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ABSTRACT 

Numerical models for simulating chemical transport in fissured rocks con­

stitute powerful tools for evaluating the acceptability of geological nuclear 

waste repositories. Due to the very long-term, high toxicity of some nuclear 

waste products, the models are required to predict, in certain cases, the spa­

tial and temporal distribution of chemical concentration less than 0.001% of 

the concentration released from the repository. Whether numerical models can 

provide such accuracies is a major question addressed in the present work. To 

this end, we have verified a numerical model, TRUMP, which solves the advec-

ti ve diffusion equation in general three dimensions with or without decay and 

source terms. The method is based on an integrated finite-difference approach. 

The model was verified against known analytic solution of the one-dimensional 

advection-diffusion problem as well as the problem of advection-diffusion in a 

system of parallel fractures separated by spherical particles. The studies 

show that as long as the magnitude of advectance is equal to or less than that 

of conductance for the closed surface bounding any volume element in the re­

gion (that is, numerical Peclet number <2), the numerical method can indeed 

match the analytic solution within errors of ±1 o-3 % or less. The realistic 

input parameters used in the sample calculations suggest that such a range of 

Peclet numbers is indeed likely to characterize deep groundwater systems in 

granitic and ancient argillaceous systems. Thus TRUMP in its present form 

does provide a viable tool for use in nuclear waste evaluation studies. A 

sensitivity analysis based on the analytic solution suggests that the errors 

in prediction introduced due to uncertainties in input parameters is likely 
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to be larger than the computational inaccuracies introduced by the numerical 

model. Currently, a disadvantage in the TRUMP model is that the iterative 

method of solving the set of simultaneous equations is rather slow when time 

constants vary widely over the flow region. Although the iterative solution 

may be very desirable for large three-dimensional problems in order to mini­

mize computer storage, it seems desirable to use a direct solver technique in 

conjunction with the mixed explicit-implicit approach whenever possible. work 

in this direction is in progress. 

INTRODUCTION 

Since the late 1970 1 s the interest in describing radionuclide migration 

in subsurface systems has increased considerably. The present interest stems 

from the need to predict the possible escape of radionuclides from a radioac­

tive waste repository located deep underground. The problem of prediction 

usually is divided into two parts. The first consists of determining the 

water movement, and the second, the transport of radionuclides by the water. 

The water movement in the far field (i.e., far from the repository) is assumed 

to be independent of the nuclide movement which makes it possible to decouple 

the two flow fields. The nuclide migration is assumed to be due to both advec­

tive transport and diffusion-dispersion and to be influenced by chemical and 

physical interaction with the solid material. The nuclides decay with time 

but may also build up in concentration due to decay of a parent. 

A well-known mathematical model which includes these effects for one­

dimensional flow is the GETOUT model (Lester et al., 1975). This is based on 
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an analytic solution of the governing equations and includes chain decay. 

Another model, which has the capability of multidimensional dispersion of the 

nuclides, has been developed by Dillon et al. (1978). This code is based on 

a numerical solution of the governing equations using a finite-difference 

technique. Both these models are based on the concept of an instantaneous, 

reversible reaction of the nuclide in the water with the solids. Local equi­

librium is thus always assumed to be established. Lately it has been ques­

tioned (Neretnieks, 1980; Grisak et al. 1980a,b, 1981; Tang et al., 1981) 

whether this assumption might not be seriously in error for flow in a fissured 

crystalline rock. This is due to the fact that the water flows in the macro-

fissures or fractures of the rock which may be fai widely spaced. The 

sorption may not take place homogeneously in the rock because the time needed 

to distribute the nuclides evenly through the rock by diffusion through the 

stagnant water present in very small microfissures might be too long. 

Neretnieks' (1980) analysis of this phenomenon was based on a description 

of the conditions in a single fissure. Simple analytic solutions could be 

found for a single nuclide. Rasmuson and Neretnieks (1980, 1981) extended the 

model to describe the flow in a porous bed consisting of spherical particles 

and including axial disperion. Rasmuson (1981) also extended the model to 

include radial dispersion. In these models only one nuclide is considered. 

Even under such a simple condition, the resulting analytic solutions proved to 

be quite complicated in their structure and not amenable to straightforward 

computational evaluation. It was therefore decided in the present study to 

investigate the capability of a numerical method to handle these systems since 
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numerical methods appear to offer the only practical way at present to describe 

more complex situations. 

In investigating the numerical method, one of the problems which was given 

a high priority was to determine the degree of accuracy with which the early 

part of the nuclide arrival can be simulated. This is of special interest in 

studying radionuclide migration since a major mechanism for assuring safety is 

to give the radionuclide sufficient time to decay. 

The problem may be illustrated by the following simplified model describ­

ing the arrival of a tracer at a point of interest. The concentration c of a 

tracer which arrives at the observation point at time t after the release at 

the injection point is described by the function c0 •f(t), where c0 is the 

inlet concentration. Under certain mathematical linearity .conditions the 

function f is independent of c. This is realistic in many practical cases. 

The function has the following property for the transport of a single tracer: 

0 ( f < 1 (i) 

A typical breakthrough curve f(t) may look like the one depicted in Figure 1. 

In many practical applications with stable compounds, the accuracy sought in 

determining the function f(t) is not very high. In chemical engineering prob­

lems for example, better than 0.1% absolute accuracy would normally be deemed 

adequate. A concentration which is 0.1% of that at the inlet end of an adsorp­

tion column, or in a field test with tracers, is often near detection limits 

and there is usually no need for greater relative accuracy. 
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Figure 1. Sketch of concentration break-through at a point in a one-
dimensional advection-diffusion system. [XBL 825-2249] 
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The problem is different, however, when large amounts of radioactive 

materials are handled. Often the radionuclides must not reach the biosphere 

in concentrations larger than 10=9 to 10-6 of the concentration at the locus 

of an accidental leak in a repository. The value 10=9 is arrived at in the 

following way. A thousand-year-old waste has an activity of less than 102 Ci/ 

tonne original fuel (KBS, 1977). The total amount of waste in a repository 

for the Swedish program--12 reactors running for 30 years--is less than 10,000 

tonnes of fuel (KBS, 1978). A maximum leach rate is expected to be 3s3 x 10-5 

fractions/year (KBS, 1977). If this amount decreases in activity by 1o-9 be­

fore reaching the biosphere, the inflow to the biosphere is 33 x 1o-9 Cijyear. 

In the KBS safety study (KBS, 1977), which fulfilled the Swedish stipulation 

law of being safe, at least 11 nuclides were calculated to have many orders of 

magnitude higher inflow rates. The value 1o-9 should therefore be a very con­

servative value. One of the major aims in repository design is to ensure that 

enough time will be available for a nuclide to decay to safe levels before the 

nuclide reaches the biosphere. 

