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Abstract

As the resolution of simulation models increases, scien-
tific visualization algorithms which take advantage of
the large memory and parallelism of Massively Paral-
lel Processors (MPPs) are becoming increasingly impor-
tant.

Tor large applications rendering on the MPP tends to
be preferable to rendering on a graphics workstation due
to the MPP’s abundant resources: memory, disk, and
numerous processors. The challenge becomes develop-
ing algorithms that can exploit these resources while
minimizing overhead, typically communication costs.
This paper will describe recent efforts in parallel ren-
dering for polygonal primitives as well as parallel volu-
metric techniques.

This paper presents rendering algorithms, developed
for massively parallel processors (MPPs), for polygonal,
spheres, and volumetric data. The polygon algorithm
uses a data parallel approach whereas the sphere and
volume render use a MIMD approach. Implementations
for these algorithms are presented for the Thinking Ma-
chines Corporation CM-5 MPP.

1 Imntroduction

In recent years, massively parallel processors (MPPs)
have proven to be a valuable tool for performing sci-
entific computation. Available memory on this type of
computer is far greater than that which is found on
traditional Parallel Vector Processor (PVP) supercom-
puters. For example, a 1024 node CM-5 contains 32

gigabytes of physical memory while a 1024 node T3D
has 64 gigabytes of physical memory. As a result, sci-
entists who utilize these MPPs can execute their three
dimensional simulation models with much greater de-
tail than previously possible. Molecular dynamics sim-
ulations can consist of over 100 million atoms [8] and

CFD simulations can contain over 23 million cells with
numerous variables [9]. While these applications allow
for better stmulation of the underlying physics, they
typically cause a data explosion. As the resolution of
simulation models increases, scientific visualization al-
gorithms which take advantage of the large memory and
parallelism of these architectures are becoming increas-
ingly important.

Renderers, used to transform data into images, can
be classified into either geometry-based or volume-
based. Geometry-based renderers are used when scien-
tific simulations contain explicit geometry, such as ma-
terial interface boundaries, or when implicit geometry
is derived, such as from isosurfaces, particles, spheres,
vectors, etc. While geometry extraction may be used as
a lossless compression technique [1, 2], it more typically
generates larger amounts of data than are present in the
original dataset [4]. Volume-based approaches produce
an image directly from the scientific data without uti-
lizing explicit geometry [1, 6]. The data are rendered
directly into an image through color and opacity trans-
fer functions.

For large applications rendering on the MPP tends
to be preferable to rendering on a graphics workstation
due to the MPP’s abundant resources: memory, disk,
and numerous processors. The challenge becomes devel-
oping algorithms that can exploit these resources while
minimizing overhead, typically communication costs.

1.1 Parallel Rendering

One approach to the classification of parallel rendering

algorithms is to categorize based upon whether the par-
allelismn is achieved in image-space or in object-space.
However, many recent algorithms obtain performance
by utilizing both image-space and object-space paral-
lelism. A more useful taxonomy for parallel rendering
which classifies rendering methods based on where data
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Figure 1: Sort First Rendering Technique

are sorted from object-space to image-space was pre-
sented by Molnar et al.[5]. A typical rendering process
performs some geomeiric processing followed by some
raslerization processing. Parallelization can take place
during the geometric processing, during the rasteriza-
tion processing, as well as pipelined parallelism between
the two stages. At some point, primitives are sorted
from object-space to image-space. Looking at where
this sort takes place provides a useful method for classi-
fying parallel rendering techniques. The sort to screen-
space can take place before the geometric processing,
after the geometric processing but before the rasteriza-
tion, or after both the geometric processing and the ras-
terization. These methods are referred to as sort-first,
sort-middle, or sort-last.

Sort-first is depicted in Figure 1. In this approach,
some a priori knowledge about which part of the screen

the primitives will fall is utilized to send the primi-
tives, possibly polygons, to the appropriate processor el-
ements. Frame-to-frame coherence provides such know}-
edge. The screen is subdivided in some manner, typi-
cally interleaved, and each region is assigned a process-
ing element which performs both geometry and raster-
ization without any need for communication. Sort-first
suffers from load inbalance for both the geometry pro-
cessing stage as well as the rasterization stage if primi-
tives are not evenly distributed across the screen parti-
tions.

The sort-middle approach is shown in Figure 2. In
this approach, no a priori knowledge is needed and
primitives, possibly polygons, are distributed in some
fair scheme between all the processing elements. Each
processing element performs the geometric operations
on its portion of the data. Following this stage, the

t
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Figure 2: Sort Middle Rendering Technique

transformed primitives are sent to the processor element
responsible for the portion of the screen into which these
primitives fall. Sort-middle is typically well balanced
during the geometry processing stage but suffers from
load inbalance during the rasterization stage if primi-
tives are not evenly distributed across the screen parti-
tions. Additionally, there can be a communication bot-
tleneck if all geometry processors are sending data to a
single rasterization processor.

