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ABSTRACT

Numerical models for simulating chemical transport in fissured rocks con-
stitute powerful tools for evaluating the acceptability of geological nuclear
- waste repositories. Due to the very long-term, high texicity of some nuclear
waste products, the models are required to predict, in certain cases, the spa-
tial and temporal distribution of chemical concentration less than 0.001% of
the concentration released from the repository. Whether numerical models can
provide such accuracies is a major gquestion addressed in the present work. To
this end, we have verified a numerical model, TRUMP, which sclves the advec-
tive aiffusion egquation in general three dimensions with or without decay and
source terms. The method is based on an integrated finite-difference approach.
The model was verified against known analytic solution of the one-dimensional
advection-diffusion problem as well as the problem of advection-diffusion in a
system of parallel fractures separated by spherical particles. The studies
show that as long as the magnitude of advectance is egual to or less than that
of conductance for the closed surface bounding any volume element in the re-
gion (that is, numerical Peclet number <2), the numerical method can indeed
match the analytic solution within errors of ¢10“3 % or less. The realistic
input parameters used in the sample calculations suggest that such a range of
Peclet numbers is indeed likely to characterize deep groundwater systems in
granitic and ancient argillaceous systems. Thus TRUMP in its present form
does provide a viable tcol for use in nuclear waste evaluation studies. A
sensitivity analysis based on the analytic solution suggests that the errors

in prediction introduced due to uncertainties in input parameters is likely



to be larger than the computational inaccuracies introduced by the numerical
model. Currently, a disadvantage in the TRUMP model is that the iterative
method of solving the set of simultaneous equations is rather slow when time
constants vary widely over the flow region. BAlthough the iterative solution
may be very desirable for large éhreemdimensional problems in order to mini-
mize computer storage, it seems desirable to use a direct solver technique in
conjunction with the mixed explicit-implicit approach whenever possible. Work

in this direction is in pProgress.
INTRODUCTION

Since the late 1970's the interest in describing radionuclide migration
in subsurface systems has increased considerably. The present interest stems
from the need to predict the possible escape of radionuclides from a radioac~
tive waste repository located deep underground. The problem of prediction
usually is divided into two parts. The first consists of determining the
water movement, and the second, the transport of radionuclides by the water.
The water movement in the far field (i.e., far from the repgsitory) is assumed
to be independent of the nuclide movement which makes it possible to decouple
the two flow fields. The nuclide migration is assumed to be due to both advec-
tive transport and diffusion-dispersion and to be influenced by chemical and
physical interaction with the solid material. The nuclides decay with time

but may also build up in concentration due to decay of a parent.

A well-known mathematical model which includes these effects for one=-

dimensional flow is the GETOUT model (Lester et al., 1975). This is based on



an analytic solution of the governing eguations and includes chain decay.
Another model, which has the capability of multidimensiocnal dispersion of the
nuclides, has been developed by Dillon et al. (1978)., This code is based on
a numerical solution of the governing equations using a finite-difference
technique. Both these models are based on the concept of an instantaneous,
reversible reaction of the nuclide in the water with the solids. Local egui-
librium is thus always assumed to be established. Lately it has been ques-
tioned (Neretnieks, 1980; Grisak et al. 1980a,b, 1981; Tang et al., 1981)
whether this assumption might not be seriously in error for flow in a fissured
crystalline rock. This is due to the fact that the water flows in the macro-
fissures or fractures of the rock which may be fairly widely spaced. The
sorption may not take place homogeneously in the rock because the time needed
to distribute the nuclides evenly through the rock by diffusion through the

stagnant water present in very small microfissures might be too long.

Neretnieks' (1980) analysis of this phenomenon was based on a description
of the conditions in a single fissure. Simple analytic solutions could be
found for a single nuclide. Rasmuson and Neretnieks (1980, 1981) extended the
model to describe the flow in a porous bed consisting of spherical particles
and including axial disperion. Rasmuson (1981) also extended the model to
include radial dispersion. In these models only one muclide is considered.
Even under such a simple condition, the resulting analytic solutions proved to
be quite complicated in their structure and not amenable to straightforward
computational evaluation. It was therefore decided in the present study to

investigate the capability of a numerical method to handle these systems since



numerical methods appear to offer the only practical way at present to describe

more complex situations.

In investigating the numerical method, one of the problems which was given
a high priority was to determine the degree of accuracy with which the early
part of the nuclide arrival can be simulated. This is of special interest in
studying radionuclide migration since a major mechanism for assuring safety is

to give the radionuclide sufficient time to decay.

The problem may be illustrated by the following simplified model describ-
ing the arrival of a tracer at a point of interest. The concentration ¢ of a
tracer which arrives at the observation point at time t after the release at
the injection point is described by the function ¢ °f£(t), where c, is the
inlet concentration. Under certain mathematical linearity conditions the
function £ is independent of c. This is realistic in many practical cases.
The function has the following property for the transport of a single tracer:

0< £ <1 | (1)

A typical breakthrough curve £(t) may lock like the one depicted in Figure 1.
In many practical applications with stable compounds, the accuracy sought in
determining the function £(t) is not very high. In chemical engineering prob-
lems for example, better than 0.1% absolute accuracy would normally be deemed
adegquate. A concentration which is 0.1% of that at the inlet end of an adsorp-
tion column, or in a field test with tracers, is often near detection limits

and there is usually no need for greater relative accuracy.



centration break through front C/C, = f(t)

XBL825 - 2249

Figure 1. Sketch of concentration break-through at a point in a one-
dimensional advection-diffusion system. [¥BL 825-2249]



The problem is different, however, when large amounts of radiocactive
materials are handled. Often the radionuclides must not reach the biosphere
in concentrations larger than 102 to 10~® of the concentration at the locus
of an accidental leak in a repository. The value 10-9 is arrived at in the
following way. A thousand-year-old waste has an activity of less than 102 Cci/
tonne original fuel (KBS, 1977). The total amount of waste in a repository
for the Swedish program--12 reactors running for 30 years--is less than 10,000
tonnes of fuel (KBS, 1978). A maximum leach rate is expected to be 3.3 x 10~2
fractions/year (KBS, 1977). If this amount decreases in activity by 109 pe-
fore reaching the biosphere, the inflow to the biosphere is 33 x 10~2 Ci/year.
In the KBS safety study (KBS, 1977), which fulfilled the Swedish stipulation
law of being safe, at least 11 nuclides were calculated to have many orders of
magnitude higher inflow rates. The value 102 ghould therefore be a very con-
servative value. One of the major aims in repository design is to ensure that
enough time will be available for a nuclide to decay to safe levels before the

nuclide reaches the biosphere.

A concentration of 10~© co might be acceptable in certain cases, but not
10~5 ¢, Which is 10 times higher., This means that sometimes there may be a
need to predict the early part of the breakthrough curve with a fairly high

relative accuracy even though the absolute accuracy is very high.