A concentration of 10-6 c
0 

might be acceptable in certain cases, but not 

10-S c 0 which is 10 times higher. This means that sometimes there may be a 

need to predict the early part of the breakthrough curve with a fairly high 

relative accuracy even though the absolute accuracy is very high. 

The relative concentration of a decaying nuclide at a point of interest 

is the product of the breakthrough curve f(t) and the decay function exp[-Adt] 

where ~ is the decay constant. we have 
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(2) 

For the linear case mentioned previously, Figure 2 shows that a small absolute 

error in predicting f(t)-=the error is Oe003==may give a ten-fold error in the 

maximum concentration at the breakthrough pointe 

The purpose of the present work is to investigate whether relative errors 

on the order of Oa001% or less are achievable in predictive models of chemical 

transport using numerical methods. To this end we investigated a widely-used 

computer program TRUMP (Edwards, 1969) which solves for advective-diffusive 

heat transport in multidimensional systems. This heat transport code is read­

ily amenable to the chemical transport problem if we recognize the strong sim­

ilarities between heat and solute transport. Specifically, we applied this 

program to a system involving fissured massive rock with advection restricted 

to fissures and diffusion through stagnant pore fluid being the only transport 

mechanism active in the microfissured rock mass. Our goal was to validate the 

numerical model through comparison with known analytic solutions of Neretnieks 

(1980) and Rasmuson and Neretnieks (1980, 1981). In the present work we will 

restrict our attention to a steady-state fluid flow field with one chemical 

species that is subject to decay. 

In seeking to formulate the equations governing the problem of interest 

there is strong reason to believe that considerable advantages could be gained 

in terms of simplicity and generality if the equations are written directly as 

integrals. We have attempted to provide a theoretical basis for this reason­

ing in formulating the governing numerical equations. 
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THEORY 

In dealing with the chemical transport of nuclides in a fractured rock 

mass we are concerned with a heterogeneous flow region in which advection is 

restricted to the fractures while diffusion is dominant in the rock masse It 

is customary to describe the physics of this problem through two coupled 

partial differential equations, one describing advection and longitudinal dis-

persion in the fractures and the other describing diffusion and sorption in 

the rock. The coupling is assured through an internal boundary condition 

demanding continuity of flux and concentration at the fracture-rock interface. 

Alternately, the same problem could be stated in integral form by writing 

equations of mass conservation for finite subdomains of the flow region. This 

representation, which has the advantage of generality for numerical implemen-

tation, conveniently dispenses with the need for stating internal boundary 

conditions. Inasmuch as this report deals with the analytical validation of 

a numerical method, we shall here present both the formulations. 

DIFFERENTIAL FORMULATION 

Consider a system of parallel, horizontal fractures separated by unfrac-

tured rock as shown in Figure 3. As proposed by Neretnieks (1980) and Rasmuson 

and Neretnieks (1980) the coupled partial differential equations may be written 

Chemical in the Fracture 

(3) 
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Figure 3. Sketch of the fracture-matrix system for the two-dimensional 
advection-diffusion problem. [XBL 825-2251] 
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( 4) 

where vf is the steady-state water velocity in the fracture, cf is concentra= 

tion of species in the fracture, DL is the longitudinal dispersion coeffi-

cient for the fracture, z is the coordinate axis oriented along the fracture, 

w is the coupling term denoting the rate at which the solute is lost from the 

fracture to the rock matrix per unit volume of the fracture, Dp is the diffu-

sivity of the species in the pore-fluid, £p is the porosity of the rock due to 

the presence of microfissures, Ad is the decay coefficient, and K is the vol-

urne equilibrium constant defined as the mass of solute required to change the 

pore-fluid concentration, cp, by unity per unit volume of the rock. The con-

centration of the species in the solid, cs and cp, will not in general be 

equal. The ratio of to cp at equilibrium is the partition coefficient KA' 

defined by 

c 

KA "" c 
s 

( 5) 

p 

In the above, cs is defined in terms of the bulk volume of the porous matrix. 

In view of the partition coefficient, K becomes a function of £p and KA. Thus 

K "" ( 6) 

For a nonsorbing species, KA 0 and 

K = £ • p 
( 7) 
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The rate at which the solute is transferred from the fracture to the 

adjacent block of rock depends on the diffusivity, the concentration gradient, 

and the area cross section at the fracture-rock interface@ Thus, 

ac 
V w = o --E r 

:r:,. f ~ f ,r or f ,r ,r 
(8) 

where Vf is the fracture volume, Df,r and rf,r are the diffusivity and area of 

cross section at the fracture rock block interface. Here, r is the orienta-

tion of the transverse axis of diffusion. Note that the quantity of solute 

lost by fracture is gained by the rock block. Let cr denote the bulk-average 

concentration of the solute in the rock block comprising the microfissures and 

the solids. Then, 

where Vr is the volume of the rock block. If we now define the bulk rock vol-

w = ( 1 0) 

If the rock matrix associated with the fracture is idealized as spherical 

(Rasmuson and Neretnieks, 1981), then in equation 4, 

( 11) 

The rate of transfer of solute from the fracture to the sphere (equation 8) is 

( 1 2) 
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where r 0 is the radius of the sphere. The average rate of change of concentra-

tion in the sphere becomes: 

ac 
r 

t 

ac 
,l.._D ...J:. 

r f,r ar 
0 

( 1 3) 
f,r 

It may be pointed out that since diffusion is assumed to occur only within the 

rock through the stagnant water present in the microfissures, the interface 

diffusivity, Df,r in equations (12) and (13) is equal to Dp£p• 

Essentially, the fractured continuum is treated as a "two-porosity" medium 

or a complex of two interacting continua. The transfer term represented in 

equation 13 forms the basis for coupling the two. 

The fractured rock system under consideration is subject to the following 

boundary and initial conditions: 

Boundary Conditions: 

Initial Conditions: 

= c e 
0 

-Adt 

c (r, z, 0) = 0 
p 

A ¢~~ 0 
d 

We will follow the convention that r = 0 at the center of the sphere and 

( 1 4) 

( 15) 

( 1 6) 

( 17) 

r = r 0 at the interface between the fracture and the sphere. At the center 

of the sphere there is a symmetry condition, i.e., dcp/or = 0. 
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Equations (3) and (4), subject to the internal boundary condition (13), 

the boundary conditions (14) and (15), and the initial conditions (16) and 

(17), fully characterize the advection-diffusion problem under consideration. 

