Ak D\s|eP — DL\

AN EVALUATION OF SMALLTALK, C++, AND ADA95
FOR USE IN A MAJOR DoD APPLICATION

John R. Hummel and Lucian Russell
Decision and Information Sciences Division
Argonne National Laboratory
9700 S. Cass Avenue/Bldg-900
Argonne, IL 60439-4832
e-mail: hummelj @smtplink.dis.anl.gov

RECHBIVED
K XAR
@sTI

KEYWORDS Smalltalk, C++, Ada95, Programming Lan-
guages, Object-oriented

ABSTRACT

The choice of a programming language can have a
significant impact on the development of effective software.
Numerous programming languages are available in the com-
puter science community and supporters of specific lan-
guages often defend their choices with a religious zeal.

Argonne National Laboratory (ANL) was recently
tasked to assist in the selection of a programming language
and development environment for a major DoD software
development effort. Three candidate programming lan-
guages were identified by the sponsor for evaluation:
Smalltalk, C++, and Ada95. (At the time the evaluation was
performed, Java was regarded as being too immature.)
Smalltalk is a pure object-oriented language that was origi-
nally developed by Xerox. C++ originated at AT&T and is
not a pure object-oriented language. Ada95 is an object-
oriented version of Ada, a language that was developed to
support the defense community. The purpose of this paper is
to describe the process that was used to evaluate the three
languages and to describe the results of the evaluation.

INTRODUCTION

The evaluation of the programming languages and
development environments was performed as a three-part
effort. The first part of the assessment determined how the
selection of a programming language would affect the pro-
gram over the life of the program. The second part exam-
ined the experiences of the teams that developed prototype
systems for the sponsor with regard to the languages they
used in their efforts. The third part involved the collection
and evaluation of data and information from the Modeling
and Simulation (M&S) community — both DoD and civilian
— on the usage, performance, cost, and quality of software
developed in the candidate languages. This last part of the
evaluation was performed by reviewing available trade and
refereed journals, and Internet sites, and by interviewing
users. The information collected was a combination of
quantitative and qualitative findings.

The submitted manuscript has been created by
the University of Chicago as Operator of
Argonne National Laboratory (“Argonne”™)
under Contract No. W-31-109-ENG-38 with
the U.S. Department of Energy. The U.S.
Govemnment retains for itself, and others acting
on its behalf, a paid-up, non-exclusive, irrevo-
cable worldwide license in said article to
reproduce, prepare derivative works, distribute
copies to the public and display publicly, by or
on behalf of the Government.

IMPACT OF LANGUAGE SELECTION ON
PROGRAM GOALS

A programming language and its development en-
vironment represent the tools used to implement the soft-
ware design quickly and efficiently, provide software main-
tenance quickly and efficiently, detect and correct defects in
the software (i.e., reduce the mean time to repair), and assist
in meeting the performance goals of the program. In the
case of the program that requested the language evaluation,
the choice of a programming language impacted other deci-
sions, such as the selection of database management systems
as well as any commercial packages. Finally, the choice of
programming language impacted the -amount of the proto-
type software that could potentially be reused in the produc-
tion version. Therefore, the selection of a programming lan-
guage was based on a business-case evaluation of which
language would provide the best value over all phases of the
program: software development, routine use, and mainte-
nance.

Implementing the Software Design

The software being developed for the program is
intended to be an object-oriented (OO) simulation system.
Table 1, which was obtained from multiple sources, includ-
ing the Ada Information Clearinghouse World Wide Web
site and the report “Smalltalk Market Accelerates” by the
International Data Corporation (McClure 1995), compares
the object-oriented features of the three candidate languages.
The conclusion to draw from this Table is that any of the
three candidate languages could suffice although the
“purity” of the object-oriented design varies from one lan-
guage to another.