The relative concentration of a decaying nuclide at a point of interest
is the product of the breakthrough curve £(t) and the decay function exp[aﬁit}

where M is the decay constant. We have



c/co = £(t) exp [ukdt] (2)

For the linear case mentioned previously, Figqure 2 shows that a small absolute
error in predicting f(t)--the error is 0.003--may give a ten-fold error in the

maximum concentration at the breakthrough point.

The purpose of the present work is to investigate whether relative errors
on the order of 0.001% or less are achievable in predictive models of chemical
transport using numerical methods. To this end we investigated a widely-used
computer program TRUMP (Edwards, 1969) which solves for advective-diffusive
heat transport in multidimensional systems. This heat transport code is read-
ily amenable to the chemical transport problem if we recognize the strong sim-
ilarities between heat and solute transport. Specifically, we applied this
program to a system involving fissured massive rock with advection restricted
to fissures and diffusion through stagnant pore fluid being the only transport
mechanism active in the microfissured .rock mass. Our goal was to validate the
numerical model through comparison with known analytic solutions of Neretnieks
{1980) and Rasmuson and Neretnieks (1980, 1981). In the present work we will
restrict our attention to a steady-state fluid flow field with one chemical

species that is subject to decay.

In seeking to formulate the eguations governing the problem of interest
there is strong reason to believe that considerable advantages could be gained
in terms of simplicity and generality if the eguations are written directly as
integrals. We have attempted to provide a theoretical basis for this reason-

ing in formulating the governing numerical equations.
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Figure 2. Influence of input computational errors on concentration
breakthrough. [XBL 825-2250]



THEORY

In dealing with the chemical transport of nuclides in a fractured rock
mass we are concerned with a heterogeneous flow region in which advection is
restricted to the fractures while diffusion is dominant in the rock mass. It
is customary to describe the physics of this problem through two coupled
partial differential equations, one describing advection and longitudinal dis-
persion in the fractures and the other describing diffusion and sorption in
the rock. The coupling is assured through an internal boundary condition
demanding continuity of flux and concentration at the fracture-rock interface.
Alternately, the same problem could be stated in integral form by writing
equations of mass conservation for finite subdomains of the flow region. This
representation, which has the advantage of generality for numerical implemen-
tation, conveniently dispenses with the need for stating internal boundary
conditions., Inasmuch as this report deals with the analytical validation of

a numerical method, we shall here present both the formulations.

DIFFERENTIAL FORMULATION

Consider a system of parallel, horizontal fractures separated by unfrac-
tured rock as shown in Figure 3. As proposed by Neretnieks (1980) and Rasmuson

and Neretnieks {(1980) the coupled partial differential equations may be written

Chemical Transport in the Fracture

9c 82c dc
-ty £ + D L W - A.C_ = £ (3)
f Oz L d7f ot

9z
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Figure 3. Sketch of the fracture-matrix system for the two-dimensional
advection-diffusion problem. [XBL 825-2251]
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Chemical Transport in the Rock

ocC
. - = %
V e Dpe,PVCP Kx dcp K (4)

at
where Ve is the steady-state water velocity in the fracture, Cg is concentra-
tion of species in the fracture, Dy is the longitudinal dispersion coeffi-
cient for the fracture, z is the coordinate axis oriented along the fracture,

w is the coupling term denoting the rate at which the solute is lost from the

fracture to the rock matrix per unit volume of the fracture, D, is the diffu-

p

sivity of the species in the pore-fluid, £p is the porosity of the rock due to

the presence of microfissures, Ay is the decay coefficient, and K is the vol-

ume equilibrium constant defined as the mass of solute required to change the

pore=fluid concentration, cp, by unity per unit volume of the rock. The con-
centration of the speciesg in the solid, cg and cp, will not in general be
equal. The ratio of cg to cp at eguilibrium is the partition coefficient Kpv
defined by
s

KA:‘E; (5)
In the above, Cg is defined in terms of the bulk volume of the porous matrix.
In view of the partition coefficient, K becomes a function of ap and Kpe Thus

K = ap + Ko (6)
Por a nonsorbing species, Ky = 0 and

K=¢ . (7)

P
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The rate at which the solute is transferred from the fracture to the
adjacent block of rock depends on the diffusivity, the concentration gradient,

and the area cross section at the fracture-rock interface. Thus,

dc
v.w P T

W = D Ty (8)
£ fir ar £,

£,

where Vg is the fracture volume, Df,r and rf;r are the diffusiﬁity and area of
cross section at the fracture rock block interface. Here, r is the orienta-
tion of the transverse axis of diffusion. Note that the guantity of solute

lest by fracture is gained by the rock block. Let ¢, denote the bulk-average

T

concentration of the solute in the rock block comprising the microfissures and

the solids. Then,

oC

Vw=1Y
by

£ (9)

ot
where vy is the volume of the rock block. If we now define the bulk rock vol-

ume V,, to be Vg + V., and the fracture porosity eg by Vf/Vb, then,

W = — . (10)

If the rock matrix associated with the fracture is idealized as spherical

(Rasmuson and Neretnieks, 1981), then in eguation 4,

V.DeVe =D
P

o 11
Pp P ()

The rate of transfer of solute from the fracture to the sphere (equation 8) is

acp 5
£V = Df,r 'r <4ﬁro ) (12)
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where Yy is the radius of the sphere., The average rate of change of concentra-
tion in the sphere becomes:

dc V. w dc

r = 4 (13)
at v r f,r 9r
r o)

It may be pointed out that since diffusion is assumed to occur only within the
rock through the stagnant water present in the microfissures, the interface

diffusivity, Df,r in equations (12) and (13) is egqual to DPEP@

Essentially, the fractured continuum is treated as a "two-porosity” medium
or a complex of two interacting continua. The transfer term represented in

equation 13 forms the basis for coupling the two.

The fractured rock system under consideration is subject to the following
boundary and initial conditions:

Boundary Conditions:

cf(O, t) = coeskdt . kd 20 (14)

cf(m, t) =0 (15)
Initial Conditions:

cf(zg 0) =0 (16)

cp(r, z, 0) = 0 {(17)

We will follow the convention that ¥ = 0 at the center of the sphere and
r = r, at the interface between the fracture and the sphere. At the center

of the sphere there is a symmetry condition, i.e., Bcp/ar = 0,
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Equations (3) and (4), subject to the internal boundary condition (13),
the boundary conditions (14) and (15), and the initial conditions (16) and

(17), fully characterize the advection=-diffusion problem under consideration.
DEPTH OF NUCLIDE PENETRATION

It is pertinent at this juncture to discuss the magnitude of nuclide
penetration into the rock matrix as a function of time. The mathematical for-
mulation for the case with no longitudinal dispersion in the fracture and
diffusion into rock slabs of infinite extent was given by Neretnieks (1980)
together with the analytical solution. This model was subseguently extended
by treating the finite block size of the rock as well as longitudinal disper-
sion in the bedrock (Rasmuson and Neretnieks, 1980,1981), In this model, a
cubic system of orthogonal fractures was assumed (Snow, 1968). However, the
cubic grid geometry is awkward for modeling internal diffusion. Therefore,
the problem was solved by approximating the cubes by spheres having the same

surface-to-volume ratio as a cubic block,

The solution of this model may be used to simulate the uptake of finite
rock slabs and longitudinal dispersion in the fissures as sketched in Figure 3.
It is obvious that at very early times, the advance of the concentration front
into the rock matrix is restricted to a very thin layer, close to the fracture-
rock interface. This short penetration-depth allows the approximation of the

flat wall by a thin spherical shell.

