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I diacneethe motivationk Anunation of ’the ei%cteofinitiahtate eoft ghwn
radiation,toallordereiu the8trongcouplingstrength,i%r~

.
in whichthe

n-tkeehdd regionin the partonicmilxrmrgyia bnportzuk I s=mm=ke the

method of ~erturbatiw- reeummation”and its applicationto the cakdation of
the totaleroseeectionfortop qprkproduction at hadroncolliders.Commentsare
includedon the di&renceebetweenthe trerkxocntof mbleding logarithmictennr
in this methodand in otherapproechee.

1 Iikroductiom and Motivation

In inc.hdve hadron interactionsat collider energies,tfpair production proceeds
through partonic hard-acatte+ng processesinvohringinitial-statelight quarksq
and gluons g. In lowest-order perturbative quantum chromodynamics (QCD),
at (ll(a~), the two partonic subproceasea are q + F # t+ f and g + g 4 t + f.
Calculations of the cross section through next-to-leading order, O(a~), involve
gluonic radiative corrections to these lowest-order subprocesaea as weH as con-
tributions from the q + g initial state 1. In this paper, I describe calculations
that go beyond fixed-order perturbation theory through resummation of the

234 to all orders in the strong coupling strength a,.effects of gluon radiation ‘ ‘
The physical cross section is obtained through the factorization theorem

(1)

The square of the total hadronic center-of-mass energy is S, the square of the
partonic center-of-mass energy is s, m denotes the top mass, p is the usual
factorization and renormalkation scale, and @ij(q, p) is the parton fl-. The
variable q = & – 1 measures the distance from the partonic threshold. The
indices ij G {q@, gg] denote the initial parton channel. The partonic cross
section eij (q, m, p) is obtained either from tied-order QCD calculations1, or,
as described here, from calculations that include of resummation 2’3’4 to all
ordera ‘m a,. I use the notation a E + = m) ~ ~. (rn)/T. The total physical
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cross section is obtained after incoherent addition of the contributions from
the qif and gg pr@uctiori @mmAs. .. ... -,,. ,

Compa&n of the parto$c cross section at next-to-leading order with
its lowest-order vaIue reveals that the ratio becomes very large in the near-
threshold region. Indeed, aa q ~ O, the “K-fwtor” at the partonic level l?(q)
grows in proportion to a ln2(q). The very kuge mass of the top qu~k, and the
correspondingly smalI value of a notwithstanding, the large ratio K(q) makes ,
it evident that the next-to-kading order result does not necessarily provide a

.,

rdiable quantitative prediction of the top quark production cross section at the
energy of the Tevatron collider. Analogous examples include the production of .“ - -”
hadronic jets that carry large values of transverse momentum, the production ‘.
of pairs of sup ersymmetric particks with large msss, and the pair-production
of a fourth-generation quark, such as the postulated F.

2 Gluon Radiation and I&summa tion

The origin of the’hrge threshold enhancement maybe traced to initial-state
gluonic radiative corrections to the lowest-order channels. I remark that I am
describing the calculation of the inclusive total cross section for the production
of a top quark-antiquark pair, i.e., the total cross section fort+ F+ anything.
The partonic subenergy threshold in question is the threshold fort+ i?+ any
number of gluons. This coincides with the threshold in the invariant mass of
the t + i’ system for the lowest order subprocesses only.

For i + j ~ t + $ + g, the variable z is defied through the invariant
(1-z)= ~, Wherek ~d ~ we the fo~-vector momenta of the ghmn ad

top quark. In the limit that z ~ 1, the radiated gluon carries zero momentum.
After cancellation of soft singularities and factorization of colkmar singulari-
ties in O(a~), there is a left-over integrable large logarithmic contribution to
the partonic cross section associated with “hitial-state gluon radation. This
contribution is often expressed in terms of “plus” distributions. In O(a~), it is
proportional to a3 ln2(l —z). When integrated over the near-threshold region
1 ~ z >0, it provides an excellent approximation to the full next-to-leadhg
order physical cross section as a function of the top mass 3.