In implementing the design for a software system,
there is no guarantee that a single programming language
can provide optimal features in all areas. The use of a mixed
language environment can provide a better way to meet all
program goals by using the better language where appropri-
ate. The use of a mixed language environment can also de-
crease program costs and increase reuse potential by ena-
bling legacy or other reusable software to be integrated “as
is” in the language that it was developed in.

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefuiness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.

DISCLAIMER

‘Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

Table 1. A comparison of the object-oriented features of Ada95, C++, and Smalltalk.

FEATURE ADA95 | C++ [SMALLTALK
OO Language Type Pure Hybrid Pure
Strong Typing Y Y* N
Compile Time Checking of Y Y Y
Errors

Single Inheritance Y Y Y
Multiple Inheritance Y** Y YA
Polymorphism Y Y Y
Namespace Management Y Y N
Exception Handling Y Y Y
Hierarchical Libraries of y v N
Namespace

Concurrency Y 3 Party Y
Distributed Programming Y 3" Party 3™ Party
Parameterized Components Y Y N

*Can be overridden by the user.

**Restricted to three common uses of multiple inheritance that are sup-
ported in Ada95 through a combination of existing Ada83 and new

Ada95 facilities.

***Available through a variant of Smalltalk known as ClassTalk

EXPERIENCES FROM THE M&S COMMUNITY
Overview of the Languages

C++ originated at AT&T Bell Laboratories in the
mid-1980s. It is a compiled language, and in 1990 it was
estimated to have held 90% of the object-oriented program-
ming market (Radding 1994). It is statically typed and an
object-oriented extension of the C language. Different com-
pilers and tools are available from a variety of vendors and
third party providers, including AT&T, Sun, Microsoft,
Borland, Centerline, IBM, and GNU, among others.

Smalltalk originated at the Xerox Palo Alto Re-
search Center in the mid 1970s. Smalltalk was originally
intended to be a programming language for children and had
its roots in Simula 67, a language developed for modeling
and simulation. Smalltalk is a simple, dynamically typed,
pure object-oriented programming language that is interpre-
tive (e.g., “just in time” compiling). Compiled versions of
software can be produced after development has been com-
- pleted. The use of Smalltalk has been growing rapidly, with
a 60% growth in 1994 relative to 1993 (Shan 1995). Com-
pilers are available from a variety of vendors, including
ObjectShare, Inc. (formerly ParcPlace/Digitalk), IBM, and
GNU.

Ada, developed in the late 1970’s to provide a
standard language for DoD applications, is a compiled lan-
guage. The latest version is Ada95, which is object-oriented.
Ada has limited use in the commercial sector and is man-

dated for use in specific DoD applications, such as embed-
ded warfighting systems.

All three of the languages have undergone some
degree of standardization. Also, each language is available
on a wide range of platforms.

Programming Language Use in the M&S Community

Table 2 lists the programming languages used by a
sampling of DoD simulation systems. In addition to the ap-
plications noted in Tables 2, two other DoD programs were
identified as using Smalltalk. The first, at the National Se-
curity Agency, involved an application operating in the arti-
ficial intelligence area. The second, at the Naval Research
Laboratory, involved the managing of the Navy’s first ob-
ject-oriented digital mapping project (Shaw et. al. 1996). In
other parts of the U.S. government, the Social Security Ad-
ministration Agency has purchased a large number of
Smalltalk development licenses.

Outside of the DoD community, C++ is widely
used, with Smalltalk use growing rapidly. There is greater
use of Smalitalk in the civilian sector than in the DoD sec-
tor. Organizations using Smalltalk extensively include Elec-
tronic Data Systems, Anderson Consulting, American Air-
lines, American Management Systems, Xerox, Allen-
Bradley, Bell South, Norfolk Southern Railway Company,
Florida Power and Light, FedEx, Bell Atlantic, and Credit
Suisse, to name just a few.

Table 2. Programming languages used by a sampling of DoD M&S applications.