Further, the slab is approximated by spheres having the same surface-to-

volume ratio as a slab. This implies that the total surface area contacted by
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the water is the same for the sphere as it would be for the slab and the
amount of solid in the bed is the same. This approximation gives exactly the

same uptake for short times,

As time progresses, the solute will migrate deeper into the slab. Now,
the approximation using spheres will not be'exact@ However, Neretnieks (1972)
has shown that the deviation in uptake is small even at larger times., Even-
tually, the slab or spherical blocks will be saturated with solute, assuming

that the solute flux is maintained at the inlet boundary.

Referring to the discussion above, two cases of different depth of nu-
clide penetration may be distinguished as "nonpenetrating” and "penetrating”

cases. To exemplify this for the sphere-diffusion problem, the two following

variables are defined: dimensionless radius R' = r/ro and dimensionless time
T = DPEPt/Kroze In view of these and neglecting sources, we may rewrite (4)
Bzc ac ac
.__i S ﬁ?.;,.__mg o= m_g.g ° (18)
sge2 RUBR' QT

We now subject this sphere to a uniform boundary condition of ¢ = ¢, at the

spherical surface, The solution to the above problem is given by (Carslaw and
Jaeger, 1973):

L

n
2 (=1) . 2 2 !

v § = § £ i i

cP(R s TU) co 1 + = E = sin[ngR' Jexp(=-n"g"T ]i

(19)

n=1
The solution is graphically shown in Figure 4., For values of T’ < 70”3, cp/co
falls to less than 0.5 within 3% of «

o from the surface of the sphere. We will

refer to this very early time behavior as the "nonpenetration® case.
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Figure 4. Diffusion in a sphere with constant surface potential c/c, as a
function of R’ for various values of T', [XBL 807-7237]
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INTEGRAL FORMULATION

While the differential formulation presented above is convenient for
obtaining analytic solutions, it is much simpler and less restrictive to for-
mulate the problem in terms of integrals for purposes of numerical simulation.
Consider a conveniently small volume element { of the flow region (Fig. 5A)
within which the average properties such as concentration vary smoothly. We
shall associate the average properties over these elements with regresentative
nodal points within the element. An element may be either the rock material
or a fracture (Fig. 5B); from a theoretical point of view, the element may
have any shape. Let the volume element be bounded by the closed surface T,
Portions of I' are interior to the flow region (I'j), the rest (Iy) coincide
with the external boundary of the region. We may now write the eguation of
conservation of mass for the solute, incorporating advection and diffusion, as

ac

3T (20)

- {gen dF)cr +-~j” DVcendl - VKgdc = VK
Fb+Ti Tb+Fi

In eguation {(20), if the volume element is a fracture, ¢ = cg and K = 1.
If, on the other hand, the volume element is made up of the rock matrix, then
the first integral in (20), denoting advection, vanishes and ¢ = €y and
K= Ky + epa Furthermore, unlike the case with the differential equation,
there is no need to specify an internal boundary condition (eguation 13) for
the fracture-rock interface. This interface is automatically included in the

second surface integral in (20), denoting the diffusive transfer. Since we

shall restrict ourselves to one-dimensional fluid flow in the fracture, we
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Fracture
N

Figure 5., Definition of volume element, nodal point, interior surface segment,
and boundary surface segment for the IFD scheme. [XBL 807-7236]
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will consider only longitudinal diffusion (dispersion)} within the fracture and

set D = Dy in (20) when dl separates two adjoining fracture elements.

The relation of the integral equation (20) to the conventional differen-
tial eguation is simple. Applying (20) to a vanishingly small volume element
and normalizing it with reference to the bulk volume readily leads to (3) and
(4}, It is very convenient to formulate the numerical equations directly
rather than integrating the differential eguations (35 and (4) as suggested by
Narasimhan (1978). One such direct approach, which uses the finite-difference
approximation for evaluating gradients, is the Integral Finite Difference
Method (IFDM) (Narasimhan and Witherspoon, 1976). We shall employ the IFDM in

the present work.

NUMERICAL SCHEME

The IFD scheme used in this paper was originally developed by Edwards
{(1%09) who incorporated it into a computer program called TRUMP. This program
solves, in general, transient potential distributions in multidimensiocnal sys-
tems with advection, conduction, and source terms. The spatial discretization
allows complex geometrical configuraticns of volume elements. Material prop-
erties, boundary conditions, and sources may all be functions of either time
or potential. PFor advancing in the time domain, a mixed explicit-implicit
iterative scheme (Narasimhan et al., 1978) is followed. The iterative scheme

consists of a Point-Jacobi type method with an acceleration factor.

Consider an arbitratily shaped, appropriately small subdomain % (Fig. 6)

bounded by the closed surface [ whose average properties, such as concentration,
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Figure 6. Schematic IFD mesh with volume element (node) { in the rock matrix
communicating into other rock or fracture elements. [XBL 807-7234]
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are associated with an interioxr nodal point £. Let this subdomain communicate
with neighboring volume elements, designated m = 1, 2, 3, ..., such that the
line jeoining £ and m is perpendicular to the interface Arx,m separating the
elements, Then, one may directly write the discretized form of (20) as:
ZFx,bzxib * 2 Py nem * z U, = Sy)
b m b

A
“e

+ Z Uzim(cm - cg) - vgmdcg = VX T (21)
m

where Fk,bf F&,m are volumetric fluxés into element 4 across boundary and
interior surface segments, respectively, given by F = <a§a§>dr; Eg,b' Ek,m are
mean concentrations of the fluid at the boundary and interior surface segments;
U&,b and Ul,m are the conductances of the boundary and interior surface seg-
ments given by Uk,b = Dx,bﬂrx,b/dx,b’ Uz,m = ngm(urxpm/dxﬁm> in which ol is
the area of cross section of the surface segment, d is the distance between
nodal points, and D is the diffusivity at the appropriate interface; vy is

volume of the element; Kg is the equilibrium constant for the material con-

tained in 4; and 4cy is the average change in concentration in element L.

