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A binding energy data for total baryon number A <208 and for A angular momenta
1A <3 are analyzed in terms of phenomenological (but generally consistent with meson-
exchange) AN and ANN potentials. The Fermi-Hypernetted-Chain technique is used to
calculate the expectation values for the A binding to nuclear matter. Accurate effective
AN and ANN potentials are obtained which are folded with the core nucleus nucleon
densities to calculate the A single particle potential U’(r). We use a dispersive ANN
potential but also include an explicit p dependence to allow for reduced repulsion in
the surface, and the best fits have a large p dependence giving consistency with the
variational Monte Carlo calculations for jlle. The exchange fraction of the AN space-
exchange potential is found to be 0.2–0.3 corresponding to m: N (0.74 – 0.82)mA. Charge
symmetry breaking is found to be significant for heavy hypernuclei with a large neutron
excess, with a strength consistent with that obtained from the A = 4 hypernuclei.

1. INTRODUCTION

We analyze the A single particle (sp) data in terms of semi-phenomenological AN and
ANN potentials which are generally consistent with meson-exchange models, with the
AN potential constrained by the low enerbgyscattering data [1]. The experimental A
sp data cover a wide range of hypernuclei [2] with baryon number A < 208 and orbital
angular momentum /A < 3. Among other approaches to the A data, ours is perhaps
closest to that of Millener, Dover and Gal [3] who use a local density approximation based
on phenomenological (zero-range) Skyrme forces which brings out important qualitative
features. However, in the present work the effect of the fringing field (FF) due to the finite
range of the potentials is included whereas in our earlier work [4] this was not treated
adequately. We show that the FF plays an important role. We also include a AN charge
symmetry breaking (CSB) component. For heavy hypernuclei (HN) with a substantial
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neutron excess, the CSB contribution is significant and consistent with that obtained from
the A = 4 HIN{5].

Our approach is microscopic and based on calculating the A binding to nuclear matter
D(p, kA) for a A with momentum kA and for densities p < p. using the Fermi-Hypernetted-
Chain (FHNC) approach [1,6]. The associated AN and ANN effective potentials are
calculated in lowest order of the cluster expansion but with corrections from the higher-
order clusters. These effective potentials are folded into the core-nucleus densities p(r)
to give the sp potential UA(~). The effective mass arises from the space exchange part of
the AN potential which gives the kA dependence. The BA are then calculated using a sp
Schrodinger equation. Core distortion effects are neglected as they were found to be small
in earlier calculations [7]. Our procedure should provide an excellent approximation to an
exact microscopic approach, thus providing a well-founded phenomenology for analysis of
the sp data.

2. THE AN AND ANN POTENTIALS

We use the same central Urbana-type 27r AN potential as in Ref. [1], the attractive
pszt being due to the strong tensor OPE component acting twice. The short-range part
of the AN potential is parameterized with a repulsive Saxon-Wood potential. Thus, our
charge symmetric AN potential is

VA~(~) = V(r) + V;N , v;pJ = –Cv(r)(l – P=) .

The direct potential is

V(T-) = Wii[l + ezp{(r – R)/a}]-l – V2n, v& = VoT;(r) ,

where W. = 2137 MeV, R = 0.5 fm, a = 0.2 fm, and r is in fm.
potential shape modified with a cut off (Ref. [1] for details).

(1)

(2)

T!(r) is the OPE tensor
Vo = 6.15 + 0.05 MeV

fits the low energy Ap scattering data. P. is the space-exchange operator; e determines
the strength of VfN relative to the direct potential. The Ap forward to backward ratio
scattering data determines c quite poorly N 0.1 – 0.4 and we therefore treat e as a free
parameter.

The ground and excited states of fH and fHe show charge symmetry breaking which is
also expected on theoretical grounds. Earlier, we analyzed these data with a phenomen~
logical CSB potential which we found to be effectively spin-independent [5]. Here we use
a spin-independent CSB potential since in any case any spin dependence gives a negligible
A-l contribution for large A. Thus

where VAc~BR -(0.5 * 0.005) MeV from A = 4. For heavy HN with an appreciable
neutron excess CSB makes a relatively small but quite significant contribution.

