then decline as the
second plume reaches the well and then moves on past. Early contamination in
monitor well DUR-01-622 has apparently been almost completely flushed out.

After the extent of contamination was determined using a limited set of
constituents indicative of contamination (sulfate, vanadium, and uranium),
filtered and unfiltered water quality data collected between 1990 and 1994
were used to identify the full suite of constituents elevated above background
levels in contaminated portions of the aquifer underlying the mill tailings area.
The evaluation involved comparing water quality data from background wells
DUR-01-629 and -658 to contaminated ground water data from plume wells
DUR-01-612 and -617. Table 3.2 summarizes the water quality data used in
this evaluation.

Constituents for which adequate data exist for an inferential statistical
comparison of background to plume concentrations were cadmium, calcium,
chloride, iron, magnesium, manganese, molybdenum, nitrate, potassium,
selenium, sodium, sulfate, uranium, vanadium, and zinc. A nonparametric
Wilcoxon Rank-Sum test was first performed to determine whether
concentrations in plume wells DUR-01-612 and -617 differ from each other at a
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0.10 level of significance. if so, the water quality data from the more
contaminated well were used in the comparison to background levels;
otherwise, the data from the two plume wells were combined for the
comparison. Based on a Wilcoxon Rank-Sum test, all the constituents listed
above except iron were determined to be above background levels at the 0.10
level of significance (TAC, 1995). Constituent concentrations observed in the
more contaminated well were used to assess risk and are presented in

Table 3.2.

Some constituents that were detected at least once in the contaminated ground
water were not subjected to statistical testing. These constituents were either
not analyzed for in background wells, or there were insufficient numbers of
measurements above detection limits to aliow for quantitative evaluation. These
constituents were ammonium, antimony, barium, fluoride, lead, silica, silver,
strontium, and tin. They were included in a screening of contaminants of
potential concern. In addition, radiochemical constituents (lead-210,
polonium-210, radium-226, and thorium-230) were retained for evaluation
because they are progeny of natural uranium.

Raffin n 7

Several constituents can be used to determine the extent of ground water
contamination at the raffinate ponds area, including chloride, sulfate, sodium,
uranium, and manganese. Of these, chloride is the best indicator because it is
1) nonreactive in ground water, 2) present in the raffinate at relatively high
concentrations (greater than 1000 mg/L), and 3) low in background (less than
100 mg/L). :

Figure 3.5 shows the concentrations of chloride using chloride in excess of

100 mg/L as an indicator of contamination. In general, recent data demonstrate
that areas upgradient of the raffinate ponds area {(monitor wells DUR-02-607,
-599, and -600) are, at present, not obviously contaminated. However,
historical data for monitor well DUR-02-607 (a relatively shallow well completed
in both alluvium and bedrock) demonstrate that this area was contaminated in
the past but has been fiushed.

There are not sufficient data to determine the extent of contamination cross-
gradient and downgradient of the site. Older data from a decommissioned well
{DUR-02-601) demonstrate that contamination extended from the southern
ponds area (near monitor well DUR-02-607) east toward the Animas River.
Recently, slightly elevated concentrations of chioride (160 mg/L) in well
DUR-02-595 suggest that contamination also extends north of the ponds area to
the Animas River. Data to determine the extent of contamination east and
downgradient of the ponds area are limited; contamination extends at least to
the eastern property boundary, as evidenced by wells DUR-02-602, -628, and
-593. There are no wells in the area between the site boundary and the Animas
River.
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The vertical extent of contamination is also not known. Older data (1982 to
1985) indicate that contamination extended to at least a depth of between 124
and 138 ft (37.8 and 42.1 m) below land surface in the fault (in monitor well
DUR-02-624), and to at least 65 to 80 ft (20 to 24 m) in the bedrock (in
monitor well DUR-02-610) (Figure 3.3).

Reactions of the raffinate with minerals in the aquifer have resulted in decreased
concentrations of contaminants (relative to the original raffinate) in ground
water beneath the former raffinate ponds area. While the raffinate was highly
acidic (pH of 0.8), no acidic ground waters occur at the raffinate ponds area. it
is clear that raffinate was neutralized upon seeping into the alluvium and
bedrock by reaction with carbonate minerals, such as calcite. Modeling of the
reaction using the computer program PHREEQE (Parkhurst et al., 1980)
indicates that neutralization would have the effect of increasing the pH to a
value of about 7.3 and decreasing the concentrations of sulfate, iron, and
manganese (Table 3.5) (TAC, 1995).

In the past, the greatest amount of contamination in the raffinate ponds area
occurred within the alluvium and fault, with contamination extending to the
bedrock to a lesser extent. However, processes of cation exchange, gypsum
precipitation, and adsorption greatly reduced the amount of contamination in
ground water within the bedrock aquifers when compared to ground water in
the surficial deposits and fauit.

Contaminated ground water found in the alluvium, fault, and shallow bedrock
has relatively high concentrations of suifate, sodium, and trace metals. Within
the deeper bedrock, contaminated ground water has lower concentrations of
these constituents (Tables 3.6 and 3.7). The fact that chloride concentrations
are similar in both shallow and deeper ground water demonstrates that reactions
with the aquifer matrix have had the effect of substantially decreasing
concentrations of both major and minor constituents. In addition, dilution has
caused concentrations of chloride and other constituents to decrease in wells
located near the upgradient and crossgradient edges of the raffinate ponds area
(wells DUR-02-607, -596, -597, and -595 in Figure 3.5).

Surface remediation removed large amounts of contaminated surficial deposits
(to a depth of up to 20 ft [6 m]} and removed potential sources of continued
ground water contamination. At present, there is very little ground water
remaining in the alluvium (Figure 2.7), and what has been sampled (monitor
wells DUR-02-607 and DUR-02-628) has been diluted, probably by surface
recharge. Thus, at present, most contaminated ground water at the site is in
the bedrock and fault. The greatest amount of contamination has been found in
three wells: a shallow bedrock well (DUR-02-593), a deeper bedrock well (DUR-
02-602), and a fault well (DUR-02-598). These wells are used to evaluate risks.

After the extent of contamination was determined using a limited set of
constituents indicative of contamination (chloride, sulfate, manganese, and
uranium), filtered and unfiltered water quality data collected between 1990 and
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1994 were used to identify the full suite of constituents elevated above
background levels in contaminated portions of the aquifer underlying the
raffinate ponds area. The evaluation involved comparing water quality data
from background well DUR-02-592 to contaminated ground water from wells
DUR-02-593, -598, and -602. Table 3.8 summarizes the water quality data
used in this evaluation.

Adequate data exist for an inferential statistical comparison of background
concentrations to plume concentrations for calcium, iron, magnesium,
manganese, potassium, sodium, sulfate, uranium, and zinc. For these
constituents, the nonparametric Wilcoxon Rank-Sum test was used to compare
concentration levels in well DUR-02-592 to those in each of the three
contaminated plume wells DUR-02-593, -598, and -602. All constituents tested
were determined to be above background levels at the 0.10 level of significance
or less (TAC, 1995). A follow-up multiple comparison of contaminant levels in
the three plume wells was then performed to identify the well or wells with the
highest average concentrations. Levels observed in the most contaminated
waell(s) were used to assess risk and are presented in Table 3.8.

Some constituents that were detected at least once in the contaminated ground
water were not subjected to statistical testing. These constituents either were
not analyzed for in background wells, or there were insufficient numbers of
measurements above detection limits to allow for quantitative evaluation. These
constituents were ammonium, antimony, arsenic, barium, cadmium, chromium,
cobalt, copper, fluoride, lead, molybdenum, nickel, selenium, silica, strontium,
sulfide, thallium, tin, and vanadium. They were included in a screening of
contaminants of potential concern. In addition, radiochemical constituents
{lead-210, polonium-210, radium-226, and thorium-230) were retained for
evaluation because they are progeny of natural uranium.

3.3 CONTAMINANTS OF POTENTIAL CONCERN

The results of analyses in Sections 3.1 and 3.2 were used to compile a list of
contaminants of potential concern for the assessment of risks to human health
and the environment at the Durango site. The constituents listed in column one
of Table 3.9 for the mill tailings area and Table 3.10 for the raffinate ponds area
are either 1) elevated above background levels at the 0.10 level of significance
or less, or 2) detected at least once in contaminated ground water at the site,
but data are insufficient to conduct a statistical test.

These constituents were screened for their potential to affect human health.
The screening was based on the range of observed concentrations in filtered and
unfiltered ground water samples between May 1990 and June 1994. Data
obtained from sampling rounds back to 1987 were also examined for
constituents that were detected infrequently but have potential for toxicity near
the detection limit.
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT

THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO

MAGNITUDE AND EXTENT OF CONTAMINATION

Table 3.9 Contaminants of potential concern for the mill tailings area, Durango, Colorado,

site® ,
Contaminants Contaminants of low
exceeding Contaminants in toxic potency and/or Contaminants of
background levels nutritional range high dietary range potential concern
Ammonium Calcium Ammonium Antimony
Antimony Fluoride Barium Cadmium
Barium Potassium Chloride
Cadmium Zinc Magnesium Manganese
Calcium Nitrate Molybdenum
Chioride Silica Selenium
Fluoride Silver Sodium
Lead Strontium Sulfate
Magnesium Tin Uranium
Manganese Vanadium
Molybdenum
Nitrate
Potassium
Selenium
Silica
Silver
Sodium
Strontium
Sulfate
Tin
Uranium
Vanadium
Zinc

3The screening procéss starts with the first column; constituents listed in the second
and third columns are subtracted from the list of constituents in the first column; the
remaining constituents form the list shown in the last column.
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT

THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO

MAGNITUDE AND EXTENT OF CONTAMINATION

Table 3.10 Contaminants of potential concern for the raffinate ponds area, Durango,
Colorado, site®

Contaminants Contaminants of low .
exceeding Contaminants in  toxic potency and/or Contaminants of
background levels nutritional range high dietary range potential concern
Ammonium Calcium Ammonium Antimony
Antimony Chromium Cobalt Arsenic
Arsenic Copper Magnesium Cadmium
Cadmium Fluoride Nickel Chioride
Calcium Iron Silica Lead
Chioride Potassium Strontium Manganese
Chromium Zinc Sulfide Molybdenum
Cobalt Tin Selenium
Copper Vanadium Sodium
Fluoride Sulfate
Iron Thallium
Lead Uranium
Magnesium
Manganese
Molybdenum
Nickel
Potassium
Selenium
Silica
Sodium
Strontium
Sulfate
Sulfide
Thallium
Tin
Uranium
Vanadium
Zinc

3The screening process starts with the first column; constituents listed in the second
and third columns are subtracted from the list of constituents in the first column; the
remaining constituents form the list shown in the last column.
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Some constituents were screened out because they are essential nutrients
present at levels within nutritional ranges even when added to expected dietary
ranges (DOE, 1994; TAC, 1995). For the mill tailings area, these constituents
are calcium, fluoride, potassium, and zinc (Table 3.9, column 2). For the
raffinate ponds area, they are calcium, chromium, copper, fluoride, iron,
potassium, and zinc (Table 3.10, column 2).

The final screening of the remaining constituents was based on their low toxic
potency and/or relatively high normal dietary intake by comparison to the values
measured, so that levels at which they are detected at the site would not be
associated with adverse health effects even when added to expected dietary
intake (DOE, 1994; TAC, 1995). For the mill tailings area, these constituents
are ammonium, barium, chloride, magnesium, nitrate, silica, silver, strontium,
and tin (Table 3.9, column 3). For the raffinate ponds area, they are
ammonium, cobalt, magnesium, nickel, silica, strontium, sulfide, tin, and
vanadium (Table 3.10, column 3). Although some contaminants have been
eliminated from the lists of contaminants of potential concern, the potential for
their interaction with other contaminants is discussed in Section 5.2.

Based on the screening, antimony, cadmium, lead, manganese, molybdenum,
selenium, sodium, sulfate, uranium, and vanadium were chosen as final
contaminants of potential concern for the human health risk assessment at the
mill tailings area (Table 3.9). For the raffinate ponds area, contaminants of
potential concern to human health are antimony, arsenic, cadmium, chloride,
lead, manganese, molybdenum, selenium, sodium, sulfate, thallium, and uranium
(Table 3.10). Also, because uranium decays to radioactive progeny, Section 6.0
evaluates the longer-lived radioactive isotopes of the uranium decay series
(represented by lead-210, polonium-210, radium-226, and thorium-230). These
constituents form the basis of the human health risk assessment for ground
water at the Durango uranium processing site.

Because ecological impacts differ from effects on human health, the complete
lists of contaminants are considered for ecological risk assessment in
Section 7.0.

34 CONTAMINANT FATE AND TRANSPORT

The contaminants at the site are transported by ground water flow in the
alluvium at the mill tailings area and by ground water flow within bedrock and
the fault zone at the raffinate ponds area. Contaminant mobility, uptake, and
toxicity depend on the species of ions that exist in the aqueous environment.
The type of ion species and complexes depend on the availability of various
anions and cations for the formation of complex ions and on pH and Eh
conditions. Eh conditions at the processing site are notable for their wide
fluctuation. Species of the contaminants of potential concern have been
computed with the geochemical speciation code PHREEQE (Parkhurst et al.,
1980) using the constituent concentrations and Eh-pH conditions observed in
the most contaminated well in each area (TAC, 1995). The predominant
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species and their molar percentages are summarized in Tables 3.11, 3.12, 3.13,
and 3.14 for oxidizing .and reducing conditions in both the mill tailings and
raffinate ponds areas. :

Antimony

Antimony is present at both areas at the site at concentrations of up to

0.17 mg/L but is generally present at much lower concentrations. Antimony is
a multivalent element with Sb(lll) species (Sb (OH)5 ,,) dominant under reducing
conditions and Sb (V) species (Sb(OH)g") dominant under oxidizing conditions.
All known antimony compounds are very soluble; therefore, antimony
concentrations at the site are not expected to be limited by solubility. Very little
is known about adsorption/desorption behavior of antimony species (Rai and
Zachara, 1984). Adsorption of antimony appears to have attenuated
concentrations of this ion in both areas of the site, and antimony concentrations
are expected to decrease further to less than 0.02 mg/L.

Arsenic

At present, arsenic concentrations are generally near or below the detection
limits (0.01 mg/L) in both areas of the site. This is due to sorption of the ion
onto the aquifer matrix. During the period from 1990 to 1994, the maximum
values for arsenic (0.04 mg/L) occurred in monitor well DUR-02-602 in 1990.
Since then, arsenic has not been detected. Historical data for the site
demonstrate that, with transport and time, arsenic has been greatly attenuated
by sorption; further attenuation is expected in the future. This will probably
result in arsenic concentrations of less than 0.01 mg/L in all contaminated
ground water.

Cadmium

Cadmium is present at both areas of the site, at values of up to 0.038 mg/L. In
the raffinate ponds area, cadmium is present at lower concentratlons

(0.007 mg/L or less). Under oxidizing conditions, cadmium ion (Cd 2+) is the
dominant species in solution in the ground water at the Durango site, followed
by cadmium sulfate (CdSO4 ,4) and cadmium chloride (CdCI ™) (Table 3.11).
Under reducing conditions, vanous cadmium hydrogen sulfide species (for
example, Cd(HS), ,,) are dominant (Table 3.12). It has been suggested that, in
many locations, equ%ﬁbnum with the mineral otavite (CdCO3) limits solution
concentrations of Cd species (Rai and Zachara, 1984). Modeling with PHREEQE
(Parkhurst et al., 1980) indicates that, under oxidizing conditions, cadmium
species in ground water at the Durango site are in equilibrium with otavite.
However, under reducing conditions, the cadmium sulfide mineral greenockite
(CdS) is the solubility-controlling solid. Thus, under both reducing and oxidizing
regimes, the bulk of cadmium in the ground water has been precipitated in the
subsurface near the source of contamination. These deposits will form a
secondary source of cadmium contamination that will continue to release
cadmium, in equilibrium amounts, until solids are completely dissolved. As a
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Table 3.11 Predominant stable species of contaminants of potential concern in the ground
water system under oxidizing conditions at the mill tailings area, Durango,
Colorado, site® ,

Identity of species
in ground water

Approximate

Contaminant Valence Common name molar percentage

Antimonyb +5 Antimony hydroxide Sb(OH)g" Dominant
Cadmium +2  Cadmium ion cd?+ 32

+2  Cadmium chloride cdcit 21

+2 Cadmium sulfate CdSO, aq 23

+2  Cadmium bicarbonate CdHCO5 " 12
Lead +2 Lead carbonate PbCO4 aq 65

+2  Lead bicarbonate PbHCO5 ™ 15

+2 Lead sulfate PbSO4 aq 9

+2 Leadion Pb2+ 6
Manganese +2  Manganese ion Mn2+ 67

+2  Manganese sulfate MnSO4 54 27
Molybdenum +6 Molybdate MoO 42' 100
Selenium® +4  Hydrogen selenite HSeO5” Dominant

+4  Selenite SeO32' Secondary
Sodium +1  Sodium ion Na* 96
Sulfur -2 Sulfate S0,% 71

-2 Calcium sulfate CaSO4 aq 12

-2 Magnesium sulfate MgS0y aq 12
Uranium +6  Uranyl dicarbonate UO,(CO4),2" 34

+6  Uranyl tricarbonate uo 2(CO3)34' 65
Vanadium +5 Dihydrogen vanadate HoVO 20

+5  Hydrogen divanadate HV2073' 78

3gtable species of contaminants of potential concern are present at Eh and pH conditions
observed in downgradient monitor well DUR-01-612 during the June 1994 sampling round. This
round was notable in that the measured redox potential was oxidizing (Eh = 350 millivoits
[mVI]). Aqueous species were caiculated using the geochemical code PHREEQE (Parkhurst et al.,

1980).

Dinformation from Rai and Zachara (1984).
Cinformation from Brookins (1988).
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Table 3.12 Predominant stable species of contaminants of potential concern in the ground
water system under reducing conditions at the mill tailings area, Durango,
Colorado, site® ,

Approximate
molar percentage

Identity of species

Contaminant Valence Common name in ground water

Antin'\onyb +3 Antimony trihydroxide Sb(OH)4 aq Dominant
Cadmium +2  Cadmium dihydrogen Cd(HS); 54 61
sulfide
+2 Cadmium trihydrogen Cd(HS)3" 24
suifide
+2  Cadmium tetrahydrogen Cd(HS)42' 15
sulfide
Lead +2 Lead dihydrogen sulfide Pb(HS), aq 95
Manganese +2  Manganese ion Mn2+ 92
Molybdenum  +6  Molybdate Mo0,%" 100
Selenium® -2 Hydrogen selenide HjSezq Secondary
-2 Biselenide ion HSe" Dominant
Sodium +1  Sodium ion Na™t 100
Sulfur -2 Hydrogen sulfide H,S aq 92
-2 Bisulfide ion HS” 8
Uranium +4  Uranium pentahydroxide = U(OH)g" 96
Vanadium +3  Vanadium dihydroxide V(OH), " 17
+3 Vanadium trihydroxide V(OH)4 aq 83

agtable species of contaminants of potential concern are present at Eh and pH conditions
observed in downgradient monitor well DUR-01-612 during the September 1993 sampling

round. This round was notable in that the measured redox potential was reducing

(Eh = -195 mV). Aqueous species were calculated using the geochemical code PHREEQE

{Parkhurst et al., 1980).

dinformation from Rai and Zachara (1984).
Cinformation from Brookins (1988).
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Table 3.13 Predominant stable species of contaminants of potential concern in the ground
water system under oxidizing conditions at the raffinate ponds area, Durango,
Colorado, site? .

Identity of species
in ground water

Approximate

Contaminant Valance Common name molar percentage

b

Antimony +5 Antimony hydroxide Sb(OH)g" Dominant
Arsenic +5 Hydrogen arsenate HAsO 42' 76

+5 Dihydrogen arsenate HyAsO,4” 24
Cadmium +2 Cadmium ion cd2+ 25

+2 Cadmium chloride cdct 26

+2 Cadmium sulfate CdSOy4 aq 24

+2 Cadmium disulfate Cd(S04),%" 12
Chioride 1 Chloride ion cr 100
Lead +2 Lead carbonate PbCO4 aq 65

+2 Lead bicarbonate PbHCO45* 11

+2 Lead sulfate PbSO4 aq 12

+2 Lead ion Pb2+ 6
Manganese +2 Manganese ion MnZ* 60

+2 Manganese sulfate MnSOy4 aq 34
Molybdenum +6  Molybdate Mo0 42" 100
Selenium® +4 Hydrogen selenite HSeO5" Dominant

+4 Selenite Se032' Secondary
Sodium +1 Sodium ion Na™* 94
Sulfur -2 Sulfate S0,% 70

-2 Magnesium sulfate MgSO, aq 14

-2 Sodium sulfate NaSO,4 10
Uranium +6 Uranyl dicarbonate UO,(CO3) 22' 18

+6 Uranyl tricarbonate U0,(CO45) 34' 81

agtable species of contaminants of potential concern are present at Eh and pH conditions
observed in downgradient monitor well DUR-02-598 during the June 1994 sampling round. This
round was notable in that the measured redox potential was oxidizing (Eh = 157 mV). Aqueous
species were calculated using the geochemical code PHREEQE (Parkhurst et al., 1980).

binformation from Rai and Zachara (1984).

Clnformation from Brookins (1988).
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Table 3.14 Predominant stable species of contaminants of potential concern in the ground
water system under reducing conditions at the raffinate ponds area, Durango,
Colorado, site®

Identity of species  Approximate
Contaminant Valence Common name in ground water molar percentage
Antimonyb +3 Antimony trihydroxide Sb(OH)4 aq Dominant
Arsenic +5 Arsenic acid H3AsO,4 aq 100
Cadmium +2 Cadmium dihydrogen Cd(HS), aq 68
sulfide
+2 Cadmium trihydrogen Cd(HS)3" 20
sulfide
+2 Cadmium tetrahydrogen Cd(HS)42' 11
sulfide
Chloride -1 Chloride ion cr 100
Lead +2 Lead dihydrogen sulfide Pb(HS), aq 96
Manganese +2 Manganese ion Mn2+ 59
+2 Manganese sulfate MnSO4 54 35
Molybdenum +6 Molybdate Mo0,% 100
Selenium® -2 Hydrogen selenide H,Se aq Secondary
-2 Biselenide ion HSe" Dominant
Sodium +1 Sodium ion Na*t 100
Sulfur -2 Sulfate ion S04% 67
-2 Magnesium sulfate MgS0y 54 13
-2 Sodium sulfate NaSO,4~ 9
Uranium +4 Uranium pentahydroxide = U(OH)g" 99

astable species of contaminants of potential concern are present at Eh and pH conditions
observed in downgradient monitor well DUR-02-598 during the September 1993 sampling round.
This round was notable in that the measured redox potential was reducing (Eh = 236 mV).
Aqueous species were calculated using the geochemical code PHREEQE (Parkhurst et al., 1980).
binformation from Rai and Zachara (1984).
Cinformation from Brookins (1988).

DOE/AL/62360-175
REV. 1, VER. 1

3-45

13 SEPTEMBER 1995

DUROO5F1.WP3




BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT
THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO MAGNITUDE AND EXTENT OF CONTAMINATION

result, adsorption, dilution, and dispersion will, over time, be the primary
mechanisms that reduce cadmium concentrations at the site.

Chloride

Chloride concentrations in the contaminated ground water are about 20 times
those of background levels. Chloride is a nonreactive ion in ground water; thus,
decreases in concentrations will be due to dilution and dispersion without the
benefit of adsorption.

Lead

Lead appears to occur as a contaminant at both areas of the site at levels up to
0.07 mg/L but is generally below detection (less than 0.01 mg/L). Lead has
also been detected in pore fluids associated with re-located tailings at the Bodo
Canyon Disposal Site and it is, therefore, reasonable to expect lead as a
uranium-processing related contaminant in ground water at the processing site.
However, lead is also known to occur naturally in ground water (at levels up to
0.16 mg/L and averaging 0.033 mg/L) from bedrock aquifers of the Mesa Verde
Group throughout the region as discussed in Section 3.1. The range in regional
levels of lead is similar to that observed on site and levels of lead in ground
water on site may not be reduced further due lead’s possible presence in
background. However, there are too few site-specific measurements of lead in
background wells to quantitatively evaluate background lead levels at this time.

Manganese

Manganese is present at both areas of the site at similar levels (up to about

8 mg/L). Under reducing conditions, manganese ion (Mn2+) accounts for

92 percent of manganese species in ground water at the site (Table 3.12).
When conditions become more oxidizing, the percentage of manganese ion goes
down and manganese sulfate (MnSOy4 ..} and manganese bicarbonate
(MnHCO3+) become more important (Table 3.11). Several samples of ground
water at the site are near saturation with respect to the mineral rhodochrosite
(MnCOg) and, in the past, manganese was probably precipitated out of solution
as rhodochrosite. These deposits will form a secondary source of manganese
that will continue to release manganese in equilibrium amounts (about 2 to

10 mg/L) until the solids are completely dissolved. As a result, decreases in
concentrations will be due to dilution and dispersion without the benefit of
adsorption.

Mol num

Molybdenum is present at both areas of the site. In the former raffinate ponds
area, molybdenum is limited to concentrations of about 0.02 mg/L or less, and
adsorption appears to be effective in removing molybdenum from ground water.
In the mill tailings area, molybdenum is present at concentrations of up to about
0.2 mg/L, and adsorption appears to be less effective in removing this
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constituent from ground water in the gravel. Thus, in the mill tailings area,
adsorption of molybdenum in the contaminated ground water will be less
important than dilution and dispersion as a mechanism for decreasing
concentrations.

Selenium

Selenium occurs at both areas of the site at concentrations of up to 1.11 mg/L
(in unfiltered samples). Selenium appears to have been introduced to the aquifer
at the site as an adsorbed ion on suspended solids. Changes in ground water
composition, especially near-surface dilution, appear to be mobilizing this
selenium. Under oxidizing conditions, selenium exists dominantly as hydrogen
selenite and under reducing conditions, dominantly as hydrogen selenide.
Sorption of these selenium anionic species is most effective under acid
conditions (pH less than 4). Thus, under the near-neutral pH conditions at the
site, both anionic species are mobile in ground water. Therefore, dilution and
dispersion are likely to be the primary mechanisms for reducing selenium
concentrations at the site.

Sodium

Sodium occurs as a contaminant in both areas of the site, at concentrations of
up to about 3900 mg/L. Sodium forms very soluble bicarbonate, chloride, and
sulfate salts; thus, precipitation of those salts will not occur. A likely
maechanism for their removal is cation exchange for calcium within clay minerals.
Geochemical modeling suggests that such exchange has been occurring in the
contaminated ground water within bedrock at the raffinate ponds area (TAC,
1995). Modeling also suggests that the most contaminated ground water in the
raffinate ponds area is not yet equilibrated to natural clays at the site and that
sodium concentrations will continue to decrease, ultimately reaching a level of
about 400 mg/L (Table 3.5) (similar to background levels). By contrast, the
gravel at the mill tailings area appears to have little cation exchange capacity.
Therefore, dilution and dispersion will be most effective in decreasing sodium
concentrations in this area.

Sulfate

Sulfate is a contaminant at both areas of the site. It occurs at concentrations of
up to about 10,000 mg/L at the former raffinate ponds area and up to

3300 mg/L at the mill tailings area Modeling with PHREEQE (Parkhurst et al.,
1980) predicts that sulfate (304 ) will be the dominant sulfur species in ground
water at the site under oxidizing conditions, followed by calcium sulfate
(CaS0O4) and magnesium sulfate (MgS0O,4 ) (TAC, 1995). By contrast, under
reducing conditions, dihydrogen sulfide (H, ) is dominant, followed by
hydrogen sulfide ion (HS"). Under reducing condmons actual sulfate
concentrations in the ground water change very little. This is due to slow
kinetics of reduction. The sulfur species that are reduced may be precipitated
as insoluble sulfides (for instance, the mineral sphalerite (ZnS) is oversaturated
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during reducing conditions), or dihydrogen sulfide gas (H,S) may release and
thus remove sulfur species from the system. However, any sulfate removed
from the ground water by these mechanisms will likely be small. Modeling with
PHREEQE (Parkhurst et al., 1980) indicates that under oxidizing conditions,
gypsum is at equilibrium and should have a tendency to precipitate. These
precipitates would then become a secondary source of sulfate, supplying this
ion to the ground water in equilibrium concentrations until solids were
completely dissolved and the entire system had moved downgradient.