Although a fixed-order 0(a4) calculation of tZpair production does not
exist, universality of the form of initial-state soft gluon radation may be in-
voked, and the leading logarithmic structure at C)(a4) may be appropriated
from the n-=t-to-next-to-leading order calculations of massive lepton-pair pro-
duction (U), the Drell-Yan process. In the near-threshold region, the hard
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kernel becomes -‘
. , .7-, ,..

(2}
The coefficient & = (IICA - 2nt)/12; the number of ffavors nt = 5; Cq4 =
CJ? = 4/3, and C~~ = CA = 3. The leading logarithmic contributions in each
order of perturbation theory are all positive in overidl sign so that the leading :.
logarithm th&shoM .&hancernent keeps buildi& in rnig&tude at &h fixed
order of perturlx@ion theory. ,..,.

The god of ghaon reaummation is to sum the aeri=” “k a“ ln2”(l - z) to all
ordera in a in order to obtain a more trustworthy prediction. This procedure
haa been studied extensively for the DreLYan process, and good agreement
with data is achieved. In essentially all resumrnation procedures, the large log-
arithmic contributions are exponentiated into a fimction of the QCD running
coupling strength, itself evaluated at a variable momentum scale that is a mea-
sure of the radiated gluon momentum. The set of purely leading monomials ‘
a* in’”(1 - z) exponentiates directly, with-a evaluated at a fixed large scale

P = ~ as may be appreciated from a glance at Eq. (2). This simple remit
does not m&.n that a theory of reaurnmation is redundant, even if only leading
logarithms are to be resummed. Indeed, straightforward use of the exponen-
tial of ~2Cij h2(l - Z) wotid lead to an exponentially divergent integrai (-d
therefore cross section) since the coefficient of the logarithm is positive. The
naive approach fails, and more sophisticated resummation approaches must be
employed.

Difkrent methods of resummation dHer in theoretically and phenomeno-
IogicaUy important respects. Formally, if not explicitly in some approaches,
an integral over the rdlated gluon momentum z must be done over regions in
which z a 1. Therefore, one significant distinction among methods has to. do
with how the inevitable “non-perturbative” region is handled.

The method of reaummation employed in my work with Harry Contopana-
gos 3 is based on a perturbative truncation of principal-value (PV) resumma-
tion 5. ThM approach has an important technical advantage in that it does
not depend on arbitrary infrared cutofi. Because extra scales are absent, the
method permits an evaluation of its regime of applicability, i.e., the region of
the gluon radiation phaae space where leading-logarithm resummation should
be valid. We work in the ~ factorization scheme.

Factorization and evolution lead directly to exponentiation of the set of
large threshold logarithms in moment (n) space in terms of an exponent Epv.
The function Epv is finite, and Iii+= Epv (n, m’) = –w. Therefore, the
corresponding partonic cross section is finite as z ~ 1 (n # +00).

.-

. .
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The fimction Em inchdea both perturbative and non-perturbative con-
tent. The non-perturbative content i3 not a prediction of pertu+mtivc QCD. ,.,,. ..j .,.
Contopanagos and I choose to use the exponent only in the inteivd in moment
space in which the perturbative content dominates. We derive a perturbative
asymptotic representation of B(z, a(m)) that is valid in the moment-space
interval

1
(3) ;:.

1.< z = ‘n < ‘:? ~;.;,:+. ..-: ‘ +++,:,.$,;.,... . “:’.
,,-,... . . . .. ..Z

The intervrdin Eq. (3) agrees with the intuitive definition of the perturbative .~:,,. : ~ -

region in which inverae—power contributior& are unimportant ~+; ~ L “-

The perturbative asymptotic representation ia

Here

8j,~ = -~1(–l)~j2f’c~~-j(p - l)!/~! ; (5)

ad r(l + Z) = ~&c&, where I’ is the Euler gamma function. The number
of perturbative t~ N(t) in Eq. (4) ia obtained 3 by optirnizin

1
g the asymp-

totic approximation IE(z, cr)-~(z, a, N(t))\ = minimum. Optimisation works

perfectly, with N(t)’= 6 at m = 175 GeV.lAs long ss n is in the interval of
Eq. (3), all the members of the family in n are optimized at the same N(t),
showing that the optimum number of perturbative terms ia a fiction oft, i.e.,
of m only.