Sort-last is depicted in Figure 3. This type of ren-
dering is sometimes referred to as an image compositing
system. Primitives are distributed in some fair scheme
among the processing elements. Each processing ele-
ment performs both geometric processing as well as ras-
terization independent of all other processor elements.
A local image is rendered on each processor element
and the images are composited together to form a final

image. In some systems, only active pixels from each
subimage participate in the compositing phase. Sort
last behaves particularly well with respect to load bal-
ancing since all primitives are fairly distributed at the
beginning. However, the communication load for the
image compositing phase can be quite severe and re-
quires very high speed networks. In addition, trans-
parency is non-trivial for sort-last systems.

For our applications sort-last, a compositing method-
ology, has demonstrated superior performance for ex-
tremely large datasets. Its strengths are better over-
all load balancing and logarithmic image compositing
times. Disadvantages are that each processor must have
enough memory for the image buffer and that composit-
ing involves communicating the image buffer among pro-
cessors. The rest of the paper presents three sort-last
renderers that we have developed: a data parallel polyg-
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Figure 3: Sort Last Rendering Technique

onal renderer, a MIMD sphere renderer, and a MIMD
volume renderer.

The polygon renderer handles complex polygons and
is tuned for smaller polygons which are typical in large
scientific data sets. It uses a pixel sorting approach
to sort-last. Advantages of this technique include bet-
ter network utilization, excellent polygon rates for large
polygonal data sets, integration into existing visualiza-
tion environments, and dynamic load balancing.

The sphere renderer treats spheres as primitives in-
stead of tesselating the spheres into polygons. It uses
a logarithmic image compositing approach to sort-last.
Advantages of this technique include out-of-core sup-
port for arbitrarily large images and data sets, load bal-
ancing, and an optimal compositing algorithm.

The volume renderer efficiently renders very large 3D
scalar fields. It subdivides the data among the proces-
sors and uses a unique and optimal compositing tech-
nique which maximizes processor efficiency.

2 Polygon Renderer

For the CM-5, one must chose between the data parallel
programming model and the MIMD message passing
programming model. For polygon rendering, we have
experimented with both programming models [3] and
in this section, we describe our experiences with a sort-
last polygon renderer written in the data parallel style.

The basic idea behind the data parallel renderer is to
maximize the number of operations occurring in parallel
while minimizing communication. While this trait is de-
sirable in both data parallel and task parallel program-
ming models, the SIMD/SPMD nature of data parallel

Table 1: Mapping Graphics Pipeline to VP sets

[ Operation [ Primitive | VP Set |
transformation vertices polygon
transform to screen space | vertices polygon
shading vertices polygon
scan conversion polygons | polygon
rasterization scan lines | scan line
Z-buffer pixels pixel

programs imposes additional constraints. In data par-
allel programs, there is only one thread of control. For
efficient programs, it is necessary to maximize the set
of active processors at any given step in an algorithm.
This is accomplished by judicious assignment of data to
the processors, sometimes referred to as layout.

2.1 Data Layout

To determine the optimal layout for the rendering pro-
cess, we examined the standard graphics pipeline with
respect to data operations. Table 1 breaks down the
standard graphics rendering pipeline into basic steps.
Each of these operations is categorized by the primi-
tive upon which the operation is performed. Lastly, the
virtual processor (VP) set is indicated.

The first three steps operate upon vertices. Each
vertex is transformed and then shaded. In this imple-
mentation, we are optimizing for speed. Therefore, we
perform simple Gouraud shading. In Gouraud shading,
the shading is computed at each vertex and then linearly
interpolated across an edge when forming a scan line
segment and linearly interpolated across the scan line
segment during rasterization, resulting in a smoothly
shaded object. More advanced shading techniques are
easy to implement.

The fourth step scan converts the polygons by deter-
mining which polygon edges intersect a particular scan
line and interpolating the X, Z and shaded color infor-
mation along the polygon edge to determine the value
for a particular Y scan-line.

Hidden surface elimination is accomplished by em-
ploying a parallel Z-buffer algorithm. This is done by
rasterizing the line segments produced from the scan
conversion process, clipping the resulting pixels against
the viewport and then Z-buffering the non-clipped pix-
els. The Z-buffer tiles the image plane such that
independent/non-overlapping regions of the screen are
assigned to individual virtual processors.