SIMULATION SYSTEM PROGRAMMING LANGUAGE
Core Architecture in Smalltalk, Augmented by C
Dynamic Information Architecture Extensions to C++. Integrated Physics Models or
System (DIAS) Applications are Kept in Their Native Languages.
Joint Warfare System (JWARS) Smalltatk
Eagle Lisp
Naval Simulation System (NSS) C, C++, and Assembler.
J-MASS C++ (Release 3.0)
ARES C++
ModSAF C
JointSim C++
FLAMES C, C++

Florida Power and Light (FPL) reported having
from 30 to 40 applications written in Smalltalk. All are
deemed critical applications, and the number of users using
the applications range from a few to more than a thousand
users. FPL uses C++ for small applications but not for large
ones. FPL also operates in a mixed language environment,
with Smalltalk as the base language. FPL noted that if sig-
nificant floating point operations were encountered in an
application, FORTRAN was preferred over C++.

FedEx uses Smalltalk in a variety of applications.
One is a GIS application used in international route planning
and optimization. Their dispatching system for scheduling
pickups and deliveries (based on scheduling algorithms and
heuristic balancing) is also in Smalltalk. Finally, a new sys-
tem has been developed that will be able to do “on-the-fly”
analysis of the status of packages enroute, including the
identification of packages that are at risk of not being deliv-
ered on time. FedEx reported that they operate in a mixed
language, with Smalltalk as their base language.

In a study for the Smalltalk Industry Council, Inter-
national Data Corporation (IDC) did a survey of how C++
and Smalitalk are used in software applications. Table 3,
which lists the results of the IDC study, shows that both lan-
guages are used in a variety of different applications.

Programmers’ Perceptions of the Languages

Each programming language has a camp of devoted
followers and finding an objective technical evaluation of
the languages was difficult. Many evaluations are either
produced by a vendor or by an individual or group with an
obvious bias one way or another. Table 4 summarizes the
perceived strengths and weaknesses of the languages evalu-
ated.

The IDC also surveyed 300 programmers from four
software communities (Smalltalk, C++, COBOL, and 4th
Generation Languages (GL)) of their perceptions about
Smalltalk and other languages and supporting products. The
results of that study, performed in 1994, are shown in Table
5. The programmers rated each topic on a scale of 1 - 5,
with 1 as a major competitive disadvantage and 5 as a major
competitive advantage. The language with the highest rating
in each category is listed; an asterisk denotes a rating of 4 or -
higher. In this survey, Smalltalk was rated highest in a given
category more often than were the other languages consid-
ered. ' .

Ease in Learning the Software

Smalltalk is often reported as being easier to learn
than C++. Data collected for the Smalltalk Industry Council
bear this out. These claims are also supported by the empiri-
cal experiences of Argonne personnel in relation to the Dy-
namic Environmental Effects Model development effort
after ANL made the switch from C++ to Smalltalk. Three
senior-level ANL programmers attended a one-week Small-
talk training course and then retrained the remaining mem-
bers of the development team in about two weeks.

The Selection Process for Languages

IDC also surveyed groups using C++ and Smalltalk
and asked them to state if the language was selected through
management edict, a formal review process, or an informal
process. Smalltalk was selected following a formal review
process in 51.9% of the cases, while for C++ the corre-
sponding value was 21.3%. C++ was selected informally in
62.7% of the time, while the corresponding value for
Smalltalk was 31.4 %. The IDC report concludes “...when
people really study the issue, they choose Smalltalk.”

Table 3. Application mixes, in %, for C++ and Smalltalk usage.*

APPLICATION C++ SMALLTALK
Real-time/Process Control 12.4 8.0
Office Automation/Personal Productivity/ Groupware 135 12.0
Primarily MIS/Transaction Processing 18.5 19.2
Info_rn_latlon Retrieval/Reporting/Query/ 31.9 543
Decision Support '
Scientific/Engineering/M&S 23.7 6.5

*The study involved a survey taken in 1994 of 92 users of C++ and 56 users of Smalltalk.