Resummation ia completed in a finite number of steps. When the running
of the cou Iing strength a is included up to two loops, all monomials of the

?form akin ‘1 n, ak ln~ n are produced in the exponent of Eq. (4). We discard
monomials a~ Ink n in the exponent because of the restricted leadiig-logarithm
universality between t~production and massive lepton-pair production, the
Drell-Yan process.

The moment-space exponent that we use is the truncation

N(t)+l

Eij(Z, a, N) = 2Cij ~ apspxH1, (6)
p=l

with the coefMents SPs SM1,P = g-12~/p@+l). This expression contains no
factorially-growing (renormalon) terms. One can also derive the perturbative
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expre=hms, Eqs. (3), (4), and (5), without the principal-value prescription,
although with Iess certitude 3. ,

After inversion ‘of the hfellin transform from moment spti” to the physi-
cally relevant momentum space, the resummed hard kernel takes the form

The leading large threshold corrections are contained in the exponent l?~j(z, a),’
a calculable polynomial in Z. The fimctions {Qj(z, a)} arise from the ~
lytical inversiom of the Mdin transform from moment space to momentum
space. These functions are expressed in terms of successive derivatives of E.
Each Qi contains j more powers of a than of z so that Eq. (7) embodies
a natural power-counting of threshold logarithms. However, only the kud-
ing threshold corrections are universal. Final-state gluon radiation as well
as irdtial-state/fmal-state interference eifects produce subkiding logarithmic “
contributions that M& for processes with diiTerent final states. According.Iy,
there iz no physical basis for accepting the validity of the particukr subIeadirtg
t~ &t appear in Eq. (7). Among all {Qj} in Hq. (7)$ only the V- kdhg

one is universal, Qo, and it is the only one we retain. Hence, Eq. (7} can be
integrated explicitly, and the resummed partonic cross sections become

(8)

The derivative ~j(q, ~ z) = d(a$)(q$ m, z))/dz, and ~$) is the lowest-order

CJ(@ partonic cross section expressed in terms of inelastic kinematic vari-
ables. The lower limit of integration, ~im, is fixed by kinematics. The upper
limit, ~u <1, well specified within the context of our calculation, is estab-
lished by the condition of consistency of leadng-logarithrn resummation. It
is derived from the requirement that the value of all subleadiig contributions

Qj, j Z 1 be negligible compared to the Ieadhg contribution QO. The pres-
ence of ~ guarantees that the integration over the soft-gluon momentum
is carried out only over a range in whkh poorly specified non-universal suh
leading terms would not contribute significantly even if retained. We cannot
justi@ continuing the results of leading-logarithm resummation into the region
l>z>h.

To obtain the physical cross section, we insert the resummed expression
Eq. (8) into Eq. (1) and integrate over q, Perturbative resummation probes the
threshold down to q ~ ~ = (1-~.=) /2. Below th~ value, perturbation theory

..

.
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Figure1: Inclmive total crou sectionfor t& q&k production.The dashedcurvesshow
theuppcrandlowcr limit swhilethesolidcurveis 0= cent?d~Cti02L CDF and~ &ta
Breah-.

is not to be trusted. For m = 175 GeV, we determine that the perturbative
regime is restricted to values of the subenergy greater than 1.22 GeV above
the threshold (2rn) in the @ channel and 8.64 GeV above threshold in the gg
channel. The difference reflects the larger color factor in the gg case. The
value 1.22 GeV ia comparable to the decay width of the top quark, a natural
definition of the perturbative boundary and by no means unphysically large.