If we strictly followed this, we would remap the vir-
tual processors from vertices to polygons to line seg-
ments to pixels. The remapping of virtual processors
involves general communication which is costly. If we
map each polygon to a virtual processor and then iterate
over the vertices within each polygon, we can eliminate
one of the global communications.

The most interesting parts of the algorithm are the
scan conversion and Z-buffering. The scan conversion
process iterates over the maximum number of scan lines
through any polygon. Since scan conversion is concur-
rently executed for all polygons in parallel, it is bounded
by the maximum number of scan lines within any poly-
gon. Thus number of iterations necessary to process the
entire set of polygons is the maximum number of scan
lines spanning any polygon. As the number of scan lines
processed approaches the maximum, fewer polygons are
processed, since some polygons, those with a smaller
number of scan lines passing through them, will have
completed the scan conversion process. We address this
load balancing issue in the next subsection.

In the Z-buffering step, line segments from the pre-
vious steps are converted to pixels. The individual pix-
els are routed to the VP which is responsible for that
particular screen region. This is accomplished through
the sendmax operator. Where pixels from different
polygons are mapped to the same image location, the
hidden-surface elimination is performed by choosing the
pixel with the maximal Z value.

2.2 Load Balancing

In the renderer, there are two key loops, one for scan
converting polygons into line segments and one for Z-
buffering the line segments. As previously noted, when
virtual processors (VP) complete the scan conversion of
their polygons, they become idle. VPs can also become
idle if the polygon is clipped or backface culled. Idle
VPs lead to a load balancing problem.

We address this problem by dynamically redistribut-
ing remaining portions of polygons to be scan converted
to idle VPs. This reuses existing memory space and at-
tempts to keep all VPs active during the scan conversion
process. Redistribution of the work load is determined
by keeping track of the time taken to process a scan line,
and the time to redistribute work. If the saving in loop
iteration is less than the time to perform the redistribu-
tion, it makes no sense to perform the redistribution.

Table 2 gives the rendering times for different parti-
tion sizes on the CM-5. As can be seen, the massively
parallel renderer performs better than top of the line

Table 2: Rendering of Polygons on CM-5

[ CM-5Size | 32 | 64 [ 128 | 256 | 512 |
Time (sec) | 1.656 [ 0.867 | 0.559 [ 0.327 | 0.205
Polygons/sec | 138K | 263K | 408K | 677K | 1.1M

hardware graphics rendering engines.

3 Sphere Renderer

As with the polygon renderer we have also experi-
mented with both sort-middle and sort-last approaches
to sphere rendering. Sort-last has proven to have supe-
rior performance for our application. Since the amount
of work to process a sphere varies with its radius, we
chose the MIMD model so processors can run asyn-
chronously and maximize utilization.

3.1 Data Layout

The sphere renderer supports an unlimited number of
spheres and any image size. If necessary, based on mem-
ory constraints, spheres may be handled in steps. Like-
wise, an image may be processed in steps. With sort-last
each processor has its own image and Z-buffers for the
current part of image that is being worked. The current
set of spheres, which are distributed equally among pro-
cessors, are rendered into local image and Z buffers.

All processors then assign their spheres a color (based
on ascalar value such as kinetic energy), transform them
to image space, and scale their radii for perspective.
Spheres closer to the camera will appear larger than
spheres of the same radius which are further from the
camera.

Spheres are then scan converted, one at a time, into
the image and Z buffers. The scan conversion is done
by evaluating a distance equation for each pixel within
the bounding box for the sphere. If the current pixel is
within the sphere, then a Z-buffer comparison is made
and if the pixel is not hidden, the color is determined.
Lighting is approximated by including an offset, based
on sphere center and current pixel location, in the color
calculation. This gives the illusion of a light at fixed
location from the camera.

After each processor has finished rendering, the N
Z-buffers are composited, in logarithmic time using the
CMMD function CMMD _reduce_v, with a minimum
operator to select pixels, across all processors, closest



Table 3: Sphere Rendering Times

CM-5 Partition Size 32 64 128 | 256 | 512
Time (sec) 284 | 160 | 91 | 53 | 36
SGI Tesselation Factor | 1 5 9
Time (sec) 777 | 3066 | 8215

to the camera. Processors then zero out pixel colors in
their image buffers wherever their local Z-buffers don’t
match the composite Z-buffer. Image buffers are then
composited using a maximum operator.