In the raffinate ponds area, modeling indicates that acid neutralization and
cation exchange coupled with gypsum precipitation have been effective in
decreasing sulfate concentrations (Table 3.5). Furthermore, the capacity exists
for future sulfate decreases to values of about 2500 mg/L. However, the
gypsum precipitate will become a secondary source for sulfate and will supply
sulfate to ground water in equilibrium concentrations until the solid is completely
dissolved. Thus, the primary mechanisms for decreasing sulfate concentrations
at the raffinate ponds area will be dilution and dispersion.

Thallium

Thallium has been detected in ground water at the raffinate ponds area at values
of up to 0.06 mg/L; however, in general, thallium is below detection limits (less
than 0.01 mg/L). In the future, adsorption will act to keep thallium at low levels
(less than 0.01 mg/L).

ranium

Uranium occurs as a contaminant at both areas of the site at levels up to about
4.0 mg/L. Under oxidizing conditions, uranium occurs in ground water at the
site dominantly as a uranyl carbonate complex (for example, UOZ(C03)34').
This complex is mobile in neutral-to-alkaline ground water; thus, under oxidizing
conditions, dilution will be the primary control on uranium concentrations.
Under reducing conditions, modeling with PHREEQE (Parkhurst et al., 1980)
indicates that several uranium oxide phases, including the mineral uraninite
(UO,), are oversaturated at the site (TAC, 1995). Other phases include
amorphous uranium dioxide {UO,), colloidal uranium oxide (U4Og), and colloidal
uranium silicate (USiO4). As a result, under reducing conditions, uranium would
tend to be removed from solution. This would have the effect of retarding the
movement of uranium downgradient.

nadium

Vanadium occurs at both areas of the site, but relatively high concentrations (up
to about 0.5 mg/L) are restricted to the mill tailings area. At the raffinate ponds
area, adsorption appears to be effective in removing vanadium from ground
water within the bedrock and fault. Such sorption does not appear to be as
effective in the alluvial gravel at the mill tailings area. Under oxidizing
conditions at the site, vanadium exists in ground water in its maximum oxidation
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3.5

state (+5) as a vanadate ion (primarily HV2073'). The mineral tyuyamunite
(Ca(UO,)(VOy,)o « nH0) is oversaturated during these conditions. As
conditions become reducing, vanadium hydroxide complexes (+ 3 oxidation
state) become more stable (V(OH), * and V(OH)3 aq) (Table 3.12) and
vanadium oxides (V703 and V30g) will tend to precipitate out. Generally, the
solubility of the controlling vanadium solids is apparently greater under reducing
rather than oxidizing conditions (Rai and Zachara, 1984). Little is known about
the adsorptive behavior of vanadium species, but vanadates are known to be
adsorbed by iron oxides (Rai and Zachara, 1984). For these reasons, vanadium
should be more mobile under reducing conditions. Overall, vanadium appears to
be mobile at the mill tailings area of the site; thus, dilution and dispersion will be
the primary mechanisms for reducing concentrations in ground water in this
area.

SURFACE WATER MONITORING

In general, surface water and sediment data from Lightener Creek and the
Animas River indicate that contaminants of potential concern are present at the
same or similar concentrations upstream and downstream of the site, and site-
related impacts to the creek and the river water are negligible. A detailed
discussion of there data is provided below.

The Durango uranium ore processing site is bounded by Lightner Creek to the
north, the Animas River to the east, and South Creek to the south. Hydraulic
gradients (Figures 2.3 and 2.7) indicate that the Animas River could potentially
receive ground water discharge from the tailings and raffinate ponds areas of
the site. Therefore, surface water and sediment were sampled during November
1993 to assess impacts of ground water discharge on those media. This
sampling period was chosen to coincide with the seasonal low flow in the river
and creeks, because the potential impact of contaminant discharge would be
greatest during this period. The results of this sampling and analysis are
presented in Tables 3.15 and 3.16. These results indicate that the ground
water discharging into the Animas River appears to have negligible impact on
surface water quality and sediment chemistry in the Animas River.

Both filtered and unfiltered samples of surface water were also collected
monthly by the BOR at two locations along the Animas River. One location was
upstream of the site and the second was downstream, at the raffinate ponds
area. This sampling included water analyses during both low and high river flow
during the period from January 1993 through July 1993. Analytical results are
summarized in Table 3.17. Again, these results indicate negligible site-related
impacts on water quality in the Animas River.

In Lightner Creek, background surface water and sediments were sampled one
time at location DUR-01-650, approximately 500 ft (150 m) upstream of the
site (Figure 3.1). Downstream samples were also collected once at location
DUR-01-651, near the confluence of Lightner Creek and the Animas River.
Comparison of water quality data at these two locations for this sampling event
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does not indicate a difference in water quality upstream and downstream of the
site (Table 3.15). Lightner Creek sediments also appear comparable upstream
and downstream of the site for this one-time sampling event (Table 3.16).
Thus, there are no anomalous constituents in Lightner Creek sediments
attributable to uranium processing activities, based on one sampling round.

In the Animas River, background surface water and sediment were sampled at
location DUR-01-652, about 300 ft (90 m) upstream of the site, and
immediately upstream of the confluence of the Lightner Creek and the Animas
River. On-site and downstream locations were sampled to determine potential
impacts of the site on surface water sediments and sediments in the Animas
River. Location DUR-01-690 is immediately downstream of the confluence of
the Animas River and Lightner Creek. Location DUR-01-691 is located
downstream of the mill tailings area. Location DUR-02-657 is downstream of
the mill tailings area and sewage treatment plant outfall, but upstream of the
raffinate ponds area. DUR-02-656 is midway along the stretch of river
potentially affected by the raffinate ponds area. DUR-02-654 is located
downstream of both the mill tailings and raffinate ponds areas. Water in the
Animas River at Durango is a calcium-bicarbonate or calcium-bicarbonate-suifate
type, generally ranging from hard to very hard, with calculated hardness values
ranging from approximately 70 to 670 mg/l. expressed as calcium carbonate. A
comparison of downstream and upstream water quality data indicates similar
surface water quality (Table 3.15).

Additional data collected and analyzed by the BOR are consistent with the DOE
data. These data indicate that concentrations of contaminants of potential
concern are the same or similar upstream and downstream of the site for both
filtered and unfiltered surface water samples from the Animas River (Table
3.17). Thus, ground water that may be discharging from the site to the Animas
River appears to have a negligible impact on surface water quality in the Animas
River.

Based on the samples collected in November 1993, Animas River sediments are
similar at the downstream locations compared to the upstream location

(Table 3.16). Sample DUR-02-655 was collected above the river shoreline, in
sediments associated with surface evaporites (TAC, 1994b). it contained high
concentrations of sulfate. The source of the sulfate could be either evaporated
river water or ground water. The evaporite is not associated with elevated
concentrations of processing-related metals, including uranium, molybdenum,
and manganese.

Overall, most analyzed concentrations of elements in sediments from the
Animas River are similar (within a factor of 2) to the average abundance of
elements in rocks and sediments of the earth (Krauskopf, 1979). However,
levels of cadmium, lead, and zinc are greater than average by a factor of 10. All
three are elevated in the upstream sediment sample and are commonly
associated with naturally occurring lead-zinc deposits. Therefore, they could be
derived from the erosion of natural lead and zinc deposits within the Animas
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3.6

River drainage basin and/or from erosion of ores, mine spoil, and other products
of mining in the region.

GROUND WATER DISCHARGE MODELING

The potential effect of the contaminated ground water discharge on water
quality in the Animas River has been modeled to estimate potential water quality
changes in the Animas River due to ground water discharged from the site. This
model was conducted for two reasons. First, only limited measurements of
surface water quality data are available. Second, the Animas River has several
possible sources of contaminants of potential concern, and it is necessary to
determine the potential contribution of UMTRA Project site-specific discharges.
The contributions of site-specific discharges to the Animas River water quality
are estimated for low-flow conditions, when the contribution is the greatest.
Effects have been modeled for both the mill tailings and raffinate ponds areas
under worst-case conditions (TAC, 1995). The computations demonstrate that
site-contaminated ground water discharged into the Animas River has a
negligible effect on the river water quality.

Iin the mill tailings area, ground water in the alluvial gravels discharges into the
Animas River at the downgradient (southeastern) end of the area (Figure 2.3).
Hydraulic conductivity in the gravels averages 20 ft/day (7 x 103 cm/s)
(Section 2.4.1), and the hydraulic gradient in the gravels is approximately 0.02
(derived from contour lines in Figure 2.3). The product of these values is the
specific ground water discharge per square foot or square meter of cross-
sectional area perpendicular to the direction of flow (0.4 ft3/square foot [ft I-
day) (0.12 m3/square meter [m2] -day). The depth of contaminated ground
water in the gravel aquifer is approximately 8 ft (2.4 m), which is the distance
between the water table and the base of the alluvium. The width of the
contaminated aquifer as it discharges into the Animas River is approximately
450 ft (140 m) (Figure 2.3). The product of these two values, perpendicular to
flow, is the cross-sectional area of gravel aquifer containing contaminated
ground water (3600 ft2 1330 m?)). Multiplying this area by the specific
discharge gives a total potential volume of discharge from the aquifer into the
Animas River of 1440 ft> (40 m3) per day.

The record 7-day low flow in the Ammas River was 100 ft3/s (3 m3/s) (Section
2.5), or 8,640,000 ft3 (250,000 m ) per day. This is several thousand times
the ground water discharge into the river from the mill tailings area. Thus,
contaminants discharging into the river are greatly diluted. The increment of
contamination added to the river by ground water discharge has been calculated
by taking the product of the maximum observed concentration of a constituent
in the contaminated ground water, multiplying this concentration by the volume
of ground water discharge, and dividing the result by the 7-day low flow river
volume. For example, for uranium, the maximum concentration observed in the
mill tailings area was 4.0 mg/L. After dilution, this would increase the uranium
concentration in the Animas River by 0.0007 mg/L above background

DOE/AL/62350-176 19 SEPTEMBER 1995

REV. 1, VER. 1

DUROOSF1. WP3

3-57




BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT
THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO MAGNITUDE AND EXTENT OF CONTAMINATION

concentrations at low flow in the river. During average or high river flow, this
uranium level would be less.

The results of the calculations for uranium and other constituents are presented
in Table 3.18, as well as concentrations measured upstream of the site. The
results indicate that, under average conditions of ground water flow, there
would be no detectable effect on surface water quality, with the possible
exception of uranium, which would be increased by approximately

0.0007 mg/L.

Using the highest observed value for hydraulic conductivity in the gravel
aquifers (300 ft [90 m] per day) (Section 2.4.1) would result in a 15-fold
increase in the incremental values of constituents calculated using the average
hydraulic conductivity, including an increase in uranium concentration to
approximately 0.01 mg/L. This latter change, as well as changes in zinc,
manganese, and cadmium levels, could be detected, though changes in other
constituents could not. However, this represents worse-than-expected
conditions, including a higher-than-average rate of ground water flow and
lower-than-average rate of river flow.

A similar set of calculations was done for the raffinate ponds area (TAC, 1995).
There are two potential sources of ground water discharging into the Animas
River in this area: the general discharge from the bedrock into the river and the
more focused discharge from the fault where it intercepts the river bottom.
Discharge from the fault into the river was computed using a component of the
hydraulic gradient measured paraliel to the fault {from water levels measured in
monitor wells DUR-02-592 and -598) (Figure 3.3). This gradient is O. 023 The
average hydraulic conductivity within the fault zone is 0.8 ft/day (3 x 104

cm/s} (Section 2.4.2). The width of the fault and associated fracture zone was
estimated to be 10 ft (3 m) from boring logs obtained from the BOR (1990).
Finally, the depth of contamination was estimated to be about 200 ft (60 m)
from the top of the water table. This depth was estimated by taking the
computed depth of contamination (approximately 100 ft [30 m], as discussed in
Section 3.2) and doubling that depth to account for uncertainties in the volume
of raffinate disposed of at the site. Using these data, the potential volume of
contaminated ground water discharge into the river from the fault is computed
to be about 37 #t3 {(1m ) per day. This is an upper-bound estimate because it
assumes that all ground water to a depth of 200 ft (60 m) discharges into the
Animas River.

For the bedrock, the average hydraulic conductivity is 0.2 ft/day (8 x 1070 cmys)
and the measured hydraulic gradient is 0.03 (Section 2.4.2). The cross-
sectional area of the contammated ground water perpendicular to flow is
approximately 430,000 ft2 {40,000 m ), which is calculated from a flow width
of 2150 ft (660 m) parallel to the river and a flow depth 200 ft (61 m). This
latter value is based on doubling the computed depth of contamination, as
discussed above. Using these values, the potential volume of ground water
discharge from bedrock into the river is approximately 2600 ft3 (70 m3) per
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day, which overshadows the contribution from the fault. This is an upper-bound
estimate because it assumes that all contaminated ground water to a depth of
200 ft (60 m) discharges into the Animas River at an equal rate. In fact, most
discharge would be from the shallower portion of the aquifer.

Thus, the total discharge from the fault and bedrock is about 2600 ft3 (70 m3)
per day, a very small quantity compared to the daily flow of the Animas River,
even under low-flow conditions. Therefore, contaminants are greatly diluted as
they enter the river. The incremental effect of the ground water discharge from
the raffinate ponds area into the Animas River is shown in Table 3.19. These
computations demonstrate that the discharges from the fault and bedrock have
a negligible effect on the Animas River water quality.
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT

THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COIL.ORADO MAGNITUDE AND EXTENT OF CONTAMINATION

Table 3.19 Computed change in Animas River water quality due to ground water
discharge from the raffinate ponds area, Durango, Colorado, site®

Computed change in  Average concentration

Contaminant Maximum observed surface water in filtered samples of

of potential concentration Lﬂ caused by ground Animas River surface
concern ground water water discharge water upstream of site®

Ammonium 3.3 0.001 NA
Antimony 0.1969 0.00006 NA
Arsenic 0.04 0.00001 0.004
Cadmium 0.0009 0.0000003 0.0002
Calcium 491 0.2 61
Chloride 2400 0.7 11
Fluoride 0.4 0.0001 0.3
Iron 3.0d 0.0009 <0.05
Lead 0.07 0.00002 0.001
Magnesium 724 0.2 10
Manganese 7.3 0.002 0.06
Molybdenum 0.1 0.00003 <0.01®
Nickel 0.025 0.000008 <0.005
Potassium 82 0.02 2
Selenium 0.08 0.00002 0.007
Silica 24.9 0.007 NA
Silver <0.01 <0.000003 <0.0002
Sodium 4600 1 13
Sulfide 0.3 0.00009 NA
Sulfate 10,000 3 113
Thallium 0.06 0.00002 NA
Tin 0.1334 0.00004 NA
Uranium 0.57 0.0002 <0.005
Vanadium 0.06 0.00002 NA
Zinc 0.025 0.000008 0.014

3Effects are calculated for contaminants of potential concern at the raffinate ponds area. All data
are in milligrams per liter.

DMaximum concentration observed in ground water from the raffinate ponds area between May
1990 and June 1994. Values are for filtered ground water samples, unless otherwise noted.

CAverage concentration for filtered surface waters collected monthly from January 1993 through
June 1993. BOR data, unless otherwise noted. Refer to Table 3.17.

dvalue is for unfiltered ground water sample.

e€Molybdenum concentration from DOE unfiltered surface water samples collected in November
1993. :

NA — not analyzed.

DOE/AL/62350-175 13 SEPTEMBER 1995
REV. 1, VER. 1 DUROO5F1.WP3

3-62




o
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4.0 EXPOSURE ASSESSMENT

The two areas where different stages of uranium ore processing took place are evaluated
separately at the Durango site: the uranium mill tailings and raffinate ponds areas. At the
mill tailings area, most of the ground water contamination is in the alluvium/colluvium,
which will be referred to as the shallow aquifer. At the raffinate ponds area, the most
contaminated ground water is in the Menefee and adjacent fault.

4.1 POTENTIALLY EXPOSED POPULATION

Exposure can occur only if there are both a source of contamination and a
mechanism of transport to a receptor population or individual. Ground water
contaminated by uranium ore processing at the former processing site at
Durango is not currently used. As shown in Figure 2.9, ground water is not
withdrawn within 2 mi (3 km) downgradient of the site. Area residents living
within the city limits use water supplied by the municipal water system, which
obtains water from the Florida and Animas Rivers. Although a number of
residents located northwest of the site have domestic wells completed in the
shallow aquifer, their upgradient location prevents contaminant migration to
these wells. Ground water in the site area discharges into the Animas River,
where it is quickly diluted (refer to Section 3.6). '

Although plans for future land use do not specify residential developments at
the site, such land uses cannot be precluded. Therefore, it is assumed that in
the future, a domestic well could be installed in the contaminated aquifer at the
mill tailings or raffinate ponds areas, creating the potential for exposure through
drinking, bathing, and irrigation. However, the likelihood of residential
development at the mill tailings or raffinate ponds areas is considered to be low.

The future scenario evaluates domestic ground water use consistent with
current water uses by the population in the region. The potentially exposed
population includes residents of the following age groups: infants (birth to 1
year old); children (1 to 10 years old), and adults (11 to 65 years old). These
age groups were selected for the following reasons:

® Survey data for population variables such as age, weight, and daily water
intake are available for these age groups.

® Toxicological variables are similar within these age groups, including
responsiveness of sensitive subgroups (infants, children, and aduits) to the
contaminants of potential concern, toxicant intake-to-body-weight ratios,
and toxicokinetics (a study of the time course of absorption, distribution,
metabolism, and excretion of a contaminant in an individual’s body).

Some individuals and/or subpopulations could be more vulnerable to potential
exposures than the general population. These sensitive subpopulations could
include children, the elderly, or people with existing illness, such as diabetes.
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4.2

4.2.1

Another sensitive subpopulation would include individuais whose intake of
certain contaminants is already higher than national averages.

EXPOSURE PATHWAYS

An exposure pathway describes the course a contaminant takes from a source
to an exposed individual. Exposure can occur only if there is a source of
contamination, a point of contact with a population or individual, and a route of
exposure {e.g., water ingestion). Because the tailings piles and soils
contaminated from uranium milling operations at the site were removed and
relocated to a disposal cell, soil or air exposure pathways (such as incidental soil
ingestion, dermal contact with soil, or inhalation of particulates) are not
considered. This assessment evaluates both ground water and surface
water/sediment pathways. Water in the region is used primarily for household
purposes such as drinking, cooking, and bathing. Another ground water use
typical of the region, which could lead indirectly to human exposure, is
irrigation. Recreational fishing and hunting can form additional potential
exposure pathways. Figure 4.1 provides a conceptual model of the possible
ground water and surface water/sediment exposure pathways that are believed
to lead to the greatest potential exposure at the Durango site. Possible
pathways that are not considered in this model include exposure to soil
contaminated via irrigation with contaminated ground water (for example,
inhalation of fugitive dust and incidental soil ingestion). Preliminary calculations
demonstrate that the sum of these pathways typically contributes much less
than exposure from drinking water ingestion (TAC, 1995). Under some land
uses or construction activities, these pathways could constitute a notable
exposure. Upon determination of a specific land use or construction activity,
these pathways might require additional evaluation.

Drinking water ingestion

Although it is unlikely that ground water at the site will be used in the future for
drinking purposes because of the availability of a municipal water supply
system, this risk assessment will evaluate a hypothetical future use of the
ground water at the mill tailings and raffinate ponds areas.

Drinking water ingestion is generally the dominant exposure route for ground
water contaminated with metals and other nonvolatile compounds (DOE, 1994).
In this evaluation, drinking water consumption includes amounts of water
ingested by drinking and amounts of water used for food preparation (e.g.,
reconstituted juices, soup, rice, and beans).

Because drinking water ingestion is typically the dominant pathway, it is the
only pathway evaluated quantitatively in Section 4.4. A probabilistic evaluation
has been conducted for cadmium, manganese, molybdenum, selenium, sodium,
sulfate, uranium, and vanadium detected in ground water at the mill tailings
area, and for chloride, manganese, sodium, sulfate, and uranium detected in
ground water at the raffinate ponds area. Additional contaminants of potential
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THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO ' EXPOSURE ASSESSMENT

4.2.2

4.2.3

concern that do not have a sufficient database to generate probability
distributions to describe plume water concentrations or have not been analyzed
for in background monitor wells are evaluated in Section 6.1 using exposure
point concentrations. ‘ ‘

rmal rption

Dermal absorption is the process by which chemicals coming into contact with
the skin become absorbed into the blood vessels near the skin surface.
Although some compounds are absorbed easily in this manner, metals are
generally poorly absorbed through intact skin (EPA, 1992c).

To evaluate this exposure route, a screening calculation was performed to
determine whether the exposure contribution from dermal absorption would be
substantial compared to the drinking water ingestion exposure route for the
contaminants of potential concern {TAC, 1995). Because chemical-specific
absorption factors are not available for these contaminants, they are assumed to
absorb across intact skin at the same rate as water. This assumption probably
will overestimate the potential exposure contribution from dermal absorption.

Although the dermal dose is an absorbed dose, and only a percentage of the
ingested dose will be absorbed, the very low (0.2 percent) exposure contribution
of dermal absorption is assumed to be insignificant compared to the drinking
water ingestion exposure route. Because the assumptions used to estimate the
dermal absorption exposure dose are believed to overestimate exposure {metals
are assumed to be absorbed like water) and because the dose is less than a 1
percent incremental contribution to the exposure dose from drinking water
ingestion, this pathway is not further evaluated in this risk assessment.

Pr in n

Contaminants in ground water could be taken up by plants either through roots
in soil saturated with contaminated ground water or from irrigation water
obtained by a well in the contaminated ground water. These plants could be
eaten by humans or could enter the food chain and subsequently be consumed
in the form of meat, as discussed in Section 4.2.4. The amount this exposure
route could contribute could be substantial if the contaminants concentrate in
plants. There are currently not enough data to evaluate this potential
contribution based on literature values. However, the UMTRA Ground Water
Project is currently studying contaminant uptake by irrigated vegetables and
grasses. When these data become available, this pathway will be evaluated for
this site and the results will be included in the site environmental assessment or
environmental impact statement. If applicable, these data will also be
considered in the development of a ground water compliance strategy for the
site.

An evaluation of the potential damage to plants from contaminated water is
presented in Section 7.0.
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4.2.4 Meat ingesg'gn'

Contaminants in ground water can enter the food chain when animals consume
ground water that has reached the land surface or when animals consume
plants that have taken up contaminants through roots tapping contaminated
ground water. This exposure route is considered feasible because elk and deer
habitats are adjacent to the site and hunting is permitted. As with plant uptake,
there are not sufficient data available in the literature to quantitatively evaluate
this pathway. The resuits of the plant uptake studies and additional site
characterization will enable this pathway to be better characterized. These
results will be included in the site environmental assessment or environmental
impact statement and will be considered in the ground water compliance
strategy, if applicable.

An evaluation of the direct toxicity of contaminants to wildlife is presented in
Section 7.0.

4.2.5 Fish ingestion

Recreational fishing in the Animas River near the site is common. Because the
contaminated ground water from the site discharges into the Animas River and
because contaminants may remain in sediments and cycle through biota, this
pathway is considered.

in 1992, the BOR collected fish from the Animas River. Two of the areas
sampled are in the vicinity of Durango. From these areas, 12 rainbow trout,

12 brown trout, 10 flannelmouth sucker, 6 bluehead sucker, 21 mottled sculpin,
and 3 carp were analyzed for 32 inorganics {whole body analysis; not including
uranium) (TAC, 1995).

When compared to national averages, the data indicated that there may be
elevated levels of certain metals such as cadmium {up to 4 times the national
average) and lead {up to 30 times the national average). These concentrations
and values for antimony, arsenic, iron, and manganese could be toxicologically
meaningful if they are representative of edible tissue and if fish are ingested
regularly.

Whether the former processing site is a contributing factor in these levels
cannot be determined. Metals present in fish may come from naturally
occurring ore deposits, mining sites, other milling operations, and industrial
discharges known to occur, or to have historically occurred, along the Animas
River. This complex mixture of discharges, coupled with tremendous
uncertainty regarding the habitat ranges of the fish over their lifespan, make a
potential connection of fish tissue levels with any one site contaminant difficult
to determine. Because of these factors, the fish ingestion pathway is not
evaluated in this risk assessment. Nonetheless, it is noted here because of the
potential for additive exposure contribution. Regardless of the source of metals
in the fish, fish ingestion represents a potential exposure route that could
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increase dietary levels of the contaminants of potential concern in people who
eat fish. As such, this exposure could increase the potential toxicity from
exposure from other pathways considered in this risk assessment. This
incremental exposure is further discussed in Section 6.1.

4.3 EXPOSURE CONCENTRATIONS

The exposure concentration of a contaminant in ground water is that
concentration contacted by an individual over the period of exposure being
considered. In this evaluation, the contaminant concentrations (and therefore
exposures) are assumed to be in a steady state, even though actual exposure
concentrations are expected to fluctuate and eventually decrease with time
because the surface of the site has been cleaned up. Nonetheless, they are
reasonable estimates for chronic exposure soon after surface remediation.
Chronic exposure for noncarcinogens is considered to be any period longer than
7 years. For carcinogens, a lifetime exposure over 30 years is considered.

Exposure concentrations are evaluated as a probability of occurrence for
cadmium, manganese, molybdenum, selenium, sodium, sulfate, uranium, and
vanadium at the mill tailings area, and for chloride, manganese, sodium, suifate,
and uranium for the raffinate ponds area. This evaluation is based on ground
water data collected from the most contaminated monitor wells at the mill
tailings and raffinate ponds areas. Tables 3.2 and 3.8 show the maximum
observed concentrations used to evaluate the toxicity and/or carcinogenicity of
contaminants of potential concern that could not be evaluated probabilistically
because it could not be determined whether these contaminants occur above
background levels. These maximum observed concentrations of antimony and
lead in ground water from the mill tailings area and of antimony, arsenic,
cadmium, lead, molybdenum, selenium, and thallium in ground water from the
raffinate ponds area represent the exposure point concentrations used to
estimate intakes and evaluate risks in Section 6.0.