DEPTH OF NUCLIDE PENETRATION 

It is pertinent at this juncture to discuss the magnitude of nuclide 

penetration into the rock matrix as a function of time. The mathematical for­

mulation for the case with no longitudinal dispersion in the fracture and 

diffusion into rock slabs of infinite extent was given by Neretnieks (1980) 

together with the analytical solution. This model was subsequently extended 

by treating the finite block size of the rock as well as longitudinal disper­

sion in the bedrock (Rasmuson and Neretnieks, 1980,1981). In this model, a 

cubic system of orthogonal fractures was assumed (Snow 1 1968). However, the 

cubic grid geometry is awkward for modeling internal diffusion. Therefore, 

the problem was solved by approximating the cubes by spheres having the same 

surface-to-volume ratio as a cubic block. 

The solution of this model may be used to simulate the uptake of finite 

rock slabs and longitudinal dispersion in the fissures as sketched in Figure 3. 

It is obvious that at very early times, the advance of the concentration front 

into the rock matrix is restricted to a very thin layer, close to the fracture­

rock interface. This short penetration-depth allows the approximation of the 

flat wall by a thin spherical shell. 

Further, the slab is approximated by spheres having the same surface-to­

volume ratio as a slab. This implies that the total surface area contacted by 
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the water is the same for the sphere as it would be for the slab and the 

amount of solid in the bed is the samee This approximation gives exactly the 

same uptake for short times. 

As time progresses, the solute will migrate deeper into the slab. Now, 

the approximation using spheres will not be exact. However, Neretnieks (1972) 

has shown that the deviation in uptake is small even at larger times. Even-

tually, the slab or spherical blocks will be saturated with solute, assuming 

that the solute flux is maintained at the inlet boundary. 

Referring to the discussion above, two cases of different depth of nu-

elide penetration may be distinguished as "nonpenetrating" and "penetrating" 

cases. To exemplify this for the sphere-diffusion problem, the two following 

variables are defined: dimensionless radius R' = rjr0 and dimensionless time 

( 18) 

We now subject this sphere to a uniform boundary condition of c = c 0 at the 

spherical surface. The solution to the above problem is given by (Carslaw and 

Jaeger, 1973): 

c (R' p u ( 19) 

The solution is graphically shown in Figure 4. For values of T' < 10-3 1 cp/c
0 

falls to less than 0.5 within 3% of r 0 from the surface of the sphere. We will 

refer to this very early time behavior as the "nonpenetration" case. 
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INTEGRAL FORMULATION 

While the differential formulation presented above is convenient for 

obtaining analytic solutions, it is much simpler and less restrictive to for-

mulate the problem in terms of integrals for purposes of numerical simulation. 

Consider a conveniently small volume element i of the flow region (Fig. SA) 

within which the average properties such as concentration vary smoothly. we 

shall associate the average properties over these elements with representative 

nodal points within the element. An element may be either the rock material 

or a fracture (Fig. SB); from a theoretical point of view, the element may 

have any shape. Let the volume element be bounded by the closed surface r. 

Portions of r are interior to the flow region (f i), the rest <rb) coincide 

with the external boundary of the region. We may now write the equation of 

conservation of mass for the solute, incorporating advection and diffusion, as 

- VKg c 
d 

= VK ~ 
8t 

In equation (20), if the volume element is a fracture, c = cf and K = 1. 

( 20) 

If, on the other hand, the volume element is made up of the rock matrix, then 

the first integral in (20), denoting advection, vanishes and c = cp and 

K = KA + Ep• Furthermore, unlike the case with the differential equation, 

there is no need to specify an internal boundary condition (equation 13) for 

the fracture-rock interface. This interface is automatically included in the 

second surface integral in (20), denoting the diffusive transfer. Since we 

shall restrict ourselves to one-dimensional fluid flow in the fracture, we 
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B 

Figure 5. Definition of volume element, nodal point, interior surface segment, 
and boundary surface segment for the IFD scheme. [XBL 807-7236] 



19 

will consider only longitudinal diffusion (dispersion) within the fracture and 

set D = DL in (20) when df separates two adjoining fracture elements. 

The relation of the integral equation (20) to the conventional differen­

tial equation is simple. Applying (20) to a vanishingly small volume element 

and normalizing it with reference to the bulk volume readily leads to (3) and 

(4). It is very convenient to formulate the numerical equations directly 

rather than integrating the differential equations (3) and (4) as suggested by 

Narasimhan (1978). One such direct approach, which uses the finite-difference 

approximation for evaluating gradients, is the Integral Finite Difference 

Method (IFDM) (Narasimhan and Witherspoon, 1976). We shall employ the IFDM in 

the present work. 

NUMERICAL SCHEME 

The IFD scheme used in this paper was originally developed by Edwards 

(1969) who incorporated it into a computer program called TRUMP. This program 

solves, in general, transient potential distributions in multidimensional sys­

tems with advection, conduction, and source terms. The spatial discretization 

allows complex geometrical configurations of volume elements. Material prop­

erties, boundary conditions, and sources may all be functions of either time 

or potential. For advancing in the time domain, a mixed explicit-implicit 

iterative scheme (Narasimhan et al., 1978) is followed. The iterative scheme 

consists of a Point-Jacobi type method with an acceleration factor. 

Consider an arbitratily shaped, appropriately small subdomain i (Fig. 6) 

bounded by the closed surface r whose average properties, such as concentration, 
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Figure 6e Schematic IFD mesh with volume element (node) i in the rock matrix 
communicating into other rock or fracture elements* [XBL 807-7234) 
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are associated with an interior nodal point £. Let this subdomain communicate 

with neighboring volume elements, designated m = 1, 2, 3, ••• , such that the 

line joining £and m is perpendicular to the interface ~r~,m separating the 

elements. Then, one may directly write the discretized form of (20) as: 

F c + '\-. 
Jl.,m i,m L 

b 

( 21) 

m 

where F~,b' Ft,m are volumetric fluxes into element £across boundary and 

+ + - -
interior surface segments, respectively, given by F = (-q.n)df; ct,b' ct,m are 

mean concentrations of the fluid at the boundary and interior surface segments; 

Ut,b and Ut,m are the conductances of the bcundary and interior surface seg-

the area of cross section of the surface segment, d is the distance between 

nodal points, and D is the diffusivity at the appropriate interface; Vi is 

volume of the element; Kf(, is the equilibrium constant for the material con-

tained in £; and ~ct is the average change in concentration in element i. 

In the present work, steady-state fluid flow is assumed and Fi,b and Fi,m 

are a priori known. The conductances are computed based on material properties 

as well as the geometric quantities. The quantities, ~rt,b' ~ri,m' dt,b' and 

d£,m are explicitly provided as input data for every interface in the flow 

region. The only other geometric parameter Vi is also provided as input. 