In the present work, steady-state fluid flow is assumed and ngb and Fk;m
are a priorli known. The conductances are computed based on material properties
as well as the geometric guantities. The quantities, Arx,b' Arﬁim, dL,b’ and
dl,m are explicitly provided as input data for every interface in the flow
region. The only other geometric parameter V, is also provided as input.
should material properties or sources vary with potential or time, appropriate

estimated mean values will be used for each time step, thereby quasi-lineariz-

ing the nonlinear equation.
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Ultimately, therefore, the success in solving (21) depends on the accur-
acy with which Cy,b? C4,me S4r and cp can be computed for each chosen At,
since all these guantities vary in space and in time. Let us now consider

each of these terms separately.

Estimating Interface Concentration to Compute Advective Solute Transfer

Note that for computing advective solute transfer we require ¢ at the
location of the interface between adjoining volume elements. VYet, since the
initial values are prescribed only at nodal-point locations, we are forced to
estimate cp in terms of the nodal-point concentrations in the vicinity of the
interface of interest. In TRUMP, we choose to estimate the concentration at
the interface Afggm by interpolating between cy and c,, the respective values
at nodal points 4 and m. If di,i and dm,i are the distances resgpectively from
nodal points L and m to the interface, then using a linear, finite-difference
approximation,

d + dx icm

m, 154

- [ [}

Lm 4, ., +d . ’ (22)
Lyi m, i

c

While this logic of interpolation is reasonably accurate for concentration
profiles generated due to pure diffusion, it will yield significantly wrong
estimates of Ex'm when the concentration profile is dominated by advection and
is sharp, rather than diffuse. However, when the profile is only moderately
dominated by advection, one could approximately account for the sharp profile
by the reasoning that the interface concentration in the vicinity of the pro-
file will be controlled to a large extent by the concentration at the node on

the upstream side of the interface. This has given rise to the concept of
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"upstream” or "upwind" weighting. Thus, if fluid is moving from nodal point %

to m, then

+ (1 - Q)cm, 095 ( Z; < 160 (23)

where [ is the upstream weighting factor. It should be emphasized here that
the above approach ié reasonable only when advection is accompanied by ade-
quate diffusion. In problems with little or very little diffusion, upstream
weighting will not vyield acceptable solutions. In such problems, when § is
closer to 0.5, the computed profile will have oscillations close to the front
while if ¢ is in excess of 0.7 the oscillations will be damped but the profile
will be spread out as if strong diffusion were present. This phenomenon has
been termed "numerical dispersion.®™ The TRUMP program, especially designed
for moderately advective problems, gives acceptable results when & = .65,

The relative importance of advection and diffusion can be quantified by the
Peclet number. For a simple one-dimensional problem with uniform cross sec-
tion and constant element width 4z, it is customary to define a Peclet number
for the numerical problem by

szf

1
Pegw‘z” 5 (24)

However, in the context of the integral formulation, it is possible to give a
more general, physical definition to the Peclet number. Thus the Peclet number
is the ratio between the ability of the bounding surface of a volume element
to advect solute into the element (advectance)} to its ability to conduct sol-

ute into the element (conductance). The general definition is:
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upstream upstream

E Feb + E Fe.m

Pe, = b L | (25)

EE Uﬂ,b + zg Ukim

b m

where Pey is the Peclet number for volume element 4 and the other symbols are
as explained in (21). WNote that in (25) Peclet number is given a local signi-
ficance and is defined with respect to a particular volume element. Peclet
number, therefore, can vary spatially within the flow region. In addition,
(25) gives an invariant definition of the parameter. If we apply (25) to a
one=-dimensional problem of uniform cross section and nodal spacing we can

easily verify that Pey = vfl.‘;z/ZDe

Estimating Interface Gradient to Compute Conductive Solute Transfer

To compute the solute flux normal to an interface dl, we need to estimate
# 6} + s 3 3 s 3 k3
{g.ndl'). PFor this in the IFDM, we use the finite-difference approximation,
subject to the condition that the line joining nodal points £ and m is normal
to the interface b4l n Separating the volume elements % and me Thus the flux
12

of solute is given by [DAfzim(cm - Cg)]/dxim = Ulim(cm = cge

The Discretized Equations

In view of the foregoing, the discretized eguation (21) for the advective

diffusion problem may be rewritten as

Z P 64,0 * Z FemCam ¥ E Ug, b = g

b m b

c - = ¢ )\ = . s -
+ :g Ux,m(cn CL) VK o€ VK it {20)
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In the IFDM algorithm, the steady £fluxes, F‘hm,y Fg,b’ the boundary poten—
tials Cg,b? Sp @8 well as the geometric parameters needed to compute Ugimg
Uzpbg and V, are all provided as input data. In order to solve (26), there-
fore, we need only to consider the mean nodal concentrations E£5 gmana the
mean interface concentration égvm@ Since these concentrations are all func-

tions of time, it is necessary to define these time-averaged means. Indeed,

it is clear that these averages should satisfy the following relations

t +AL
o
- - 1
Ug,m(cm - cg) = 7% J;! Ug,m(cm - cz) dt (27)
©
o
and
t +At
o
= 1 -
B F dt
FemCe,m T IE j g,m g, m (28)
t
o]
Note that in (28) gg,m denotes a mean value in space and in time while Egim is
only a spatial mean.
In order to satisfy (27) we shall let ¢; = c + 8hcy, i = g, m, in which

0 < 8 < 1.0, For unconditional stability, 0.5 < § < 1.0, In order to satisfy

(28), in vies of (23) we may write

= O O

cg,,m = ;(cup + eAcuP) + (1 - z;)(c:down + eAcdown)
= lgeo + (1 = gleo 1 461 (1 - ) (29)
= eCyp T = %%0uwn C8Cup ¥ = 8)8Cg0un!

However, in the TRUMP code, Edwards (1969) modified (29) slightly and set g = 1

in the terms associated with § in (29) to get
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& = 1¢e° - )e° 64
c;'xgm [chp + (1 ;)cdown] + cup] (30)

Edwards (personal communication) devised (30) primarily to combine the advan-~
tages of variable 9 in the explicit part with unconditional stability in the

implicit solution. In (26) if we set ® = 0, we get the following explicit

relation,
bt EE o o
Acﬁpexp - VK Flgbci,b + ZE: Fﬁ,m[cup + (- g)cdown]
b m
o o o o .
- A - - A G4
N E Uy pley = ) + z Uy (€0 = o) = VKA L] + bhcy ] (31)
b m

It is well known that the explicit equation (or forward differencing
eguation) will violate the maximum principle and give rise to unstable
oscillations if Ot exceeds a critical limit, definable for each volume element.
Physically, this critical limit or the "stable time step"” for a volume element
is the ratio of its capacity to sorb solute to the sum of the conductances and

advectances across its bounding surface. Thus,

v K
L%
1Ay =
tgtab,k - . upstream (32)
+ +
Z Uep Z Ye.m Fom
b m m

Therefore, for &t > Ot g¢ (31) cannot be applied to compute Lcy. It can
stab, £
be shown that for unconditional stability, when 4t > Atstab ge 05 < 0 < 1.0,
§