Table 4. Perceived strengths and weaknesses of C++, Smalltalk, and Ada95.

Easy to Learn

Enforces Object Paradigm

More Dynamic

Integrated Class Libraries

Platform Independence and Portability

PERCEIVED STRENGTHS PERCEIVED WEAKNESSES
C++ C++
Better Performance Not Pure Object-Oriented
Perceived as Standard Difficult to Learn
Platform Integration Evolving Nature of Language
Cross-Platform Development Few Development Tools and Poor Development Environ-
Allows Access to Low-Level System Features ments
Perceived to be Similar to C Lack of Standard Libraries
Compiler Differences
Smalitatk Smalltalk
Development Productivity Environment and Applications are Integrated
Environment and Applications are Integrated Arithmetic Performance .

Limited Third-Party Libraries
Used Primarily for MIS Applications

Ada95
Best Software for High-Assurance, Real-Time Applications
Some Object-Oriented Support

Ada95

Insufficient Track Record to Gauge True Abilities
Weak DoD Support for Infrastructure Development
Weak Acceptance by Commercial Sector

PRODUCTIVITY IMPACTS

One of the reasons often mentioned for selecting
Smalltalk over C++ is the productivity improvement af-
forded by Smalltalk’s interpretive nature. It is significant to
note that, in the IDC study, Smalltalk was rated highest by
. the programmers surveyed in the areas of enforcement of the
object-oriented paradigm, reliability of deployed applica-
tions, rapid application development, and cost-effective de-
ployment. For example, John Radford of DNA Enterprises,
Inc., reported at OOPSAL ‘95 that they found Smalltalk to
be 2-3 times more productive, as measured in terms of final
cost, than C++. He also mentioned that when they bid on
contracts involving C++, the contracts are generally bid at
twice the cost of those based on Smalltalk. Also, Electronic
Data Systems replicated in Smalltalk an existing manufac-

turing application originally written in PL/1. They experi-
enced an increase of 3 to 4 times in productivity related to
the design and implementation of the software. They also
observed little or no decrease in performance in the final
system. Finally, the Canadian Defense Research Establish-
ment reported a 6-to-1 advantage in using Smalltalk.

The degree of productivity increase experienced
was variable, and often it was not clear what programming
language Smalltalk was being measured against. FPL re-
ported that they do not develop many applications in C++
because those projects do not deliver on time, whereas
Smalltalk projects do. Another developer, at the National
Security Agency, reported that the rapid development envi-
ronment of Smalltalk was essential to their application in-
volving employing artificial intelligence. The real-time re-

sponsiveness required by their application, such as retraining
neural nets as new data come in, could not be provided by
Ct+. ~

PERFORMANCE COMPARISONS

Performance of a software system is a function of
four factors: the context of the problem being considered,
the design of the software, the hardware platform being used
to perform the calculations, and the programming language
being used. Measuring the performance of an application is
important, but it must be done carefully because designing
the software well is as important as using the best perform-
ing language (i.e., poorly designed software can be used
with a highly efficient language.)

The Smalltalk users contacted for this study did not
express any concern over the performance of Smalltalk in
their applications. If a performance problem was found it
was usually traced to a problem in the design of the applica-
tion or an improper use of Smalltalk. If the problem could
not be fixed by a design change, a mixed language solution
was typically used. FPL reported that if arithmetic perform-
ance problems were encountered, they would select a
FORTRAN solution before they would turn to C++.

SUMMARY

Table 6 gives an overall summary of the three pro-
gramming languages evaluated. The features are rated as
positive (+) or negative (-), and the positive features are
shaded for ease of review. Smalltalk and Ada95 provide a
“purer” OO environment for software development than
does C++. This means that an application can be designed
and then implemented in a pure OO context.

Smalltalk, being an interpretive language, offers
more rapid development, although the degree of productivity
improvement is highly dependent on the application and the
skill of the developers. In addition, Smalltalk offers a fully
integrated development environment, meaning that one need
only acquire one package rather than having to buy several,
as is the case with C++. Because of the newness of Ada95,
the development environments available seem to be more
limited.