A central AN potential fitted to low-energy scattering strongly overbinds heavy HN
[1,8]. However the TPE AN potential could be strongly suppressed from propagator
modifications by other nucleons. Such effects have been demonstrated in coupled-channel
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reaction-matrix calculations [8–10] which can give large repulsive contributions.
resent such suppression effects by a phenomenological repulsive ANN potential

VANNE V~NN= wT~(TAl)&(TA2) ,

3

We rep-

(4)

where rA~is the AiVi separation and where for W >0 the contribution is repulsive.
Another (TPE) ANN potential VffiN arises from the exchange of a pion between the A

and each of two different nucleons and involves spin dependent and tensor contributions.
Variational calculations using Monte Carlo (VMC) techniques for ~J7e [1,11–13] and ~60
[14] show that the contribution of V~fiN is attractive, primarily because of the associated
ANN correlations. The net contribution of V~fiN + VA~N can then be mildly repulsive
or even attractive for Iight HN. For heavier HN and for the A binding to nuclear matter
at normal density D(po) there are indications that this contribution will be repulsive.
However for smaller p it may become less repulsive or even attractive. This feature was
not present in our earlier analysis [4] due to inadequate treatment of the ANN correlations
generated by VffiN. We therefore take a more phenomenological approach which allows
the ANN potential to be more repulsive for at larger p or equivalently for larger A. We
implement this by multiplying VADNNby a density dependent factor F@(p)

F’fl(p) = [1 – exp (–~p2/p~)] / [1 – e-p] for p < po (5)

= lforp~po.

FP(p) makes the ANN contribution less repulsive for p < p. and thus gives effectively
more repulsion for large A for which there is relatively less surface.

3. CALCULATION OF THE A SINGLE-PARTICLE ENERGIES

The BA are calculated from a sp Schr6dinger equation involving the sp potential UA(r)
and the effective mass nz~(r). The calculation of these in terms of the AN and ANN
potentiak is described below and is based on the local density approximation with D(p, kA)
calculated variationally using the FHNC technique [1,6]. Thus for A + m

(@4) H(A)IwGO) (@A-l)l~~-’) /@A-1))
‘~(~, kA)=

(v(A), Q(-4) - (w(A-0, ~(A-0)
(6)

where I-I(A),W(A) are the Hamiltonian and wave function of the 131’Jand 17~A-1),@A-l)
those of the core nucleus. The variational wave functions are

where F contains the AN and ANN correlations

[-
F= ~.fAN(rAi) ~fANN(~Ai,~Aj,~j )]

i=l 1<j
(8)
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The wave function of nuclear matter is

A–1
@A-1) =

~ hvv(@@(A-1)(1,2. ../4- 1) , (9)
i<j

where @(A–l) is the uncorrelated Fermi gas wave function at density p. Details of the
COHdatiOIIfZLCtOJXfA~, fjvpJ, fANN and the CdCdatiOIIal methods are @Ven in Refs. 1 and
2. In the previous, as well as the present study, the effect of fjvN is negligible in lowering
the energy its value being effectively unity.

~(p, kA) can be Written as

Tt2k~
D(p, kA) = –~ + D:N(P) + D:N(P, ~A) + DANN(P) , (lo)

where D~N, D~N and DANN are the direct AN, the exchange AN and ANN contributions.

D$N = –(V)+ (TAN) = –p / VANd~ s ‘P~o(P) . (11)

The corresponding direct effective interaction is

[
VAN= 9AN VAN(T) –

fi2

1
‘v; & fAN(r) ,
4pAN

(12)

where gAN is the AN distribution function obtained in the FHNC approximation and PM
is the AN reduced mass. For a Skyrme interaction (zero range potential) to is independent
of p, whereas for our AN potential (Z’)/p and (V)/p decrease slightly with p.

The AN space-exchange contribution is

where kF is the Fermi momentum and where

(13)

V:N (6, kF, T) = ~VAN(r)[gAN(T)DF(kFT)jo(kAT) – g&v] . (14)

Here DF = 3j1 (z)/z is the Slater function, and j. and jl are the zero and first order
spherical Bessel functions. The distribution functions, g~d and gAN etc. are defined in
Refs. 1 and 6. For small kA we retain terms only up to k:, and then

Vi (e, kF, r) = ~& (kF, r) – ~pbk~ with b = ~ ‘AN(T)/ 9iiN(r)DF’(kN)r2 dF. (15)

The corresponding effective AN exchange potential is

VfN(k~, T) = ~VAN(r)[g*N(r)D~(k@j – 9AN] . (16)
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Theterm proportional tok~in Eq. (15) iscombined with thekinetic energy term of Eq.
(10) to give

where m: is the

epbk; ,

effective mass.
For the dispersive ANN potential of Eq. (4) we obtain

~A~~(p) = : Wp2 J T;(rAl)~:(~A2)g3(~Al , rA2,r12)~~l~~2~~A
2

where g3 is the three-body distribution function defined in Refs.