For the mill tailings area, ground water quality data based on filtered samples
from monitor well DUR-01-612 are used. With one exception, this well has
consistently shown the highest levels of contamination through the past 4 years
of monitoring. Selenium levels were historically higher in well DUR-01-617 than
in well DUR-01-612; therefore, the analysis of selenium toxicity is conducted
based on concentrations observed in well DUR-01-617. For antimony, lead, and
radionuclides, the maximum observed concentration or activity in any filtered or
unfiltered sample collected between 1990 and 1994 is used. The highest level =
of antimony was observed in the filtered ground water sample from monitor well
DUR-01-612; therefore, the analysis of antimony toxicity is performed based on
the maximum observed concentration in that well. Lead levels measured in
unfiltered samples from monitor well DUR-01-617 were higher than in well
DUR-01-612; thus, lead toxicity is analyzed based on the maximum observed
concentration in well DUR-01-617. Lead-210 and radium-226 activities were
the highest in unfiltered samples from well DUR-01-612; therefore, the analyses
of carcinogenic potential of lead-210 and radium-226 are based on the
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maximum observed activities in that well. Maximum observed activities
measured in unfiltered ground water samples from well DUR-01-617 are used
for polonium-210 and thorium-230. :

For the raffinate ponds area, no single monitor well has consistently shown the
highest levels of contamination between 1990 and 1994. Manganese and
sodium levels were consistently higher in well DUR-02-593 than in other
downgradient wells; therefore, manganese and sodium toxicities are analyzed
based on concentrations observed in well DUR-02-593. Uranium concentrations
were consistently higher in well DUR-02-598 than in other downgradient wells;
thus, uranium toxicity is evaluated based on concentrations observed in that
well. Sulfate levels were consistently higher in monitor wells DUR-02-593 and
-598 than in well DUR-02-602; therefore, sulfate toxicity is evaluated based on
concentrations observed in combined wells DUR-02-593 and -598. Chiloride
levels measured in downgradient wells DUR-02-593, -598, and -602 are ‘
combined to characterize the probable distribution of chloride concentrations in
the contaminated ground water, because no single well had sufficient
measurements_ from which to build a distribution. For antimony, arsenic,
cadmium, lead, molybdenum, selenium, thallium, and the longer-lived progeny of
the uranium decay series, the maximum observed concentration or activity in
any filtered or unfiltered sample collected between 1987 and 1994 was used.
Arsenic, cadmium, lead, molybdenum, selenium, and thallium levels were higher
in filtered samples from monitor well DUR-02-602 than from other wells;
therefore, toxicities of these contaminants are evaluated based on the maximum
observed concentration in filtered samples from well DUR-02-602. Antimony
concentrations were the highest in unfiltered samples from well DUR-02-602;
therefore, the analysis of antimony toxicity is conducted based on the maximum
observed concentration in unfiltered samples from that well. Lead-210 and
polonium-210 activities were consistently measured in unfiltered samples from
monitor wells DUR-02-598 and -602; thus, lead-210 and polonium-210
carcinogenicity is evaluated based on the maximum observed activity in
combined monitor wells DUR-02-598 and -602. Finally, radium-226 and
thorium-230 maximum observed activities in unfiltered samples from combined
downgradient wells DUR-02-593, -598, and -602 are used to evaluate
radium-226 and thorium-230 carcinogenicity.

Carcinogenic effects associated with exposure to radium-226, lead-210,
polonium-210, and thorium-230 at the mill tailings and raffinate ponds areas are
evaluated in Section 6.0.

The probability distribution selected for a contaminant had the same mean and
standard deviation and approximately the same shape as were observed in the
actual water quality data (TAC, 1995). The tails of the distributions were
truncated below 0.0 mg/L and above the 99th percentile. The probability
associated with the disallowed portion was assigned proportionally to the
allowable values, so that the total probability under the truncated curve
remained equal to 1.0. The truncation at the upper end of the distribution is an
attempt to place a reasonable upper limit on potential future exposures. The

DOE/AL/62350-175 13 SEPTEMBER 1995
REV. 1, VER. 1 DUROOSF1.WP4

4-7




BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT .
THE URANIUM MILL TARINGS SITE NEAR DURANGO, COLORADO EXPOSURE ASSESSMENT

4.4

(1)

2

upper truncation limit is conservative because it was verified to be above the
maximum observed concentration in the 1990-1994 water quality database for
both the mill tailings and raffinate ponds areas. The software package @ RISK
(Palisade Corp., 1992) was used to generate the probability curves for the
contaminants of potential concern. The results are shown in Figures 4.2
through 4.10. ‘

ESTIMATION OF INTAKE

Individuals within the population of future residents are anticipated to vary with
respect to water consumption habits, stable body weight, and length of
residence in the potential contamination zone. Consequently, health risks
associated with ground water consumption will also vary among members of
the population. To adequately describe the range of potential risks to the future
population, naturally occurring variability in daily water intake and body weight
were incorporated in this assessment, where possible, through probability
distributions selected from published public health and census documents for
the United States. All distributions were truncated at the upper and lower 0.01
percentile (TAC, 1995). Values disallowed through this truncation have a
probability of less than 1 in 10,000 of occurring within the hypothetical
population.

The potential toxicity of noncarcinogenic contaminants in drinking water and
potential carcinogenicity of arsenic depend primarily on long-term average daily
consumption of the contaminant per kilogram of body weight (measured in
milligrams per kilogram per day [mg/kg-dayl}. "Long-term" is defined as at least
7 years for noncarcinogens and 30 years for arsenic and radionuclide
carcinogenicity. For noncarcinogens, chronic daily intake is calculated as
follows:

Concentration X Ingestion rate x Exposure frequency x Exposure duration
Intake _ {mg/L) {L/day) (days/year) (years)

(mg/kg-day) Body weight Averaging time

(kg) X (365 days x exposure duration[years])

The potential carcinogenicity of arsenic increases with total intake over a
lifetime. Therefore, arsenic exposure is estimated as a daily intake of the
contaminant per kilogram of body weight averaged over the lifespan exposure
duration and is measured in milligrams per kilogram per day. Thus, for arsenic
as a carcinogen, the daily intake is calculated as follows:

Concentration _ Ingestion rate x Exposure frequency X Exposure duration
Intake _  {(mg/L) (L/day) (days/year) (30 years)

g/kg-day) Body weight Averaging time

(kg) (365 days x 70 years)
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT
THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO EXPOSURE ASSESSMENT

The potential carcinogenicity of radionuclides is thought to increase with total
intake over time, instead of with average daily intake as for noncarcinogens.
Also, body weight is relatively insignificant in determining risk from exposure.
Intake of radionuclides is therefore quantified as total exposure to radioactivity
through the residency period of an individual:

(3) Intake - Concentration x Ingestion rate x Exposure duration _ Exposure frequency
{pCi/lifetime) {pCinL) (L/day) : {years) (days/year)
Aver aily intake (liter r

Lognormal probability distributions were used to describe variations in average
daily tap water intake among members of the population (Roseberry and
Burmaster, 1992). These distributions were developed from data collected
during a 1977-1978 food consumption survey conducted by the U.S.
Department of Agriculture. During the survey, total tap water consumption
during a 3-day period was recorded for 26,081 survey participants nationwide
(Figure 4.11).

Body weight (kilograms)

Extensive national data on weights of males and females, by age, were
collected during a health and nutrition survey conducted from 1976 to 1980.
These data were used to develop lognormal probability distributions for body
weight by age and separately by gender. The distributions for males and
females were then combined using census data on the national ratio of males
and females within each age group (Figure 4.12).

Ex re fr n d r r

individuals generally are not present at their homes and drinking water from the
same source for 365 days per year. Therefore, calculation of intake assumes
only 350 days of exposure per year, allowing for 15 days per year of drinking-
water intake from a different source. Because exposure is expressed and
compared in terms of average daily intake, 365 days per year is retained in the
averaging-time term in the denominator.

Exposure duration (vears)

Distributions of exposure duration were developed using data collected by the =
U.S. Department of Commerce, the Bureau of the Census, and the U.S.

Department of Housing and Urban Development in 1985 and 1987 (Israeli and
Nelson, 1992). For noncarcinogenic effects, the exposure duration in the

numerator and denominator of the drinking water intake equation {see equation

(1)) cancel out, assuming all exposures are chronic (i.e., at least 7 years). Thus,
deviations from the standard residence time assumptions do not affect the

results. However, for carcinogenic effects of arsenic, uranium, and other
radionuclides, risk is cumulative throughout a lifetime; therefore, deviations from

the hypothesized residency distribution could substantially affect the risk

DOE/AL/62350-175 13 SEPTEMBER 1995

REV. 1, VER. 1 DUROOSF1.WP4
4-18




0-1 YR OLDS

20

EXPECTED VALUE = 0.32
16

12 7

PROBABILITY (AS %)
©

1.3 1.6 2.0 23 26

0025 035 067 099
WATER INGESTION RANGE  (L/day)

1-10 YR OLDS
16
EXPECTED VALUE = 0.7
< Y
»
<
=
o
<
o
o]
i
o
0.01 0.50 1.0 15 2.0 25 3.0 3.5 4.0
WATER INGESTION RANGE (L/day)
11-64 YR OLDS
16 -
58 EXPECTED VALUE=1.2
R 12 - '
)
<
el
= 8-
2
o
S . |
o
o = i . & "
0.10 0.96 1.8 2.7 3.6 4.4 53 6.1 7.0

WATER INGESTION RANGE = (L/day)

FIGURE 4.11
PROBABILITY DISTRIBUTIONS FOR TAP WATER INGESTION RATES

PATH E\FL3.01\DURBLRA 4_ 1 9 FiG415.DRW




0-1 YR OLDS
9 -
vy EXPECTED VALUE =8.8
X 72 -
1)
<
i 5.4
=
9 36 |
o
2
o 1.8 -
5 6.2 7.5 8.7 100 112 125 13.7 15.0
BODY WEIGHT RANGE (kilograms)
1-10 YR OLDS
11 7
Y EXPECTED VALUE = 21.9
88 - -
S
2
= 66 -
E
-
Q .
P 4.4
Q
T
o
22 -
40 129 21.7 30.6 39.5 48.4 57.2 66.1 75.0
BODY WEIGHT RANGE (kilograms)
11-64 YR OLDS
10 -
y EXPECTED VALUE = 67.9
? 8
S
>,
Nl 6
E
=
;-é 4
e
2
o 2
(o]
200 36.2 52.5 68.7 85.0 1012 1175 1337 150.0
BODY WEIGHT RANGE (kilograms)
FIGURE 4.12
PROBABILITY DISTRIBUTIONS FOR BODY WEIGHT

PATH EFL3.01\DURBLRA 4_ 20 FiG416.DRW




BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT
THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO EXPOSURE ASSESSMENT

4.5

estimate. Because Durango is a small urban center where some mobility would
be expected, a fixed lifetime exposure of 30 years was used to estimate lifetime
cancer risks.

Using exposure concentration distributions discussed in Section 4.3 and the
intake parameter distribution from this section, total intake distributions were
simulated for the three age groups (0- to 1-, 1- to 10-, and 11- to 65-year-olds)
using the @RISK software package (Palisade Corp., 1992) and 10,000
iterations. The 1-to 10-year-old group consistently showed the highest intake-
to-body-waeight ratio (Figure 4.13) and therefore is the most conservative age
group to evaluate. This age group is likely more susceptible to metals toxicity
than adults because of higher gastrointestinal absorption efficiency and other
toxicokinetic factors (Casarett and Doull, 1991). However, because infants are
the most sensitive group for sulfate toxicity, the intake distributions for this age
group (i.e., age 0 to 1 year) are used for this contaminant. Simulated intake
distributions for appropriate age groups for contaminants of potential concern
evaluated probabilistically are presented in Figures 4.13 through 4.21. The
intake estimates used to calculate the hazard index and carcinogenic risk are
presented in Section 6.2.

EXPOSURE ASSESSMENT UNCERTAINTIES

Several potential sources of error may arise in all phases of an exposure
assessment. Some meaningful sources of uncertainty are listed below.

® Uncertainties resulting from the lack of thorough environmental sampling
data. This uncertainty could lead to an underestimate or overestimate in the
exposure analysis.

® Uncertainties associated with using filtered ground water samples. The
results of the exposure assessment presented in this document are primarily
based on filtered (0.45-micrometer [um]) ground water samples. Therefore,
the potential loss of certain ground water constituents as a consequence of
filtration is associated with an additional source of uncertainty.

® Uncertainties arising from the assumption that the ground water
contaminant source term at the site has reached a steady state and that
contaminant concentrations at the exposure point will remain constant for
chronic periods of exposure (generally greater than 7 years).

® Uncertainties associated with the additivity of exposure from other
pathways. Although the drinking water ingestion pathway is considered the
major determinant of exposure in this risk assessment, the incremental
contribution from the ground water-irrigated produce-ingestion and/or meat-
ingestion pathways (which could not be estimated here) should be kept in
mind.

REV. 1, VER. 1
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT
THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO EXPOSURE ASSESSMENT

® Uncertainties associated with estimating the amount of a contaminant
absorbed through the skin.

® Uncertainties associated with differing sensitivities of Subpopulations, such
as diabetics, children, and the elderly.

® Uncertainties associated with site-specific dietary intakes (e.g., fish
ingestion).

Despite these uncertainties, the use of probability distributions that incorporate
all definable sources of variability should provide a representative picture of the
potential range of exposures.

DOE/AL/62350-175 13 SEPTEMBER 1995
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT }
THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO TOXICITY ASSESSMENT

5.0 TOXICITY ASSESSMENT

A number of contaminants that have the potential for causing adverse human health and
environmental effects have been detected in ground water at the mill tailings and raffinate
ponds areas at the Durango processing site. This section summarizes the toxicological
effects of the chemical contaminants and the carcinogenic potentials of the radionuclides.

The following source materials were used to develop toxicological profiles on these
chemical contaminants and the potentially carcinogenic radionuclides:

® The Integrated Risk Information System (IRIS) (EPA, 1994a).

® The Agency for Toxic Substances and Disease Registry Toxicological Profiles,
published by the Department of Health and Human Services (DHHS).

® The Handbook on the Toxicology of Metals (Friberg et al., 1986).

® Peer-reviewed scientific literature when these review documents were not available.

Basing toxicity information on the standardized review documents cited above ensures
consistency in risk evaluation at all UMTRA Project processing sites.

The toxicity profiles presented here focus on drinking water data in humans. Animal
information is used only when human data are not available. Animal data are represented
on the toxicity range graphs by widely spaced, dotted lines. Uncertainty about the
beginning and ending point of an exposure range that produces specific toxic effects is
represented by closely spaced dots.

5.1 CONTAMINANT TOXICITY SUMMARIES

The following summaries address the basic toxicokinetics and toxicity of the
chemical contaminants of potential concern at the Durango processing site.
These contaminants are antimony, arsenic, cadmium, chloride, lead, manganese,
molybdenum, selenium, sodium, sulfate, thallium, uranium, and vanadium.
Although the toxic effects of these contaminants vary with exposure levels,
toxic effects observed in the exposure range most relevant to contamination at
this site are discussed in this document.

5.1.1 Antimony

Absorption

Antimony can be absorbed both through inhalation and ingestion. Antimony
trioxide or mixture of antimony trioxide and pentoxide was absorbed through the
skin in rabbits following application of high doses of these compounds
{quantitative data are not available) {DHHS, 1992a). No quantitative data exist
on the absorption of antimony from the gastrointestinal tract in humans (DHHS,

DOE/AL/62350-17% 19 SEPTEMBER 1995
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT
THE URANHUM MILL TAILINGS SITE NEAR DURANGO, COLORADO TOXICITY ASSESSMENT

1992a). Based on animal studies, absorption of trivalent antimony saits from
the gastrointestinal tract is estimated to be less than 10 percent in humans.
Gastrointestinal absorption of antimony may be affected by various factors,
including the chemical form of ingested antimony, age of exposed individuals
and their diet (DHHS, 1992a). Although quantitative information is not available
for all forms, rates for the gastrointestinal absorption in humans of 10 percent
for antimony tartrate and 1 percent for all other forms of antimony have been
identified (DHHS, 1992a). Based on geochemical models for the Durango site,
antimony may exist in both pentavalent and trivalent forms in ground water
(Tables 3.11 through 3.14).

mulation and clearan

No human data are available on the distribution of antimony following oral
exposure. The major sites of antimony accumulation after oral exposure in
laboratory animals are the gastrointestinal tract, liver, kidney, bone, lung,
spleen, and thyroid gland (DHHS, 1992a). There was a lack of dose-relationship
for the increase of antimony levels in these tissues. Species differences exist in
the elimination of antimony from the tissues in animalis. An elimination half-time
was about 40 days for the thyroid gland in rats, and about 15 days for the liver,
lung, and kidney in voles (DHHS, 1992a). A single study in mice revealed a
higher antimony body burden during pregnancy (DHHS, 1992a).

No human or animal data are available on the excretion of antimony following
oral exposures. Data obtained from human and animal studies in which
antimony was administered parenterally provide some insight with respect to
routes and rates of excretion from the body that can be anticipated after oral
exposure in humans (DHHS, 1992a).

Antimony absorbed from the gastrointestinal tract appears to be excreted in the
urine and feces to a variable degree, depending on the valence state (DHHS,
1992a). Pentavalent antimony injected intravenously or intramuscularly to
humans or animals is excreted predominantly in the urine, whereas injected
trivalent antimony is excreted mainly in the feces.

Environmental sources of antimony

Dietary antimony intake ranged from 0.25 to 1.25 mg/day in a study of
institutional diets for children in the United States (Friberg et al., 1986).
Assuming an average body weight of 35 kg, this intake is equivalent to 0.007
to 0.04 mg/kg-day. However, a more recent study of nutrients in a human diet
using mixed diet composites representative of the intake of a 25- to 30-year-old
male suggested a daily dietary intake level was as low as 4.6 yg of antimony
(this corresponds to about 0.00007 mg/kg-day for a 70-kg man) (DHHS,
1992a).

In freshwater fish, antimony concentrations on the order of 3 micrograms per
kilogram (ug/kg) wet weight have been reported (Frieberg et al., 1986). Levels
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of 3 and 8 ug/kg have been found in milk and potato powder. Antimony is
sometimes present in the binding coat between enamel and metal, especially in
older cooking utensils, and can be dissolved by acidic food and drink when the
enamel coating is worn. In soil, antimony usually ranges from 0.1 to 10 mg/kg
dry weight (DW).

Toxicity of antimony

The only data available on antimony toxicity in orally exposed humans (other
than side effects associated with therapeutic use of antimony compounds)
came from the report on incidental ingestion of lemonade contaminated with
potassium antimony tartrate (DHHS, 1992a). After drinking lemonade
containing 0.013 percent antimony, 70 people developed acute symptoms,
including burning stomach pain, colic, nausea, and vomiting. It is estimated that
a 70-kg adult consuming 300 milliliters (mL) of lemonade would have received a
dose of approximately 0.5 mg/kg (DHHS, 1992a).

One study indicated that female workers exposed in an antimony plant
experienced a greater incidence of spontaneous abortions than did a control
group of nonexposed working women. A high rate of premature deliveries
among women who worked in antimony smelting and processing was also
observed (Friberg et al., 1986). Reconstruction of dose and exposure conditions
in the occupational setting is not available. Myocardial effects are among the
best-characterized adverse health effects associated with repeated prolonged
exposure to antimony in humans via inhalation in occupational settings (EPA,
1994a; DHHS, 1992a). The estimated no-observed-adverse-effect level for
myocardial damage of about 0.5 mg/m3 is approximately equivalent to an oral
dose of 0.003 mg/kg-day for a 70-kg man, where an uncertainty factor of 10,
for protection of sensitive individuals, is applied (EPA, 1994a).

In several studies involving laboratory animals (rats), prenatal and postnatal
exposure to antimony trichloride in drinking water impaired the development of
certain cardiovascular reflexes that are important in regulating systemic arterial
blood pressure (DHHS, 1992a). However, because comparisons were not made
between the hypotensive response in pups exposed prenatally and the response
in pups exposed postnatally, the potential of antimony trichloride to produce
developmental cardiovascular effects cannot be assessed based on these
studies.

The EPA oral reference dose (RfD) for antimony is 0.0004 mg/kg-day. The RfD
is based on a lifetime study of rats exposed to antimony trioxide in drinking
water. The lowest dose producing adverse health effects (increased mortality of
animals and alteration of blood chemistry) was 0.35 mg/kg-day (EPA, 1994a).

The health effects from exposure to antimony as a function of dose are
summatrized in Figure 5.1.
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT

THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO TOXICITY ASSESSMENT
5.1.2 rseni
Absorption

Arsenic is well absorbed through the gastrointestinal tract and via inhalation.
Relative to gastrointestinal absorption, dermal absorption is negligible. In
humans, approximately 80 percent of an ingested amount of dissolved inorganic
trivalent (arsenite) or pentavalent arsenic (arsenate) is absorbed from the
gastrointestinal tract (Pershagen and Vahter, 1979; Marafante and

Vahter, 1987; DHHS, 1993a).

Ti mulation and clearan

After absorption by the gastrointestinal tract, arsenic is transported via the
blood to most tissues. In humans as well as in most animal species, exposure
to either arsenite or arsenate leads to an initial accumulation in the liver,
kidneys, and lungs. The clearance from these tissues is very rapid, and a
long-term retention of arsenic is seen in organs rich in sulfhydryl-containing
proteins, such as the hair, skin, squamous epithelium of the upper
gastrointestinal tract, epididymis, thyroid, lens, and skeleton (Lindgren

et al., 1982). Specific target tissue depends on the form of arsenic. Higher
retention of arsenic occurs after exposure to trivalent arsenic than to the
pentavalent form, and tissue distribution is altered (Webb, 1966; Casarett and
Doull, 1991).

In humans and rats, inorganic arsenic passes through the placental barrier. It
has also been demonstrated to enter both cow and human milk (Marcus and
Rispin, 1988).

In the human body, where methylcobalamine acts as a major methyl group
donor in the biotransformation process, inorganic arsenic is converted to
methylated compounds. It has been demonstrated that the major site of arsenic
methylation is the liver (Marcus and Rispin, 1988). Trivalent arsenic is the
substrate for methylation, and pentavalent arsenic must be reduced to trivalent
arsenic before methylation can occur. Dimethylarsenic acid is a major
metabolite found in animals and humans. Methylation results in a detoxification
of inorganic arsenic (about one order of magnitude per methyl group) and
increases the rate of arsenic excretion from the body.

The major route of excretion following human exposure to inorganic arsenic is
via the kidneys (Ishinishi et al., 1986). Only a few percent is excreted in feces.
The rate of excretion in urine varies depending on the chemical form of arsenic,
the duration of exposure, and the species exposed. In humans exposed to a
single low dose of arsenite, about 35 percent was excreted in urine over a
period of 48 hours (Buchet et al., 1980; 1981). In the case of continuous
human intake over a few days, 60 to 70 percent of the daily dose is excreted in
urine (Buchet et al., 1981). Following exposure to arsenate, the limited human
data available indicate a rate of excretion similar to that of arsenite. Other, less
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important routes of elimination of inorganic arsenic include skin, hair, nails, and
sweat.

After oral intake of radiolabeled pentavalent arsenic, 66 percent was excreted
with a half-time of 2.1 days, 30 percent with a half-time of 9.5 days, and
3.7 percent with a half-time of 38 days (Marcus and Rispin, 1988).

Environmental sources of arsenic

Arsenic is ubiquitous in nature in both inorganic and organic compounds. Water
is the major means of arsenic transport under natural conditions. In oxygenated
water, arsenic occurs in a pentavalent form; under reducing conditions, the
trivalent form predominates.

As a result of arsenic’s widespread occurrence, the general human population is
exposed to it primarily from drinking water and foodstuffs. Certain target
groups are exposed to arsenic from industrial and agricultural uses. Medicinal
use has also been a significant means of human exposure.

Drinking water usually contains a few micrograms of arsenic, predominantly as
inorganic salts in the trivalent and pentavalent states (WHO, 1981; DHHS,
1993a). Surveys of drinking water in the United States have revealed that over
99 percent of the public water supplies have arsenic levels below 0.05 mg/L
(DHHS, 1993a) (0.05 mg/L is an equivalent to 0.001 mg/kg-day for a 70-kg
adult drinking 2 L of water per day). However, concentrations of up to 1.1 mg/L
in drinking water have been reported in Chile, Argentina, Taiwan, the United
States, and the United Kingdom (WHO, 1981).

Seafood, meats, and grains contain the highest levels of arsenic. Much of the
arsenic present in seafood is in organic forms, which are nontoxic (DHHS,
1993a). For most people, the diet is the largest source of exposure, with
average intakes of about 50 ug/day, which corresponds to 0.0007 mg/kg-day
for a 70-kg man (DHHS, 1993a). Wine and mineral waters can contain several
hundred micrograms of arsenic per liter (Crecelius, 1977; WHO, 1981).

Toxicity of arsenic

Levels of exposure associated with arsenic toxicity vary with the valency form
of the element. Trivalent arsenicals (arsenites) are considered somewhat more
toxic than pentavalent (arsenates) (Morrison et al., 1989; DHHS, 1993a), and
inorganic arsenic compounds are more toxic than organic (Shannon and

Strayer, 1989; DHHS, 1993a). Based on geochemical models for the Durango
site, arsenic exists primarily in the pentavalent form in ground water (Tables
3.13 and 3.14). For arsenic trioxide, the reported estimated acute oral lethal
dose in humans ranges from 70 to 300 mg (1 to 4 mg/kg) (EPA, 1984). Acute
exposure to inorganic arsenic compounds may lead to severe inflammation of
the gastrointestinal tract, encephalopathy, and acute renal failure after ingestion.
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Increasing chronic doses of arsenic ingested orally progressively produce
systemic effects, including 1) arterial thickening in children and aduits

(0.02 mg/kg-day); 2) neurological symptoms, including peripheral neuropathy
(0.04 mg/kg-day); 3) fibrosis of the liver (0.05 mg/kg-day); and 4) cirrhosis of
the liver (0.08 mg/kg-day) (DHHS, 1993a). Liver enlargement was observed at
arsenic dose as low as 0.02 mg/kg-day.

Chronic arsenic intoxications result from exposure to even small doses of
arsenic over a long period of time. These intoxications are frequently caused by
arsenic content in drinking water and in food. Changes of the skin leading to
skin cancer are commonly seen in populations exposed to high concentrations of
arsenic in drinking water. Endemic arsenic poisoning is seen in Cordoba,
Argentina, where the concentration of arsenic in drinking water ranges from 0.9
to 3.4 mg/L (equivalent to 0.026 to 0.097 mg/kg-day). Certain areas in Taiwan
also have high natural arsenic concentrations in drinking water that cause
Blackfoot disease (a peripheral extremity vascular disorder resuiting in
gangrene). A dose-response relationship between the incidence of Blackfoot
disease and the duration of exposure to arsenic has been documented

(Tseng, 1977; EPA, 1994a). The lowest dose of arsenic associated with
Blackfoot disease in continuously exposed individuals has been determined to be
0.014 mg/kg-day (DHHS, 1993a).

Hyperpigmentation, hyperkeratosis, and skin cancer with prevalence of

7.1 percent, 18.4 percent, and 1.1 percent, respectively, were reported in
Taiwanese studies of more than 40,000 people exposed to arsenic in drinking
water at daily intakes ranging from 1.4 to 6.3 mg. However, hyperkeratosis
and hyperpigmentation were observed at an exposure level as low as

0.014 mg/kg-day (DHHS, 1993a).

Teratogenic effects of arsenic compounds administered intravenously or
intraperitoneally at high doses have been demonstrated in laboratory animals
only (Ferm, 1971; Hood, 1972; EPA, 1984). Teratogenic effects, also referred
to as birth defects, are defined as effects resulting in structural or functional
anomalies in live offspring.

Certain characteristics of exposed human populations may influence arsenic
toxicity at high exposure levels. Genetic dispositions (rapid versus poor
acetylators) and protein-deficient diet may decrease the methylation of arsenic.
This can result in an increased deposition of the element in the target organs
(e.g., lung or skin).

The EPA oral reference dose for inorganic arsenic is based on resuits from
Taiwanese studies where hyperpigmentation, keratosis and vascular
complications were observed in people as a result of long-term drinking of water
naturally contaminated with arsenic (EPA, 1994a). It was derived from an
arithmetic mean (0.009 mg/L) of arsenic concentrations in drinking water. After
drinking the water for a long time, this arsenic concentration was not associated
with adverse health effects. This no-observed-adverse-effect level (NOAEL) also
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5.1.3

included estimation of arsenic intake from food. The uncertainty factor of 3
was applied to account for both the lack of data to preciude teratogenic or
reproductive toxicity as a critical effect and to protect sensitive individuals.
However, there are some other uncertainties associated with these studies such
as the possible presence of other contaminants in drinking water. Also, arsenic
doses were not well characterized.