In view of this and the definition of cg, Ch and Cy,m we may write,
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Lt o o
i = . - 84
ey VgKg EiFipbcﬁyb + i inm[;cup + (1 l;)cdown + cup]

b m
o o . . o
- - e
+ zleb[cb (cg + ebcz)] + zugim[(cm + GAcm) (cg + Acz)]
b m
.,,VKA<Q+6A : (33)
a\%y cg) ° :

Using the expression for Aci,exp given in (31) we may simplify (33) to
ic, = be +-=-££-£ ZF Ac —»Z U, . Ac +Z’U (be = bDcy) (34)

L L,exp Vxxg L,m Tup £,b 7% Lm' Tm L

m b m
In (34), if 9 = 0.5 we get the well=known Crank-Nicolson or central-dif-

ferencing scheme, while 9 = 1 leads to the fully implicit backward-differencing
scheme. In TRUMP, O is a function of time and is recomputed for every time
step such that 0,57 < § < 1.0 (for details see Edwards (1969) or Narasimhan et
ale (1978). The set of equations for bcy, £ =1, 2, 3, coo, L, where L is
the total number of volume elements in the system at which f6c has to be eval-
uated, is obviously an implicit set since &c¢ occurs on both sides of the equa-
tion. They could be solved either directly using successive elimination or
related techniques or indirectly through iterative methods. In TRUMP, the
iterative approach is used, using a mixed explicit-implicit scheme {(Narasimhan
et al.,, 1978). The basic philosophy of this approach is that since Atstab
varies from element to element, the implicit computations are needed only for
those elements for which Ot > Atstabe Looking at the form of (34), it is easy
to see that all the terms except Acgpexp on the right-hand side need to be

computed only for those volume elements whose stability limit is exceeded by
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the current time step. For a detailed description of the iterative scheme the
reader is referred to the TRUMP manual by Edwards (1969). Briefly, the itera-

tive procedure consists in the following substitutions vis-a-vis (34):

be,(left side) = acP' | (35a)

Acg(right side) = (1 + g)z:xcgM - géci {35b)
. . _..p

Acm(rlght side) = be | {35¢)

where the superscript p is the iteration number and g is an acceleration

factor, whose optimal value appears to be 0.2, For p = 0, Acﬁ and Aci are

carefully calculated estimates based on past system behavior,
RESULTS

The TRUMP model was applied to the following five test problems:

1e One-dimensional transport with advection and dispersion in a uniform
fracture.

2e Advection and dispersion in a set of parallel fractures with diffu-
sion in microfissured matrix: Barly time solution.

3o Advection and dispersion in a set of parallel fractures with diffu-
sion in microfissured matrix: Solution for large times.

4, Case 2 with radicactive decay.

5. Case 3 with radiocactive decay.

The results of these applications are discussed below. The parameters

used in the problems are summarized in Table 1.



Table 1.

Parameters used in the problems.

Problem Number

Parameter Dimension 1 2 3 4 5
o . -6 -6 -7 -6 -7

Fluid velocity, vg m/s. 4.1 x 10 4,0717 x 10 3 x 10 4,0717 x 10 3 x 10
Fluid Flux, F m3/m.s 1.52 x 10710 1.5 x 10710 3x 10712 1.5 x 10710 3x 10712
Long. Dispersion-Coeffi-

cient in Fracture, D;  m2/s 1072 to 10710 1073, 1077 1.35 x 107¢ 1072 1.35 x 1074
Practure Spacing, S m - 50 1.0 50 1.0
Fracture Porosity, Ef - 7.368 x 10™7 iO'S 7:368 x 10”7 10”5
Radius of Sphere, r, m - 75 1.5 75 1.5
Volume of Equilibrium

Constant, K m3 /3 1.0 104 104 104 104
Effective Diffusivity

in Bulk Solid, De, m2/s _— 10712 10~12 1012 10-12
Decay Constant, Ag 1/s - - - 8.6643 x 10~7 7,335 x 10”1/

8.6643 x 10-8

Fracture Aperture, 2b n 3.7 x 10~5 3.684 x 107° 10”2 3.684 x 1072 1072
Hydraulic Conductivity

of fissure, Kg m/s 1.12 x 1073 1.36 x 1073 1.00 x 1074 1.36 x 1073 1.00 x 1074
Hydraulic Conductivity

of bulk rock, K, m/s - 10-9 10™9 10~9 10™2
Hydraulic Gradient, i m/m 3.66 x 10~3 3x 1073 3x 1073 3x 1073 3x 1073
Length of Fracturs

Element, Az m 0.05 to 0.5 0.025 to 0.20 15 to 100 0.025 to 0,20 15 to 100

62
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Problem 1: One-dimensional Transport in a Single Fracture

The first problem was set up to study the effect of Peclet number and up-
stream weighting factor on numerical dispersion. Consider a fracture with an
aperture of 3.7 % 10=5 m and length 5 m through which water flows at a constant
velocity of 4.1 x 1076 m/s corresponding to a volumetric flux of 1.52 x 1010
m3/m,se Longitudinal dispersion in the fracture, Dy is assumed to vary between
1075 and 10710 mz/sg At t = 0, water enters with a constant concentration of
Cor While the initial concentration everywhere in the fracture is 0. It is
required to compute cg as a function of space and time. The analytical solu-
tion to the above problem is well known (e.g. Fried and Combarnous, 1971) and

is given by

cﬁ 1 Z - v, t v Z zZ + vft

—= (2, t) = = |erfc | ~——iicee | + XD | = | €rfC | = {36)
1 D

s 2 2(D_t) /2 L Z(DLt)1/2

Several numerical experiments were performed with the fracture divided
into uniform volume elements with 4z varying from 0.05 to 0.5 m. Defining a
Peclet number as in (24), it was found that stable solutions were obtained for
pPe, less than approximétaly 2. Also, for values of Pey < 2, accuracy was

found to increase with decreasing Peg.

A comparison of the numerical results with the analytic solution is pre-
sented in Figures 7 through 9. Figure 7 shows the effect of upstream weighting
at a given Pey = 10.,25. It is readily seen that severe oscillations occur at
low upstream weight factors. At higher upstream weights the oscillations are

damped but the profile is smeared out. The effect of varying Pe at a constant
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upstream weight is seen in Figure 8. It is seen that stable solutions are
obtained for Peg less than 2 and that accuracy is inversely related to Pey.

The purpose of Figure 9 is to indicate the type of accuracy that one could
obtain when Pey is appropriately small. The breakthrough curves at z = 0.475 m
are given. It is seen that as Pey decreases below 1 accuracies of 1 part in

106 are guite attainable.