(17)

[1 and 6].

(18)

With the density modification of Eq. (5) the ANN contribution becomes

D)~~(p) = n(P)~ANN(P) . (19)

The well depth DA, its components , and m; all at p. are shown in Table 3.
For the calculation of UA the use of the various effective interactions is quite involved

because of their density dependence. However for short-range correlations this density
dependence is quite weak and the approximation

gAN~gAd % fiiw gNN % fiN = 1 (20)

is very good. The effective interactions then become

[
~A~ = f~N vAN(r) –

fi2
mv~hfAN(r) 1 (21)

~;;(k~,~ = 6f~NvAN(r) [gAdD=(k~T) – 1] (22)

~ANN= ~fiN(~Al)~&(rA2) ~#(rAl)~~(rA2) (23)

and with the density modification of Eq. (15)

~~~N = Fb.~ANN. (24)

The difference between the approximate and “exact” (excluding the negligible elementary
diagrams and with F@ s 1) FHNC results increase with p but differ by only a few % even
at p. (Ref. [15]). These effective interactions are then folded with the core density P(T)
to give

U’(r) = Uf(r) + U:(r) + U~NN(r) (25)

U~(r) = (A – 1) / a~(p)~AN ( IF– F’ I)p(r’)dF’ (26)

u~(r) = (A – 1) / a.(p)~fpJ( [~– ~’l)p(r’)d~’ (27)

ufNN(r) = ~ (A - 1)(A – Z) /~ANN(p)V~f)N(lF- F’1, IF- ~’])p(r’)p(r”)ci~’ci~”. (28)

The density dependent factors ad etc. correct the approximate effective interactions
based on Eq. 20 so as to reproduce the “exact” results for the components of D(p). As
expected these factors are close to unity.
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4. RESULTS AND DISCUSSION

We use four parameters: VO, e, W, and @ to fit the data with VO = 6.15 + 0.05
constrained by Ap scattering. (From here on all energies are in MeV.) The exchange
fraction e is allowed to vary freely. The parameter ~ in F“(p) is varied between 0.1 and
CQ,where ~ = co corresponds to F“ s 1, i.e. to Eq. (4). The strength W of the ANN
potential was allowed to vary freely between Oand 0.04. The strength of the CSB potential
was fixed at VOCSB= –0.05, the value obtained from the A = 4 HN. The charge densities
were taken from Ref. [16] and the matter densities p were obtained by unfolding with the
proton chsrge density.

Our fits are given in Table 1. To not give undue weight to the five very accurate BA for
the carbon HN we give each of these a nominal error of 0.5 MeV, comparable to those of
intermediate and heavy HN. We calculate three different X2 per degree of freedom: (i) for
all data points (N = 24); (ii) omitting the d state of j°Ca (N = 23); and (iii) omitting
the d state of fi”ca and all five AC values (N = 18).

Table 1
Calculated BA and x; for selected fits. The top row gives VO,W, ~, E for each fit. The
BA are shown for each 4 value. The value in parentheses for ~3C is the X2 (per BA) for
all five AC states. The bottom row shows the X: (per BA), the value in parentheses is x;
(per BA) omitting j°C’a(d). All energies in MeV.

~

yc
fc
fo
28s~
A
32s
$Ca
51B
A89y
A
;39Lc
:08p4

z--

No FF -
6.2 .02 m 0.35
s pdf
10.4
10.90.4
11.50.1 (0.6)
13.31.9
16.96.9
17.68.2
19.010.31.4
20.011 .93.2
22.115 .98.81.4
23.818 .913.06.5
24.921 .016.210.7

With FF

6.2 .028 m O

s pdf
9.1
9.71.0
10.41.6 (4.6)
12.13,4
15.89.4
16.69.4
18.211 .34.0
19.212 .86.0
21.616 .511.04.9
23.819 .514.69.5
25.421 .617.513.1

I

2.20.90.6 (0.5) 1.13 I 2.51.714.0 (13) 4.9

With FF
6.2 .024 m 0.11
s Pdf
8.7
9.40.5
10.11,0 (5.6)
11.92.6
16.08.7
16.88.7
18.610.73.0
20.112 .55.0
22.816 .810.43.8
25.220 .114.68.7
26.919 .217.912.9
3.20.65.8 (0.9) 1.7

With FF
6.2 .021 2 0.255
s Pdf
9.1
9.50.3
10.20.9 (4.1)
12.33.5
16.17.4
16.88.6
18.910 .82.8
19.612 .14.6
22.116 .29.9,3.3
24.819 .714.118.2
26.922 .517.612.5
2.20.44.4 (0.2) 0.6

With only a direct AN potential all the BA are grossly overbound. Inclusion of AN
space exchange still gives a very poor fit, and without the FF the fit is even worse. Also,
even without the scattering constraints on V. no reasonable fits are possible. A AN
potential alone is thus ruled out by the sp data.

To see the effect of the finite range of the AN and the ANN potentials, i.e. of the FF,