The EPA has classified inorganic arsenic as a Group A (human) carcinogen
{EPA, 1994a), based on the occurrence of increased lung cancer mortality (in
populations exposed primarily via inhalation) and of increased skin cancer
prevalence (in populations exposed by consuming drinking water containing high
concentrations of arsenic). The current slope factor (SF) for oral exposure to
arsenic, given in Table 5.1, is based on a unit cancer risk for skin cancer (the
upper-bound excess cancer risk from lifetime exposure to water containing 1 ug
of arsenic per liter) of 5 x 10°® calculated from a study by Tseng et al. (1968)
(DHHS, 1993a). This SF is currently under review by the EPA with respect to
recent data suggesting arsenic ingestion may result in increased cancers in
internal organs (the bladder, kidney, lung, prostate, and liver) as well as skin
cancers (EPA, 1994a; Wu et al., 1989). The health effects from exposure to
arsenic as a function of dose are summarized in Figure 5.2.

mium

Absorption

‘In humans, approximately 5 percent of ingested cadmium in water is absorbed

(Friberg et al., 1986). The amount of cadmium absorbed from food sources is
about half the amount absorbed from water. Gastrointestinal absorption is likely
to depend on the physiologic status of an individual (age, body stores of iron)
and on the presence and levels of divalent and trivalent cations and other dietary
components ingested with cadmium. Young individuals appear to absorb more
cadmium than older ones, and its absorption is increased in individuals with a
diet high in fat and protein (Flanagan et al., 1978; DHHS, 1993b). Cadmium
gastrointestinal absorption can decrease following exposure to calcium,
chromium, magnesium, and zinc. Zinc and iron deficiency may result in an
increased absorption and accumulation of cadmium.

Cadmium absorption in the gastrointestinal tract appears to take place in two
phases: uptake from lumen into mucosa, then transfer in the blood (DHHS,
1993b). Cadmium uptake from lumen into mucosa may involve sequestering of
cadmium by metallothionein, but any protective effect is overloaded at moderate
doses. Cadmium uptake behaves like a saturable process with fractional
absorption decreasing at high concentrations. However, at doses high enough
to damage gastrointestinal mucosa, fractional cadmium absorption is increased
(DHHS, 1993b).
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Table 5.1 Toxicity values: potential carcinogenic effects

Weight of '
, Oral SF2 (pCi)’? evidence SF basis/SF

Parameter {mg/kg-day)? classification Type of cancer source®
Arsenic, 1.8E + 00° A Skin IRIsd
inorganic
Lead-210¢ 6.6E-10 A Bone HEAST
Polonium-210 1.5E-10 A Liver, kidney, spleen HEAST
Radium-226° 1.2E-10 A Bone HEAST
Thorium-230 1.3E-11 A f HEAST
Uranium-238¢ 2.0E-11 A g HEAST
Uranium-234 1.6E-11 A 4] HEAST

3For each individual radionuclide listed, oral SFs correspond to the risks per unit intake (risk/pCi)
for that radionuclide, except as noted.

bFrom EPA (1994b).

COral SF based on oral unit risk of 5 x 10" (EPA, 1994a).

dEPA, 1994a.

€0ral SFs include the risk from members of the decay chain.

fTa:rget organ systems have not been identified for oral exposure to thorium.

9No human or animal studies have shown a definite association between oral exposure to
uranium and development of cancer.

A — Known human carcinogen.

HEAST - Health Effects Assessment Summary Tables.
IRIS - Integrated Risk Information System.

SF - slope factor.
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Ti mulation and clearan

Humans with low-level and long-term exposure to cadmium show 50 percent of
the body burden in the kidneys, 15 percent in the liver, and 20 percent in
muscle (Kjelistrom, 1979). The kidney concentration will increase with
continued exposure only to about age 50, but the concentration in muscle will
increase throughout life. Only 0.01 to 0.02 percent of the total body burden of
cadmium is excreted daily, resulting in continuously increasing body burdens
with prolonged exposure. The biological half-life of cadmium, or the time
necessary to eliminate 50 percent of the cadmium in the body at a given time, is
10 to 30 years in humans (Nordberg et al., 1985).

Environmental sources of cadmium

The average cadmium content of drinking water in nonpolluted areas of

0.003 mg/L results in about 0.00009 mg/kg-day intake of cadmium estimated
for a 70-kg adult drinking 2 L of water per day. For a 22-kg child drinking 0.7 L
of water per day, the estimated cadmium intake is 0.0001 mg/kg-day

(DHHS, 1993b). Cadmium occurs naturally with zinc and lead; it is therefore
often present as an impurity in products using these metals, such as solders and
galvanized metals. These sources lead to contact with water supplies in water
heaters and coolers, in some pipes, and in taps.

Toxicity of ium

Short-term exposure to high concentrations of cadmium (15 mg/L in water)
results in acute gastrointestinal effects, including abdominal cramps, diarrhea,
and vomiting (0.48 mg/kg for a 22-kg child drinking 0.7 L of water per day).
These gastrointestinal effects have not been reported in any chronic
environmental exposure.

in chronic oral human exposure, the kidney is the main target organ of cadmium
toxicity (DHHS, 1993b). The primary toxic effect is disturbance of reabsorption
in the proximal tubules of the kidney. This effect is first observed by an
increase of low molecular-weight proteins in the urine. This initial effect is
observed following a daily intake of 0.0075 mg/kg-day. Progressive disruption
of kidney function will lead to an increase in amino acids, glucose, phosphate,
and protein in the urine. The critical concentration of cadmium in the renal
cortex below which no adverse effect would be anticipated has been estimated
at about 200 pg/gram fresh weight (Foulkes, 1990; EPA, 1994a). However, the
apparent critical level of cadmium in the kidney can vary substantially under
different conditions of exposure; it can be affected by age, sex, and other
factors influencing individual sensitivity to cadmium toxicity. The EPA-derived
RfD is based on the critical concentration of cadmium in the human renal cortex
that is not associated with the critical effect manifested as significant
proteinuria (EPA, 1994a). Because of already compromised kidney function,
diabetics and the elderly can be more susceptible to cadmium toxicity (Buchet
et al., 1990). Long-term exposures can also disturb calcium metabolism,
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5.14

leading to osteoporosis and osteomalacia. A combination of these two effects
is referred to as /tai-itai disease and was seen in epidemic proportions in a
cadmium-contaminated region in Japan in the 1950s (Friberg et al., 1986).
Chronic dietary exposures of humans to cadmium produce no observable
adverse effects at exposure levels from 0.001 to 0.002 mg/kg-day (DHHS,
1993b). The health effects from exposure to cadmium as a function of dose are
summarized in Figure 5.3.

Cadmium has been classified as a probable human carcinogen by the EPA (EPA,
1994a) and International Agency for Research on Cancer (IARC) (IARC, 1987).
Although chronic inhalation of cadmium oxide has been related to increased lung
and prostate cancers in workers, evidence linking cadmium to cancer in humans
is inconclusive at this time because of the presence of other known carcinogens
in the workplace and small statistical differences in tumor incidences (DHHS,
1993b). There are no data, however, linking oral cadmium ingestion to cancer
in humans or animals (DHHS, 1993b).

Chioride
Absorption, tissue accumulation, and clearance

Chloride is rapidly and fully absorbed from the gastrointestinal tract. The
chloride concentration in the human body is approximately 2000 mg/kg of
fat-free body mass in newborns and 1920 mg/kg in adults (National Research
Council, 1980). Chloride occurs in plasma at concentrations of 96 to 106
milliequivalents per liter (mEg/L) (3400 to 3800 mg/L) and in a more
concentrated form in cerebrospinal fluid and gastrointestinal secretions (National
Research Council, 1989). Its concentration in most cells is low. The daily
chloride turnover in adults (intake/output) ranges from 3000 to 8900 mg.
Chloride is excreted mainly through urine, with appreciable amounts also
excreted in feces, sweat, and tears.

Environmental §gurgg§ of chloride

Dietary chloride comes almost entirely from sodium chloride (National Research
Council, 1989). Much smaller amounts are supplied from potassium chloride.
Thus, dietary sources of chloride essentially are the same as those for sodium,
and processed foods are the major source of chloride. Rich sources of chloride
are salt, cereals, breads, dried skim milk, teas, eggs, margarine, salted butter,
bacon, ham, corned beef, canned meats, fish and vegetables, salted snack
foods, and olives. Dietary chloride intake varies largely with salt intake.
Estimates range from 2400 to 14,400 mg chloride/day from sodium chioride
(equivalent to 34 to 206 mg/kg-day for a 70-kg man).

Human breast milk contains 11 mEq/L of chloride (391 mg/L); a similar level has
been suggested by the American Academy of Pediatrics for infant formulas
(National Research Council, 1989).
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Chloride is found in all natural water. Surface water contains only a few
milligrams of chloride per liter, whereas streams in arid or semiarid regions
contain several hundred milligrams per liter, especially in drained areas where
chlorides occur in natural deposits or are concentrated from soils through
evaporation. Contamination with sewage increases the chloride content of river
water. Ground water usually contains larger quantities of chloride than surface
water. Some public supply wells may contain 100 mg/L of chloride (about

3 mg/kg-day, assuming 2 L of water are consumed per 70 kg of body weight)
(National Research Council, 1980).

A typical chloride concentration in drinking water of about 21 mg/L would
contribute 0.6 mg/kg-day (assuming 2 L per day consumption rate and 70 kg of
body weight), or about 2 percent of the lower estimates of total chloride intake.

The recommended drinking water level for chloride is 250 mg/L (equivalent to
7 mg/kg-day, for a 70-kg man consuming 2 L of water per day) (National
Research Council, 1980). This amount of chioride in drinking water can cause
an objectionably salty taste in water. The taste threshold for the chloride anion
in water varies from 210 to 310 mg/L.

Toxicity of chloride

Chloride is an important inorganic anion in the extracellular fluid compartment.
It is essential in maintaining fluid and electrolyte balance and is a necessary
component of gastric juice.

Chloride loss from the body generally parallels sodium loss. Thus, conditions
associated with sodium depletion (e.g., heavy, persistent sweating; chronic
diarrhea or vomiting; trauma; renal disease) will also cause chloride loss,
resulting in hypochloremic metabolic alkalosis.

Although the basic need for chloride is generally recognized, a recommended
daily allowance (RDA) has not been determined. The estimated minimum
requirement for healthy persons ranges from 180 mg/day for infants to

750 mg/day for adults {National Research Council, 1989).

The toxicity of salts containing the chloride ion depends primarily on the
characteristic of the cation (National Research Council, 1980; 1989).

Large amounts of chloride intake may cause an increased chloride plasma
concentration and a decreased bicarbonate plasma concentration, with an
acidifying effect. This reaction results in hyperkalemic metabolic acidosis
(National Research Council, 1980). When metabolic acidosis develops,
potassium leaves the cells and is excreted by the kidney (Brater, 1992).

The only known dietary hyperchloremia results from water-deficiency
dehydration. Sustained ingestion of high levels of chloride (as salt) is associated
with hypertension in sensitive individuals and in animal models. Although the
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level of chloride attributable to hypertension has not been determined, it may be
estimated based on the level of sodium intake (from sodium chioride) causing
hypertension in approximately 15 percent of adults (Freis, 1976). This indirectly
estimated amount of chloride presumably associated with hypertension in
sensitive individuals would be in the range of 36 to 180 mg/kg-day.

Figure 5.4 shows the toxicity of chloride as a function of dose.

5.1.5 Lead
Absorption

About 10 percent of ingested lead is absorbed in the gastrointestinal tract,
although in some aduits up to 40 percent may be absorbed. Higher fractions of
lead may be absorbed by infants, children, fasting adults, and people with
certain nutritional deficiencies. Up to 53 percent absorption was reported in a
group of eight children ranging in age from 3 months to 8 years (WHO, 1977).
Animal studies show that certain dietary factors (e.g., milk consumption;
fasting; low potassium, calcium, and vitamin D; and iron deficiency) may
enhance lead absorption. A low-protein diet may increase susceptibility to lead
toxicity (DHHS, 1993c). Phosphate may decrease absorption of lead (Heard and
Chamberlain, 1982).

The chemical form of lead affects the readiness with which lead is absorbed
from the gastrointestinai tract. Highly soluble compounds are more readily
absorbed.

Tissue accumulation and clearance

Absorbed lead is transported by the blood and initially distributed to various
organs and tissues. It is then gradually redistributed to blood and soft tissue
from the bone. In human subjects with low-level exposure, about 90 percent of
the total body burden is found in bone (DHHS, 1993c). Lead in a skeleton has a
half-life of about 20 years, and the amount of lead in this compartment
increases throughout life. The second, smaller compartment (blood, soft tissue,
and rapidly exchangeable bone fraction) has a half-life of about 20 days. Some
studies indicate that the mean retention of lead in blood and soft tissue is about
3 weeks to 1 month and in bone about 5 years (DHHS, 1993c). Lead

- accumulates in the brain and can be retained for a long time after the external
exposure has ceased and the concentration of lead in the blood has declined.

About 90 percent of ingested lead is eliminated unabsorbed in feces. Absorbed
lead is excreted mainly in urine (about 76 percent) and through gastrointestinal
sacretion (about 16 percent); small amounts (less than 8 percent) are excreted
in milk, sweat, hair, and nails (DHHS, 1993c). Glomerular filtration is the
primary mechanism of lead urinary excretion.
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Lead levels in blood are the most widely used biological indicator of internal lead
exposure. A blood lead level greater than 10 yg/100 mL mdncates an excessive
lead exposure (DHHS, 1993c).

Lead readily crosses the placental barrier; therefore, exposure of women to lead
during pregnancy results in uptake by the fetus.

nvironmental r fl

The chemistry of lead in water is highly complex because it can be found in
many forms. [t tends to form compounds of low solubility with the major
anions of natural water. In the natural environment, the divalent form (Pb+ )is
the stable ionic species of lead. Natural compounds of lead are usually not
mobile in ground water or surface water, because lead tends to combine with
carbonate or sulfate ions to form insoluble compounds under oxidizing
conditions and extremely insoluble lead sulfide under reducing conditions
(DHHS, 1993c). Lead is more mobile in acidic waters, and precipitation occurs
more rapidly in alkaline waters.

Lead has been monitored in surface water, sediments and soils, ground water,
and drinking water throughout the world. The lead concentration of surface
water varies greatly depending upon pollution sources, sediment lead content,
and system characteristics (e.g., pH, temperature). Lead levels in surface
waters throughout the United States typically range from 5 to 30 wug/L, although
levels as high as 890 ug/L have been found (DHHS, 1993c). Sediments contain
considerably higher levels of lead than corresponding surface water. The
average lead content of river sediments is about 20 mg/kg. The natural
concentration of lead in soils ranges from 2 to 200 mg/kg, with mean values
about 16 mg/kg, depending upon location (NAS, 1972). The typical lead
concentration in ground water ranges from 1 to 100 yg/L. In rainwater at 32
U.S. monitoring stations, the mean concentration of lead was 34 ug/L and the
maximum value observed was 300 ug/L. In areas with heavy traffic, lead in rain
may exceed 100 ug/L and even reach 500 uyg/L. In 1990, lead intake from U.S.
drinking water was calculated at 12 yg/day for a 6-year old child (equivalent to
0.0012 mg/kg-day) (DHHS, 1993c).

The primary source of lead for the general population is food; for occupational
groups, it is inhalation. Important sources of exposure for children in some
countries are lead paint, soil, and dust.

The estimated daily dietary intake of lead ranges from 5 to 11 ug/day for all age
groups combined (equivalent to 0.0005 to 0.0011 mg/kg-day for a 10-kg child)
(DHHS, 1993c).

Toxicity of |

Although the biological effects of lead in humans are fairly well defined, the
precise exposure or doses associated with the effects are not well known.
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Dose-response data are available in terms of blood lead levels, rather than
external exposure levels.

Lead and its compounds are cumulative toxicants. Lead may cause both acute
and chronic effects, which usually result from its accumulation in the body over
a period of time. The major effects are related to four organ systems: the
hematopoietic, nervous, gastrointestinal, and renal systems.

Young children are inherently more susceptible to the effects of lead for the
following reasons:

® Incomplete development of the blood-brain barrier at birth, increasing the
risk of lead entering the central nervous system.

® Their greater lead intake in the gastrointestinal tract on a body-weight basis
compared with adults.

® The greater absorption and retention rates of lead in children.

® A greater prevalence of nutrient deficiency in children, which can affect
gastrointestinal lead absorption.

@ Differences in the efficiency of lead sequestration in bone.

Acute toxicity —The most common form of acute lead poisoning is
gastrointestinal colic. Acute signs and symptoms of lead poisoning may result
both from short-term massive exposure and from long-term lead intake. After
an initial stage of anorexia, symptoms of dyspepsia and constipation develop;
there is an attack of colic characterized by diffuse paroxysmal abdominal pain.
Other signs are pale skin, slow pulse, and increased blood pressure. These
signs and symptoms reflect the spasmodic contraction of smooth muscle,
probably related to vagal irritation.

Acute lead encephalopathy in adults is rare, but numerous cases have been
observed in children (Casarett and Doull, 1991; DHHS, 1993c; NAS, 1972).
Severe forms of encephalopathy develop suddenly with the onset of seizures
and delirium, often associated with papilledema, and may resuit in coma and/or
cardiorespiratory arrest. Prodromal manifestations occur rarely, but some
children may develop anemia and mild colic prior to the onset of the acute
encephalopathy syndrome (which includes vomiting, apathy, drowsiness,
stupor, ataxia, hyperactivity, and other neurological signs and symptoms). Lead
concentrations in blood associated with acute encephalopathy ranged from
about 80 to 100 xg/100 mL (DHHS, 1993c). In adults, signs and symptoms of
encephalopathy were seen at blood lead levels of 50 #g/100 mL or higher
following short-term exposures to lead.

Chronic_toxicity— Chronic exposure to lead may affect the hematopoietic
system, nervous system, gastrointestinal tract, kidney, liver, cardiovascular
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system, and endocrine organs. No visible thresholds have been demonstrated
for the most sensitive effects of lead exposure in humans (i.e., heme synthesis,
erythropoiesis, and neurobehaviorat toxicity). :

Anemia is a common sign among workers exposed to lead mainly by inhalation.
Lead-induced anemia is micro- or normocytic and hypochromic, being caused by
a combined effect of the inhibition of hemoglobin synthesis and shortened life-
span of circulating erythrocytes. No safe blood lead level has been
demonstrated for hematological effects in children. Studies on adults indicate
that blood lead levels as low as 3 yg/100 mL may produce hematological effects
(e.g., decreased d-aminolevulinic acid dehydratase [ALAD] activity) (DHHS,
1993c). A lead oral intake level as low as 0.01 mg/kg-day produced
hematological effects in humans and laboratory animals (rats and monkeys)
(DHHS, 1993c). The effects were manifested in decreased activities of certain
enzymes {ALAD), increased levels of porphyrin and protoporphyrin 1X in red
blood cells, and impaired heme synthesis (DHHS, 1993c). When the lead blood
level is about 70 to 80 ug/100 mL or more, manifest anemia may develop in
some individuals (Casarett and Doull, 1991; DHHS, 1993c). However, good
nutrition may prevent recognizable lead anemia.

Increased lead absorption may affect both the central nervous system and the
peripheral nervous system. Effects on the central nervous system manifest as
encephalopathy. The severity of encephalopathy depends on a combination of
factors, including intensity and duration of exposure and age. Milder central
nervous system symptoms include mental deterioration, hyperkinetic or
aggressive behavior, sleeping difficulties, and vomiting. No-effect lead blood
levels for chronic encephalopathy were determined for children at about 50 to
60 ug/100 mL and for adults at about 80 xg/100 mL (DHHS, 1993c). Changes
in neurobehavioral function, including slightly decreased performance on
intelligence quotient (IQ) tests, were observed in children at blood lead levels as
low as 6 yg/100 mL, and blood lead levels at 10 to 15 x#g/100 mL were
associated with impaired mental development (DHHS, 1993c). Neurobehavioral
testing has revealed an effect in adults at blood lead levels of 40 to

80 yg/100 mL.

Chronic as well as short-term exposures to lead resulting in blood lead levels of
40 to 80 xg/100 mL produced neurological signs and symptoms in aduits,
including malaise, forgetfuiness, irritability, lethargy, headache, fatigue,
impotence, decreased libido, dizziness, weakness, and paresthesia

(DHHS, 1993c). In children, neurological signs and symptoms other than
encephalopathy were observed at blood lead levels of 60 #g/100 mL (DHHS,
1993c).

Neurobehavioral signs and symptoms appeared at a lead oral intake level of
0.01 mg/kg-day in test animals (rats and monkeys administered lead acetate in
drinking water) (DHHS, 1993c). These effects included disruption of
conditioned responses and changes in motor activity. Serious neurobehavioral
changes resuited from oral lead intake of 0.05 mg/kg-day. Later adverse health
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effects included impairment in delayed changes of behavioral tasks, impairment
of nonspatial discrimination, and impairment of operant learning. At higher lead
intake levels, decreased muscle tonus and visual attentiveness were observed in
these species (DHHS, 1993c). Reports on peripheral lead neuropathy are rare
and are primarily from excessive occupational exposure. Peripheral neuropathy
is characterized by motor nerve dysfunction. Sensory nerves are less sensitive
to isad than motor nerves. 8igns of peripheral lead neuropathy were observed
in children with blood lead levels of 20 y#g/100 mL and at 30 pg/100 mL in
adults (DHHS, 1993c).

Quantitative information on lead hepatotoxicity in humans is lacking.
Hepatotoxicity in rats resulted from exposure to lead in drinking water (as lead
acetate) at intake levels as low as 0.01 to 0.05 mg/kg-day (DHHS, 1993c). The
effects included decreased glycogen, ribonucleic acid, and sulfhydryl groups, as
well as alterations in activities of oxidizing enzymes and increased liver weight.

Long-term exposure to lead may give rise to the development of irreversible
functional and morphological renal changes. These changes include intense
interstitial fibrosis, tubular atrophy, and dilatation. The glomeruli may be
involved at a relatively late stage (Casarett and Doull, 1991). Prolonged
exposure to lead associated with lead biood levels above 70 ug/100 mL may
result in chronic irreversible nephropathy (DHHS, 1993c), but little is known
about the dose-effect or dose-response relationship of the nephrotoxicity of
inorganic lead. However, blood lead levels at 18 to 26 p#g/100 mL resulted in
renal impairment with gout or hypertension.

increased blood pressure is associated with lead blood concentrations possibly
as low as 7 yg/100 mL (EPA, 1986; DHHS, 1993c). it appears that this
relationship is particularly significant for middle-aged white males (aged 40 to
59). In laboratory animals (rats fed lead acetate in drinking water for up to

8 months), the cardiovascular effects manifested as increased systolic blood
pressure were observed at lead intake levels of 0.01 mg/kg-day (DHHS, 1993c).

Prenatal exposure to lead may be related to postnatal mental retardation,
impaired postnatal neurobehavioral development, premature birth, and reduced
birth weight (DHHS, 1993c).

Exposure to inorganic lead has been associated with cancers (renal tumors) in
laboratory animals, but lead carcinogenicity in humans has not been
demonstrated. Because there is sufficient evidence of lead carcinogenicity in
animals and because human data are insufficient, it has been classified as a
probable human carcinogen (EPA, 1994a; IARC, 1987).

Because some of the adverse health effects from oral lead exposures,
particularly hematological changes and changes in children’s neurobehavioral
development, may occur at intake levels so low they are essentially without
threshold, the EPA considers it inappropriate to develop an oral RfD for inorganic
lead (EPA, 1994a).
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5.1.6

Figure 5.5 summarizes the health effects of lead as a function of dose.

Manganese
Absorption

Following ingestion, manganese absorption is homeostatically controlled: the
absorption rate depends on both the amount ingested and the existing
manganese levels in tissue. Adults absorb approximately 3 to 4 percent of
dietary manganese (Saric, 1986). Manganese can be absorbed following
exposure by inhalation, ingestion, and dermal contact. In humans, available
data indicate that only 3 percent of an ingested dose of manganese chloride is
absorbed (Mena et al., 1969). Manganese in water appears to be more
efficiently absorbed than manganese in foodstuff (EPA, 1994a). The absorption
rate is influenced by iron and other metals. In states of iron deficiency,
manganese is actively absorbed from the intestine. Individuals with anemia can
absorb more than twice the percentage of an ingested dose. However, in states
of excess iron, manganese absorption is by diffusion only (Saric, 1986). High
levels of dietary calcium and phosphorus are shown to increase the
requirements for manganese in several species (Lénnerdal et al., 1987).

Tissue accumulation and clearance

Absorbed manganese is widely distributed throughout the body. The highest
concentrations are found in the liver and kidney. The biological half-time in
humans is 2 to 5 weeks, depending on body stores. Manganese readily crosses
the blood-brain barrier and is more slowly cleared from the brain than from other
tissue (Goyer, 1991). Normal concentrations in the brain are low, but the
half-time in the brain is longer and the metal may accumulate in the brain with
excessive absorption (National Research Council, 1973).

Absorbed manganese is rapidly eliminated from the blood and concentrates in
mitochondria. Initial concentrations are greatest in the liver. Manganese
penetrates the placental barrier in all species and is more uniformly distributed
throughout the fetus than in adults. It is secreted into milk.

Absorbed manganese is almost totally secreted in bile and reabsorbed from the
intestine as needed to maintain body levels. At excessive exposure levels, other
gastrointestinal routes may participate. Excess manganese is eliminated in the
feces; urinary excretion is negligible (Goyer, 1991; Saric, 1986).

Environmental sources of manganese

On the whole, food constitutes the major source of manganese intake for
humans. The highest manganese concentrations are found in plants, especially
wheat and rice. Drinking water generally contains less than 0.1 mg/L.
Manganese levels in soil range from 1 to 7000 mg/kg, with an average of 600
to 900 mg/kg. Mining and natural geological background variations contribute
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to this variability. Manganese bioaccumulates in marine mollusks up to 12,000-
fold, and there is evidence for toxic effects in plants (phytotoxicity) and plant
bioaccumulation. The Hlinois Institute for Environmental Quality has
recommended a criterion of 1 to 2 mg/kg for manganese in soil and 200 mg/kg
in plants (Saric, 1986).

Variations in manganese intake can be explained to a large extent by differences
in nutritional habits. In populations using cereals and rice as main food sources,
the intake will be higher than in areas where meat and dairy products are a
larger part of the diet. The average daily intake has been estimated to be
between 2.0 to 8.8 mg/day (0.03 to 0.13 mg/kg-day) (EPA, 1994a), but intakes
as high as 12.4 mg (about 0.2 mg/kg-day) are reported in countries with high
cereal intake (Saric, 1986).

Drinking water generally results in an intake of less than 0.2 mg

{0.003 mg/kg-day), although some mineral waters can increase this amount by
more than threefold (Saric, 1986). One study from Greece reported drinking
water concentrations of manganese in excess of 2 mg/L, which would resuit in
daily intakes in the range of 0.06 to 0.07 mg/kg-day (EPA, 1994a).

xici f mangan

Manganese is an essential nutrient. The estimated safe and adequate daily
dietary intake ranges from 0.03 to 0.07 mg/kg-day for adults (Saric, 1986).
The EPA NOAEL for drinking water is identified at 0.005 mg/kg-day, while the
lowest-observed-adverse-effect level (LOAEL) for drinking water is 0.06
mg/kg-day (EPA, 1994a). The EPA RfD for drinking water of 0.005 mg/kg-day
is based on human data (Kondakis et al. 1989). The study group was a
population of older adults exposed to manganese in drinking water over a
lifetime; because this population was considered sensitive, an uncertainty factor
of 1 was applied (EPA, 1994a). The RfD for ingested food is 0.14 mg/kg-day.
Manganese in drinking water may be more bioavailable (i.e., more readily
absorbed) than manganese in dietary food sources. This bioavailability would
result in toxic effects at lower ingested doses in drinking water than in food
(EPA, 1994a). However, insufficient data exist to quantify these dose
differences.