Problem 2 Advective-Dispersion in Parallel Fractures with Diffusion in Rock

Matrix: Early Time Solution (Nonpenetrating Case)
%

Consider the geometry in Figure 3. A set of parallel horizontal fractures
with aperture 2b = 3.684 x 10> m are spaced 50 m apart. Within the fracture,
fluid moves at a constant velocity of 4.0717 x 1076 m/s. Assuming that flow
in the fracture obeys cubic law {(Witherspoon et al., 1980), this translates to
a permeability of approximately 0.1 md for the bulk rock and a hydraulic gra-
dient of 3 x 1073 m/m. The fracture porosity &g of the rock is 7.368 x 1077,
The volume equilibrium constant K = 104 m3/m3e The effective diffusivity of
the bulk solid, D,E, = 10712 m?/s while two different values of longitudinal

dispersion Dy = 1075 and 10~ mz/s were used.

The analytical solution to this problem was obtained by assuming that the
rock slabs are replaced by spheres having the same surface to volume ratio as
the slabs. B&As discussed in the section on ®“Depth of Nuclide Penetration,® this
approximation is very good at early times. The system can be represented by

the following differential equations:
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gc d C o]
£ £ £
mvf?;u+DL 3 nsw,.-é? (37)
0z
acp
= 5T (38)

subject to the boundary conditions

cf(Op t) = c, (39)
cf(mi t) =0 (40)
cf<zp 0) =0 (41)
gc
P =
= (0, z, £) =0 (42)
1 - ¢_ 3k
) _ £ .
cp(ro, z, t) = Cp . , given by w = Ef = (¢ = cp) e (43)
o o

cp(zy z, 0) = 0 (44)

where kf is a mass transfer coefficient,

The boundary condition (43) is the link between eguations (37) and (38).
It states mathematically that the mass entering or leaving the particles must
equal the flow of mass transported across a stagnant fluid film at the external

surface. For high values of the mass transfer coefficient kg, © ~ Cplr=r,°
e)

Egquations (37) and (38) have been simultaneously solved using analytical
techniques by Rasmuson and Neretnieks (1980). The solution in terms of dimen-

sionless parameters is given by



with

and

Se_1,2
C 2 i

o

x sin

z %' = Pe(
zzy' = §Pe
H.i(/\y \)) =
HZ(A, v} =
H (A) =

D1

H ()\)

DZ

Pe = vf/Dp

1

2
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///;szx')z + (22y°)2 + 2%
Pe = 5

2 f?ézxﬁ)z + (zzy')2 - zzx“ dax
YA~ - 2 N

1 .
ZPe+0H1)
2
2 A
= e+ H
1R 2
. <H2 2)
D3 + vV D1 + D2
2
(1 + ve )2+ (Vi )
1 2
HD
2
2
(1 + vH )2 + {(vH_ )
D D
1 2
, i . =1
sinh2)\ + sin2A
cosh2a = cos2)
sinh2) = sin2) -
cosh2A = cos2A

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

where Pe is a "global" Peclet number as opposed to the "local” Peclet number

Pe

e

defined in equations (24) and (25).

It was shown in Rasmuson and
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Neretnieks (1981) that the radial concentration gradients in the fissures
should be completely negligible. It follows that the film resistance is
approximately O and Hy and H, are simplified to

Hj(AgV)

i

HD1(A) (53)

Hz(AyV)

i

Hp, (A) (54)

Note that for a sphere the specific surface is given by the relation
A/V = 3r, while for an infinite slab A/V = 2/8, where S$ is fracture spacing.
Hence r, in the present case equals 75 m. We now recall that the dimension-

less time T' for a sphere is D t/Kro2 and T' = 1.778 x 10720 if t is in

ptp
seconds, or 5.6064 x 10™'3¢ if ¢ is in years. If t = 108 years, T' equals
5.6064 x 10=2 which is extremely small. In view of Figure 4, for such a small
T', the solute penetration into the matrix should be very small. In other

words the system could be treated as nonpenetrating for times of up to 108

years 0Or more.

The nonpenetrating case was investigated numerically with a mesh in which
the rock blocks were divided into rectangular elements of length Az and width
2d, as shown in Figure 10. Using the design of mesh shown in Figure 10, a
number of runs were made with variocus mesh widths. A major emphasis in making
the runs was to gain an understanding of the role of mesh discretization on
accuracy. Recall that in radiocactive waste disposal studies there may be a
need to predict the early part of the breakthrough curve with a great deal of

relative accuracy.
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Figure 10. Schematic mesh design for advective-diffusion problem,
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In constructing the mesh for a particular numerical problem, then, it is
necessary to decide upon (a) the width of the smallest element adjacent to the
fracture and (b) the rate at which the mesh shall become coarser as we proceed

away from the fracture.

In this context, the capacity of a volume element immediately adjoining

the fracture can be expressed by
E‘i = 2Kozd, (55)

and the total conductance of its surfaces is given by

4 +
D z[Zd1 dzj

1 d,}[d1 +d2]

In arriving at (56), the assumption is made that there is no diffusion in the
z direction within the rock matrix. For high accuracy, the volume element
adjacent to the fracture should be sufﬁiciently small so that it will react
rapidly to the concentraticnnpulse originating in the fracture. In other
words it should have a reasonably small time constant or stability limit given
by T = Ei/z1s One simple way of investigating this is to state that if T is
the first arrival of the concentration front at a given point, then T should
equal oT with o considerably less than 1. To get a reasonable number of ele-
ments in the rock matrix we will design the mesh in such a fashion that the
mesh width increases by a factor B in the direction perpendicular to z. That

is, dy = bdii d3= ﬁdz, and so on with B > 1.

The numerical experiments carried out indicated that good results were

obtained for 0,001 < ¢ < 0.1, When ¢ was less than 0.001 the time constants
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varied so widely over the flow region that convergence of the iterative scheme
was too slow and led to inaccuracies. When o was greater than 0.1 the matrix
did not react fast enough to the pulse., It was also found that 1 ¢ 8 < 2 gave
best results., Values of B » 2 had the effect of creating large differences in
time constants over the flow region, leading to slow convergence and inaccu-

racies,

The results of the numerical experiments are given in the form of cf/co
versus time at z = 0.475 m. Figures 11 and 12 are for two different global
Peclet numbers. Figure 11 pertains to the case with Pe = 0.19341 in which the
fracture was divided into 30 volume elements increasing in size from the inlet
as 0.025 m (10), 0.05m (10), and 0.2 m (10). Because of the variations in Az,
pe, is, of course, variable within the flow region. The matrix was divided
into 19 volume elements in the direction perpendicular to z with 10°3 m (4)
and then increasing in size with g = 1.7, Figure 12 pertains to the case in
which Pe = 19.341 and the fracture is discretized in the same manner as before
but the matrix is divided into 24 nodes with width 106 m (4), then increasing
with 8 = 1.6 (4) and finally‘increasing with 8 = 1.7, Note that in both the

cases the agreement between the analytic and numerical solutions is good.