we made calculations for e = Oand ~ = 00 which correspond to the AN potential without
space-exchange and for the ANN potential without density modification. X2 for the best
fits without FF (VO= 6.2, W = 0.032) and with FF (VO= 6.2, W = 0.028) are given in
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Table 2. The dramatic improvement in X2 with a FF is quite striking and seems strong
evidence for its reality.

Table 2
X2 (per ~A) for interactions with V. = 6.2 MeV. For each W (MeV) and @ the optimum
e is shown. The three values of X2 are in decreasing order: X2 for all 24 BA, omitting
~“ca(d), and omitting j“ca(d) and all AC. Values in parentheses are with a CSB potential
VOCSB= -0.05 MeV.

With FF With FF With FF No FF No FF
0.028 0.024 0.021 0.032 0.020

r
o E= 0.00 0.11 0.195 0.00 0.35

3.82 2.52(217) “ 3.25 10.26 1.5(2.10)
2.43 1.96(1.59) 3.14 9.22 1.54(2.16)
1.84 0.94(0.64) 1.87 10.86 1.79(2.55)

4 ~= 0.05 0.15 0.23
5.71 2.46 2.10
3.86 1.53 1.74
3.82 0.90 0.72

2 ~= 0.09 0.18 0.255
6.32 2.52 1.77(1.56)
4.36 1.45 1.30(1.07)
4.65 1.07 0.50(0.36)

0.1 E = 0.16 0.24 0.305
6.31 2.67 1.66
4.54 1.61 1.22
5.13 1.42 0.58

Our most comprehensive search was made for V. = 6.2 with FF. For V. = 6.15 and
6.10 less detailed searches were made. In Tables 1 and 2 only the results for V. = 6.20,
the value preferredby the sp data, are given. The results for the other values of V. are
similar; these results and those (for other values of the CSB strengths for VOCSB= --0.1
and +.05) will be presented elsewhere.

Tables 1 and 2 show, for each W and ~, the optimum values of ~ together with X2 for
(i) all BA, (ii) omitting j°Ca(d), and (iii) omitting AC’ and ~°Ca(d). In Table 2 results
including the CSB contribution are shown in parentheses for our best fits. The overall
best fits with and without FF are quite good and are comparable in quality. However,
omitting AC the fits with FF are better, and omitting the d state of ~°Ca makes them
truly excellent. The implication of this will be discussed elsewhere. For the d state of
j°Ca all our fits with FF give BA x 3 MeV as compared with the experimental BA s 1
MeV, suggesting that the experimental 13Amight be in error, Without the FF the BA of
the d state of ~°Ca is 1.4 MeV which is close to the experimental value. We emphasize
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that the FF is demanded by the physics and that a fit without FF, however good, cannot
be justified. Also, the best-fit values without FF are W x 0.02, e = 0.35 which are
inconsistent with the results of VMC calculations [13] of jHe which are discussed below.
The fits without FF also worsen with inclusion of a CSB consistent with the A = 4 HN.

Fits can be somewhat comparable in quality for different VO,e, W, and ~ as considerable
compensation may occur because decreasing V. or increasing q W, and ~ all correspond
to more repulsion. Nevertheless our analysis very considerably restricts the parameters.
Even without restriction to the preferred value V. = 6.2 but allowing the whole range
6.15 + 0.05, we iind e s 0.25 + 0.05, W N 0.021 and P x 0.1-2.0.

A new feature of our work is that Ffl(p) <1 is required with@ x 0.1-2. This corresponds
to a reduced repulsive ANN contribution from the surface. Since this is relatively more
important for small A this implies an effectively less repulsive ANN potential for smaller
A. This then is consistent with VMC calctdations [13] of jHe using a realistic Argonne v18
potential [17] which gives ~A = 3.06 + .05 for V. = 6.2, E= 0.24, W = 0.01 (experimental
BA = 3.12 + .02).

The CSB calculations are implemented through the change VO+ VO+ Vocs~ in the
charge symmetric AN potential, Eq. (2). To a good approximation the change in BA due
to CSB is then

(29)

Since ABA is proportional to the neutron excess, we include CSB only for the four heaviest
HN (“heavies”): ~lV, fY, ~3gLa, ~og~b. The derivatives B~, shown in Table 4, were
obtained numerically and are almost the same for all our best-fit potentials. Also shown