3 Physical cross section

Other than the top msss, the only undetermined scales are the QCD factor-
ization and renormalization scales. A common value p is adopted for both.
In Fig. 1, our total cross section for t~production is shown aa a function of
top mass in@ collisions at = = 1.8 TeV. The central value is obtained with
the choice p/m = 1, and the lower and upper Iiiits are the mtimum and
minimum of the cross section in the range p/m E {0.5, 2}. At m = 175 GeV,
the full width of thk uncertainty band ia about 10% . As is to be expected, less
variation with p is evident in the resummed cross section than in the next-t-
leadiig order cross section. In estimating uncertainties, Contopanagos and I
do not consider explicit variations of the non-perturbative boundary, expressed

6



through ~~. For a fixed m and p, ~ ia obtained by enforcing dominance ....

of the universal leading logarithmic termsover the subheadingones. Therefore, ~
~ is &rived and ia not a source of uncertainty. At fixed ~ the boundary

...... ..

necessarily varies as p and thus a vary.
Contopanagoa and I calculate utf(m = 175 GeV, ~ = 1.8 TeV) = -

5.52~~~ pb, in agreement with data 6. This cross section is larger than
the next-to-leading order value by about 9Y0. The top quark cross section
increases quickly with the m“~gy of the ~ collider. We determine ufi(m =

.....=.. 2.:....~:-....

175 GGV, e = 2 TeV) = 7.56~.~ pb. The central vaIue rises to 22.4 pb at

~=3TeVand 46pbatfi=4TeV.
Extending our calculation to larg~ values of m at @ = 1.8 TeV, we find”

that resummation in the principal cyjchannel produces enhancementsover the
next-tdxuling order cross section of 21Y0,26%, and 34%, respectively>for
m = 500, 600, and 700 GeV. The reason for the increase of the enhancements
with mass at fixed energy is that the threshold region becomes increasingly
dorninant. Since the q? channelalso dominates in the production of hadronic
jets at very large values of transverse momenta, we suggest that on the order
of 20% of the excess cross section reported by the CDF collaboration 7 may be
accounted for by remmrnation.

4 Other Methods of Res uxnrnation

Two other groups have published calculations of the total cross section at m =
175 GeV and W = 1.8 TeV: CtS(LSvN2) = 4.955.~~ pb; and &(CMNT4) =
4.75~~~ pb. From a numerical point of view, ours and theirs all agree within
their estimates of theoretical uncertainty. However, the resummation methods
diier as do the methods for estimating uncertainties. Both the central value
and the band of uncertainty of the LSVN predictions are sensitive to their
arbitrzuy “infrared cutoffs. To estimate theoretical uncertainty, Contopanagos
and I use the standard p-variation, whereas LSVN obtain theira primarily fkom
variations of their cutoffi. It is difficult to be certain of the central value and to
evaluate theoretical uncertainties in a method that requires an undetermined
infrared cutoff.

The group of Catani, Mangano, Nason, and Trentadue (CMNT)4 calculate
a central value of the resummed cross section (also with p/m = 1) that is
less than 1% above the exact next-to-leading order value. Both they and
we use the same universal leading-logarithm expression in moment space, but
differences occur after the transformation to momentum space. The difhrences
can be stated more explicitly if one examines the perturbative expansion of the
resummed hard kernel ‘H: (z, a). If, instead of restricting the reaummation to

7



the universal leading logarithms, one uses the i%ll content of fi~(z, a), she or
he would find an anaIyt@ expression that is eqtivaknt to CMNT’S numerical
inversion,

(9)

In terms of thisexpansion, in our work we titain only the leading term In2(l-z) “J{~j>,;. . ~. . .. . ..
at order a, but both this term and the non-universalsubkading term 27B ln(l-’”~+”’. - .” “‘ .
z) are retained by CMNT. If this subheading term is discarded in Eq. (9), the “~. ~ ~.
tidu& 6~j/~Lo d~ed by CMNT ti~ fiom 0.18~0 to 1.3% k the q~
production channel and from 5.4% to 20.2% in the gg channel. After addition
of the two channels, the total residual $/#Lo grows from the negligible value
of about 0.8% to the value 3.5%. While still smaller than the increase of 9%
that we obtain, the increase of 3.5% vs. 0.8% shows the substantial influence
of the subkading logarithmic terms in the CMNT results.