There is good object database support for C++ and
" Smalltatk but little to none for Ada. There is also good ven-
dor support for C++ and Smalltalk and less for Ada95.
More third party tools are available for C++ than for Small-
talk, but many of them are required because of the noninte-
grated nature of the C++ development environment. Also,
some of the C++ tools are required to perform functions to
correct memory leakage inherent to C++ but not experienced
in Smalltalk.

Both C++ and Smalltalk offer good cross-platform
use. The degree of cross platform compatibility for Ada95
is not known.

The arithmetic performance of C++ is better than
that of Smalltalk although the two major Smalltalk vendors
are making improvements in this area. No data could be
obtained related to arithmetic performance of Ada95.

The prototype system that was developed for the
program sponsor was based on Smalltalk in a mixed lan-
guage environment, a common practice in the M&S com-
munity. It was recommended that the production version of
the application continue to be developed with Smalltalk in a
mixed language environment. This kind of approach is con-
sistent with development practices described by different
users. In addition, the use of a mixed language environment
maximizes productivity and performance by enabling the
best features of different programming languages to be used
when and where appropriate

REFERENCES

McClure, S. (1995) "Smalltalk Market Accelerates,” Inter-
national Data Corporation, IDC #9819, December.

Radding, Alan (1994) Computer World, May.

Shan, Yen-Ping (1995) “Smalltalk on the Rise,” Communi-
cations of the ACM, Vol. 38, No. 10, pp. 103-104, October.

Shaw, Kevin, Cobb, Maria, Chung, Miyi, and Arctur, David
(1996) “Managing the US Navy’s First OO Digital Mapping
Project.” IEEE Computer, pp. 69-74, September.

Table 5. Survey results from 300 programmers of Smalltalk, C++, COBOL, or 4th Generation Languages who evaluated the

languages on a 1 - 5 scale. The highest rating in each category is noted. (asterisk denotes a rating of 4 or higher.)

Evaluation Topic

Smalltalk

C++

COBOL

4GL

Support for OO Development

X*

Enforcement of the OO Paradigm

Xk

Cost of Run-time Licenses

Integration of Development Environment

Development of Scientific, Engineering, Modeling and Simulation
Applications

Portability to Many Operating Systems

Development of Real-time, Process Control applications

Degree of Proprietary Versus Open

ol ettt B Ll B

Reliability of Deployed Applications

Rapid Application Development

Cost-effective Development

Development of Client/Server, Information-Retrieval, Query, Deci-
sion-Support Applications

Development of Office Automation, Personal Productivity, Group-
ware Applications

Ease of Learning Syntax

Overall Simplicity of Language

Ease of Code Maintenance

Support for Development of Large Complex Applications

Availability of Mature Class Libraries

Support for Multi-Developer Teams

tel talbalial il la] B s B el tal lal tal Lalbad Eal B AT bl ke

il el Eadle

bt tal el tad bal Lol BT I o o L

Performance of Runtime Applications

Compatibility with Other Packages/Software

e [P8 < > |

Integration with Legacy Applications and Databases

Maturity of the Language

Maturity of the Available Development Tools

Availability of Trained Developers for Hire

Product Documentation and Vendors Support

Development of Primarily Transaction Processing Applications

Number of Times Rated Top in a Category

19

12

10

Table 6. Summary comparison of capabilities of C++, Smalltalk, and Ada95.

CATEGORY

Support of Object-Oriented Design

Rapid Development Environment

Full Development Environment (i.e., Do Not Need Third
Party Tools)

Supports Object Database Management Systems

Broad Vendor Support

Support for Efficient Configuration Management (e.g.,
ENVY)

Supports Cross-Platform Use

Good Arithmetic Performance

Good Nonarithmetic Performance

*Smalltalk-like development environments for C++ are being developed.