Industrial settings are the largest source of data on chronic manganese toxicity.
The data indicate that inhalation of manganese can result in a central nervous
system disorder characterized by irritability, difficulty in walking, speech
disturbances, and compulsive behavior that may include running, fighting, and
singing. With continued exposure, this condition can progress to a mask-like
face, retropulsion or propulsion, and a Parkinson-like syndrome. These effects
are largely irreversible, although some recovery can be expected when exposure
ceases (DHHS, 1992b). Metal-chelating agents are ineffective in treatment, but
L-dopa has been effective in treatment (Goyer, 1991).
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Information on the effects of manganese ingestion is limited. Because effects
from manganese in drinking water can appear at lower manganese levels than in
food sources, only studies on water consumption will be considered here. A
Japanese study of 25 people drinking well water with manganese
concentrations of 14 mg/L (0.4 mg/kg-day estimated intake) reported symptoms
of intoxication, including a mask-like face, muscle rigidity and tremors, and
mental disturbances. Two deaths (8 percent) occurred among the intoxicated
people. A Greek study of more than 4000 adults at least 50 years old drinking
water with manganese concentrations varying from 0.081 to 2.3 mg/L
(estimated intakes at 2 L/day for a 70-kg individual range from 0.002 to

0.07 mg/kg-day) showed varying degrees of neurological effects in individuals
drinking from 0.007 to 0.07 mg manganese/kg-day, but no effects in individuals
drinking less than 0.005 mg/kg-day (Kondakis et al., 1989). However, there are
many limitations to these studies which make data interpretation difficult.
Among the limitations is uncertainty regarding the exposure level or whether the
effects seen were solely attributable to manganese. Despite these limitations,
the similarity of the effects seen in the cases of oral exposure compared with
those associated with inhalation exposure suggests that excess manganese
intake by humans might lead to neurological injury (DHHS, 1292b).

The chemical form of manganese has complex effects on its toxicity. Although
the more soluble forms are more readily absorbed from the gastrointestinal tract,
they also appear to be more rapidly cleared. Exposure to insoluble forms results
in lower manganese absorption but higher chronic tissue levels and therefore
greater toxicity (EPA, 1994a). Information on the effects of various forms of
manganese is limited.

Few data are available on manganese toxicity in infants, but infants are probably
more susceptible to manganese toxicity due to greater absorption and greater
penetration into the central nervous system (EPA, 1994a; Saric, 1986). Figure
5.6 summarizes manganese toxicity as a function of dose.

5.1.7 Molybdenum

A rption

Molybdenum absorption in the gastrointestinal tract depends on the species of
the metal. Inorganic hexavalent forms such as molybdenum trioxide, sodium
molybdate, and ammonium molybdate are readily absorbed from both food and
water, whereas molybdenite is not. Based on the geochemical models for the
Durango site, all of the molybdenum exists in the form of well absorbable
molybdate in ground water (Tables 3.11 through 3.14). Human absorption rates
of 40 to 70 percent have been observed for the soluble forms of molybdenum
(Tipton et al., 1969; Robinscn et al., 1973; Alexander et al., 1974).
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Ti accumulation and clear

in humans, the highest concentrations of molybdenum occur in the liver, kidney,
and adrenals (Casarett and Doull, 1991). With normal dietary intake,
molybdenum levels in the body slowly increase until approximately age 20, then
begin to decline steadily. Urine is the principal excretion route in humans.
Human studies indicate that the biological half-life in humans is considerably
longer than in animals and may be as long as 2 weeks (Rosoff and

Spencer, 1964).

nvironmental r f mol num

Molybdenum occurs naturally in combination with other metals, including
uranium, lead, iron, cobalt, and calcium. Native soil concentrations can vary by
as much as 2 orders of magnitude, from 0.1 to 10 mg/kg, leading to large
variations in molybdenum concentrations in plant materials. Natural
concentrations in ground water are reported from 0.00011 to 0.0062 mg/L.
Human dietary intake of molybdenum is estimated at 0.05 to 0.24 mg/day
(0.0007 to 0.003 mg/kg-day). The contribution of drinking water is estimated
to range from O to 95 percent. The nutritional intake range for molybdenum is
from 0.0015 to 0.0054 mg/kg-day. No symptoms of molybdenum deficiency
have been reported in humans. Nonetheless, molybdenum is an essential trace
element that functions as a necessary constituent of several enzymes, including
xanthine oxidase (which is involved in the metabolism of uric acid) and nitrate
reductase (Friberg et al., 1986).

Toxici f mol num

Acute toxic effects of molybdenum have not been reported. No adverse health
effects have been reported with a chronic intake of less than 0.008 mg/kg-day
of molybdenum (EPA, 1994a). Molybdenum toxicity primarily is related to its
interactions with copper and sulfur, leading to altered excretion patterns for
these selements. Increased levels of molybdenum also increase the levels of
xanthine oxidase, which is responsible for the production of uric acid. Uric acid
can accumulate in joints, ieading to symptoms of gout and other joint disorders.

A molybdenum intake of 0.008 to 0.022 mg/kg-day can produce a mineral
imbalance as a result of increased copper excretion (EPA, 1994a). Copper
excretion is reported to double with molybdenum intake at the upper end of this
range. Copper is an essential nutrient important in many metabolic pathways,
including the synthesis and function of hemoglobin. A copper deficiency
resulting from excess excretion will impair the oxygen-carrying capacity of the
blood, and severe copper deficiencies can lead to hypochromic microcytic
anemia. In humans, gout-like symptoms and joint deformities are reported in
regions of Russia where elevated molybdenum concentrations in soil and
subsequent increased molybdenum concentrations in food lead to molybdenum
intakes in the range of 0.14 to 0.21 mg/kg-day. The EPA oral reference dose of
0.005 mg/kg-day for molybdenum was derived from results of these studies
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(EPA, 1994a). An uncertainty factor of 30 was used for two reasons: to
protect the sensitive human population and to use the LOAEL of

0.14 mg/kg-day rather than the preferred NOAEL which should be identified
from a long-term study in a human population. Figure 5.7 summarizes the
health effects of molybdenum as a function of dose.

5.1.8 Selenium
Absorption

Although water-soluble forms of selenium such as selenite are approximately
90 percent absorbed in the gastrointestinal tract in rats, humans show lower
percentages of absorption (40 to 80 percent) (Bopp et al., 1982). Absorption
by ruminants is only 30 to 35 percent, probably due to bacterial reduction in the
rumen. Absorption of the less soluble elemental selenium or selenium sulfide is
poor in rats (Medinsky et al., 1981; Cummins and Kimura, 1971).

Tissue accumulation and clearance

Studies suggest similar distributions of selenium between humans and
laboratory animals {Bopp et al., 1982). At low intake levels, selenium is
retained and accumulates in the reproductive organs, brain, and thymus, with
only transient accumulation in other organs. Selenite-derived selenium
accumulates in the liver and kidneys more rapidly than selenium derived from
selenate (Millar et al., 1973). There is some indication that organically bound
forms of selenium exist in a separate, more bioavailable pool than either selenite
or selenate.

Selenium is a component of an enzyme glutathione peroxidase found in most
human and animal tissues (DHHS, 1989). This enzyme is mainly involved in the
metabolism and removal of hydrogen peroxide and lipid hydroperoxide from the
body. Therefore, this enzyme protects cellular membranes and lipid-containing
organelles from peroxidative damage. There are other human proteins that
contain or require selenium. The metabolism of selenium involves pathways
both for incorporation of selenium into the selenium-dependent enzymes and for
excretion of selenium from the body.

Although urinary excretion is the primary route of selenium elimination under
normal dietary conditions (67 percent), in deficiency states fecal excretion is the
major pathway. At toxic doses, the major route of excretion is through expired
air as dimethylselenide (50 to 60 percent) (Friberg et al., 1986). Although these
data were obtained in rats, available data suggest that human excretion is
similar (Bopp et al., 1982). The elimination of selenium in humans foliows three
phases with the following half-times: 1 day; 8 to 20 days; and 65 to 116 days.
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT
THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO TOXICITY ASSESSMENT

Environmental sources of selenium

The main source of selenium for the general population is foods such as
seafood, meat, and grains. Dietary intake of selenium in the United States
ranges from 0.0007 to 0.0029 mg/kg-day. Selenium concentrations in ground
water and surface water range from 0.00006 to 0.400 mg/L, with highs of

6 mg/L being reported (Friberg et al., 1986). Concentrations in U.S. public
water supplies rarely exceed 0.010 mg/L (EPA, 1980). High selenium
concentrations occur in volcanic rock (0.120 mg per gram) and in sandstone
uranium deposits (1.0 mg per gram). The soil content of selenium varies widely,
as does the rate of accumulation by plants. Although grasses and grains do not
accumulate selenium in concentrations greater than 50 mg/kg, some plants can
accumulate as much as 10,000 mg/kg if grown in high-selenium regions. These
high-accumulating plants are generally not used as food sources but can
produce toxic effects if consumed by livestock.

-

Toxicity of selenium

Selenium is an essential nutrient. The RDA for adults is 0.04 to 0.07 mg/day
(equivalent to 0.0006 to 0.001 mg/kg-day for a 70-kg person) . Although some
biochemical alterations, including prolonged prothrombin time and reduced blood
glutathione concentrations, can be observed with intakes of selenium from
0.0107 to 0.0121 mg/kg-day, no clinical signs of selenosis are observed with
these intakes (DHHS, 1989; EPA, 1994a). Mild toxicity, including hair loss or
breakage, thickening and brittleness of nails, and a garlic odor in dermal
excretions and breath, were reported in human populations with dietary intakes
of selenium from 0.015 mg/kg-day. However, selenium intake as low as

0.013 mg/kg-day can produce symptoms of selenosis such as hair and nail loss
in susceptible populations.

Persistent clinical symptoms of selenosis are attributed to the chronic dietary
intake of selenium by human populations living in areas of China with high
selenium concentrations in soil (from 7 mg/kg to 12 mg/kg). Clinical signs
observed included the characteristic garlic odor of excess selenium excretion in
the breath and urine, thickened and brittle nails, hair and nail loss, lowered
hemoglobin levels, mottled teeth, skin lesions, and central nervous system
abnormalities (peripheral anesthesia, acroparesthesia, and pain in the
extremities). Estimated selenium dietary intake was reported to be

0.018 mg/kg-day for adult women and 0.021 mg/kg-day for adult men (Yang
et al., 1989a; 1989b). The average blood selenium concentration associated %
with this intake of selenium was 1.3 mg/L (ranging from 1.05 mg/L to

1.85 mg/L). In the same study, symptoms of chronic selenosis (hair and nail
loss and below-normal hemoglobin levels) were reported with a selenium intake
of 0.071 mg/kg-day. A serious outbreak of selenium poisoning, including the
possible occurrence of neurotoxic effects such as peripheral anesthesia,
acroparesthesia, and pain in extremities, was observed with selenium intake of
0.54 mg/kg-day in both women and men. Protein intake by members of this
population is unknown. The EPA oral reference dose of 0.005 mg/kg-day for
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5.1.9

selenium is based on results from this study (EPA, 19943a). The EPA estimated
the NOAEL for clinical selenosis at 0.015 mg/kg-day of selenium and applied an
uncertainty factor of 3 to this selenium level to protect sensitive human
populations. These health effects are summarized in Figure 5.8 as a function of
dose. '

Ingestion of 350 to 4300 mg (5 to 61 mg/kg) of selenium by adults has
produced vomiting, diarrhea, abdominal cramps, numbness in arms, and marked
hair loss and irregular menstrual bleeding in women. Higher intakes can result in
unsteady gait, cyanosis of mucous membranes, labored breathing, and
sometimes death.

Symptoms of alkali disease and blind staggers have been seen in grazing
livestock feeding over a long period of time upon selenium-accumulating plants
in areas with high soil selenium content (Rosenfeld and Beath, 1964). These
symptoms include neurological dysfunction such as impaired vision, ataxia,
disorientation, and respiratory distress.

Sodium

Sodium is rapidly and fully absorbed from the gastrointestinal tract. The skin
and lungs also absorb sodium rapidly, by simple diffusion and ion exchange
{National Research Council, 1980).

Ti umulation and clearan

Sodium is the major extracellular ion. The sodium ion is essential to the
regulation of the acid-base balance and is an important contributor to
extracellular osmolarity. It is an essential constituent in the electrophysiological
functioning of cells and is required for impulse propagation in excitable tissues.
Furthermore, sodium is essential for active nutrient transport, including the
active transport of glucose across the intestinal mucosa. About 30 to 40
percent of the body’s sodium is thought to be stored on the surfaces of the
bone crystals, where it is easily recovered if blood sodium levels drop.

Sodium is excreted mainly in urine, with appreciable amounts also excreted in
feces, sweat, and tears (Venugopal and Luckey, 1978). Mammalian renal
sodium excretion is a two-phase process involving glomerular filtration and
reabsorption in proximal tubules; of about 600 grams of sodium involved in
24-hour glomerular filtration, approximately 99.5 percent is reabsorbed in
human adults. A homeostatic mechanism for sodium functions at the renal
excretory level.

DOE/AL/62350-175 14 SEPTEMBER 1995

REV. 1, VER. 1

DUROOSF1.WPS
5-30




X0.1373S/vH18/HNA/31IS :OVIN

e AL

SIONVH ALIDIXOL WNINTTS
86 3HNOId

SSOVSSANITLLIHEG HIVH ANV VN - ALIDIXOL QUiN

~agf v
T3A31 103443 IAHISHO ON
©
[T 2]
(Kep-63/6w G00°0) Qi vo Y
ST3ATT INVLNI AHVLIIQ
INIFWIHINDIH TYNOLLIHLNN
(Kep-By/Buw)
0co0 §2100 Glo00 Geloo 100 G000 G000 §c0o'0 0

| | | | | | I I |




BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT
THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO . TOXICITY ASSESSMENT

Environmental 'ggrggg of sodium

The total sodium intake is influenced mainly by the amount of salt (sodium
chloride) added to food, the inherent salt content of the foods consumed, and
the amount of other sodium salts in the diet and in medication. Sodium is a
natural constituent of both vegetable and animal products in varying
concentrations. Other sources of sodium are drinking water, cooking water,
soft drinks, and alcoholic beverages.

At 2 months, infants consume approximately 300 mg of sodium a day; at 12
months, approximately 1400 mg/day. Human breast milk contains 161 mg/L,
and cow's milk contains approximately 483 mg/L (Carson et al., 1986).

No RDA is set for sodium. The National Research Council recommends limiting
daily sodium intake to less than 2400 mg (34 mg/kg-day); the American Heart
Association recommends limiting dietary sodium intake to 3000 mg daily. A
heaithy person requires about 115 mg sodium daily (1.6 mg/kg-day), yet sodium
dietary intake is estimated at 57 to 85 mg/kg-day. However, dietary sodium
intakes as high as 134 mg/kg-day are reported (National Research Council,
1980).

The sodium content of drinking water is extremely variable. Analyses of water
supply systems indicate sodium concentrations in 630 systems range from less
than 1 to 402 mg/L (resulting in sodium intake from less than 0.03 to 11 mg/
kg-day), with 42 percent greater than 20 mg/L and 3 percent over 200 mg/L
(Carson et al., 1986).

Toxici f ium

Symptoms of acute sodium chloride toxicity accompanied by visible edema may
occur in healthy adult males with an intake as low as 35 to 40 grams of salt per
day (200 to 223 mg/kg-day, because sodium is 39 percent of the weight of
sodium chloride) (Meneely and Battarbee, 1976). The mean lethal dose of
sodium for humans is reportedly 3230 mg/kg (Venugopal and Luckey, 1978).

Epidemiological studies indicate that long-term, excessive sodium intake is one
of many factors associated with hypertension in humans. A high sodium-to-
potassium ratio in the diet may be detrimental to persons susceptible to high
blood pressure. Some adults, however, tolerate chronic intake above 40 grams
of sodium chloride per day (equivalent to 223 mg/kg-day) (Carson et al., 1986).

Research indicates that critical levels of sodium ingestion cause blood pressure
to rise with age, leading to hypertension. Freis (19786) reports that with sodium
intake below 227 mg/day (3 mg/kg-day for a 70-kg adult), hypertension was
absent. In the range of 227 to 1591 mg/day (3 to 23 mg/kg-day for a 70-kg
adult), a few cases of hypertension may appear, while in the range of 1591 to
8000 mg/day (23 to 114 mg/kg-day for a 70-kg adult), approximately

15 percent of adults exhibit hypertension. When sodium intake rises above
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5.1.10

8000 mg/day, hypertension may be found in about 30 percent of the
population. Because sodium chloride is present in nearly all processed and
packaged foods, limiting dietary intake is difficult. The average daily dietary
intake in the United States often causes hypertensive effects.

Drinking water generally contains relatively low levels of sodium and therefore
does not substantially contribute to the total intake unless sodium is at higher-
than-average levels in the water supply. However, people on sodium-restricted
diets can obtain a notable portion of daily sodium from drinking water. Because
the kidney is the major organ involved in regulating sodium balance, individuals
with compromised kidney function may be placed on a low-sodium diet. Other
individuals may be on low-sodium diets to control hypertension. Because of the
high prevalence of such individuals in our society, the American Heart
Association has proposed that public drinking water supplies in the United
States adopt a standard of 20 mg/L sodium (Calabrese and Tuthill, 1977). This
standard measure would limit the additional intake of sodium from drinking
water to approximately 0.6 mg/kg-day for a 70-kg adult. Figure 5.9 summarizes
the potential health effects of sodium as a function of dose.

Sulfate
Absorption

Following oral ingestion, soluble salts of sulfate are well absorbed from the
intestine {about 90 percent at low doses, i.e., less that 50 mg/kg) and
distributed throughout the body (EPA, 1992). At higher doses (50 to

100 mg/kg body weight) sulfate is incompletely absorbed (about 60 to

70 percent), which resuits in diarrhea.

Ti mulati nd clearan

in humans, sulfate is a normal component of both extracellular and intraceliular
fluids (EPA, 1992).

Ingesting high levels of sulfate results in transient increases in both blood and
urine concentrations (EPA, 1992). Inorganic sulfate is eliminated from the body
almost entirely in urine without biotransformation (Morris and Levy, 1983).
Approximately 50 percent of a 75-mg/kg dose is excreted over 72 hours (EPA,
1992). The urinary excretion mechanism is transport-limited and can become
saturated at high doses of sulfate. Excess sulfate may be excreted in feces in
its inorganic form. To date, no data indicate that sulfate accumulates, even
with chronic ingestion of above-normal levels. However, extremely high chronic
doses have not been examined in humans.

Sulfate is used to biosynthesize collagen, cartilage, and dentin and to form
sulfate esters of both endogenous compounds (such as lipids and steroids) and
exogenous compounds (such as phenols). Sulfation is important in detoxication
pathways because it increases the solubility of these compounds, enhancing
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT
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their excretion in the urine. Exposure to high concentrations of compounds that
are conjugated with sulfate and excreted can produce a transient decrease in
plasma sulfate concentrations.

Environmental sources of sulfate

In 1978, drinking water sulfate concentrations in the western United States
(EPA, 1992a) ranged from O to 820 mg/L, with a mean concentration of

99 mg/L (which corresponds to sulfate daily intake of up to about 23 mg/kg-day
for a 70-kg man drinking 2 liters of water per day, with an average of about

3 mg sulfate/kg-day). The highest sulfate concentrations in drinking water of
1,110 mg/L were reported in California (EPA, 1992). This amount of sulfate in
drinking water can result in a daily intake of 32 mg/kg-day (assuming that a
70-kg man ingests 2 liters of water daily). The EPA estimates a normal sulfate
intake range of 0.00023 to 0.0064 mg/kg-day from air. Estimates on sulfate
intake from food are not available.

Toxicity of sulf

Little information is available on the toxic effects of sulfate on humans (EPA,
1992). There are no health problems reported following chronic exposure to
high concentrations of sulfate. The effects of the sulfate ion are limited to its
laxative effect following massive short-term exposure (EPA, 1992). Sulfate
salts of magnesium and sodium are used medicinally as cathartics. High
concentrations of unabsorbed sulfate salts in the gut can pull large amounts of
water into the gut, greatly increasing the normal volume of feces (EPA, 1992).
This action is aiso the basis of sulfate’s toxic effects. Ingestion of excessive
doses of cathartics without corresponding water ingestion leads to dehydration
(EPA, 1992). Persistent diarrhea may result in severe dehydration and
hypovolenic shock, particularly in infants and children (Casarett and Dauill,
1991). Extreme dehydration may lead to death.

Toxicity in humans is primarily manifested in diarrhea; the severity of the
diarrhea is dose-dependent. The effect is reversible and diarrhea discontinues
after cessation of exposure. About 5 grams of sodium suifate or magnesium
sulfate in a single dose produces diarrhea in most adults (Chien et al., 1968).
This corresponds to sulfate intake of about 30 mg/kg. It is generally accepted
that cathartic effects are commonly experienced by people introduced to
drinking water with sulfate concentrations above 600 mg/L (equivalent to above
17 mg/kg-day for a 70-kg man drinking 2 L of water a day) (Chien et al., 1968;
EPA, 1992). Such water is usually a little bitter. If only taste of water is
considered, sulfate water concentration should not exceed 400 mg/L (Chien et
al., 1968; EPA, 1992). In regions with high sulfate concentrations in the
drinking water, such as Saskatchewan where well water may contains from 400
to 1000 mg/L of sulfate (from about 11 to 29 mg/kg-day for a 70-kg man
drinking 2 L of water a day), residents adapt to the taste and find the water
palatable (Chien et al., 1968). They also become immune to the laxative action
of these levels of sulfate in their drinking water. These results appear to be
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consistent with data from North Dakota. A survey of 248 private well users in
North Dakota indicated that sulfate concentration of 1,000 to 1,500 mg sulfate
per liter (equivalent to 29 - 43 mg sulfate/kg-day for a 70-kg man drinking 2 L of
water a day) caused diarrhea in 62 percent of respondents (Moore, 1952, as
cited in EPA, 1992). In those exposed to sulfate concentrations from 200 to
500 mg/L, approximately 20 percent reported laxative effects; however, no
dose-response was observed in this group. Infants appear to be the most
susceptible population for sulfate-induced diarrhea. Also, some data indicate
that diabetic and elderly populations with compromised kidney function may be
more sensitive than healthy adults to the effects of sulfates (EPA, 1992a).
Three infants were reported to develop diarrhea from sulfate in drinking water at
concentrations form 475 to 680 mg/L (equivalent to 80 - 114 mg/kg-day for a
4-kg infant drinking 0.67 L of water a day) (Chien et al. 1968). These infants
recovered from diarrhea when water with suifate levels was replaced with "safe
water” (sulfate concentration was not reported).. Chien et al. described three
other cases of severe diarrhea in infants (5, 10, and 12 months olds) following
ingestion of well water with sulfate content of 630, 720, and 1150 mg/L (Chien
et al., 1968). These levels of sulfate correspond to sulfate intakes of about
106, 121, and 193 mg/kg-day, assuming that a 4-kg infant drinks 0.67 L of
water a day. In two cases, diarrhea developed promptly; the third infant
developed persistent diarrhea several days after the family moved to the area
with high sulfate content in drinking water. In all cases, recovery was
dependent upon substitution of water low in sulfate for the well water. Also, in
all these cases infectious etiology of diarrhea was excluded; however, neither
the nature nor the concentrations of the other constituents present in the water
were specified. Adults (parents) drinking water with sulfate content of 630 and
720 mg/L (18 and 21 mg/kg-day for a 70-kg man drinking 2 liters of water
daily) showed no health-problems. However, intermittent diarrhea developed in
adults and children {age unknown) drinking water with 1150 mg sulfate per liter
(equivalent to 33 mg/kg-day for a 70-kg man drinking 2 L of water a day). The
onset of the diarrhea was about two weeks after the family moved to the area.
Figure 5.10 summarizes these health effects as a function of dose.

Sulfate toxicity data are based primarily on epidemiologic studies of human
adults and infants who report to hospitals with symptoms of suifate exposure.
In most cases, exposure doses have been back-calculated from sampling their
drinking water. Therefore, these data do not represent well-controlled studies
with readily defined dosage ranges.

Based on the study by Chien et al. (1968) and the data from North Dakota
evaluated by Moore (1952, as cited in EPA, 1992), the EPA has proposed the
sulfate primary drinking water standard of 500 mg/L (40 CFR Parts 141, 142,
and 143, December 20, 1994).
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT
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5.1.11  Thallium
Absorption

Exposure to thallium may occur by inhalation, ingestion, or dermal absorption.
However, ingestion appears to be the predominant route of exposure for
humans (DHHS, 1992c¢).

Limited data exist regarding thailium absorption in humans after oral exposure
{DHHS, 1992c), although the data suggest that most of a dose of thallium given
orally (thallium nitrate and sulfate) to a patient with terminal osteogenic sarcoma
was absorbed. Animal data suggest that thallium may be completely absorbed
from the gastrointestinal tract (DHHS, 1992c¢).

Tissue accumulation and clearance

Once absorbed, thallium is distributed throughout the body. The highest tissue
concentrations following poisoning in humans are in the scalp hair and kidney
(DHHS, 1992c; Casarett and Doull, 1991). The intestine, thyroid, testes,
pancreas, skin, bone, and spleen have lesser amounts of accumulated thallium.
Brain and liver thallium levels are still lower.

In animals, thallium distribution from the bloodstream is rapid and widespread
(DHHS, 1992c). In rats administered approximately 1.4 mg thallium/kg (as
thallium sulfate) in drinking water, thallium accumulated in the kidney, followed
by the heart, brain, bone, skin, and blood. The biological half-life for thallium
was approximately 3 days, following a single orally administered dose of
thallium-204 (as thallium nitrate) to rats (DHHS, 1992¢).

Following the initial exposure, large amounts of thallium are excreted in urine
during the first 24 hours; then, excretion is slow and the feces may be an
important route of excretion (Casarett and Doull, 1991). In humans, about
15 percent of administered radioactive thallium was detected in urine in

5.5 days and 0.4 percent in feces in 3 days after the dose was administered
(DHHS, 1992c). An excretion half-life of about 22 days was estimated.
Thallium is also excreted in hair (DHHS, 1992c).

Environmental sources of thallium

Compounds of thallium are generally soluble in water. Thallium tends to be
sorbed to soils and sediments and to bioconcentrate in aquatic plants,
invertebrates, and fish (DHHS, 1992c). Terrestrial plants can also absorb
thallium from soil; in this way, it enters the terrestrial food chain.

Thallium has been used medicinally as a depilatory (Casarett and Doull, 1991).
Thallium compounds, mainly thallous sulfate, have been used as rat poison and
insecticides.
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The general population is exposed to thallium most frequently by ingesting
thallium-containing foods, especially home-grown fruits and green vegetables
(DHHS, 1992c¢). The typical thallium concentration in food is up to 0.05 mg/kg,
and the estimated typical thallium daily intake from food by a 70-kg aduit is
0.005 mg, assuming intake of food at 1.5 kg/day by a 70-kg adult and an
absorption fraction of 1.0 (equivalent to 0.00007 mg/kg-day).

Because thallium is a naturally occurring element, it may be present in ambient
waters in trace amounts (DHHS, 1992¢). A survey of tap water from 3834
homes in the United States detected thallium in 0.68 percent of samples at an
average concentration of 0.89 ug/L (the estimated typical thallium intake by a
70-kg adult is about 0.00003 mg/kg-day, assuming ingestion of 2 L of water

per day).
Toxicity of thallium

Thallium is one of the more toxic metals (Casarett and Doull, 1991). It can
cause neural, hepatic, and renal injury. it may also cause deafness and loss of
vision and hair.