3.2 Load Balancing

Although all processors initially receive an equal
amount of work, if an image is being processed in steps
or if spheres are transformed out of the image, then some
processors may have significant load balancing prob-
lems. This is resolved by migrating some atoms, after
the object-to-image space transformation, from heavily
loaded processors to lightly loaded processors. A sim-
ple approach of sorting processor loads and matching
up the lightest load with the heaviest load, and so on,
seems to yield acceptable results. Other approaches are
being investigated.

3.3 Results

To gauge our algorithm’s performance we benchmarked
it on several different CM-5 partitions and a SGI Onyx
with Reality Engine II graphics engine. The SGI work-
station uses a simple, but optimized, program that in-
vokes the SGI sphere drawing routine. Their sphere
drawing routine tesselates a sphere into a set of triangle
or quadrangle meshes (depending on user selected tes-
selation method). The number of polygons generated
depends upon the user selected tesselation factor. High
factors yield rounder spheres.

Table 3 shows the time (in seconds) to render a data
set containing 37,993,550 atoms on various CM-5 par-
tition sizes and on a SGI Onyx with various tessela-
tion factors. As can be seen, the massively parallel
sphere renderer far out performs one of the best hard-
ware graphics engines on the market.

4 Volume Renderer

Direct volume rendering differs from geometry ren-
dering in that the data are rendered by compositing

color/opacity pairs, derived from the data values, into
an image. This can be done either by projecting the
volume samples onto the image plane through a tech-
nique such as splatting [6], or by ray-casting which in-
volves sampling data values along rays projected from
the camera through the image plane and into the data
set [1, 6].

Although no geometry is processed, ray-casting tech-
niques can be classified by the same rendering taxon-
omy. We have developed a sort-last volume rendering
algorithm which maximizes processor utilization during
the compositing phase by taking advantage of data lo-
cality 7).

4.1 Data Layout

Since ray-cast volume renderers are inherently parallel,
parallelization of the ray-casting is trivial when the data
volume is replicated at every node. However, for large
3D scalar fields, it is not feasible to replicate the data
and clever techniques for data space decomposition and
final compositing are required.

We have developed a data space partitioning scheme
based upon K-D trees. Each level in the K-D tree is
formed by alternating binary subdivision of the coordi-
nate planes. This leads to a block decomposition of the
data volume where each node of the MPP contains a
subvolume of the original data set. Each subvolume
is rendered, independently and concurrently, by ray-
casting from the identical view direction; and, only rays
within the image region covering the corresponding sub-
volume are cast and sampled. This results in a partial
image in each processor node for its subvolume.

We have developed a unique method for composit-
ing these final images, called Binary-Swap Composit-
ing, which maximizes processor utilization. The basic
idea of the compositing algorithm is that a processor
swaps 1/2 of its image with 1/2 of its neighbor’s im-
age. Each processor then composites its own half with
that received from the neighbor. Next, the processor
swaps 1/2 of that sub-image (resulting in 1/4 of the
total image) with another neighbor and the quarters
are composited. At the final stage, each processor will
have a portion of the final image. By controlling which
neighbors swap which part of the image, the final image
layout among the processor nodes can be optimized.

In the early phases of the binary-swap algorithm,
each processor is responsible for a large portion of the
image area, but the data coverage in the image area is
usually sparse because only a few processors have con-
tributed to it. In later phases of the algorithm, as we
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Table 4: Volume Rendering 1282 Volume on T3D and

CM-5, Times Given are in Seconds, 5122 Image Size
[ T3D [32 [64 [128 |

Render 1.012 | 0.529 | 0.290
Composite | 0.249 | 0.250 | 0.256

[ CM-5 | 32 [64 [128 [256 [512 |
Render 13.499 | 7.012 | 3.812 | 1.904 | 0.957
Composite | 0.252 0.285 | 0.209 | 0.189 | 0.162

move up the compositing tree, the processors are re-
sponsible for a smaller and smaller portion of the image
area, but the density of data coverage increases because
an increasing number of processors have contributed im-
age data. In the early phases, a larger amount of data
is communicated when communication is with nearest
neighbors. In the later phases, a smaller amount of
data is communicated which is when communication is
among non-local processors. This effectively utilizes the
bandwidth constraints of MPPs.

Table 4 shows the rendering and compositing times
for a 1283 3D scalar field from an MRI scan of a human
head rendered on both the T3D and the CM-5. As can
be seen, the processing power of the T3D gives an order
of magnitude increase in performance for this renderer.

5 Conclusion

We have shown that rendering can be performed at very
high rates on a MPP and is better suited, compared
to graphics workstations, for handling the quantities of
data produced by simulations that run on these ma-
chines.

Also, for our magnitude of data we have found that
a sort-last approach performs better than a sort-middle
approach and has the advantage of not relying on a
hardware specific rendering engine.
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