Contopanagoa and I judge that it is preferable to integrate over only the
region of phase space in which the subheading term is suppressed numerically.
Our reasons include thefkct that the subheading term is not universal, is not the
same es the aubkading term b the exact O(CY3)calculation, and can be changed
if one elects to keep non-kading terms in moment space. The subheading term
is negative and numerically very signi&ant when it is integrated throughout
phase space (i.e., into the region of z above our ~). In our view, the results
of a leading -iogurithm reaummation should not rely on subkading structures in
any significant manner. The essence of our determination of the perturbative
boundary ha is precisely that below ~= subheading structures are also
numerically subheading, whether or not these poorly substantiated subkading
logarithms are included.

In the remainder of this section I offer a more systematic analysiss of the
role played in the CMNT approach by non-universal subkading logarithms
and show in some detail how their method and results differ from ours. I treat
expansions of the remunmed momentum-space kernei up to two loops. The
corresponding cross sections are integrable down to threshold, ~= = 1 and
q = O. However, the effects of the various classes of logarithms are pronounced
if one continues the region of integration beyond our perturbative regime.

In moment space, the exponent to two-loops is obtained from Eq. (4):

N](Z, CY)= ga(q,lij z2+sl,lz+s0,1)+ 9cr2(#3,2~3+~2,2~2 +~1,23+30,2)~ (10)

with g = 2Cij and x = Inn. One can perform the analytical MelIii inversion
duectly, beginning with Eq. (10). After a trivial integration, the results for

8



the one- and tw~loop hard kernels are

(11)

7f(2J = z~a2{g2s~ J2} + z~a2{gs3,2 + 92(s2,1$1,1 + 2c1~~,J}*

+z~a2{g(s2,2 + 3c1sq2) -f- g2(s~,l/2 + 3c1s1,1u2,1+ SZ,XSO,l+ s@c2 – ~q}

+a=a2{g(sl,2 + %82,2 + 83,2[*2 - ~2D

+gz(so,l~l,l + 2c180,1s2,1 + CIS?,l + s2,1s1,1[6c2 - X2]

+S:,J2C3 - 2#cl])] . (12)

All the constants are defined in Eqs. (4) and (5). Equation (11) includes a
leading logarithmic term, z~a, as well as a next-to-leading term, z=a.

The question to be addressed is whether it iajustiiied and meaningful to
retain all of the terms in Eqs. (11) and (12) in the computation of the resummed
cross section. The issue has to do with what one intends by resummation
of leading logarithms. Contopanagos and I use the term &ding togam”thm

resummation to denote the case in which the moment space exponent, Eq. (10),
contains only the constants E&L = {+-wP, 0}. This is also what is done in the
CMNT method, and the exponent in moment spacein their work is identical to
that used for our predictions, Eq. (6). However,in contrast to our expressionin
momentum space, Eq. (8), the corresponding CMNT expressionin momentum
space includes the numerical equivalent of all terms in Eqs. (11) and (12) that
are proportiord to s*l,P.

If expressed analytically, CMNT’S corresponding “LL” hard kernels are

and

‘:~;{x::b;:;:$:E2gb213–2?’E92]
2 22
x— – #/2]3

+z.ct2{2gb&~ – r2/2]/3 + g2[7~tr2 -273 – 4((3)]}, (14)

where <(s) is the Riemann zeta function; ((3) = 1.2020569. Evaluating the
expressions numerically for the qf channel, one obtainss

.

#.. = z~a x 2.66666- x=a x 3.07848, (15)

9
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and

7ff~= z~uz x 3.55555- x~a2 x 4.80189

–z~a2 x 33.88456- zZa2 x 9.82479. (16)

Apart from the leading monomials that are the same as those in our approach,
I@. (15) and (16) include a series of aubleading terms, each of which haa a
signiikant negative coellicien t.’In practice, these subkading terms suppress
the effects of resurnma tion essentially completely. One of the ei&ta of this
auppreaaion is that the resummed partonic cross section is smdkr than its
rwxt-tdeading order counterpart in the neighborhood of q = 0.1, a region
in which the next-tdeading order partonic cross section takeaon its largest
vaIues. This point is illustrated in Fig. 3 of CMNT’S second paper 4.