Should material properties or sources vary with potential or time, appropriate 

estimated mean values will be used for each time step, thereby quasi-lineariz-

ing the nonlinear equation. 
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Ultimately, therefore, the success in solving (21) depends on the accur-

since all these quantities vary in space and in time. Let us now consider 

each of these terms separately. 

Estimati Interface Concentration to Advective 

Note that for computing advective solute transfer we require c at the 

location of the interface between adjoining volume elements. Yet, since the 

initial values are prescribed only at nodal-point locations, we are forced to 

estimate cr in terms of the nodal-point concentrations in the vicinity of the 

interface of interest. In TRUMP, we choose to estimate the concentration at 

the interface .6-I'£-,m by interpolating between c1 and cm, the respective values 

at nodal points £ and m. If d~,i and dm,i are the distances respectively from 

nodal points i and m to the interface, then using a linear, finite-difference 

approximation, 

(22) 

While this logic of interpolation is reasonably accurate for concentration 

profiles generated due to pure diffusion, it will yield significantly wrong 

estimates of c~,m when the concentration profile is dominated by advection and 

is sharp, rather than diffuse. However, when the profile is only moderately 

dominated by advection, one could approximately account for the sharp profile 

by the reasoning that the interface concentration in the vicinity of the pro-

file will be controlled to a large extent by the concentration at the node on 

the upstream side of the interface. This has given rise to the concept of 
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"upstream" or "upwind" weighting. Thus, if fluid is moving from nodal point £ 

to m, then 

c = ~C 0 + (1 - ~)em, 
J(.,m "' 

o.s < ~ < 1.0 (23) 

where ' is the upstream weighting factor. It should be emphasized here that 

the above approach is reasonable only when advection is accompanied by ade-

quate diffusion. In problems with little or very little diffusion, upstream 

weighting will not yield acceptable solutions. In such problems, when ' is 

closer to 0.5, the computed profile will have oscillations close to the front 

while if ~ is in excess of 0.7 the oscillations will be damped but the profile 

will be spread out as if strong diffusion were present. This phenomenon has 

been termed "numerical dispersion." The TRUMP program, especially designed 

for moderately advective problems, gives acceptable results when ~ = .65. 

The relative importance of advection and diffusion can be quantified by the 

Peclet number. For a simple one-dimensional problem with uniform cross sec-

tion and constant element width Az, it is customary to define a Peclet number 

for the numerical problem by 

Pe = 
/::,zvf 

i D 
( 24) 

However, in the context of the integral formulation, it is possible to give a 

more general, physical definition to the Peclet number. Thus the Peclet number 

is the ratio between the ability of the bounding surface of a volume element 

to advect solute into the element (advectance) to its ability to conduct sol-

ute into the element (conductance). The general definition is: 
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upstream upstream 

2 F, 
,l(,,b + 2 F X:.,m 

Peg, "' (25) 

2 u£,b + 2 u Jt..,m 
b m 

where Pe£ is the Peclet number for volume element i and the other symbols are 

as explained in (21)$ Note that in (25) Peclet number is given a local signi-

ficance and is defined with respect to a particular volume element. Peclet 

number, therefore, can vary spatially within the flow region. In addition, 

(25) gives an invariant definition of the parameter. If we apply (25) to a 

one-dimensional problem of uniform cross section and nodal spacing we can 

easily verify that Pe~ = vf~z/2D. 

Estimati Interface Gradient to Conductive Solute Transfer 

To compute the solute flux normal to an interface di', we need to estimate 

+ + 
(q.ndf). E'or this in the IFDM, we use the finite-difference approximation, 

subject to the condition that the line joining nodal points i and m is normal 

to the interface Lll'i,m separating the volume elements t and m. Thus the flux 

The Discretized 

In view of the foregoing, the discretized equation (21) for the advective 

diffusion problem may be rewritten as 

2 2 = 2 uX:.,b(cb - c ~) F,l(,,bct,b + F c + i,m Jl,,m 
b m b 

2 
L.c 

- V ~KA.dc X, 
!1. 

( 26) + u (c - c ) = VX.KJ/, Lit t,m n X. 
m 
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In the IFDM algorithm, the steady fluxes, Ft,m' Ft,b' the boundary paten-

tia~ b' cb as well as the geometric parameters needed to compute u£,m' 

ui,b' and Vt are all provided as input data@ In order to solve (26), there­

fore, we need only to consider the mean nodal concentrations ct, cmand the 

mean interface concentration ~t,m* Since these concentrations are all func-

tions of time, it is necessary to define these time-averaged means@ Indeed, 

it is clear that these averages should satisfy the following relations 

(27) 

and 

(28) 

= Note that in (28) ct,m denotes a mean value in space and in time while c£,m is 

only a spatial mean. 

In order to satisfy (27) we shall let ci = c~ + 8ilci, i = £, m, in which 

0 < 8 < 1.0. For unconditional stability, 0.5 < e < 1.0. In order to' satisfy 

(28), in vies of (23) we may write 

0 0 
= ~(c + e~c ) + (1 - ')(cd + e~cd ) up up own own 

(29) 

However, in the TRUMP code, Edwards (1969) modified (29) slightly and set ~ = 1 

in the terms associated with 6 in (29) to get 
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( 30) 

Edwards (personal communication) devised (30) primarily to combine the advan= 

tages of variable e in the explicit part with unconditional stability in the 

implicit solution. In (26) if we set 8 = 0, we get the following explicit 

relatione 

{ 2 F){.,bci,b + 2 
b m 

0 0 
F (c + (1 - ~)cdo··~] i,m up .... 

+ I ui,b(cb = c~) + I 
b m 

ut,m(c:- c~l - v,KAd!c~ + eoci,estl} ( 31 ) 

It is well known that the explicit equation (or forward differencing 

equation) will violate the maximum principle and give rise to unstable 

oscillations if ~t exceeds a critical limit, definable for each volume element. 

Physically, this critical limit or the "stable time step" for a volume element 

is the ratio of its capacity to sorb solute to the sum of the conductances and 

advectances across its bounding surface. Thus, 

(32) 

Therefore, for bt > btstab,i' (31) cannot be applied to compute bcx,• It can 

be shown that for unconditional stability, when ~t > ~tstab,i' 0.5 < 8 < 1.0. 