CSB = -0.05, essentially the value obtained in Ref. [5] for A = 4.are the ABA for V.
The parameters of the best fits without CSB are effectively unchanged if we omit the
heavies. This implies that with CSB the fits including the heavies are not spuriously
distorted. For each of the best fit interactions with FF, there is a definite preference for a
negative VOCSBconsistent with -0.05. The relative improvements in the X2 (with FF) are
quite appreciable and significantly improve the overall fits. The resulting X2 are shown in
parentheses in Table 2. The best fit without FF is worsened with a negative VoCs~since
in this case the BA for the heavies are already too small without CSB.

Table 3
Well depth, effective mass and related quantities. All energies in MeV, p in fro-3.

Values for PO= 0.165 frn-3
V. W /3 c DA D~N –D:N –DANN rn~/rnA Dmaz Pmax
6.2 .02 2.0 .255 30.4 72.5 9.4 32.7 0.78 33.9 .124
6.2 .02 0.1 .305 28.4 72,5 11.2 32.9 0.74 36.5 .126
6.15 .02 0.1 .260 27.5 69.5 9.4 32.6 0.78 33.5 .126
6.1 .02 0.1 .200 28.7 66.5 7.1 30.8 0.82 35.4 .128
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Table 4
CSB quantities. ABA in MeV.

B~ ABA(V$b~ = -0.05)
N–Z ~ d f spdj

~1v 4 ;.6: ;9 :0 20 .16 .12 .08
89y
A 10 0.11 42 35 28 20 .24 .20 .16 .11
~3gLa 24 0.17 46 40 35 28 .40 .35 .30 .24
zo8Pb

,A 43 0.21 48 44 39 34 .50 .46 .41 .35

5. CONCLUSIONS

Our main results are ss follows:

1.

2.

3.

4.

5.

6.

7.

The FF due to the finite range of the AN and ANN potentials has a major effect.

The best fits are for F“ <1 (~ N 0.01–2) corresponding to a large ANN p depen-
dence which translates into an A-dependent strength W which is nicely consistent
with =0.01 MeV for ~lYe and becomes SXO.02MeV for nuclear matter. This indi-
cates an effective ANN dispersive potential which becomes increasingly repulsive
for larger A and whose probable interpretation is in terms of a mixture of dispersive
and tw~pion exchange ANN potentials, the latter giving an attractive contribution
for small A (as shown by VMC calculations) but a more repulsive contribution for
large A because of the associated correlations.

A somewhat large AN strength VOR 6.2 MeV is preferred but is consistent with Ap
scattering.

D(p) shows the characteristic “saturation” feature, which is a consequence of the
repulsive ANN contribution, first noted by Millener et al. [3]. The maximum of
D(p) occurs at &O.125 fro-3 (Table 3).

The well depth for our best fits is DA s D(po) N 29 + 1 MeV (Table 3).

The sp data restricts the space-exchange fraction to c = 0.25 + 0.05, compared
to the very poorly determined values 0.1-0.4 obtained from Ap scattering. Our
corresponding effective mass is m; (po) N (0.78 + 0.04)mA.

CSB effects are significant for heavy HN with a large neutron excess and are well
consistent with the A = 4 HN.

Finally, we comment on the existing OBE potentials [18] and the associated (lowest-
order) G-matrix calculations of the well depth [10]. All the potentials except ND (Ni-
jmegen D) give either a very small attractive or small repulsive odd-state (i.e. p-wave)
contribution DP m –1.0 to 3.5 lMeV. Only ND gives a significantly attractive odd-state
contribution DP = 8 MeV comparable to that (CX7–12 MeV) obtained for our best-fit
interactions. The “even-state” G-matrix contributions are to be compared with our values
of D~+ DA~~ (DS is the s-state contribution to D) which are m 16–21 MeV for our best-fit
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interactions, whereas the G-matrix results are nearly all = 31–35 MeV. This suggests that
these are missing about 10 MeV repulsion due to higher-order (3-body) contributions, in
particular from Vfi~. This would bring the G-matrix results for ND (DA = 40.5 MeV)
into good agreement with our best-fit potentials with FF. All the other OBE potentials,
because of insufficiently attractive DP, would give too small DA = 20 MeV. Our results
thus show a definite preference for ND.
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