Although the specific set of aubleading terms in Eqs. (15) and (16) is gen-
erated in the inversion of the Mellin transform, a case can be made that the
terms are accidental. Fiit, terms involving 7E do not appear in the exact
next-to-leading order calculation of the hard part, since they are removed in
the specification of the ~ fxtorization scheme. Therefore, the term pro-
portional to 7E in Eq. (13) is suspect. Second, if the specific value of the
subheading logarithm is extracted from the full C?(cr3) mad-to-leading order
Calculation, one findss zxa(2g - 41/6) instead of the term –zsa2g7B. In-
stead of the numericaI coefficient 3.07848 in Eq. (15), one finds the smaller
value 1.5 if the subheading logarithm of the exact CJ(cr3) calculation is used.
Thus, not only is the Cl(a) subheading term retained in the CMNT approach
diferent from that of the exact calculation, it is numerically about twice as
large. Third, the results of a LL reaummation should not rely on the suh
leading structures in any significant way. However, in the CMNT approach,
Eq. (13), which is the one-loop projection of their resummed prediction, repro-
duces only 1/3 of the exact 0(a3) enhancement, the other 2/3 being cancelled
by the second (non-universal) term of Eq. (13). Although the goal is to resum
‘the threshold corrections responsible for the large enhancement of the cross
section at next-to-leachg order, the CMNT method does not reproduce most
of this enhancement.

Addressing questions associated with the YE terms, CMNT examine a type
of NLL resummation in their second paper 4. In this NNL resummation, the
{SP+I,P, SP,P) terms are retained in the exponent, Eq. (10). The corresponding
hard kernels become



,

and

?& = z:a*g2/2+z;a22gb*/3-s: a2g*[~~+T*/2]-zza* {gb2[27g+T*/3]+g24( (3)} .
(18)

Equation (17) ia identical to the one-loop projection of our hard kernel. on
the other hand, our two-loop projection contains only the fist two terms of
Eq. (18). The term proportional to z~a2 is present in our case, along with
the leading term proportional to x~ctz, because it comes from the leading
logarithms in the exponent l?(n), through two-loop running of the coupling
strength. In contrrd to Eq. (14), Eq. (18) relegates the ird3uence of the am-
biguous constant coefficients to lower powers of z. (but with larger negative
coefEcients). In the amended scheme, the unphysical 7B terms are still present
in the two-loop result, Eq. (18), along with X2 and C(3) terms that may be
expected but whose coefficients have no well defined physical origin. Recast in
numerical form, Eqs. (17) and (18) become*

@& = X~CYX 2.66666, (19)

and

?ig~~ = ZfCY2X 3.55555 +z;a2 X 3.40739 – X;CY2X 37.46119 – ZZCY2X 54.41253.
(20)

There is a significant difference between the coefficients of all but the very
leading power of z. in Eqs. (15) and (16) with respect to those in Eqs. (19)
and (20), and the numerical coefficients grow in magnitude as the power of z=
decreases.

Using their NLL amendment, CMNT find that the central value of their
resummed cross section exceeds the next-to-leading order result by 3.570 (both
q~ and gg channels added). This increase is about 4 times larger than the cen-
tral value of the increase obtained in their first method, closer to our increase of
about 9Y0. The reason for the significant change of the increase resides with the
subheading structures, viz., in the &lfferences between the LL version Eqs. (15)
and (16) and the NLL version Eqs. (19) and (20). The subheading terms at
two-loops cause a total suppression of the two-loop contribution (in fact, that
contribution is negative), if one integrates all the way into what we call the
non-perturbative regime. This suppression explains why an enhancement of
only 3.570 is obtained in the amended method, rather than our 9yo.