In view of this and the definition of ct, ern and ct,m we may write, 
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61>c i) J + 2:Ui,m [(c~ + 66cm)- ( c~ + 6Ac~ )] 

m 

( 33) 

Using the expression for ~ci,exp given in (31) we may simplify (33) to 

6c 0 = b.c + bAt ( '\' F !:.c - '\' Uo.b~Co + '\' Un (~c 
N Jl,,exp VtKi ~ t,m up ~ "'· "' ~ N,m m 

(34) 

In ( 34), if e = 0.5 we get the well-known Crank-Nicolson or central-ciif-

ferencing scheme, while 8 = 1 leads to the fully implicit backward-differencing 

scheme. In TRUMP, 8 is a function of time and is recomputed for every time 

step such that 0.57 < e < 1.0 (for details see Edwards (1969) or Narasimhan et 

al. (1978). The set of equations for 6.c9., i = 1, 2, 3, ••• , L, where Lis 

the total number of volume elements in the system at which Ac has to be eval-

uated, is obviously an implicit set since Ac occurs on both sides of the equa-

tion. They could be solved either directly using successive elimination or 

related techniques or indirectly through iterative methods. In TRUMP, the 

iterative approach is used, using a mixed explicit-implicit scheme {Narasimhan 

et al., 1978). The basic philosophy of this approach is that since f:.tstab 

varies from element to element, the implicit computations are needed only for 

those elements for which b.t > b.tstab• Looking at the form of (34), it is easy 

to see that all the terms except Aci,exp on the right-hand side need to be 

computed only for those volume elements whose stability limit is exceeded by 
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the current time step. For a detailed description of the iterative scheme the 

reader is referred to the TRUMP manual by Edwards (1969). Briefly, the itera-

tive procedure consists in the following substitutions vis-a-vis (34): 

(35a) 

(35b) 

Ac (right side) = ACP 
m m (35c) 

where the superscript p is the iteration number and g is an acceleration 

factor, whose optimal value appears to be 0.2. For p = o, A~ and Aci are 

carefully calculated estimates based on past system behavior. 

RESULTS 

The TRUMP model was applied to the following five test problems: 

1. One-dimensional transport with advection and dispersion in a uniform 

fracture. 

2. Advection and dispersion in a set of parallel fractures with diffu-

sion in microfissured matrix: Early time solution. 

3. Advection and dispersion in a set of parallel fractures with diffu-

sian in microfissured matrix: Solution for large times. 

4. Case 2 with radioactive decay. 

5. Case 3 with radioactive decay. 

The results of these applications are discussed below. The parameters 

used in the problems are summarized in Table 1. 



Table 1. Parameters used in the • 

Parameter 

Fluid Velocity, vf 

Fluid Flux, F 

Dimension 

. 
m3 jm. s 

Long. Dispersion-Coeffi-
cient in Fracture, DL 

Fracture Spacing, S m 

Fracture Pores , 

Radius of Sphere, m 

Volume of librium 
Constant, K 

Effective Di 
in Bulk Solid, Dp£p 

Decay Constant, 

Fracture Aperture, 2b 

Hydraulic Conductivity 
of fissure, Kf 

Conductivity 
of bulk rock, Kr 

Hydraulic i 

Length of Fractur~ 
Element, /:,z 

m2;s 

m 

m/m 

m 

4.1 x 1 o-6 

1.52 X 10-1 O 

10-5 to 10-10 

1.0 

3.1 x 1 o-5 

1 .1 2 x 1 o-3 

3.66 X 1 

0.05 to 0.5 

Problem Number 

2 3 

4.0717 x 1 o-6 3 X 10-7 

1. 5 x 1 o-1 0 3 x 1 o- 12 

10-5 , 10-7 1 • 35 X 1 

50 1.0 

7.368x 10-7 w-5 

75 1 • 5 

1 o4 104 

1 o-12 1o-12 

3.684 X 10-5 1 

1.36x 10-3 1 • 00 X 1 

1 o-9 10-9 

3 x 10-3 3 x 1 0-3 

0.025 to 0.20 15 to 100 

4 5 
-

4.0711 X 10-6 3 X 1 

1. 5 x 1 o- 1 0 3 X 10-12 

1 1.35 X 10-4 

50 1.0 

7. 368 x 1 o- 7 1 

75 1.5 
"' 1..0 

104 1 

10-12 10-12 

8.6643 x 1 o-7 7.335 X 10-1? 
8.6643 x 1o-s 

3.684 x 1 o-5 10-5 

1.36 X 10-J 1.oo x 1 o-4 

10-9 10-9 

3 X 10- 3 3 x 1 o- 3 

0. 0 25 to 0. 2 0 15 to 100 



30 

Problem 1: One-dimensional Transport in a Single Fracture 

The first problem was set up to study the effect of Peclet number and up-

stream weighting factor on numerical dispersion. Consider a fracture with an 

aperture of 3.7 x 1o=S m and length 5 m through which water flows at a constant 

velocity of 4.1 x 10-6 mjs corresponding to a volumetric flux of 1.52 x ~o- 1 0 

m3;m,s. Longitudinal dispersion in the fracture, DL is assumed to vary between 

10-5 and 10=10 m2;s. At t = 0, water enters with a constant concentration of 

c
0

, while the initial concentration everywhere in the fracture is 0. It is 

required to compute cf as a function of space and time. The analytical solu-

tion to the above problem is well known (e.g. Fried and Combarnous, 1971) and 

is given by 

( 36) 

Several numerical experiments were performed with the fracture divided 

into uniform volume elements with ~z varying from 0.05 to 0.5 me Defining a 

Peclet number as in (24), it was found that stable solutions were obtained for 

Pet less than approximately 2. Also, for values of Pe~ < 2, accuracy was 

found to increase with decreasing Pe~. 

A comparison of the numerical results with the analytic solution is pre-

sented in Figures 7 through 9. Figure 7 shows the effect of upstream weighting 

at a given Pe~ = 10.25s It is readily seen that severe oscillations occur at 

low upstream weight factors. At higher upstream weights the oscillations are 

damped but the profile is smeared out. The effect of varying Pe at a constant 
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upstream weight is seen in Figure 8e It is seen that stable solutions are 

obtained for Pe~ less than 2 and that accuracy is inversely related to Pet• 

The purpose of Figure 9 is to indicate the type of accuracy that one could 

obtain when Pet is appropriately small. The breakthrough curves at z = 0.475 m 

are given. It is seen that as Pet decreases below 1 accuracies of 1 part in 

106 are quite attainable. 