The use of thallium compounds as a rat poison and insecticides is one of the
commonest sources of thallium poisoning. Acute thallium poisoning in humans
is characterized by gastrointestinal irritation, acute ascending paralysis, and
psychotic disturbances (Casarett and Doull, 1991; DHHS, 1992¢). Thallium
was lethal in humans following acute oral exposure at doses of 54 to 110 mg
thallium/kg of body weight as thallium sulfate (DHHS, 1992c). The estimated
lethal dose of thallium for the average adult is approximately 14 to 15 mg/kg.
This dose range also produced severe cranial and peripheral neuropathy, tubular
necrosis, centrilobular necrosis of the liver with fatty changes, myocardial
damage and electrocardiographic changes, and alveolar damage (hyaline
membrane formation and pulmonary edema). The kidney toxicity of thallium is
reportedly due to infarction rather than a direct effect on kidney tissue. Renal
function is also impaired following thallium exposure (DHHS, 1992¢). The acute
cardiovascular effects of thallium ions probably result from competition with
potassium for membrane transport systems, inhibition of mitochondrial oxidative
phosphorylation, and disruption of protein synthesis (Casarett and Doull, 1991).
Thallium also ailters heme metabolism. At oral doses as low as 0.08 mg/kg-day,
thallium (as thallous sulfate administered by gavage) produced developmental
effects {manifested as performance deficit) in rats following acute exposure
(DHHS, 1992c). The lowest lethal dose of thallium of 5 mg/kg is determined for
guinea pigs (DHHS, 1992c¢).

Fatty infiltration and necrosis of the liver, nephritis, gastroenteritis, pulmonary
edema, degenerative changes in the adrenals, degeneration of the peripheral and
central nervous systems, alopecia (hair loss), and in some cases death have
been reported in humans as a result of long-term systemic thallium intake.
These cases usually are caused by ingestion of contaminated food or the use of
thallium as depilatory (DHHS, 1992c; Casarett and Doull, 1991). Peripheral
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neuropathy was reported in 189 cases of thallium poisoning in China from 1960
to 1977 (DHHS, 1992c). This adverse health effect was attributed to ingestion
of cabbage grown in thallium-contaminated gardens. However, the dose-effect
relationship has not been determined from these studies.

Dark pigmentation of hair roots and hair loss are common features of thallium
exposure (DHHS, 1992c; Casarett and Doull, 1991). Hair loss can occur as
early as 8 days after exposure. The effect is reversible.

The signs of subacute or chronic thallium exposure in rats were hair loss (at
doses equal to or less than 1.2 mg thallium/kg-day, as thallium acetate or
thallium oxide) (DHHS, 1992c), cataracts, and hindleg paralysis occurring with
some delay after the initiation of dosing (Casarett and Doull, 1991). Following
treatment with 1.4 mg thallium/kg-day (as thallium sulfate administered in
drinking water), structural and functional changes were observed in peripheral
nerves in rats at 240 days (DHHS, 1992c¢). Renal iesions were also observed;
however, the oral intake level producing this effect could not be determined.
Histologic changes revealed damage of the proximal and distal renal tubules.
Mitochondria in the kidney and liver revealed degenerative changes. Similar
mitochondrial changes were observed in the intestine, brain, seminal vesicle,
and pancreas. It has been suggested that thallium may combine with the
sulfhydryl groups in the mitochondria and thereby interfere with oxidative
phosphorylation. A teratogenic response to thallium saits manifested as
achondroplasia (dwarfism) has been described in rats.

Animal studies revealed abnormalities in testicular morphology, function, or
biochemistry in rats received approximately 0.7 mg thallium/kg-day as thallium
sulfate during a 60-day treatment period (DHHS, 1992c). Reproductive effects
have not been found in humans after oral exposure to thallium.

The EPA chronic oral RfD of thallium as low as 0.00008 mg/kg-day has been
derived from the NOAEL determined in the oral subchronic study in rats (EPA,
1994a). The EPA applied an uncertainty factor of 3,000 to the NOAEL (0.25
mg/kg-day) to extrapolate from subchronic to chronic data, for intraspecies
extrapolation, to account for interspecies variability and to account for lack of
reproductive and chronic toxicity data. The subchronic oral RfD has been
established for thallium at 0.0008 mg/kg-day (EPA, 1994b). Figure 5.11
summarizes the health effects of thallium as a function of dose.

5.1.12 ranium

The uranium that occurs naturally at UMTRA Project sites consists of three
radioactive isotopes: uranium-234, uranium-235, and uranium-238. More than
99 percent of natural uranium occurs in the form of uranium-238 (Cothern and
Lappenbusch, 1983). Uranium-238 undergoes radioactive decay by emitting
alpha particles to form uranium-234, thorium-230, radium-226, radon-222,
polonium-210, lead-210, and other radioisotopes. Figure 5.12 summarizes the
radioactive decay chain of uranium-238 and uranium-234. Because all natural
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URANIUM-238
4.5 BILLION
YEARS

URANIUM-234
240,000
YEARS

(ELEMENT)
(HALF-LIFE)

PROTACTINIUM
-234
1.2 MINUTES

ALPHA,
GAMMA

(PARTICLE OR
RAY EMITTED)

THORIUM-230
77,000
YEARS

THORIUM-234
24 DAYS

RADIUM-226
1,600
YEARS

RADON-222
3.8 DAYS

POLONIUM-210
140 DAYS

POLONIUM-218
3.1 MINUTES

POLONIUM-214
0.00016 SECONDS

BISMUTH-210
5.0 DAYS

BISMUTH-214
20 MINUTES

LEAD-206
STABLE

LEAD-210
22 YEARS

LEAD-214
27 MINUTES

MODIFIED FROM SHLEIEN, 1992;
ALL THE HALF-LIFE VALUES ARE
ROUNDED TO TWO SIGNIFICANT DIGITS.

FIGURE 5.12
HALF-LIVES AND EMISSIONS FROM DECAY CHAIN OF URANIUM-238
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uranium isotopes are radioactive, the hazards of a high uranium intake are from
both its chemical toxicity and its potential radiological damage. The chemical
toxicity of natural uranium is discussed here; the carcinogenic potential
associated with exposure to radioactive isotopes of natural uranium is discussed
in Section 5.3.

Absorption

Uranium absorption in the gastrointestinal tract depends on the solubility of the
uranium compounds. The hexavalent uranium compounds, especially the uranyl
salts, are water soluble, while tetravalent compounds generally are not

{(Weigel, 1983). However, only a small fraction of the soluble compounds is
absorbed. Wrenn et al. (1985) have determined human gastrointestinal
absorption rates of 0.76 to 7.8 percent.

Uranium may absorb through the skin when applied in concentrated solutions
(the concentration level was not reported). The extent of absorption appears to
be dose-dependent.

Ti ccum ion and clearan

In humans exposed to background levels of uranium, the highest concentrations
were found in the bones, muscles, lungs, liver, and kidneys (Fisenne

et al., 1988). Uranium retention in bone consists of a short retention half-time
of 20 days, followed by a long retention half-time of 5000 days for the
remainder (Tracy et al., 1992).

In body fluids, uranium tends to convert into water-soluble hexavalent uranium
(Berlin and Rudell, 1986). Approximately 60 percent of the uranium in plasma
complexes with low-molecular-weight anions (e.g., bicarbonates, citrates), while
the remaining 40 percent binds to the plasma protein transferrin (Stevens

et al., 1980). Following oral exposure to uranium, humans excrete more than
90 percent of the dose in the feces. Of the small percent that is absorbed
{typically less than 5 percent), animal studies show that approximately

60 percent is excreted through the urine within 24 hours, whereas the
remainder is distributed to the skeleton and soft tissue; 98 percent of that
amount is excreted within 7 days (Ballou et al., 1986; Leach et al., 1984;
Sullivan et al., 1986). A small portion of the absorbed uranium is retained for a
longer period.

Environmental sources of uranium

Uranium is a ubiquitous element, present in the earth’s crust at approximately

4 parts per million (ppm). Uranium concentrations in ground water and surface
water average 1 picocurie per liter (pCi/L) and 3 pCi/L, respectively (equivalent
to 0.001 and 0.004 mg/L, assuming 1 mg of uranium equals 686 pCi)

(NCRP, 1984). The extent of uptake from the soil into plant tissues depends on
the plant species and the depth of its root system (Berlin and Rudell, 1986).
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5.1.13

Tracy et al. (1983) report plant uranium concentrations averaging 0.075 ug/kg
of fresh plant material.

The main dietary source of natural uranium for the general population is food
{e.g., potatoes, grains, meat, and fresh fish) that may contain uranium
concentrations between 10 and 100 ug/kg (Prister, 1969). The total uranium
dietary intake from consuming average foods is approximately 1 yg/day;
approximately 20 to 50 percent of that total can come from drinking water.
Cereals and vegetables, particularly root crops, probably contribute most to daily
uranium intake (Berlin and Rudell, 1986).

Toxicity of uranium

No human deaths are reported that are definitely attributable to uranium
ingestion; therefore, no lethal dose has been determined for humans. Lethal
doses of uranium (LDgg,23) are reported to be as low as 14 mg/kg-day following
23-day oral exposure, dependmg on the solubility of the uranium compound
tested (higher solubility compounds have greater toxicity), exposure route, and
animal species. High doses of uranium cause complete kidney and respiratory
failure.

No chronic toxic effects are reported in humans following oral exposure to
uranium. Data from populations occupationally exposed to high concentrations
of uranium compounds through inhalation and information from studies on
experimental animals indicate that the critical organ for chronic uranium toxicity
is the proximal tubule of the kidney (Friberg et al., 1986). In humans, chemical
injury reveals itself by increased catalase excretion in urine and proteinuria.
Dose-response data for the toxic effects of uranium on the human kidney are
limited.

The lowest dose, of uranyl nitrate, i.e., LOAEL, that caused moderate renal
damage was given to rabbits in diet at 2.8 mg uranium per kilogram per day
{Maynard and Hodge, 1949). The EPA oral reference dose of 0.003 mg/kg-day
was derived based on this study (EPA, 1994a). The EPA applied an uncertainty
factor of 1000 to the LOAEL (2.8 mg/kg-day), which reflects intraspecies and
interspecies variability and an uncertainty associated with the use of a LOAEL
rather than the preferred use of NOAEL. Figure 5.13 summarizes the health
effects of uranium as a function of dose.

Vanadium
Absorption

Absorption of vanadium from the gastrointestinal tract is low. The International
Commission on Radiological Protection estimate for the absorption of soluble
vanadium compounds is 2 percent (ICRP, 1960), but the WHO states that
absorption of even very soluble forms of vanadium is less than 1 percent from
the gastrointestinal tract (WHO, 1988). Limited human data (from three
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individuals) have suggested that as much as 10 percent of a repeated oral dose
may be absorbed (Proescher et al., 1917; Tipton et al., 1969). Soluble
vanadium compounds that are inhaled and deposited are more readily absorbed
(about 25 percent) (WHO, 1988). Although soluble forms of vanadium may be
absorbed through the skin, absorption via this route is probably minimal

(EPA, 1977; WHO, 1988).

Tissue accumulation and clearance

Vanadium is found in all body tissues in concentrations ranging from 0.08 ug
per gram wet weight in spleen tissue to 0.14 ug per gram in brain and heart
tissue and 0.33 ug per gram in aorta tissue (Yakawa and Suzuki-Yasumoto,
1980). Concentrations of vanadium in human blood serum are reported to be
0.016 to 0.939 nanograms per milliliter {(ng/mL). In hair, concentrations of
vanadium ranging from 20 to 60 ng per gram have been reported by different
authors, with higher values found in manic-depressive patients (57 ng per gram)
than in normal control groups (29 ng per gram).

The distribution of vanadium in humans following oral exposure may be
extrapolated from animal studies. In acute-duration exposures, vanadium is
rapidly distributed, primarily in the bones. After intermediate-duration exposure,
vanadium concentrations reaching the tissues are low, with the kidneys, bones,
liver, and lungs initially showing the highest levels.

Vanadium is an element and is not metabolized. However, in the body, there is
an interconversion of two oxidation states of vanadium: vanadyl and vanadate.
Vanadium can reversibly bind to the protein transferrin in the blood and then be
taken up into erythrocytes. There is a slower uptake of vanadyl into
erythrocytes compared to the vanadate form, possibly due to the time required
for the vanadyl form to be oxidized to vanadate. Initially, vanadyl leaves the
blood more rapidly than vanadate, possibly because of the slower vanadyl
uptake into cells (Harris et al., 1984). Five hours after administration, blood
clearance is essentially identical for the two forms.

Because vanadium is poorly absorbed in the gastrointestinal tract, a large
percentage of vanadium in rats is excreted unabsorbed in the feces following
oral exposure. In rats, the principal route of excretion of the small absorbed
portion of vanadium is through the kidneys. The mean urinary output per

24 hours is reported to be 10 ug.

Environmental sources of vanadium

Elemental vanadium does not occur in nature, but its compounds exist in more
than 50 different mineral ores and in association with fossil fuels. The single
largest release of vanadium to the atmosphere occurs through the combustion
of fossil fuels, particularly residual fuel oils. The largest amount of vanadium
released to soil and water occurs through natural weathering of geological
formations (Byerrum et al., 1974; Van Zinderen Bakker and Jaworski, 1980).
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Food constitutes the major source of exposure to vanadium for the general
population (Lagerkvist et al., 1986). As a whole, dietary intake is estimated to
be 6 to 18 ug/day (Pennington and Jones, 1987), although other estimates from
older studies using different (and possibly less sensitive) analytical methods
have been as high as 2 mg/day (Schroeder et al., 1963).

Drinking water is not considered an important source of vanadium exposure for
the general population. Water samples taken from across the United States
show 92 percent with values below 10 ug/L. Typical values appear to be
around 1 ug/L (Lagerkvist et al., 1986). The estimated daily intake of vanadium
by inhalation is 1 g (Byrne and Kosta, 1978).

Although vanadium is considered an essential element for chickens and rats,
there is no certainty about human dietary requirements. For animals, the daily
requirement is about 10 to 25 yg/day (Pennington and Jones, 1987).

In laboratory animals, the toxicity of vanadium varies with the animal species
and route of administration (WHO, 1988). Smaller animails (rat and mouse)
tolerate vanadium better than larger animals (rabbit or horse). Toxicity of
vanadium is low with oral exposure, moderate by inhalation, and high by
injection. The toxicity of vanadium also varies with the nature of the compound
(WHO, 1988). Toxicity increases as valence increases, with pentavalent
vanadium being the most toxic. Based on geochemical models for the Durango
site, vanadium may exist in the form of pentavalent vanadate and trivalent
vanadium hydroxide in ground water (Tables 3.11 and 3.12).

The major adverse health effect to humans from vanadium is seen in workers
exposed to large amounts of vanadium pentoxide dusts. The probable oral
lethal dose of vanadium pentoxide for humans is between 5 and 50 mg/kg
(Gosselin et al., 1976). No adverse health effects have been reported from
ingestion of vanadium at levels normally found in food or water (Waters, 1977).

Systemic effects of excessive vanadium exposure have been observed in the
liver, kidneys, nervous and cardiovascular systems, and blood-forming organs.
Metabolic effects include interference with the biosynthesis of cystine and
cholesterol, depression and stimulation of phospholipid synthesis, and, at higher
concentrations, inhibition of serotonin oxidation. Other effects of vanadium on
mammalian metabolism include depression of phospholipid synthesis (Snyder
and Cornatzer, 1958), reduction of coenzyme Q levels in mitochondria (Aiyar
and Sreenivasan, 1961), and stimulation of monoamine oxidase, which oxidizes
serotonin (Perry et al., 1955).

Vanadium salts were given to patients in several experimental studies to reduce
cholesterol leveis (Curran et al., 1959; Somerville and Davies, 1962; Dimond
et al., 1963; Schroeder et al., 1963). The doses of vanadium in these studies
varied from 7 to 30 mg/day (equivalent to 0.1 - 0.4 mg/kg-day for a 70-kg
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individual). Transient decreases in serum cholesterol levels were observed in
some patients, as were loosened stool or diarrhea and intestinal cramps. Green
tongue, a hallmark of vanadium exposure, was observed in all patients.

A relationship between the concentration of vanadium in drinking water and the
incidence of dental caries in children is reported by Tank and Storvick (1960).
Dental caries incidence in children aged 7 to 11 years was reduced three times
{(compared to controls) by applying ammonium vanadate in glycerol to the teeth
(Belehova, 1969). This relationship was not found in other studies
(Hadjimarkos, 1966; 1968).

It has been suggested that raised tissue levels of vanadium are important in the
etiology of manic-depressive illness. Improvement after treatment with ascorbic
acid or reduced vanadium intake was seen both in manic and depressed
patients.

Although animal studies have reported impaired conditioned reflexes following
doses of vanadium from 0.05 mg/kg-day (after 6 months of exposure) to

0.5 mg/kg-day (after 21 days of exposure), effects on the nervous system have
not been observed following repeated oral administration of vanadium in
humans. Workers exposed by inhalation to fairly high concentrations of
vanadium compounds have reported nonspecific symptoms, including headache,
weakness, vomiting, nausea, and ringing of the ears (WHO, 1988). These
symptom disappeared after cessation of exposure.

Available data on vanadium toxicity are insufficient to evaluate its effect on
cholesterol levels, iron metabolism, blood-cell production, and mutagenesis.
However, due to poor absorption from the gut, the metal is not considered very
toxic following oral administration (WHO, 1988). The EPA oral RfD of 0.007
mg/kg-day was obtained from a lifetime drinking water study with vanadyl
sulfate in rats (EPA, 1987; EPA, 1994b; Schroeder et al., 1970). Vanadyl
sulfate at 5 mg/L in drinking water did not produce toxicity in exposed animals
over their lifetime (Schroeder et al., 1970). None of the parameters studied
(growth and body weight, survival and longevity, glucose and cholesterol levels
in the blood, and glucose level and proteins in the urine) was affected when
compared with the control. The intake level of vanadium estimated from this
study is 0.7 mg/kg-day (DHHS, 1992) and it represents a NOAEL for the kidney
and other systemic effects. The EPA applied an uncertainty factor of 100 to a
NOAEL to account for uncertainties associated with intraspecies and
interspecies variability (EPA, 1994b). The toxicity of vanadium is summarized in
Figure 5.14,

5.2 CONTAMINANT INTERACTIONS
Some information is available on potential interactions between contaminants
found at UMTRA Project sites. However, discussions of potential interactions
can generally be presented only qualitatively. In addition to physiological
variables between individuals that can affect toxicity, uncertainties in
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REV. 1, VER. 1 DUROOSF1.WP5

5-48




XULNV/V VY (/L4 US - UV

SIFONVYH ALIJIXOL WNIAVYNVA
v1’S 3HNOI4

~af— (646w 05 - §) ISOQ WHLIT 3LNOV A3LVIILSI

INONOL NIFHY ‘VIHHHVIA ‘SdWVHO TWNILSILNI ‘dOHa T0HILSII0HD LNIISNVHL

(SLvH) S3X31434 AINOILIANOD Q3HIVANI

A---.-oo-ooo--ounn e o o e »

(Aep-By/Buw £00°0) HILVM ONDINIHG - Qi Wweo

IVINI AbVLIIG |

(Aep-By/Bu))
g vo S€0 €0 gco co slo Lo 500 0
N | | _ | | | |

5-49




BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT )
THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO TOXICITY ASSESSMENT

interactions also result from 1) differences in the relative exposure
concentrations of the different contaminants compared to the concentrations
tested experimentally; and 2) the presence of additional ground water
constituents in sufficient quantities to modify predicted toxicities even though
they themselves are not considered contaminants of potential concern for
human health. Therefore, the interactions described below should be recognized
as factors that can influence the predicted toxicity, although the precise nature
and magnitude of that influence cannot be determined.

A primary concern at the Durango site is the potential for interactions between
metals. Interactions between several similar metals can alter the predicted
absorption, distribution in the body, metabolism, clearance, or toxicity of a
metal of interest.

For example, cadmium, manganese, and selenium absorption can be
considerably altered under conditions of high calcium and iron or a low-protein
diet (Elinder, 1986; Nordberg et al., 1985). Absorption of cadmium,
manganese, and selenium from the intestine may substantially decrease (up to
fourfold in the case of cadmium) in the presence of high dietary iron, leading to
decreased toxicity of cadmium, manganese, and selenium (DHHS, 1992b). High
levels of cadmium may inhibit manganese uptake. Conversely, high levels of
manganese lead to decreased iron absorption. Short-term effects of this type
are probably the result of kinetic competition between iron and manganese for a
limited number of binding sites on intestinal transport enzymes, while longer-
term effects of iron excess are probably due to adaptive changes in the level of
intestinal transport capacity. On the other hand, iron deficiency anemia (low
iron body stores) may substantially increase the gastrointestinal absorption of
cadmium, lead, and manganese, resulting in higher body burden and toxicity
from these elements. ‘

Because cadmium, calcium, strontium, and lead are competitive with respect to
their absorptive sites, an excess of any of these elements may partially inhibit
the absorption of others. Excess lead may decrease calcium absorption through
competition for a common transport system, and it may substitute in the bone
for calcium. Thus, lead storage sites in the bone may form a continuous internal
source of lead exposure, even after external exposure ceases.

In addition, cadmium and manganese can induce synthesis of the metal-binding
protein metallothionein (DHHS, 1992b; Casarett and Doull, 1991). The
formation of metallothionein-manganese complex would enhance manganese
excretion, decreasing its toxicity. This protein, however, seems to have a
paradoxical effect on the systemic toxicity of cadmium. Metallothionein appears
to bind cadmium and, in this way, protect certain organs, such as testes, from
cadmium toxicity. But, at the same time, metallothionein may enhance
cadmium nephrotoxicity, possibly because the cadmium-metallothionein complex
is taken up by the kidney more readily than is the free ion. However, because
both cadmium and manganese bind to metallothionein, in the continued
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presence of both cadmium and manganese there may be competition for
metallothionein-binding sites.

A single study in mice suggests that vanadium and manganese interact,
producing some alterations in behavioral development of the pups as compared
to either element administered alone (DHHS, 1992b). Oral administration of
vanadium alone may interfere with copper metabolism by inhibiting the intestinal
absorption of copper, leading to copper deficiency. Copper deficiency may be
triggered by the presence of molybdenum at levels observed at the Durango
site.

Selenium interacts with a wide range of elements, including arsenic, cadmium,
cobalt, copper, lead, silver, and thallium (Friberg et al., 1986). Selenium forms
insoluble complexes with silver, copper, and cadmium. Selenium deficiency
may develop in the presence of these other metals, as is seen with cobalt and
copper. The formation of these complexes may reduce the toxicity of both
selenium and the other metal (Casarett and Doull, 1991). Most of these
interactions have been observed in laboratory animals or in livestock. The
mechanisms are not completely understood in many cases. Often the selenium-
metal complex binds in a stable complex to a larger protein than the metal
alone, and a redistribution of this complex occurs away from the target tissues.
Selenium and arsenic together can reduce their respective toxicities. However,
some methylated metabolites of selenium can increase the toxicity of arsenic
(DHHS, 1989). Sulfate can also interact with selenium, but the result of
interaction is inconsistent. Sulfate can reduce some toxic effects of selenium,
but not others such as liver damage at high doses of selenium (DHHS, 1989).

Sulfate also interacts in a compiex manner with molybdenum and copper.
Molybdenum excretion is affected by copper and sulfate. Sulfate reduces
molybdenum accumulation by competing for protein carriers and enhances its
excretion by inhibiting tubular reabsorption. Ruminants seem to be the most
susceptible species to imbalances between these elements. In ruminants,
copper prevents the accumulation of molybdenum in the liver and may
antagonize absorption of molybdenum from food. Molybdenum can produce a
functional copper deficiency. The antagonism of molybdenum to copper is
augmented by suifate. It has also been suggested that sulfide (a reduced form
of sulfate) can displace molybdate in the body (Casarett and Doull, 1991). In
laboratory animal models, the toxicity of molybdenum is more pronounced in
situations where dietary copper intake is low (EPA, 1994a). In ruminants,
copper sulfate can protect against molybdenum toxicity, and molybdenum and
sulfur can inhibit copper toxicity.

Because ingesting high levels of sulfate and magnesium produces diarrhea that
leads to dehydration, and ingesting high levels of sodium and chloride leads to
water retention, a physiological interaction might be expected to occur with
simuitaneous ingestion of all of them. However, available data do not predict
the net effects of chronic ingestion of sulfate and sodium chioride at high
concentrations. Although high-concentration sodium chloride solutions are used
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to treat diarrhea-induced hyponatremia and hypochloremic metabolic alkalosis,
the electrolyte concentrations in these solutions are physiologically balanced.
Disproportionately high sodium and chioride levels could intensify the electrolyte
loss produced by severe diarrhea.

Trace metals can influence the toxicity of thallium (DHHS, 1992c). Potassium
has been shown to increase renal excretion of thallium, decrease the
degenerative effects of thallium on epiphyseal cartilage in mouse limb cultures,
decrease placental transport of thallium, and increase the lethality of thallium in
animals. Howaever, the degree of relevance of these findings to human
situations has not been definitely determined.

In animal studies, iron status affected the gastrointestinal absorption of uranium;
however, the reported results were inconclusive (EPA, 1989c). No other
information has been found on interactions of uranium with other metals.
However, the common target organ suggests that uranium, arsenic, cadmium,
lead, vanadium, molybdenum, and manganese interact to enhance kidney
toxicity. ‘

No information on the influence of other compounds on the toxicity of antimony
was found.

Finally, diarrhea-induced dehydration may cause contaminants excreted in urine
to concentrate in the kidney. Thus, diarrhea-induced dehydration may enhance
the predicted toxicities of these contaminants.

5.3 CONTAMINANT RISK FACTORS

The EPA Office of Research and Development has calculated acceptable intake
values, or RfDs, for long-term (chronic) exposure to noncarcinogens. These
values are estimates of route-specific exposure levels that wouid not be
expected to cause adverse effects when exposure occurs for a substantial
portion of the lifetime. Some of the chronic RfDs are adopted as subchronic
RfDs. The RfDs include safety factors to account for uncertainties associated
with limitations of the toxicological database. These safety factors include
accounting for uncertainties associated with extrapolating results from animal
studies to humans, accounting for response variabilities in sensitive individuals,
and accounting for uncertainties associated with extrapolation from a LOAEL to
a NOAEL and from shorter term or subchronic exposures to chronic exposures.
These values are updated quarterly and are published in the Health Effects
Assessment Summary Tables (HEAST). Following more stringent review, they
are published through the EPA’s IRIS database. The most recent oral RfDs for
the noncarcinogenic contaminants of potential concern are summarized in
Table 5.2.