CMNT argue that retention of their subleading terms in momentum space
is important for “energy conservation. By this statement, they mean that one
begins the formulation of resummation with an expression in momentum space
containing a delta function representing conservation of the fractional partonic

11
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momenta. In moment space, this delta function subsequently unconvolves the
resumrnation. Therefore, when one inverts the MelEn transform to return to
momentum space, the full set of logarithms generated by this inversion are
required by the original energy conservation. Thh line of reasoning would be
compelling if the complete ezponent E(n) in moment space were known ezactly,
i.e., if the resummation in moment space were exact in representing the cross
section to all orders. However, the exponent ia truncated in all approaches,
and knowledge of the logarithms it resurns reliably is limited both in moment
and in momentum space. Hence, the set of logarithms produced by the MelIii
inversion “m momentum space should also be restricted. In our approach en-
ergy conservation is obeyed in momentum space consistently with the class of
logarithms resummed. On the other hand, in the CMNT method, knowledge is
presumed of all logarithms generated from the Mellin inversion, despite the fact
that the truncation in moment space makes energy conservation a constraint
restricted to the class of logarithms that ia resummable, i.e., a constraint re-
stricted by the truncation of the exponent E(n). The two approaches would
be equivalent provided a constraint be in place on the effects of subheading
logarithms. This constraint is precisely our restriction ~= <1, but no such
constraint is furnished by CMNT. For this reason their results change signif-
icantly if one set of the logarithms generated in momentum space is adopted
as ‘the set corresponding to energy conservation”, and then compared with
another set, produced by a clWerent truncation of E(n).

The essence of our determination of the perturbative regime, %GZ < 1,
is precisely that, in this regime, subheading structures are also numerically
subheading, whether or not the classes of subheading logarithms coming from
different truncation of the master formula for the resurnmed hard kernel are
included. The results presented in Fig. 11 of our second paper 3, show that if
we alter our resummed hard kernel to account for sublea&g structures but
still stay within our perturbative regime, the resulting cross section is reduced
by about 4%, within our band of perturbative uncertainty.

A criticism 4 is that of putative ‘spurious factorial growth” of our re-
summed cross section, above and beyond the infrared renormalons that are
eliminated from our approach. The issue, as demonstrated in Eq. (29) of our
second paper 3, can be addressed most easily if one substitutes any monomial
appearing in Eq. (12), symbolically amc(l, m) Iniz=, into Eq. (8) and integrates
over z:

J
1

CPc(z, m) dz lnl x. = CYmC(l,m)(l – %~m)l!~lnj(l/(l – %~n)) . (21)
z?mi- j=O

For the purposes of this demonstration we set ~~j = 1. The coefficients c(1, m)
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can be read dhectly from Eq. (12). For the leading logarithmic terms,

c(2m, m) a I/m!, (22)

where this factorial comes directly from exponentiation. After the integration
over the entire z-range, the power of the logarithm in x= becomes a factorial
multip~lcative factor, 1!. The presence of /! follows directly from the existence
of the powers of in ZZ that are present explicitly in the finite-order result in
pQCD and is therefore inevitable. If th~ exercise is repeated, but with the
range of integration in Eq. (21) constrained to our perturbative regime, one
obtaina the difference between the right-hand-side of Eq. (21) and a similar
expression containing ~=z. The result is numerically smaller, but both of the
pieces are multiplied by /!.

The factorial coefficient 1! is not the most important source of enhance-
ment. For the leading logarithms at two-loop order, 1 = 2m = 4, and the
overall combinatorial coefficient from Eqs. (21) and (22) is (2m)!/rn! = 12.
For comparison, at representative values of q near threshold, q = 0.1 and
0.01, the sum of logarithmic terms in Eq. (21) provides factors of 16.1 and
314.3, respectively. Similarly, the (multiplicative) color factors at thk order of
perturbation theory are (2Cij)2 = 7.1 and 36 for the q~ and gg channels, re-
spectively. All of these featurea are connected to the way threshold logarithmic
contributions appear in finite-order pQCD and how they signal the presence
of the non-perturbat ive regime. Thus, preoccupation with the 1! factor seems
misplaced 8.