In radionuclide migration problems a nuclide which at no time reaches the
biosphere with a concentration of 109 times that in the repository, may be
considered to have decayed to insignificance (Neretnieks, 1980). For the case
with Pe = 19.341, that is, with Dy = 107 mz/s, the relative concentration
reaches 109 at z = 0,475 m after approximately 25 years. This should be com-

pared with the corresponding time for the advance of the hydrodynamic front
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which is only a little more than a day. When Dy = 10™3 mz/s (Pe = 0,19341),

the relative concentration attains 10”2 at z = 0.475 m after only 3 days.

The implication of these two cases in the migration of radionuclides is
obvious. With low magnitudes of the longitudinal dispersion, diffusion into
the rock matrixghas greatly helped in retarding the solute front behind the
hydrodynamic front. However, longitudinal dispersion effects of larger magni-
tudes in the fracture can significantly diminish the retardation effects of
matrix diffusion. An understanding of the relative magnitudes of the diffu-
sion~sorption on the one hand and dispersion mechanisms on the other is there-
fore essential for the prediction of the migration of radionuclides from a
final respository of radicactive waste. A first attempt in this direction was

done by Neretnieks (1980) and Rasmuson and Neretnieks (1981),

Problem 3 Advection-Dispersion in a Set of Parallel Fractures with Diffusion

in Microfissured Matrix: Large-time Solution (Penetrating Case).

In the previous example the fracture spacing was so large that penetra-
tion depth of the solute into the rock matrix was very small. However, when
S becomes small, the diffusion fronts from adjacent fractures will eventually
meet. For example, consider a fracture spacing of 1 m, which leads to
¥y = 1.5 me 1In this case, T' = 1.4016 x 10"’9t5 if t is in years. That is,
t = 105 years now corresponds to a T' = 1.4016 x 10”3, 1In this case we would

need to model radial diffusion into the spherical particles for t > 106 years.
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Consider now the following set of conditions: S8 = 1.0 m, K = 104 m3/m35
Dpep = 10712 n2/s, by = 1.35 x 1074 /s, vg = 3 x 1077 m/s, 2b = 107 m,
€g = 10“5, and ro = 1.5 m. For the aperture and the vg used, the hydraulic

gradient is 0.003 m/m.

In the actual simulation using TRUMP only one-half of the fracture and -
one-half of the adjoining rock matrix needs to be modeled because of symmetry.

Hence, the actual f£luid flux in the fracture eguals 1.5 x 10=12 m3/msss

. We now have to decide upon the number of spherical particles over Az.

For this purpose we make use of the fracture porosity, e as follows:

1
v, =3 Sz (57)
The volume of hemisphere of radius r, is
v =28 g3 22T (4,55)3 (58)

P 3 o) 3
Let n be the required number of spherical particles. Thus nV_. = Vy = Vg

= Vb(i - sf)e Therefore,

Vb Az {1 = ef) Az
n =5 (1 = ef) = 5 2 3 (59)
P 4.518 4.578

In the TRUMP simulation, the particles were modeled in the spherical
coordinate system. The volume of a differential volume element bounded by
orthogonal surfaces of a spherical coordinate system with distance from the
origin r, angle in the x~-y plane §, and angle from the positive z axis ¢ is

given by
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LY = r2 singArH0b¢ (60)

For a finite

or

and

and

Yy

sin

av

In TRUMP

volume element or node, this becomes

]

1 3 3

— - - 6 -8

3 (r2 ri)(cos¢1 cos ¢2)( 5 1) (61)

2 o] -9 |
4ny (r2 - r1) [smn E{](¢2 - ¢1) 5 {62)
1 1527 212
Z‘av 1+'T§ ”m;w”“ {63)
av
) r1 + r,
- 2
b, = ¢,

- . ] 2

¢ = 51n(¢av)51ng % (64)

2 1
2
e ]
2

input data the following dimensional factors are specified:

- Fay

r (: I if (rz - r1) < -E;-> (65)
r,-r, (66)

=1 (¢, =0 )(6 = 0
sin §>[ 2 ;“ 2 ! ] (67)
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In the calculations, an eguidistant mesh with rp, = rq = 0.1 was used. Due to

symmetry, only hemispheres were used, so dk = 0.5,

given in Table 2.

Finally, 4, = r is as

Table 2. Values of r, Lyyr and T for the
hemisphere particles (meters).
T r d =1
: av ¥
0
.05 5.7735 x 10™2
0.1
0.15 1.5275 x 10~1
0.2
0.25 2.5166 x 107
0.3
0,35 3.5119 x 10~1
0.4
0.45 4.5092 x 10~
0.5
0.55 5.5076 x 107!
0.6
0.65 6,5064 x 10”1
0.7
0.75 7.,5056 x 10="
0.8
0.85 8.5049 x 10~"
0.9
0,95 9.5044 x 10-1
1.0
1,05 1.0504
1.1
1.15 1.1504
1.2
1.25 1.2503
1.3
1.35 1.3503
1.4
1.45 1.4503

1.5
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A comparison of the numerical and analytical results is presented in Fig-
ure 13. 1In this simulation, the fracture was divided into 25 nodes increasing
in size from the inlet as 15 m (10), 30 m (10) and 100 m (5). The spherical
particles were divided into 15 equidistant nodes with Or = 0.1 m. The solu-

tion in Figure 13 pertains to a point in the fracture at z = 225 Mo
Problem 4: Case 2 with Radiocactive Decay

We now consider the case in which the species in Problem 2 is allowed to
‘undergo radiocactive decay with a decay constant Adg That is, on the left-hand
side of (37) and (38) we add, respectively, wkdcf and decps In addition, we

Y
e at

also modify the boundary condition (39) by, cf(o,t) = gy . This boundary

condition simulates the constant leach rate of a body containing a decaying

niclide., For this case the analytical solution is simply given by:

c -A £t e
£
-;5 =e ¢ —= (68)
o Ad>0 o dzo

The case with D; = 10°° mz/sec of Problem 2 was repeated with two values of
Ag:  Ag = B.6643 x 10"7 sec™! and 8.6643 x 10”8 sec!, corresponding to half
lives of about 9.259 and 92.59 days, respectively. The results of the numeri-
cal simulations are given in Pigure 14 for a point at z = 0.475 m. A general

good agreement is seen except for a slightly earlier break-through obtained in

the numerical solution.
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Figure 13. Penetrating case: Comparison of analytic and numerical solutions

for a mesh with 0.0167 < Peg < 0.111 and Pe = 0.5,
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Figure 14. Nonpenetrating case with decay: Comparison of analytic and
numerical solutions for a mesh with 0,005 < Peyg < 0.041 and with
half-lives of 8 x 105 and 8 x 10° s. [XBL 825-2247]
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Problem 5: Case 3 with Radioactive Decay

Just as in Problem 4, a decay constant of Aa = 2.3105 x 1079 yr~! was
included in Problem 3., This corresponds to a half-life of about 3 x 108 years.
The results of the simulation are presented in Figure 15 for a point in the
fracture at z = 225 m, Here too, good agreement is seen except for an earlier

numerical break-through.
SENSITIVITY ANALYSIS

A prime motivation for the present study was a desire to evaluate the
magnitude with which available numerical methods can match solutions to par-
tial differential equations, Ideally, it is desirable to be able to attain
accuracies of 1074 to 1077 percent since in the disposal of high-level radio-
active wastes such relative concentrations might be hazardous in the biosphere.
Our study shows that it is possible to attain accuracies of 103 to 1074 per-

cent under ideal conditions using numerical technigues.