The EPA currently classifies all radionuclides as Group A, or known human
carcinogens, based on their property of emitting ionizing radiation and on
evidence provided by epidemiological studies of radiation-induced cancer in

DOE/AL/62350-175 14 SEPTEMBER 1995
REV. 1, VER. 1 DUROOSF1.WP5
5-52




‘a|qeoidde Jou — yN
‘pauLLIgIap JOU — AN

(G¥661) WdI woud,

"(ey661) Vd3 woid,

"(9¥66 1 ‘vd3) Aep-Bx/Bw 80000 S! YoM ‘winyjjeyl

pue ‘pauiuiialep useq Jou SABY YIIYM ‘WiNtuein pue Wwnjwpeod aie suoldedxa syl SqY |eJ0 djuoIyoqgns se paydope a1e Sesop asoyl,

TOXICITY ASSESSMENT
14 SEPTEMBER 1994
DUROOSF1.WPS

001 oLSVIH/I8iIeM anN anN L00°0 winipeues

. ybBam (syjes

0001 qSiyi8iQ Apoq paseaidap ‘AjdixoloiydaN wnipsiy £00°0 8|gnjos) wnueln

000¢€ qSiHl/edenen salIsIWAYD poolq passlje ‘eloedoly mo 800000 wingeyt

VN VN eayieiq VN aN aeyns

VN VN uoisualiRdAH VN aN wnipos
$399440

WISAS SNOAJDU [BIIUSD ’(SUOISD|

unis ‘yiesl pajllow ‘sso| ieu Jo Jey ™
m 8 € qSiH®Ia  ‘sjieu 8pllg pue peuRNdIYl) sisoudes ubiH S00'0 . wnjusg M
<
m m (Siens| Joddoo
m 8 pasessoap) poojq !(Buljems ‘uied)
m o 1014 qSidlieg s1uo0f ‘uoizonpoid pioe duN PBsSeRIIU| wnipay G00°0 wWNUepgA|ON
Q
m m 1 qSIHI/IeIBM $109}49 WAISAS SNOAJOU [BJIUSD) VN §00'0 aseuebuep
2
$c VN VN VN VN an aiuebiou ‘pear)
<
W z VN VN uoisuayedAy YN aN opuoI4d
o m ot _ qSIdI/i938Mm (eunueloid) Asupry ybiH S000°0 wniwpen
b
m m suopjeo)dwod senosea
m m € qSil/191epm ‘uoneluswBidiadAy ‘sisoleioiadAH wnipsy £000'0 gjueBiou ‘oluesiy
8 m ssuIsIIBYd
mu 0001 qSidl/1eiem poojq pasalje ‘Ajjeliow pesessou) moq 000°0 Auowpuy ®
s -
m m 40308} e3ino0s uebio/1o04)8 |@INUD jeae7 {Aep-b)/Bw) jeojuey) m m
yS Aweuedun ajy/siseq iy e0UepPlUOD (Y 1840 JUOIYD m s
Suw -
wE «-
377 $)90}40 owebouldsesuou gpusiod :senjea A3DIXO) Z°G O|qel m m




BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT )
THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO TOXICITY ASSESSMENT

humans. At sufficiently high doses, ionizing radiation acts as a complete
carcinogen (both initiator and promoter), capable of increasing the probability of
cancer development (EPA, 1994b). However, the actual risk is difficult to
estimate, particularly for the low doses encountered in the environment. Most
of the reliable data were obtained under conditions of high doses delivered
acutely. It is not clear whether cancer risks at lower doses are dose-
proportional (i.e., the linear dose-response hypothesis) or whether the risk is
greatly reduced at low doses (i.e., the threshold hypothesis) (Latarjet, 1992;
Shadley and Wiencke, 1989; Rigaud et al., 1993; Lazo, 1994; Oftedal, 1989;
Casarett and Doull, 1991). A conservative assumption rejects the threshold
hypothesis and assumes that any dose and dose rate add to the risk of cancer.

Risk factors published in HEAST and IRIS correlate the intake of carcinogens
over a lifetime with the increased excess cancer risk from that exposure. The
most recent cancer SFs for the uranium-234/-238 radioactive decay series and
the chemical carcinogen arsenic are given in Table 5.1.
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT
THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO HUMAN HEALTH RISK EVALUATION

6.0 HUMAN HEALTH RISK EVALUATION

Health risks to an individual or population are evaluated by combining the results of both
the exposure and toxicity assessments. As discussed in Section 5.0, potential adverse
health effects and their severity depend on the amount of the contaminant an individual
takes into his or her body. At lower levels, many contaminants associated with the
uranium processing are beneficial to health, because they are essential nutrients. At higher
jevels, these same elements can cause adverse health effects.

6.1

POTENTIAL NONCARCINOGENIC HEALTH EFFECTS

Eight contaminants of potential concern for the mill tailings area (cadmium,
manganese, molybdenum, selenium, sodium, sulfate, uranium, and vanadium)
and five for the raffinate ponds area (chioride, manganese, sodium, suifate, and
uranium) are evaluated probabilistically. The remaining contaminants of
potential concern (antimony and lead for the mill tailings area and antimony,
arsenic, cadmium, lead, molybdenum, selenium, and thallium for the raffinate
ponds area) are evaluated by comparing estimated daily intake values to the
acceptable intake levels recommended by the EPA (oral RfD values), as well as
to toxicity ranges.

The results from the exposure assessment showing either the highest intake-to-
body-weight ratios (i.e., highest doses) or the toxicologicaily most sensitive
group are used to evaluate potential health effects of noncarcinogens. Infant
exposures are used to evaluate the health risks of sulfate exposure, because this
is the most toxicologically sensitive population. Although infants appear to be
more sensitive than other groups of population to manganese toxicity,
insufficient data are available to support a quantitative analysis. Therefore, for
antimony, arsenic, cadmium, chloride, lead, manganese, molybdenum, selenium,
sodium, thallium, uranium, and vanadium, the highest intake-per-body-weight
group is children 1 to 10 years old.

Exposure to sulfate presents the most notable health risk associated with the
contaminated ground water at the Durango processing site. As can be seen in
Figure 6.1A for the mill tailings area, almost 100 percent of the exposure
distribution for sulfate is in the range where mild diarrhea could be expected in
infants, and about 60 percent of the expected exposures could be in the range
of severe diarrhea, which can lead to dehydration. The risk could be more
serious at the raffinate ponds area, where almost the entire exposure
distribution for sulfate is within the range where severe diarrhea, with resulting
dehydration and potentially death, would be expected in infants {Figure 6.1B).
Further, these effects would be expected after very short-term exposures.
However, these high sulfate concentrations may cause the water to be
unpalatable to infants, thus reducing their exposure.

Because the predicted sulfate toxicity from drinking water is so severe, and
because this is the only exposure pathway for infants, any additive contribution
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT
THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO HUMAN HEALTH RISK EVALUATION

from other dietary or environmental sources would not alter the interpretation of
health risks.

The exposure distribution for infants is based on tap water intake rates across a
population that includes breast-fed and canned-formula-fed infants. Infants
consuming powdered or concentrated formula reconstituted with well water
would be in the upper percentiles of this exposure distribution and would be at
higher risk of severe diarrhea.

Drinking ground water, especially at the raffinate ponds area, would lead to
acute toxicity due to sulfate levels, which could preclude chronic exposures.
However, because different ground water contaminants flush out at different
rates and because remedial action strategies may differ for different
contaminants, the effects from long-term exposures to contaminants other than
sulfate are also discussed.

The entire exposure distributions for manganese (Figure 6.2A and B) are above
the threshold level of mild neurological symptoms and above the EPA RfD
derived from drinking water consumption studies for both the mill tailings and
raffinate ponds areas. These symptoms could include memory loss, irritability,
or muscle rigidity and tremors. Approximately 10 percent of these exposure
distributions are above the threshold level of Parkinson-like disease. As
discussed in Section 5.1.6 and earlier in this section, infants may be more
susceptible to manganese toxicity than children and adults. Therefore, toxic
effects may appear in infants at levels lower than those in Section 5.1.6.

Sodium exposures would be associated with the development of hypertension in
children as well as in adults following even short-term exposures. The adverse
health effects could be more serious from exposure to sodium-contaminated
ground water at the raffinate ponds area than the mill tailings area. As can be
seen in Figure 6.3A for the mill tailings area, 60 percent of the exposure
distribution for sodium is above the threshold level of hypertension in humans.
For the raffinate ponds area, 99 percent of the exposure distribution for sodium
could be associated with hypertension (Figure 6.3B). In addition, chloride
exposure from contaminated ground water at the raffinate ponds area and, to a
lesser extent, at the mill tailings area may contribute to the development of
hypertension. At the raffinate ponds area, about 70 percent of the exposure
distribution for chloride alone may be associated with hypertension in sensitive
individuals (Figure 6.4), although some uncertainty is associated with these
studies. Renal insufficiency or the liver disease would augment this health
effect.

About 40 percent of the molybdenum intake distribution from contaminated
ground water at the mill tailings area falls above the acceptable intake level
recommended by the EPA (RfD of 0.005 mg/kg-day). However, only 15 percent
of this intake is above the threshold level of mild toxicity, which may manifest
as copper deficiency and increased production of uric acid (Figure 6.5). The
estimated molybdenum exposure levels for the raffinate ponds area (Table 6.1)
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HUMAN HEALTH RISK EVALUATION

BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION
AT THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT
THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO HUMAN HEALTH RISK EVALUATION

are twice the EPA oral RfD and could be associated with mild toxicity resulting
from copper deficiency (Section 5.1.7) if ground water were ingested for long
periods of time.

Eighty percent of the predicted exposure range for cadmium detected in ground
water at the mill tailings area (Figure 6.6) is above the EPA-derived oral RfD;
however, less than 1 percent of this exposure range may by associated with
symptoms of mild kidney toxicity, including proteinuria. The cadmium intake
level from ingesting contaminated ground water at the raffinate ponds area
(Table 6.1) could be associated with mild kidney toxicity (Section 5.1.3). This
cadmium intake is four times the EPA acceptable intake level. Diabetics and the
elderly may be more sensitive to cadmium toxicity because of their already
impaired kidney function. Therefore, toxic effects may appear in these sensitive
individuals at lower levels than those presented in Table 6.1 and Section 5.1.3.

For selenium levels detected in ground water at the mill tailings area,
approximately 85 percent of the exposure distribution falls below the acceptable
intake level recommended by the EPA (RfD of 0.005 mg/kg-day) and about

1 percent of the intake is above the threshold level for symptoms of mild
toxicity, including nail and hair brittleness or loss (Figure 6.7). The selenium
intake level at the raffinate ponds area is four times the EPA oral RfD (Table 6.1)
and could also cause symptoms of mild selenosis (Section 5.1.8).

Almost the entire vanadium exposure distribution falls below any level
associated with adverse health effects (Figure 6.8); however, about 80 percent
of the estimated exposure range for vanadium detected in ground water from
the mill tailings area is above the EPA-derived oral RfD.

With regard to noncarcinogenic effects (carcinogenic effects will be discussed in
Section 6.2), the entire exposure distributions for uranium at both the mili
tailings and raffinate ponds areas fall within the NOAEL range (Figure 6.9A and
B). However, almost 100 percent of the exposure distribution for the mill
tailings area (Figure 6.9A) and 93 percent of the exposure distribution for the
raffinate ponds area (Figure 56.9B) are above the EPA acceptable intake level
(RfD of 0.003 mg/kg-day).

Cadmium and uranium exposures, however, should be considered additive,
because they both affect reabsorption in the proximal tubule of the kidney. This
causes protein and other nutritive compounds to be excreted in the urine rather
than retained by the body. The levels of uranium detected at both the mill
tailings and raffinate ponds areas, however, are well below its threshold for
these effects; nonetheless, the presence of both of these metals indicates a
potential for additive effects and, as noted previously, diabetics and the elderly
may be more sensitive to these toxic effects on the kidney.

Aithough the antimony exposures slightly exceed the EPA oral RfD at the mill
tailings area, and antimony and thallium exceed it more than an order of
magnitude at the raffinate ponds area (Table 6.1), these intake levels fall within
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT
THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO HUMAN HEALTH RISK EVALUATION

the dietary intake range (0.007 to 0.04 mg/kg-day for antimony) and/or are well
below any level associated with adverse health effects (Sections 5.0, 5.1.1, and
5.1.11). _

Exposure levels for noncarcinogenic effects of arsenic detected in contaminated
ground water at the raffinate ponds area exceed the EPA oral RfD by roughly an
order of magnitude (Table 6.1). However, no adverse health effects would be
expected from this level of arsenic exposure (Section 5.1.2). In addition,
arsenic and selenium together may reduce their respective toxicities; however,
some methylated metabolites of selenium can increase arsenic toxicity.

These apparent discrepancies seen between the EPA acceptable intake levels
(RfDs) and the intake levels of uranium, antimony, thallium, and arsenic reported
in scientific literature to be associated with adverse health effects occur largely
because the toxicological database is incomplete. EPA takes this uncertainty
into account by lowering the acceptable intake levels. Although these levels of
uranium, antimony, thallium, and arsenic have not been associated with adverse
health effects in humans or test animals, it is important that a portion of the
exposure distributions fall above the RfD criterion.

If contaminated ground water from either the mill tailings area or the raffinate
ponds area were used as drinking water, the levels of potential exposure to lead
detected (Table 6.1) could be associated with some of the adverse health
effects of lead, particularly hematological changes and changes in children’s
neurobehavioral development (Section 5.1.5). These changes may occur at
intake levels as low as to be essentially without threshold. For this reason, the
EPA considers it inappropriate to develop an oral RfD for inorganic lead.

Finally, diarrhea-induced dehydration may lead to increased concentration of
contaminants in the kidney, enhancing the predicted toxicity from sodium and
nephrotoxic metals.

The potential exposure contribution from other pathways, including produce
ingestion or meat ingestion, could not be estimated with current data. The
UMTRA Project is conducting additional studies, and the results will be used to
better characterize these pathways. Although drinking water ingestion is
assumed to result in the greatest exposure, these pathways may contribute
substantially to overall exposure. Additionally, these pathways are of interest
because plant uptake and food chain transfer can occur under current site
conditions (i.e., without installation of a well).

Another pathway considered feasible for this site is fish ingestion. Again, there
are not sufficient data to evaluate this pathway or even to determine whether
fish are concentrating site-related contaminants. However, based on fish
analyses obtained by the BOR for fish 8 mi (13 km) upstream and downstream
from the site, fish ingestion may cause an increased dietary intake of certain
elements that could make people who eat fish toxicologically sensitive to
additional exposures (i.e., ground water ingestion). Of the contaminants of
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6.2

6.3

potential concern for the site, intakes of antimony, arsenic, cadmium, lead,
manganese, and selenium from fish ingestion could increase estimated
background dietary ranges and consequently increase risks described here for
ground water ingestion or other pathways not evaluated.

POTENTIAL CARCINOGENIC HEALTH EFFECTS

All uranium isotopes are radioactive and, as such, are considered carcinogens.
Table 6.2 shows estimated excess lifetime cancer risks resulting from potential
ingestion of ground water contaminated with uranium-234/238 and longer-lived
radioactive progeny of the uranium decay series (lead-210, radium-226,
polonium-210, and thorium-230) at the mill tailings and raffinate ponds areas.
These estimates are based on the cancer SFs developed by the EPA; however,
natural uranium has not been demonstrated to cause cancer in humans or
animals following ingestion exposures. The potential exposure values result in
an excess lifetime cancer risk of about 1 in 1000 for the mill tailings area and 2
in 10,000 for the raffinate ponds area. These exceed the EPA’s National
Contingency Plan (NCP) guidance (developed for Superfund sites) of a maximum
increased cancer risk of 1 in 10,000.

If contaminated ground water at the raffinate ponds area were used as drinking
water, the risk of skin cancer could increase as a result of long-term exposure to
detected arsenic levels (Table 6.2). This evaluation is based on the EPA oral SF
of 1.8 (mg/kg-day)‘1 for skin cancer development. The estimated arsenic
exposure value could result in an excess lifetime cancer risk of about 4 in 1000
and could exceed the NCP guidance.

The cancer risk estimates presented here are thought to be conservative
because they are based on a cumulative 30-year exposure duration. As
previously discussed, this exposure duration is probably appropriate; however,
ground water concentrations may decline over this time because the site has
been cleaned up.

LIMITATIONS OF RISK EVALUATION

The following potential limitations should be kept in mind when interpreting this
risk evaluation.

® This risk assessment evaluates only risks related to ground water
contaminated with inorganics. Any potential contamination with organic
constituents has not been addressed.

® Populations with potentially increased sensitivity, such as the elderly or
individuals with preexisting diseases, were not specifically addressed on the
toxicity ranges presented on the graphs. Expected sensitivities in certain
groups were discussed in the text to the extent possible.
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT
THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO HUMAN HEALTH RISK EVALUATION

Some individuals may be more sensitive to the toxic effects of certain
constituents for reasons that have not been determined. Therefore, adverse
health effects may occur at lower exposure levels in sensitive individuals.

Available data on potential adverse health effects may not always be
sufficient to accurately determine all health effects because human data are
not sufficient or exposure ranges differed from exposures expected at this
site.

Although contaminated ground water movement has been evaluated
hydrologically and geochemically; it is possible that the monitoring locations
sampled were not in the most contaminated portion of the ground water.
Additionaily, concentrations may increase or decrease substantially as the
contaminated ground water moves.

The risk evaluation results presented in this document are largely based on
filtered (0.45-uym) ground water samples. Therefore, the potential loss of
certain ground water constituents as a consequence of filtration is
associated with a source of uncertainty.

Only the drinking water ingestion pathway was considered in depth, and the
dermal absorption pathway was screened out. - However, the incremental
contribution from the ground water-irrigated produce and meat ingestion
pathways, which could not be estimated here, could be notable. Therefore,
the additivity of exposure from other pathways or from increased regional
background levels or dietary intakes (e.g., from fish ingestion) should be
kept in mind.

The evaluation presented here has considered these limitations and
compensated wherever possible by presenting toxicity ranges and probabilistic
exposure assessments rather than point estimates to incorporate as much
variability as could be reasonably defined. The impact of these potential
limitations is discussed more fully in Section 8.2.
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7.0 ECOLOGICAL RISK EVALUATION

This section assesses the potential for site-related contaminants to adversely affect the
existing biological communities or agricultural practices in the area. Currently, the EPA has
no guidance for quantifying ecological impacts of the release of hazardous constituents;
however, the EPA has developed a qualitative approach to be used in ecological risk
evaluations (EPA, 1989b). As part of this qualitative approach, the EPA recommends that
ecological assessments be conducted in a phased approach, because it ensures the most
effective use of resources while resuiting in all necessary work being conducted (EPA,
1992b). This approach consists of four phases:

® |dentification of potentially exposed habitats.
® Collection and analysis of site chemistry data.
® Collection and analysis of biological samples.
® Toxicity testing.

If the initial inspection of the habitats or the analysis of media samples indicates that there
is no or very low potential for an ecological risk, the assessment may be complete. If the
early phases of the assessment indicate that the contaminants may be adversely affecting
ecological receptors, a higher level of analysis may be warranted. This ecological risk
assessment of the Durango site consists of the first two phases: identification of habitats
and collection of site chemistry data.

It is often difficult to determine whether contaminants have affected the biological
component of an ecosystem and to predict whether observed effects will damage the
ecosystem. However, the sampling of environmental media can be used to assess the
possibility of an ecological risk occurring. For such a risk to occur, a source of
contamination must exist and there must be pathway for this contamination to reach the
biological communities. The following sections identify 1) the areas of contamination and
the potential pathways by which this contamination may be entering the aquatic and
terrestrial ecosystems at the Durango site, 2) the potential ecological receptors at the site,
3) the contaminants of potential concern, and 4) the potential hazards the contaminants of
potential concern may pose to the ecological or agricultural resources.

7.1 EXPOSURE CHARACTERIZATION

This section characterizes the probable and possible pathways through which
ecological receptors are likely to be exposed to site-related contaminants.
Exposure can occur only if there are both a source of contamination and a
mechanism of transport to a receptor population.

Between 1986 and 1991, the tailings piles and soils contaminated from uranium
milling operations (mill tailings area) and raffinate (raffinate ponds area) were
relocated to a disposal cell. The former mill tailings area and raffinate ponds
area were then contoured and planted with grasses. Thus, soil or air exposure
pathways (such as incidental soil ingestion, dermal contact with soil, and
inhalation of particulates) will not be evaluated.
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7.2

Ground water, surface water, and sediment are the potentially affected
environmental media at the site. Direct and indirect exposure of ecological
receptors to these media may occur by various surface- and ground water-
related exposure pathways (such as ingestion of surface water, ingestion of
sediment or ground water, bioconcentration of contaminants from surface water
or sediment by aquatic organisms, and consumption of plants and other
organisms that have accumulated contaminants).

The Durango site is bordered by Lightner Creek to the north, an ephemeral
stream (South Creek) to the south, and the Animas River to the east. Lightner
Creek does not likely receive contaminated ground water from the site, although
it was used historically to discharge wastes. Because South Creek does not
appear to be hydrologically connected to contaminated ground water at the site,
it is not evaluated in this risk assessment.

Ground water at the mill tailings area moves predominantly through the alluvium
overlying the low-permeability Mancos Shale bedrock and discharges into the
Animas River to the east. Ground water moving beneath the raffinate ponds
area also discharges into the Animas River. Resident aquatic life and terrestrial
wildlife may come in contact with surface water and sediments in these water
bodies. Although the site contaminants appear to have a negligible impact on
surface water quality in the Animas River, the surface water, in addition to
sediment pathways, is evaluated to determine risks to aquatic and terrestrial life.

Terrestrial vegetation may take up contaminants from ground water. Due to the
presence of shallow alluvial ground water at both the raffinate ponds area and
the mill tailings area, plant roots may reach soil saturated with contaminated
ground water.  As such, plant uptake is considered in this risk assessment.

Other potential pathways involve the use of surface water mixed with ground
water as a source of water for livestock or other agricultural activities. The BOR
has plans to construct the Durango pumping plant, a feature of the Animas-La
Plata Project, on the former raffinate ponds area of the Durango site. The
Animas-La Plata Project would furnish water for municipal and industrial use and
for irrigation for southwest Colorado and northwest New Mexico. The plant
would pump water directly from the Animas River. Because of uncertainties
associated with this construction project, pathways related to this project are
not evaluated in this risk assessment.

ECOLOGICAL RECEPTORS

This section identifies the ecological resources present at the site and in its
vicinity that may be potentially exposed to site-related contaminants. The
following information on ecological receptors is based primarily on surveys
performed prior to removal activities (DOE, 1985; Dames & Moore, 1983) and
on surveys performed as part of the Animas-La Plata Project (BOR, 1980).

DOE/AL/62350-175 14 SEPTEMBER 1995

REV. 1, VER. 1

DUROOSF1.WP7

7-2
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Limited observations of aquatic organisms were conducted at surface water and
sediment sampling locations during November 1993 sampling activities. Limited
observations of terrestrial flora and fauna were also conducted during the
November 1993 field sampling and during a ground water use/field survey in
June 1994.

Jerrestrial resources

Most of the land within the site boundary has been disturbed by milling
operations and subsequently during tailings/contaminated soil removal, which
included excavation to the bedrock in places.

Flora

Vegetation at the Durango site was characterized prior to removal activities
(DOE, 1985; Dames & Moore, 1983). At that time, the site was highly
disturbed and contained limited vegetative cover and habitat. Patches of
smooth brome occurred across the site as part of revegetation efforts. Alfalfa
and Kentucky bluegrass were minor constituents of this vegetation. Riparian
scrub, present along the Animas River adjacent to the site, was composed
primarily of narrowleaf cottonwood and boxelder with thickets of willow and
river alder common in the understory. Vegetation found on the upper slopes of
Smelter Mountain adjacent to the processing site consisted of Utah juniper,
boxelder, Gambel oak, skunk bush, and Oregon grape. Rubber rabbitbrush and
big sagebrush were predominant on the lower, gentler slopes of Smelter
Mountain.

Upon completion of removal activities, both the mill tailings area and the
raffinate ponds area were contoured and seeded with grasses. These grasses
included smooth brome, Kentucky bluegrass, western wheatgrass, blue grama,
gallets, and saltgrass. Along the site side of the river, riparian habitat is
predominantly an open field or rocky shoreline with scattered small willow,
boxelder, and cottonwood. Near the city park and sewage treatment plant
across from the site, open woods are present, including large boxelders,
cottonwoods, and willows. Thickets of cottonwood and willow mixed with
grasses are present along the river, opposite the raffinate ponds area.

Fauna

Wildlife is limited at this site because of its disturbed nature and its proximity to
roads and highways. Wintering bald eagles occur along the Animas River, and
mule deer cross the area while using adjacent upland habitat and the Animas
River. Various small mammals and birds were observed on the site prior to
removal activities, including cottontail rabbits, deer mice, black-billed magpie,
northern flicker, barn swallow, American robin, red-winged blackbird, and
Brewer’s blackbird. Signs of mule deer and cottontail were found on the
Durango site during the June 1994 survey. Numerous barn swallows, red-
winged blackbirds, robins, and Brewer’s blackbirds were also seen at this time.
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7.2.2

7.2.3

A garter snake was observed along the banks of the Animas River, and trees
gnawed by beaver were observed along the river near the mill tailings area,
although no beaver colonies were seen.

Aguatic organisms

No gquantitative survey of aquatic organisms has been conducted to date. A
brief qualitative survey was performed during the November 1993 field
sampling.

The Animas River from the mouth of Junction Creek to the Colorado-New
Mexico state line has been classified by the state of Colorado for class 1 cold
water aquatic life uses. Previous investigations in the site vicinity (DOE, 1985;
BOR, 1980) indicate that the only notable trout fishery in the Animas River,
consisting of rainbow trout, cutthroat trout, and brown trout, occurs within the
city limits of Durango and approximately 5 mi (8 km) downstream. This fishery
results from an intensive stocking program by the Colorado Division of Wildlife.
The quality of the Animas River sport fishery approximately 10 mi (16 km)
downstream degrades considerably because of siltation, high summer water
temperatures, and low summer velocities. Fish species in this lower reach
include biluehead sucker, flarinelmouth sucker, carp, and occasional brown trout.
Other species identified in the Animas River in Colorado include cutthroat trout
and mottled sculpin (BOR, 1980).

Threatened and endangered species

The following information on threatened and endangered species in the vicinity
of the Durango site was adapted from the environmental impact statement
(DOE, 1985) and the Animas-La Plata Project draft environmental impact
statement (BOR, 1980). Further information on threatened and endangered
species can be found in these documents.

Several plant and animal species listed or proposed for listing by the U.S. Fish
and Wildlife Service as endangered and threatened occur or could occur in the
Durango area. They include the peregrine falcon, bald eagle, ferruginous hawk,
Swainson’s hawk, spotted bat, spineless hedgehog cactus, and Mesa Verde
cactus.

There are some historical bald eagle nest sites in the Durango area, but they are
not known to be used. Bald eagles commonly winter in the Durango area.
Potential nesting habitat for the peregrine falcon exists within 1 mi (1.6 km) of
the Bodo Canyon disposal site.
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7.3

7.3.1

7.3.2

CONTAMINANTS OF ECOLOGICAL CONCERN
round water

Ground water occurs in a shallow alluvial aquifer overlying bedrock at the mill
tailings site. At the raffinate ponds area, ground water occurs in the alluvium
and in the underlying Menefee/Point Lookout Formation.

All chemicals detected above background levels, or above method detection
limits where background data were not available, were considered to be
contaminants of potential concern in ground water. For the raffinate ponds
area, DOE monitor well DUR-02-602 was selected to represent the center of the
plume; for the mill tailings area, DOE monitor well DUR-01-612 was selected to
represent the center of the plume.

The exposure concentration used for ground water was the maximum detected
concentration within each well from sampling dates in April 1988 through
November 1993. Both filtered and nonfiltered concentrations measured in these
wells are used.

urf water an dimen

Surface water and sediment sampling locations are shown in Figure 3.1.

Surface water and sediment samples were collected in November 1993 from the
Animas River upstream of the confluence of the river and Lightner Creek and
downstream of Colorado Route 160 (location 652). Surface water and
sediment samples were collected from Lightner Creek upstream of the Durango
site near Cottonwood Campground (location 650).

The list of contaminants of potential concern in the surface water bodies
adjacent to this site was developed from the same list of contaminants
evaluated for ground water. It is assumed that site-related contaminants in the
Animas River water may occur as a result of ground water discharge.
Therefore, site-related contaminants were modeled to estimate the contribution
of ground water contaminant flow into the Animas River. This model (Tables
3.18 and 3.19) shows that ground water constitutes a small proportion of flow
in the river (less than 0.4 percent during low flow); therefore, contaminants are
quickly diluted. The modeled increment is added to the upstream surface water
concentrations. This sum and the observed downstream concentrations are
compared with available water quality criteria (Tables 7.1 and 7.2). Based on
these comparisons, there are no contaminants of potential concern in surface
water, because modeled values do not exceed available water quality criteria.
While the site contributions are far smaller than the available water quality
criteria, in three cases (cadmium, iron, and zinc), observed maximum
downstream values exceed the criteria. These exceedances are less than two
times their corresponding upstream measurements. However, the data are not
sufficient to determine whether the differences in upstream and downstream
concentrations are statistically significant. Unlike the modeled values, the levels
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION
AT THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO

ECOLOGICAL RISK EVALUATION
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BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT
THE URANIUM MILL TAILINGS SITE NEAR DURANGO, COLORADO ECOLOGICAL RISK EVALUATION

7.3.3

7.4

7.4.1

measured in these unfiltered samples could include suspended solids or
sediments.