“Absence of factorial growth” is based on the use by CMNT of Eq. (16) for
their main predictions, an expression that contains non-universal subheading
logarithms, all with significant negative coefficients. Mathematically, factorial
growth is present for each of the powers of the logarithm in Eq. (21), since these
monomials are linearly independent. Absence of factorial growth based on a
numerical cancellation between various classes of logarithms, most of them with
physically unsubstantiated coefficients, appears to us to be an incorrect use of
terminology. In the CMNT approach the effects of resummation are suppressed
by a series of subleading logarithms with large negative coefficients. If there is
no physical basis for preference of Eqs. (13) and (14) over Eqs. (17) and (18),
as CMNT appear to suggest, then the difference in the resulting cross sections
can be interpreted as a measure of theoretical uncertainty. This interpretation
would not justify firm conclusions of a minimal 0.870 increment in the physical
cross section baaed on the choice of Eqs. (13) and (14).

The CMNT value for the inclusive top quark cross section at m = 175 GeV
and fi = 1.8 TeV, including theoretical uncertainty, lies within our uncer-
tainty band. Therefore, the numerical differences between our results for top
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quark production at the Tevatron have little practical significance. However,
there are important dfierences of principle in our treatment of subheading con-
tributions that will have more significant consequences for predictions in other
processes or at other values of top mass and/or at other energies, particularly
in reactions dominated by gg subprocesses.

5 Discussion and Conclusions

The advantages of the perturbative resummation method 3 are that there are
no arbitrary infrared cutofb and there is a well-defined region of applicability
where subheading logarithmic terms are suppressed. When evaluated for top
quark production at @ = 1.8 TeV, our resummed cross sections are about
9% above the next-to-leading order cross sections computed with the same
parton distributions. The renormalization ffactorization scaIe dependence of
our cross section is fairly flat, resulting in a 9 — 10~0 theoretical uncertainty.
Our perturbative boundary of 1.22 GeV above the threshold in the dominant
q~ channel is comparable to the hadronic width of the top quark, a natural
deiidion of the perturbative boundary.

Our estimated theoretical uncertainty of 9 – 10% is associated with #
variation. An entirely different procedure to estimate the overall theoretical
uncertain y is to compare our enhancement of the cross section above the
next-to-ledlng order value to that of CMNT 4, again yielding about 10~0. An
interesting question is whether theory can aspire to an accuracy of better than
10% for the calculation of the top quark cross section. To this end, a mastery of
subheading logarithms would be desirable, perhaps requiring a formidable com-
plete calculation at next-to-next-to-leading order of heavy quark production,
to establish the possible pattern of subleadhg logarithms, and resummation
of both leading and subheading logarithms. An analysis in moment space of
the issues involved in resummation of next-to-leachg logarithms for heavy
quark production is presented by Kidonakis and Sterman 9. Inversion of the
resummed moments to the physically relevant momentum space requires con-
siderable work. Full implementation of the resummation of next-to-leadhg log-
arithms would reduce the diiYerence somewhat between our results and those of
CMNT and move the debate to the level of next-to-next-to-leading logarithms.

Our prediction falls within the relatively large experimental uncertainties.
If a cross section significantly different from ours is measured in future ex-
periments at the Tevatron with greater statistical precision, we would look
for explanations in effects beyond QCD perturbation theory. These explana-
tions might include unexpectedly substantial non-perturbative effects or new
production mechanisms. An examination of the distribution in q might be
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.

,

revealing.
The all-orders summation of large logarithdc terms, that are important

in the near-threshold region of small values of the scaled partonic subenergy,
q + O, was described here for the specific case of top quark production at the
FermiIab Tevatron collider. Other processes for which threshold resummation
will also be pertinent include the production of hadronic jets that carry large
values of transverse momentum and the production of pairs of supersymmetric
particles with large mass.
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