Problem 2 Advective-Dispersion in Parallel Fractures with Diffusion in Rock 

Matrix: Early Time Solution (Nonpenetrating Case) 

' 
Consider the geometry in Figure 3. A set of parallel horizontal fractures 

with aperture 2b = 3.684 x 10-5 m are spaced 50 m apart. Within the fracture, 

fluid moves at a constant velocity of 4.0717 x 1o-6 mjse Assuming that flow 

in the fracture obeys cubic law (Witherspoon et ale, 1980), this translates to 

a permeability of approximately 0.1 md for the bulk rock and a hydraulic gra-

dient of 3 x 1o-3 mjm. The fracture porosity sf of the rock is 7e368 x 1o-7e 

The volume equilibrium constant K = 104 m3;m3. The effective diffusivity of 

the bulk solid, DPEP = 10-12 m2;s while two different values of longitudinal 

dispersion DL = 1o-5 and 10-7 m2;s were used. 

The analytical solution to this problem was obtained by assuming that the 

rock slabs are replaced by spheres having the same surface to volume ratio as 

the slabs. As discussed in the section on 00Depth of Nuclide Penetration,w this 

approximation is very good at early times. The system can be represented by 

the following differential equations: 



[ ,~2 ~ ] o C 
2 

oC 
Dt: __ P+ _ ___E = 
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ac 
p 

Kat 

subject to the boundary conditions 

Cic 

c 
0 

(z, 0) = 0 

__E (0, z, t) = 0 or 

c (r , z, t) = cp p 0 

c (r, z, 0) = 0 
p 

given by w 
r=r

0 

where kf is a mass transfer coefficient. 

(37) 

(38) 

(39) 

( 40) 

( 41) 

( 42) 

( 43) 
r=r

0 

( 44) 

The bOundary condition (43) is the link between equations (37) and (38). 

It states mathematically that the mass entering or leaving the particles must 

equal the flow of mass transported across a stagnant fluid film at the external 

surface. For high values of the mass transfer coefficient kf, c ~ cpjr=ro• 

Equations (37) and (38) have been simultaneously solved using analytical 

techniques by Rasmuson and Neretnieks (1980). The solution in terms of dimen-

sionless parameters is given by 



with 

and 

x s1.n YA . ( 2 

2 i ;;:pe z y = v 

( 1 + 
2 

vH ) + 
D1 

H (A) 
D1 ( 

sinh2 
"" A cosh2A 

36 

( 
sinh2A - sin2,\ )-

1 

= A cosh2A ~ cos2A 

dA. 
A 

( 45) 

( 46) 

( 4 7) 

( 48) 

( 49) 

(50) 

(51 ) 

(52) 

where Pe is a "global" Peclet number as opposed to the "local" Peclet number 

Pe~ defined in equations (24) and (25). It was shown in Rasmuson and 
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Neretnieks (1981) that the radial concentration gradients in the fissures 

should be completely negligible. It follows that the film resistance is 

approximately 0 and H1 and H2 are simplified to 

H1(A,V) = HD
1

(A) 

H2 (A,v) = HD
2

(A) 

(53) 

(54) 

Note that for a sphere the specific surface is given by the relation 

A/V = 3r0 while for an infinite slab A/V = 2/S, where S is fracture spacing. 

Hence r
0 

in the present case equals 75 m. We now recall that the dimension­

less timeT' for a sphere is DpEpt/Kr0 2 and T' = 1.778 x 1o-20 t if tis in 

seconds, or 5.6064 x 1o-13t if tis in years. If t = 108 years, T' equals 

5.6064 x 1o-5 which is extremely small. In view of Figure 4, for such a small 

T', the solute penetration into the matrix should be very small. In other 

words the system could be treated as nonpenetrating for times of up to 108 

years or more. 

The nonpenetrating case was investigated numerically with a mesh in which 

the rock blocks were divided into rectangular elements of length AZ and width 

2d, as shown in Figure 10. Using the design of mesh shown in Figure 10, a 

number of runs were made with various mesh widths. A major emphasis in making 

the runs was to gain an understanding of the role of mesh discretization on 

accuracy. Recall that in radioactive waste disposal studies there may be a 

need to predict the early part of the breakthrough curve with a great deal of 

relative accuracy. 



38 

Fracture 
element 

-r 
Center line 
of fracture 

Figure 10. Schematic mesh design for advective-diffusion problem, 
nonpenetration case. (XBL 807=7235] 
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In constructing the mesh for a particular numerical problem, then, it is 

necessary to decide upon (a) the width of the smallest element adjacent to the 

fracture and (b) the rate at which the mesh shall become coarser as we proceed 

away from the fracture. 

In this context, the capacity of a volume element immediately adjoining 

the fracture can be expressed by 

and the total donductance of its surfaces is given by 

Dllz [ 2d 
1 

+ d 
2

] 

d1 [d, + d2] 

(55) 

(56) 

In arriving at (56), the assumption is made that there is no diffusion in the 

z direction within the rock matrixe For high accuracy, the volume element 

adjacent to the fracture should be sufficiently small so that it will react 

rapidly to the concentration pulse originating in the fracturea In other 

words it should have a reasonably small time constant or stability limit given 

by T = c1;z1• One simple way of investigating this is to state that if Tis 

the first arrival of the concentration front at a given point, then T should 

equal aT with a considerably less than 1. To get a reasonable number of ele-

ments in the rock matrix we will design the mesh in such a fashion that the 

mesh width increases by a factor ~ in the direction perpendicular to z. That 

The numerical experiments carried out indicated that good results were 

obtained for 0.001 < a< 0.1. When a was less than 0.001 the time constants 
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varied so widely over the flow region that convergence of the iterative scheme 

was too slow and led to inaccuracies. When a was greater than 0.1 the matrix 

did not react fast enough to the pulse. It was also found that 1 < S < 2 gave 

best results. Values of ~ > 2 had the effect of creating large differences in 

time constants over the flow region, leading to slow convergence and inaccu-

racies. 

The results of the numerical experiments are given in the form of cf;c
0 

versus time at z = 0.475 m. Figures 11 and 12 are for two different global 

Peclet numbers. Figure 11 pertains to the case with Pe = 0.19341 in which the 

fracture was divided into 30 volume elements increasing in size from the inlet 

as 0.025 m (10), 0.05 m (10), and 0.2 m (10). Because of the variations in ~z, 

Pe~ is, of course, variable within the flow region. The matrix was divided 

into 19 volume elements in the direction perpendicular to z with 1o-5m (4) 

and then increasing in size with~= 1.7. Figure 12 pertains to the case in 

which Pe = 19.341 and the fracture is discretized in the same manner as before 

but the matrix is divided into 24 nodes with width 1o-6m (4), then increasing 

with p = 1.6 .(4) and finally increasing with p = 1.7. Note that in both the 

cases the agreement between the analytic and numerical solutions is good. 