The top several inches of sediment were sampled at several locations near the
site, including one immediately upstream of Lightner Creek (which is used as a
background sample). Samples were analyzed for a limited suite of analytes
associated with the site, as shown in Table 3.16. This sampling was conducted
to determine whether levels in near-surface sediment posed an immediate threat
to aquatic biota. Comparison of the upstream concentration to the maximum
detected downstream concentration indicates that arsenic and iron occur at
more than twice the upstream concentration. There are not sufficient data to
determine whether this difference is of statistical significance.

Constituents detected in Lightner Creek surface water and near-surface
sediments are compared to upstream locations, as shown in Tables 3.15 and
3.16. Based on this single sampling event, there do not appear to be site-
related impacts to surface water or sediment from Lightner Creek. Again,
additional data would be needed to more definitively evaluate these sediments.

Fish tissue data

The BOR has collected and analyzed fish from the Animas River. Two of the
sampling locations (approximately 5 mi [8 km] upstream and downstream of the
UMTRA Project site) may be relevant to the site because fish living some portion
of their lifespan near the site could travel this distance both upstream and
downstream from the site. Some of the levels of constituents associated with
the site are high in fish tissue compared to national ranges; however, there are
many sources of these same elements in the river, including natural occurrence
of the minerals along the river path, mining, other mill sites, and municipal and
industrial discharges. Because of the habitat range of fish and these muitiple
sources of contaminants, the meaningfulness if any, of these data with respect
to the Durango site cannot be determined.

POTENTIAL IMPACTS TO WILDLIFE AND PLANTS

Terrestrial risk

A number of potential exposure pathways were evaluated to determine risk to
terrestrial flora and fauna from exposure to contaminants in ground water and
surface water. Terrestrial vegetation can be directly exposed to contaminants in
ground water through root uptake where ground water occurs near the surface.
Contaminants may bioaccumulate in various plant parts and exert a wide range
of influence, depending on the specific contaminant. Plant uptake rates vary
greatly among species and are affected by factors such as soil characteristics
{e.g., pH, moisture, redox potential, organic matter), plant sensitivity, input-
output balances, or cumulative effects of various factors.
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Foraging wildlife can be indirectly exposed to contaminants in ground water by
ingesting plants that may have bioconcentrated certain contaminants.

Terrestrial wildlife can also be exposed to contaminants in surface water directly
by ingesting ground water seeps or sediments or indirectly by ingesting aquatic
organisms that have accumulated contaminants from sediments.

Vegetation

In areas where the depth to ground water is shallow, some plants could have
rooting zones in soils that contain contaminated ground water. These
contaminants could be phytotoxic {poisonous to plants) and could transfer to
the food chain. Concentrations of the contaminants of potential concern in
plant tissue, based on uptake from ground water, could not be estimated from
available data. The UMTRA Project is currently conducting plant uptake studies;
the results will be included in future site documents.

Table 7.3 shows concentrations of contaminants of potential concern that are
toxic to plants when grown hydroponically in nutrient solutions with these
concentrations. Ground water concentrations of arsenic, cadmium, lead,
manganese, selenium, thallium, vanadium, and zinc exceeded the phytotoxicity
values, indicating plant growth could be hindered. Among crops sensitive to
these elements are spinach, sunflower, or soybean.

Wildlife

The exposure of terrestrial organisms from ingesting plants or animals with
accumulated contaminants is a potential exposure pathway at this site. Birds
and other vertebrates consuming these plants and animals can bioaccumulate
some of the contaminants of potential concern if the amount ingested exceeds
the amount eliminated. This is often a function of the areal extent of
contamination versus the areal extent of the animal’s feeding range. Therefore,
although exposure via the diet may be possible, the potential for
bioaccumulation is not always a concern.

Biomagnification is a potentially more severe situation in which the
concentration of a constituent increases in higher levels of the food chain
because the contaminants are accumulated through each successive trophic
level. Of particular concern for biomagnification effects are the top predators,
especially carnivorous birds and mammals. Only a limited number of
constituents have the potential for magnifying in the food chain. Based on
available information on the contaminants of potential concern and the limited
areal extent of potentially affected vegetation, the potential for the
contaminants to present a hazard via food chain transfer is probably low.

Other potential pathways of exposure to wildlife include the ingestion of water
from ground water seeps or affected soils. Additional characterization of the
site would be needed to determine whether these exposures occur and whether
they represent a risk to wildlife.
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Table 7.3 Comparison of contaminants of potential concern in ground water with available
water quality values and phytotoxic concentrations, Durango, Colorado, site?

Maximum detected concentration

Wi taiogs wea  Raffnato ponds wen ity e e
Contaminant (DUR-01-612) (DUR-02-602) value plants®
Ammonium 0.2 35 0.024 NA
Antimony 0.023 (0.025) ND 0.030 NA
Arsenic 0.05 {<0.005) 0.164 (0.04) 0.15 0.001
Barium 0.03 (<0.1) 0.01 {<0.1) NS NA
Cadmium 0.07 (0.0475) 0.081 (<0.001) 0.012° 0.05
Calcium 476.5 (449.5) 491 {475) NS NA
Chloride 795 (955.5) 2400 (2380} 230 NA
Copper 0.03 (<0.02) 0.02 (<0.02) 0.159¢ 0.03
Fluoride 1.7 (1.2) . 0.4 (0.2) NS NA
Iron 0.12 (1.26) 1.11 (2.45) 1 10
Lead 0.03 (0.012) 0.07 (<0.01) 0.27° 0.02
Lead-210 (3.4 pCilL) ND NS NA
Magnesium 306 (299.5) 724 (644) NS NA
Manganese 6.70 (6.185) 1.62 {1.40) 1 4
Molybdenum 0.27 (0.13) 0.15 (<0.01) 0.79f 0.5
Nickel 0.05 {<0.04) 0.05 (<0.04) 0.93° 0.2
Nitrate (6.5) 13.7 (<1) 909 NA
Polonium-210 {0.1 pCilL) {0.1 pCilL) NS NA
Radium-226 0.5 pCi/lL 0.2 pCi/L 5 pCi/lL NA
(1.2 pCilL) (0.1 pCilL)

Selenium 0.226 {0.074) 0.763 (0.063) 0.005 0.7
Silica 23.2 (22.7) 24.9 (22.8) NS NA
Silver 0.03 {<0.01) 0.04 (<0.01) 0.055° 0.1
Sodium 1200 (1190) 5000 (3260) NS NA
Strontium 3.42 11.1 NS NA
Sulfate 3360 (3090) 11,100 (7720) NS NA
Thallium 0.01 (<0.005) 0.06 (<0.01) 0.015 0.02
Thorium-230 {0.95 pCilL) (1.4 pCilL) 60 pCi/l NA

Tin 0.068 (0.015) 0.199 (0.133) NS 100
Uranium 4.67 (3.985) 0.602 (0.101) 41¢ 40
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Table 7.3 Comparison of contaminants of potential concern in ground water with available
water quality values and phytotoxic concentrations, Durango, Colorado, site?
(Concluded)

Maximum detected concentration
Mill tailings area Raffinate ponds area

Aquatic life Concentration in

water quality water toxic to
Contaminant {DUR-01-612) (DUR-02-602) value? plants®
Vanadium 0.61 (0.505) 0.07 (<0.01}) NS 0.5
Zinc 3.27 {3.185) 0.021 {0.015) 1.3° 0.4

8All concentrations reported in milligrams per liter for filtered and unfiltered samples, unless otherwise
specified. Unfiltered concentrations are in parentheses. If two concentrations are not provided, filtered and
unfiltered samples were not analyzed for this constituent.

bThe lower of the values specified by the Colorado Department of Public Health and Environment (CDPHE) or
by the Clean Water Act {CWA). CDPHE values are obtained from the Basic Standards and Methodologies for
Surface Water, 3.1.0 (5 CCR 1002-8), CDPHE, Water Quality Control Commission {CDPHE, 19391). Aquatic
quality are standards protective of aquatic life via chronic exposure and are for filtered samples.
Agricultural-use values are based on total recoverable metals. CWA values are obtained from EPA, 1991.
CDPHE values were used for hardness-dependent criteria.

®Tested concentrations that caused at least a 20 percent reduction in plant growth or yield when grown in
nutrient solutions (Will and Suter, 1994).

9Vaiue is for ammonia.

®Water hardness-related state standard (CDPHE, 1981), calculated using a contaminant-specific equation and
the average hardness determined for calcium and magnesium from filtered samples.

fNo state or federal criteria are available. Value presented is for newly fertilized eggs of rainbow trout, which
are sensitive to molybdenum concentrations above 0.79 mg/L (Eisler, 1989).

9No state or federal criteria are available. Value presented is the concentration at or below which no adverse
effects are expected for warmwater fish (EPA, 1986).

NA — not available.

NS — no state or federal water quality standard or criteria available.
ND — not detected above method detection limit.

pCi/L — picocuries per liter.
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7.4.2 Agquatic risk
rf water

Based on modeling of contaminated ground water flow into surface water,
limited sampling, and comparison of these modeled and detected values to
water quality criteria, no increment of risk to aquatic receptors would be
expected from surface water in Lightner Creek and the Animas River. However,
cadmium, iron, and zinc maximum observed concentrations in unfiltered water
samples slightly exceed levels protective of or toxic to aquatic life (Tables 7.1
and 7.2). While no water quality data are available for calcium, magnesium, and
sodium, these chemicals are considered to be essential nutrients and are not
associated with toxicity at the observed or modeled concentrations. No water
quality data are available for fluoride, silica, strontium, sulfate, tin, and
vanadium, but their very low estimated concentrations are not expected to be
associated with toxicity.

imen

There are no established state or federal sediment quality criteria for the
protection of aquatic life for inorganic contaminants. The EPA is evaluating a
methodology based on the three-phase sorption model for free metal ion activity
and is assessing its applicability for determining the bioavailable fraction within
sediments (EPA, 1989d). Several other predictive models and methods are
being investigated for metals, but no single approach has been accepted to
adequately develop sediment-based metals criteria (Shea, 1988; Chapman,
1989d; EPA, 1989; NOAA, 1990; OMOE, 1990; DiToro et al., 1991; Burton,
1991). The lack of adequate criteria coupled with the limited sediment sampling
conducted at the site preclude a thorough evaluation of sediments at this time.

National Oceanic and Atmospheric Administration (NOAA) effects-based
sediment quality values are available for evaluating the potential for constituents
in sediment to cause adverse biological effects. These values are not standards
or criteria. Effects range-low (ER-L) values are concentrations equivalent to the
lower 10th percentile of available data screened by NOAA; these values indicate
the low end of the concentration range in specific sediments at which adverse
biological effects were observed for various organisms. The NOAA ER-L values
are compared with the concentrations of the contaminants of potential concern
detected in sediment of the Animas River (Table 7.4). The ER-L cannot be used
as a direct indicator of adverse effects to benthic organisms, but it may provide
a benchmark for evaluating the potential for adverse effects.

Sediment quality values are available for arsenic, iron, lead, and zinc. In the
Animas River, the ER-L value for.iron was exceeded at sample iocations 656 and
654; the ER-L values for lead and zinc were exceeded at sample locations 691,
657, 656, and 654, and in upstream location 652. Based on the available
information, there is a limited potential for concentrations of iron, lead, and zinc
to adversely affect benthic organisms. It is not known whether these
concentrations are primarily naturally occurring or whether they are site-related.
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r w T

Potential risks to aquatic life that might be exposed directly to ground water
(e.g., if a pond were constructed and filled with ground water) were evaluated.
Maximum concentrations in filtered samples of all constituents detected in
ground water at each location were compared to available water quality values
(Table 7.3). In mill tailings area ground water, concentrations of ammonium,
cadmium, lead, manganese, selenium, silver, and zinc exceeded levels protective
of or toxic to aquatic life. In the raffinate ponds area, concentrations of
ammonium, arsenic, cadmium, chioride, iron, lead, manganese, selenium, silver,
and thallium exceeded levels protective of or toxic to aquatic life. Therefore,
ground water would not be suitable for filling a pond.

7.5 LIMITATIONS OF THE ECOLOGICAL RISK ASSESSMENT

The qualitative evaluation of potential ecological risks presented here is a
screening-level assessment. Sources of uncertainty in any ecological
assessment arise from the monitoring data, exposure assessments, toxicological
information, and inherent complexities of the ecosystem. In addition, methods
of predicting nonchemical stresses (e.g., drought), biotic interactions, behavior
patterns, biological variability (e.g., differences in physical conditions, nutrient
availability), and resiliency and recovery capacities are often unavailable. In
general, limitations for the Durango ecological risk assessment include the
following:

® Only a small amount of ecological data was collected during this screening.

® Little is known about site-specific intake rates for wildlife or amounts of
contaminants taken up by plants.

® Only limited ecotoxicological reference data are available.
® (Considerable uncertainty is associated with the toxicity of mixtures.

7.6 SUMMARY
This screening-level ecological risk assessment evaluated the potential for
adverse impacts to terrestrial flora and fauna and to aquatic organisms
associated with exposure to sediment, ground water, and surface water
contamination at the Durango site.
Based on limited sampling and on the use of ground- to surface-water flow
models, no increment of risk from the site to ecological receptors is expected

from surface water in Lightner Creek and the Animas River.

Based on available sediment data, it is difficult to determine whether sediments
at the site are contaminated from site-related activities. Concentrations of iron,
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lead, and zinc detected in sediments, reflecting both background levels and
possible site contributions, slightly exceeded sediment quality values.

There were also not sufficient data to evaluate potential risks to or from plants
that may have roots in contact with soil saturated with contaminated ground
water at the mill tailings area and the raffinate ponds area. Concentrations of
many contaminants of potential concern in ground water exceed levels that are
phytotoxic.

The potential for the contaminants of potential concern detected in media at the
site to represent a food chain hazard (via bioaccumulation and biomagnification)
is probably low, based on the limited areal extent and accessibility of
contaminants. However, no plant or animal tissue analyses have been
conducted at this site.

In summary, limited water and sediment quality values were available to
evaluate the impact of contaminated sediments and ground water on ecological
receptors. As with any qualitative ecological risk assessment, the uncertainty
inherent in this assessment can be reduced through additional characterization
and evaluation.
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8.1

8.0 INTERPRETATION AND RECOMMENDATIONS

RISK SUMMARY

The UMTRA Project is required by the UMTRCA to protect public health and the
environment from radiological and nonradiological hazards associated with 24
designated uranium mill sites. This baseline risk assessment was conducted for
the Durango site to evaluate the presence of these hazards at both the mill
tailings and raffinate ponds areas. This risk assessment is conservative in the
sense that it evaluates a residential scenario associated with the greatest level
of exposure from drinking the water from the most contaminated wells on the
Durango site. Because contaminated ground water is not being used by area
residents, human health is not currently at risk. This situation should continue if
land use and water use at the site remain the same. Changes of land use may
or may not create future risks. When specific land uses are determined for the
Durango site, these uses should be evaluated to identify potential health and
environmental risks from the contaminated ground water in the uppermost
aquifers.

Health risks could be associated with possible future use of contaminated
ground water from both the mill tailings and raffinate ponds areas; however,
such use is unlikely. At the mill tailings area, the risks associated with potential
future use of ground water for drinking are unacceptable for manganese,
molybdenum, sodium, sulfate, and lead. Severe diarrhea could result in infants
(the most sensitive population group) from short-term exposures to sulfate
levels. Sulfate-induced health effect is reversible and diarrhea would terminate
after substitution of water low in sulfate for contaminated water. Therefore,
sulfate acute toxicity could preclude chronic exposures. However, because
different ground water contaminants flush out at different rates and because
remedial action strategies may differ for different contaminants, the effects from
long-term exposures to contaminants other than sulfate are also discussed. This
water is potentially in the mild toxicity range following chronic ingestion
exposures to manganese and sodium. Manganese levels could produce minor
neurological symptoms, and sodium levels could cause hypertension. Mineral
imbalances resulting from copper excretion from the body could be associated
with molybdenum exposure levels. Lead levels could initiate subtle
hematological or behavioral changes in potentially exposed children. If this
ground water were used for drinking water, potential lifetime exposures to
radioactive uranium and progeny of natural uranium decay series could be
associated with an excess lifetime cancer risk of about 1 in 1000; this exceeds
the maximum excess cancer risk of 1 in 10,000 recommended by the EPA for
Superfund sites (40 CFR Part 300 (1994)).

At the raffinate ponds area, sulfate ingestion by humans and animals would
represent the primary risk associated with future use of contaminated ground
water. Drinking ground water from the contaminated zone could result in
sulfate intakes in the severe toxicity range for infants following even short-term
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exposures. Sulfate levels are associated with severe diarrhea, which may lead
to severe dehydration. However, these levels of sulfate and other ground water
contaminants would cause water to be essentially unpalatable, thus reducing its
potential for consumption. Although this sulfate toxicity could preclude chronic
exposures, as with the mill tailings area, the effects from long-term exposures
to contaminants other than sulfate are also discussed. Manganese, sodium,
chloride, molybdenum, cadmium, and selenium levels are potentially in the range
of mild toxicity. The manganese concentrations could be associated with the
development of mild neurological symptoms, the molybdenum concentrations
could lead to copper deficiency, and the selenium concentrations could result in
nail and hair brittleness or loss. Cadmium levels could result in symptoms of
kidney toxicity, including proteinuria. Lead levels could cause hematological or
behavioral changes in exposed children. Finally, the sodium and chloride levels
could result in hypertension. Diarrhea-caused dehydration may enhance the
toxicity of other contaminants, especially cadmium, manganese, molybdenum,
sodium, selenium, and lead. For the raffinate ponds area, lifetime excess cancer
risks associated with uranium and progeny of uranium decay series (about 2 in
10,000), and arsenic (about 4 in 1000) are also at levels that exceed the
maximum excess cancer risk of 1 in 10,000 recommended by the EPA (40 CFR
Part 300 (1994)). -

Note, however, that in the future resident scenario, only the people who would
drill a well in the most contaminated portion of the aquifer could experience
health problems discussed above. Drinking the water from a future well drilled
outside of the most contaminated area would be associated with risks lower
than estimated here. Furthermore, the ground water contaminant
concentrations will decline over time.

The potential exposure contribution from other pathways, including ingestion of
produce, meat, or fish, could not be estimated with current data. Although
drinking water ingestion is assumed to result in the greatest exposure, other
pathways may contribute to overall exposure and are of interest because plant
uptake and food chain transfer could occur under current site conditions.

The results of limited sampling and models of ground- to-surface-water flow
demonstrate that no increment of risk from the site to ecological receptors is
expected from surface water in Lightner Creek and the Animas River. There
also were not sufficient data to evaluate potential risks to or from plants that
may have roots in contact with soil saturated with contaminated ground water
at the mill tailings area and the raffinate ponds area. Concentrations of many
contaminants of potential concern in ground water exceed levels that are
phytotoxic. The potential for the contaminants of potential concern detected in
media at the site to represent a food chain hazard (via bioaccumulation and
biomagnification) is considered low, based on the limited accessibility of
contaminants. ‘
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8.2 LIMITATIONS OF THIS RISK ASSESSMENT

The following limitations to this evaluation of health and environmental risks
should be noted:

Because future land development is unknown, actual exposure pathways
could not be determined.

In general, the results presented in this document are based on filtered
(0.45-um) water samples. The effect of filtration differs for different
elements. Filtered samples for some constituents can have concentrations
equal to or lower than unfiltered samples. Constituents in suspension may
be lost with filtration but can still produce toxic effects if ingested and
broken down in the acidic environment of the stomach.

This risk assessment does not address all individual sensitivities to toxicity
of contaminants of potential concern. Contaminant toxicities vary from
person to person. Presenting probability distributions for potential exposure
and exposure ranges that can produce toxic effects emphasizes these
variabilities. However, it is not possible to account for all sources of
variability. Specific subpopulations known to be more sensitive to toxicity
of given constituents are noted. Adverse health effects might occur at
lower exposure levels in sensitive individuals.

Standardized reference values from regulatory agencies and literature values
are used to determine toxic effects in humans. However, some data
obtained from laboratory animal testing at exposure doses different from
those expected at the site were used to determine toxicity. The relationship
between dose and response is not always linear, and humans do not always
exhibit the same responses as animals. Additionally, data used to determine
toxicity generally are based on exposure to only the constituent of concern.
In reality, exposures generally occur simultaneously to multiple constituents.
The interactive effects of multiple constituents and the impact of these
interactions on expected toxicity generally cannot be accurately assessed
from existing data.

Although considerable effort was directed at determining contaminated
ground water movement and placing monitor wells in locations that capture
maximum contamination, variability in physical systems and models used to
determine contaminant plume migration could still result in well placements
that do not measure the highest contaminant concentrations or determine
the fullest extent of plume impact. On the other hand, because the major
source of contamination (the tailings and contaminated soils) at the Durango
site has been removed, the assumption of a constant source used in this
risk assessment may lead to an overestimation of risks. Because the
contaminant concentrations could be higher or lower than those used in the
analysis, the net effect of these uncertainties on future risk estimates
cannot be predicted at this time.
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8.3

® Some variability may have been introduced through sampling and analytical
processes. However, the data at UMTRA Project sites have been coliected
over many years and subjected to rigorous quality assurance procedures.
Testing multiple samples introduces high confidence in the reliability and
validity of the collected data.

® The incremental contribution from the ground water-irrigated produce-
ingestion or meat-ingestion pathways to the total exposure, which could not
be estimated here, could be notable. Therefore, the additivity of exposure
from other pathways or from higher regional background levels or dietary
intakes should be kept in mind.

® A limited amount of ecological data was collected for this screening. In
addition, little is known about site-specific intake rates for wildlife and
amounts of contaminants taken up by plants. Limited ecotoxicological
reference data and considerable uncertainty associated with the toxicity of
mixed contaminants add to the limitations of this risk assessment.

By presenting ranges of toxic effects, probable exposure distributions,
summaries of available data on health effects and interactions, and outlines of
potential limitations, this risk assessment ensures a reasonable interpretation of
potential health risks associated with ground water contamination at this site.
The assessment describes contamination and risk as accurately as possible,
based on available data, and conveys areas of uncertainties.

GROUND WATER CRITERIA

In 1983, the EPA established health and environmental protection standards for
the UMTRA Project (40 CFR Part 192). The standards were revised and the
final rule was published 11 January 1995 (60 FR 2854 (1995)). The ground
water standards consist of ground water protection standards to evaluate
disposal cell performance and ground water cleanup standards for existing
contamination at processing sites. Concentration limits for constituents at the
mill tailings and raffinate ponds areas are summarized in Tables 8.1 and 8.2,
respectively. Maximum concentration limits (MCL) are not established for every
contaminant; for contaminants without MCLs, background levels must be met.
The standards also allow for supplemental standards or alternate concentration
limits (ACL) where appropriate.

While these ground water standards apply specifically to the UMTRA Project,
the EPA has also published drinking water health advisory levels for both long-
term and short-term exposures. These advisories are also shown in Tables 8.1
and 8.2. ' :

At the mill tailings area (Table 8.1), ground water concentrations for antimony,
cadmium, lead, molybdenum, selenium, zinc, and uranium have consistently
exceeded the EPA ground water standards and/or the EPA health advisory
levels.
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8.4

For the raffinate ponds area (Table 8.2), ground water concentrations for
antimony, lead, molybdenum, selenium, thallium, and uranium have consistently
exceeded the EPA ground water standards and/or the EPA health advisory
levels.

RISK MITIGATION MEASURES

Short-term use of the contaminated ground water from the shallow aquifer
beneath the Durango site could cause adverse health effects. The former
processing site is located adjacent to the city of Durango and may be developed
in the future. The water from the affected aquifer is not known to be used for
any purpose. Nevertheless, access to the ground water should be restricted.

The EPA ground water standards define institutional controls as mechanisms
that can be effectively used to protect human health and the environment by
controlling access to contaminated ground water. Although the standards refer
to institutional controls for long periods of time {(e.g., up to 100 years during
natural flushing), they can also be applied to short-term restriction of access to
contaminated ground water. Since not all 24 UMTRA Project sites can be
evaluated simultaneously, short-term restrictions may be needed before remedial
action decisions are made and implemented for individual sites. '

il permi

All of the Colorado UMTRA Project sites are located on the Colorado Western
Slope and are outside designated ground water basins. Designated basins are
isolated hydrogeologic areas where ground water use is stringently evaluated
based on the demands for water rights. Construction of a new well in Colorado
outside designated basins requires a written application to the State Engineer for
a permit. The State Engineer is required to act on applications for new well
permits within 45 days after their receipt. If a well would affect existing water
rights or if an applicant wants to establish a legal right, adjudication would likely
be required prior to the permit being granted.

Ground water guality

The Colorado Department of Public Health and Environment (CDPHE) is the state
agency responsible for setting water quality standards. Within the CDPHE, the
State Water Quality Control Commission is responsible for adopting water
quality standards and classifications for state waters.

The state of Colorado’s proposed ground water quality standards require ground
water to be free of substances in concentrations shown to be "carcinogenic,
mutagenic, teratogenic or toxic to human beings and/or a danger to public
health, safety, or welfare.” (CDPHE, 1990).

The State Engineer is authorized to enforce the state water quality standards.
However, the State Engineer does not have jurisdiction to deny a permit for
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drilling a new well based on water quality, because domestic well water quality
is not regulated by the state. The State Engineer’s office can issue a warning to
well users if the well is placed in a known contaminated aquifer. Well water to
be consumed by 25 or more people does have to meet state water quality
standards, and use can be restricted by the CDPHE, Water Quality Control
Division, Drinking Water Section.

Land restricti

The former processing site is outside the Durango city limits and is currently not
subject to city requirements. La Plata County currently has jurisdiction over the
former processing site. Howaever, the land is within the city planning and
service area. Use of city utilities requires that all city ordinances be followed.
The city of Durango Code of Ordinances, Chapter 27, The Land Use and
Development Code, Article 10, Section 1053 (b), stipulates that all development
should be served by the Durango public water system. This ordinance prohibits
wells within the city limits. If the former processing site is annexed by the city,
it would be subject to the city requirements and restrictions. Land use on the
site would have to be approved by the city in consultation with the state and
potential property users. Currently, any proposed development of the former
processing site would be subject to a joint review by both the city of Durango
and La Plata County.

8.5 RECOMMENDATIONS

In general, the EPA ground water standards consisting of MCLs or background
concentrations are sufficient to protect human health and the environment.
However, in some cases, a risk assessment may identify site-specific factors
that suggest these standards may either be too restrictive or not restrictive
enough. When standards are too restrictive, there may be no potential for
exposure, and a less restrictive ACL may be sought. In other cases, the
standards may not be sufficiently protective (e.g., if many contaminants are
near the MCL with additive or synergistic adverse health effects).

At Durango, there is no permanent physical barrier to prevent access to
contaminated ground water at the former uranium processing site. Therefore,
ACLs could not be justified for constituents with MCLs. However, for
constituents that exceed background levels and do not have MCLs, this risk
assessment suggests that background levels are more restrictive than
necessary. This includes contaminants that were screened out because their
concentrations fall within nutritional levels (such as chromium, copper, and zinc)
and other contaminants (such as ammonium, nickel, strontium, and tin) that
were demonstrated to be at concentrations well below adverse health effect
levels. ACLs may be sought for these contaminants.

The levels of sulfate present a serious health risk if contaminated ground water
at the raffinate ponds area were used for drinking water. Although such use is
unlikely, the levels within the contamination zone substantially exceed levels
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that are reported elsewhere to cause diarrhea leading to dehydration in infants.
Therefore, future ground water use as drinking water in the areas of
contamination should be prevented until the level of contamination is reduced.

When specific land uses are determined for the site, these uses should be
evaluated at that time to identify potential health and environmental risks from
the contaminated media. For example, excavation is an activity that could
involve such risks.
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