Nevertheless, the very real question exists as to whether the partial
differential equation itself realistically depicts nature, or whether all the
coefficients in the differential eguation are known with certainty. To inves-

tigate the latter question, a series of sensitivity studies were made.

A simplified sensitivity analysis was performed using the analytical
solutions presented by Neretnieks (1980) and by Rasmuson and Neretnieks {(1980).
Neglecting longitudinal dispersion in the fractures and assuming infinite block

size, the concentration in a point z downstream (Neretnieks, 1980) is:
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Figure 15, Penetrating case with decay: Comparison of analytic and numerical
solutions for a mesh with 0.0167 < Pey < 0.111 and with half-life

of 3 x 108 years. [XBL 825-2248]
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=A_t G
C
— = erfo e (69)
c Yt = ¢

o W
where

Dpewz DPEP 2

G = eV Da = %! and tw =5 c
P a £

The peak concentration can be found by differentiating equation (69), 1In the
analysis, a central case was chosen where (c/c ) .. = 1.0 x 10"3, By varia-

tion of the parameters the relative change in (c/co) is found. The sensi-

max

tivity 8 of the peak concentration to a perturbation of a parameter i is

defined as:

A(cmo%mx/(cwo%ax

Si = h parameteri / parameteri (70)

Table 3 shows the parameter values which determine the base case (1). For

these values (c/co) = 1,0 x 1072,

max

Table 3 Specification of base cases used in
sensitivity studv.

Parameter Dimension 1 2
Doep m?/s 10712 10712
K m3/m3 170 810
z m 2250 300
Kp m/s 10=9 10”7
i m/m 0.01 0.01
S m 50 50
T1/2 yvears 3.100 13.2

Pe - ® 3.33




53

The sensitivity of (c/cc) to a variation in the Peclet number was

max
investigated using the analytical solution in Rasmuson and Neretnieks (1980).
The parameter values used as reference case are given in the last column (2)
of Table 3. In this case, (c/cglp., = 8.8 % 10-6, The sensitivities obtained
from equation (70) are given in Table 4.

Table 4 Sensitivity of (c/cg)p. .
variation in parameters.

to

Parameter 55
DPEP ha 491
K = 401
z = 696
KP + 16
i + 16
S + 16
Pe = 137

The sensitivities are very large. A 10% increase in Dpep or K would

decrease (c/cy)pa, from 1.0 x 1073 to 0.6 x 10“5, whereas a 10% increase in Kp,

i or § would increase (c/c )y, to 2.6 % 105, As natural variations in these

parameters are larger than 10%, it will probably not be possible to predict
(c/colpax With an accuracy better than half an order of magnitude, for this

part of the break-through curve. The sensitivity of (c/c to variations

o)max

in the Peclet number is smaller than for the other parameters. A 10% increase
in Pe would decrease (C/Co)max from 8.8 x 1076 o 7.3 x 10“"6e However, the

uncertainty in the Peclet number is considered to be very large.
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CONCLUSION

The ability of the conceptual model to describe flow and mass transfer in
fissured rock is not proven. In view of this and the sensitivity of numerical
accuracy to input data, the method used is more than adequate at present for

practical applications.
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NOTATION

area of the connection between nodes % and k.
half-width of fissure

concentration

concentration in ligquid in fissures

concentration in liguid in microfissures
concentration of solute in the solids defined as
mass of solutes per unit volume of the porous medium
inlet concentration in the liguid

E@ncentration at node { at to

concentration at the boundary surface segment

ol of node &

L,b
volume averaged concentration in blocks

mean concentration at the interface between volume

elements 4 and m

mean concentration at the surface T

difference in concentration

capacity of volume element % defined as the mass of

solute released or taken intoc storage per unit change

in concentration

half-width of a rectangular plume element

distances from nodes 4 and m to the interface between them
effective diffusivity in bulk solid; = DPEP'

Also used as a general symbol for diffusivity

M/
M/L
M/L

M/L

M/L
M/L

M/L

M/L

M/L

M/L
M/L

1/L

Le/T
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DL longitudinal dispersion coefficient LZ/T
Dy effective diffusivity of node & LZ/T
DE diffusivity in water in pores LZ/T
ngr diffusivity at the fracture=rock interface LZ/T
Fﬁ,b volumetric f£luid flux between the boundary and node £ LB/T
Fl,m volumetric fluid flux between nodes £ and m LB/T
i hydraulic gradient /L
kf mass transfer coefficient L/T
K volume eguilibrium constant L3/L3
KA distribution coefficient or partition coefficient,

defined by Ky = cs/cP L3/L3
Ky volume equilibrium constant of element 4 L3/L3
KP hydraulic conductivity of the bulk rock /T
m = Eg/(1 - £¢)
n unit outer normal
p iteration number
Pe Peclet number for analytical solution defined as Pe = vez2/Dy

{equation 52)
Pe local Peclet number for element £ in the numerical solution,

given by Peg = vcbz/2D; (equation 24)

ES

q Darcy velocity /T
ro effective spherical radius L
r radial distance from center of spherical particle L

R = K/m, distribution ratio
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= ry/3kg, film resistance
fissure spacing
sensitivity
time
initial time
time constant or stable time step for node &
. . . 2
dimensionless time; T' = D_€ t/Kr
PP o
half-life
conductance at the boundary surface segment
ol of volume element 4
L,:b
conductance between nodes £ and m

average velocity of water in fissures

volume of rock, fracture system; V,_ = Vr + V

b £

volume of fracture

volume of element %

volume of rock matrix

rate of generation of solute.

= gt, contact time parameter

distance in flow direction

length of a volume element in a one-dimensional problem
sum of the conductances and advectances over the

surface I enclosing element £

L/T
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a parameter relating time constant of an element to the
first arrival of solute
mesh spacing factor
2
= BDng/rO
closed surface bounding an element
an elemental segment of T
surface segment on the external boundary of flow region

surface segment interior to the flow region

surface segment separating nodes 4 and n

= yz/mvf, bed-length parameter

porosity of fissures

porosity of rock matrix

upstream weighting factor

implicit weighting factor for the time domains
variable of integration

decay constant of radionuclide

= 'YRF

2D_¢g /Kr2
Ppp o