In radionuclide migration problems a nuclide which at no time reaches the 

biosphere with a concentration of lo-9 times that in the repository, may be 

considered to have decayed to insignificance (Neretnieks, 1980). For the case 

with Pe = 19.341, that is, with DL = 1o-7 m2/s 1 the relative concentration 

reaches 10-9 at z = 0.475 m after approximately 25 years. This should be com­

pared with the corresponding time for the advance of the hydrodynamic front 
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which is only a little more than a day0 When DL = 10=5 m2;s (Pe = 0@19341), 

the relative concentration attains 10=9 at z = 0.475 m after only 3 days. 

The implication of these two cases in the migration of radionuclides is 

obvious. With low magnitudes of the longitudinal dispersion, diffusion into 

the rock matrix has greatly helped in retarding the solute front behind the 

hydrodynamic front. However, longitudinal dispersion effects of larger magni­

tudes in the fracture can significantly diminish the retardation effects of 

matrix diffusion. An understanding of the relative magnitudes of the diffu= 

sian-sorption on the one hand and dispersion mechanisms on the other is there­

fore essential for the prediction of the migration of radionuclides from a 

final respository of radioactive waste. A first attempt in this direction was 

done by Neretnieks (1980) and Rasmuson and Neretnieks (1981). 

Problem 3 Advection-Dispersion in a Set of Parallel Fractures with Diffusion 

in Microfissured Matrix: Large-time Solution (Penetrating Case). 

In the previous example the fracture spacing was so large that penetra­

tion depth of the solute into the rock matrix was very small. However, when 

S becomes small, the diffusion fronts from adjacent fractures will eventually 

meet. For example, consider a fracture spacing of 1 m, which leads to 

r 0 = 1.5 m. In this case, T' = 1.4016 x 10-9t, if tis in years. That is, 

t = 106 years now corresponds to aT' = 1.4016 x 10=3• In this case we would 

need to model radial diffusion into the spherical particles for t > 106 years. 
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DPEP = 10=12 m2;s, DL = 1.35 x 1o-4 m2;s, vf = 3 x lo-7 m;s, 2b = 10-5m, 

Ef = 10-5 , and r 0 = 1.5 m. For the aperture and the vf used, the hydraulic 

gradient is 0.003 mjm. 

In the actual simulation using TRUMP only one-half of the fracture and 

one-half of the adjoining rock matrix needs to be modeled because of symmetry. 

Hence, the actual fluid flux in the fracture equals 1.5 x 1o=12 m3;m.s. 

We now have to decide upon the number of spherical particles over ~z. 

For this purpose we make use of the fracture porosity, Ef as follows: 

The volume of hemisphere of radius r 0 is 

v 
p 

Let n be the required number of spherical particles. Thus nvp = vb - vf 

= Vb(1 - Ef). Therefore, 

2 
4.5'!TS 

In the TRUMP simulation, the particles were modeled in the spherical 

coordinate system. The volume of a differential volume element bounded by 

(57) 

(58) 

(59) 

orthogonal surfaces of a spherical coordinate system with distance from the 

origin r, angle in the x-y plane 6, and angle from the positive z axis ~ is 

given by 
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For a finite volume element or node, this becomes 

or 

and 

and 

_ { _1 [r2 - r1 ]
2 

}
1

/
2 

r = rav 1 + 12 r 
av 

r = av 2 

sin ~ sin( <jl )sin [ av 

cpav = 

In TRUMP input data the following dimensional factors are specified: 

d 
r (= r , 

av 

- e, l J 

(60) 

( 61) 

( 62) 

( 63) 

( 64) 

(65) 

( 66) 

( 67) 



46 

In the calculations, an equidistant mesh with r 2 - r 1 = 0.1 was used. Due to 

-symmetry, only hemispheres were. used, so di = 0.5. Finally, dr = r is as 

given in Table 2. 

Table 2. Values of r, rav' and r for the 
hemisphere particles (meters). 

-r d = r 
av r 

0 
.os 5.7735 X 10~2 

0.1 
0.15 1.5275 X 1 o-1 

0.2 
0.25 2.5166 X 1 o-1 

0.3 
0.35 3.5119 X 1 o-1 

0.4 
0.45 4.5092 X 1 o-1 

0.5 
0.55 5.5076 X 1 o- 1 

0.6 
0.65 6.5064 X 1 o-1 

0.7 
0.75 7 e5056 X 1 o-1 

Oe8 
0.85 8.5049 X 1 o- 1 

Oe9 
0.95 9.5044 X 1 o-1 

1 • 0 
, • 05 1.0504 

1 • 1 
1.15 1.1504 

1.2 
1.25 1.2503 

1.3 
1. 35 1.3503 

1. 4 
1. 45 1.4503 

1 • 5 
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A comparison of the numerical and analytical results is presented in Fig-

ure 13. In this simulation, the fracture was divided into 25 nodes increasing 

in size from the inlet as 15m (10), 30m (10) and 100m (5). The spherical 

particles were divided into 15 equidistant nodes with 6r = 0.1 m. The solu-

tion in Figure 13 pertains to a point in the fracture at z = 225m. 

Problem 4g Case 2 with Radioactive Decay 

We now consider the case in which the species in Problem 2 is allowed to 

'undergo radioactive decay with a decay constant Ad. That is, on the left-hand 

side of (37) and (38) we add, respectively, -Adcf and AdKcp• In addition, we 

-Adt 
also modify the boundary condition (39) by, cf(O,t) = c 0 e • This boundary 

condition simulates the constant leach rate of a body containing a decaying 

nuclide. For this case the analytical solution is simply given by: 

cf -A dt cf 
= e (68) 

c 
Ad>O 

c 
A =0 0 0 d 

The case with DL = 1o-5 m2;sec of Problem 2 was repeated with two values of 

lives of about 9.259 and 92.59 days, respectively. The results of the numeri-

cal simulations are given in Figure 14 for a point at z = 0.475 m. A general 

good agreement is seen except for a slightly earlier break-through obtained in 

the numerical solution. 
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Problem 5: Case 3 with Radioactive Decay 

Just as in Problem 4, a decay constant of Ad = 2.3105 x 10=9 yr-1 was 

included in Problem 3. This corresponds to a half-life of about 3 x 108 years. 

The results of the simulation are presented in Figure 15 for a point in the 

fracture at z = 225 m. Here too, good agreement is seen except for an earlier 

numerical break-through. 

SENSITIVITY ANALYSIS 

A prime motivation for the present study was a desire to evaluate the 

magnitude with which available numerical methods can match solutions to par­

tial differential equations. Ideally, it is desirable to be able to attain 

accuracies of 10= 4 to 10=5 percent since in the disposal of high-level radio­

active wastes such relative concentrations might be hazardous in the biosphere. 

Our study shows that it is possible to attain accuracies of 1o-3 to 10=4 per= 

cent under ideal conditions using numerical techniques. 

Nevertheless, the very real question exists as to whether the partial 

differential equation itself realistically depicts nature, or whether all the 

coefficients in the differential equation are known with certainty. To inves­

tigate the latter question, a series of sensitivity studies were made. 

A simplified sensitivity analysis was performed using the analytical 

solutions presented by Neretnieks (1980) and by Rasmuson and Neretnieks (1980). 

Neglecting longitudinal dispersion in the fractures and assuming infinite block 

size, the concentration in a point z downstream (Neretnieks, 1980) is: 
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Figure 15. Penetrating case with decay: Comparison of analytic and numerical 
solutions for a mesh with 0.0167 <Pet< 0.111 and with half-life 
of 3 x 108 years. [XBL 825-2248] 
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-il. t 
c d 

erfc 
G 

( 69) - = c 
c It - t 

0 w 

where 

D E: z D £ 

G 
K Is~ D ""~ and t z 

"" =~ 

a K w vf p a 

The peak concentration can be found by differentiating equation (69). In the 

analysis, a central case was chosen where (clc0 )max = 1.0 x 1o=S. By varia= 

tion of the parameters the relative change in (clc
0

)max is found. The sensi= 

tivity Si of the peak concentration to a perturbation of a parameter i is 

defined as: 

S. ~ 
l. 

~,;, (clc ) I (clc ) 
o max o max 

~,;, parameter. I parameter. 
l. l. 

Table 3 shows the parameter values which determine the base case (1). For 

Table 3 

Parameter 

Dp£p 

K 

z 

Kp 

i 

s 

·r, 12 
Pe 

Specification of base cases used in 
sensitivity study. 

Dimension 2 

m21s 1 o=12 , o=12 

m31m3 170 810 

m 2250 300 

mls 1o=9 1 o= 7 

mlm 0.01 0.01 

m 50 50 

years 3.1 o6 13.2 
00 3.33 

( 70) 
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The sensitivity of (cjc
0

)max to a variation in the Peclet number was 

investigated using the analytical solution in Rasmuson and Neretnieks (1980). 

The parameter values used as reference case are given in the last column (2) 

of Table 3. In this case, (cjc0 )max = 8.8 x 1o=6e The sensitivities obtained 

from equation (70) are given in Table 4. 

Table 4 Sensitivity of (cjc0 )max to 
variation in parameters. 

Parameter si 

Dpe:p - 4.1 

K - 4.1 

z - 6.6 

Kp + 16 

i + 16 

s + 16 

Pe - 1. 7 

The sensitivities are very largee A 10% increase in Dpe:p or K would 

decrease (cjc0 )max from 1.0 x 10=5 to 0.6 x 10=5 , whereas a 10% increase in Kp' 

i or S would increase (cjc0 )max to 2.6 x 1o-5. As natural variations in these 

parameters are larger than 10%, it will probably not be possible to predict 

(cjc0 )max with an accuracy better than half an order of magnitude, for this 

part of the break-through curve. The sensitivity of (cjc0 )max to variations 

in the Peclet number is smaller than for the other parameters. A 10% increase 

in Pe would decrease (cjc0 >max from 8.8 x 10=6 to 7.3 x 10-6 • However, the 

uncertainty in the Peclet number is considered to be very large. 
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CONCLUSION 

The ability of the conceptual model to describe flow and mass transfer in 

fissured rock is not proven. In view of this and the sensitivity of numerical 

accuracy to input data, the method used is more than adequate at present for 

practical applications. 
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NOTATION 

area of the connection between nodes t and k. 

half-width of fissure 

concentration 

concentration in liquid in fissures 

concentration in liquid in microfissures 

concentration of solute in the solids defined as 

mass of solutes per unit volume of the porous medium 

inlet concentration in the liquid 

concentration at node i at t 
0 

concentration at the boundary surface segment 

L>f of node Jl, 
Jl,,b 

volume averaged concentration in blocks 

mean concentration at the interface between volume 

elements Jl, and m 

mean concentration at the surface r 

difference in concentration 

capacity of volume element t defined as the mass of 

solute released or taken into storage per unit change 

in concentration 

half-width of a rectangular plume element 

d" . , d . distances from nodes i and m to the interface between them ,.,:L m,:L 

D effective diffusivity in bulk solid; = DpEp• 

Also used as a general symbol for diffusivity 

L2 

L 

M/L
3 

M/L3 

M/L
3 

M/L
3 

' 
M/L

3 

M/L
3 

M/L3 

L 

L 
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longitudinal dispersion coefficient 

effective diffusivity of node ~ 

diffusivity in water in pores 

diffusivity at the fracture-rock interface 

volumetric fluid flux between the boundary and node i 

volumetric fluid flux between nodes i and m 

hydraulic gradient 

mass transfer coefficient 

volume equilibrium constant 

distribution coefficient or partition coefficient, 

volume equilibrium constant of element .II, 

hydraulic conductivity of the bulk rock 

unit outer normal 

iteration number 

Peclet number for analytical solution defined as Pe = vfz/DL 

(equation 52) 

local Peclet number for element i in the nume~ical solution, 

given by Pe~ = vf~z/2DL (equation 24) 

Darcy velocity 

effective spherical radius 

radial distance from center of spherical particle 

= K/m, distribution ratio 

L
2
/T 

L
2
/T 

L
2
/T 

L
2
/T 

L
3
/T 

L
3
/T 

L/L 

L/T 

L3/L3 

L3/L3 

L 3/L 3 

L/T 

L/T 

L 

L 
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fissure spacing 

sensitivity 

time 

initial time 

time constant or stable time step for node t 

dimensionless time; T' = D € t;Kr
2 

p p 0 

half-life 

conductance at the boundary surface segment 

~rJI.,b of volume element Jl. 

conductance between nodes i and m 

average velocity of water in fissures 

volume of fracture 

volume of element t 

volume of rock matrix 

rate of generation of solute. 

= ot, contact time parameter 

distance in flow direction 

length of a volume element in a one=dimensional problem 

sum of the conductances and advectances over the 

surface r enclosing element t 

T 

L 

T 

T 

T 

T 

L 

L 
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a parameter relating time constant of an element to the 

first arrival of solute 

mesh spacing factor 

2 
= 3D £ jr p p 0 

closed surface bounding an element 

an elemental segment of r 

surface segment on the external boundary of flow region 

surface segment interior to the flow region 

surface segment separating nodes i and m 

= yzjmvf, bed-length parameter 

porosity of fissures 

porosity of rock matrix 

upstream weighting factor 

implicit weighting factor for the time domains 

variable of integration 

decay constant of radionuclide 

2 2D e; /Kr 
p p 0 

-1 
T 

_, 
T 






