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1. Department’s Brief History

1950
~1950
1955
1962
1965

Established as graduate program in Physics Dept

First non-governmental university-based research reactor
Two PhDs awarded

Department of Nuclear Engineering established

Rapid growth from 4 to 9 faculty; thrust areas: (1) Fission
power reactors; (2) Radiation applications

1MW PULSTAR operational (4t on-campus reactor)
Added Plasma/fusion graduate track
Combined five-year BS/MNE degree established

Master of Nuclear Engineering degree via Distance Ed
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1. NCSU’s Nuclear Engineering Today

O Our Faculty:

¢ 8 active faculty in 2007 = 15 today
% 2 open positions currently in search

% 2 endowed chairs (Progress Energy & Duke Energy): PE Chair in
search

“ Multiple Joint Faculty Appointments with ORNL and INL
* Pivotal role in CASL: Turinsky Chief Scientist, Doster Ed Programs
 Gilligan: Director of NEUP

d Our Students:

¢ Enrolments surpassed 200 UGs & 100 Grads
* Won Mark Mills Award (best PhD) 9 times in Award’s 53 years
* ~10% win one or more award, scholarship, or fellowship

4 Space:

¢ NUCLE,
o kl-‘

*

“ Increased by more than 50% since 2008
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2. NCSG at NCSU

Sebastian Schunert: PhD Student

Thesis: Comparing Various Spatial Discretization
Schemes Based on a Method of Manufactured
Solutions Benchmark Suite

Sean O’Brien: PhD Student

MS Thesis: A Posteriori Error Estimators for the
Discrete Ordinates Approximation of the One-
Speed Neutron Transport Equation

Sameer Vhora: MNE Student

Thesis: Spectral Analysis of Parallel Block Jacobi
Iterations for Solving the Discrete Ordinates
Equations with the ITMM Approach
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2. NCSG at NCSU

Brian Powell: MS Student

Thesis: Efficient Computation of Subdomain
Operators Employed in the Integral Transport
Matrix Method (ITMM)

Noel Nelson: MS Student
MS Thesis: Accurate Holdup Calculations with
Predictive Modeling & Data Integration
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2. Work Presented Today

O Dr. Joe Zerr is a former member of my research group

O Presently Research staff at Los Alamos National Laboratory

4 Received PhD 2010,
Penn State University

U Recipient of 2010
Mark Mills Award
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3. Fundamentals

O Classical point particle is fully described by independent
variables:

s Time: t Q
Space: r

Direction of motion: ©
Energy: E

Note: the unit vector Q & energy E
are equivalent to velocity v

=l

K/ K/ K/
000 000 000

e

%

O Observable quantities (e.g. heating) depend on reaction
rate:
* Large number of interacting particles (neutrons/photons)
** Much larger number of host targets (nuclei/electrons)
¢ Impractical to solve dynamic system for individual particles/targets
= statistical model: mean collision density rate
. % Proportional to density of interacting particles & host targets
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3. Statistical Model

O Particle Angular Density'

o n(r Q. E 1) d°rdE dQ = mean number of neutrons at time t in d’r at,
r , with energy in [E, E+dE] traveling in the directional cone dQ at Q

O Particle Density:

< N(r,E,t)d°r dE= mean number of neutrons at time tin d°r atF,
with energy in [E, E+dE] = N (¥, E,t)= Idﬂn(r Q E,t)

O Particle Flux: Speed x particle density A
“ Angular flux: z//(F,fz, E,t)=vn (F,Q,E,t) e ./« r %d R
s Scalar flux: ¢(r,E,t)=VN (¥, E,t) o .//Oé_oo/
% Leakage rate: y (F,,E,t)Q-hdA Al io J dE
<+ Reaction rate density: X, o(r,E,t) % o [‘;‘V: c

» 2, = Probability reaction j / path length

d’r N

Need to compute ¢(r,E,t)= jw(F,fZ, E,t)dfz
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3. Neutron Transport Equation

O Special case of Boltzmann equation: First-order integro-
differential

** Neutral particles = no electro-magnetic forces
“ Low particle densities = ignore neutron-neutron collisions => linear

O Balance over infinitesimal element in phase space: (F,fz, E)
O Dependent variable: Angular flux w(r,Q, E,t)

Transient Streaming Total collision
A A A
A I ' N N
1 oy (r,E,Q,t)

y +Q. Viy(r,E, Q, t)+%, (r,E)w(r,E, Q, t)

Scattering{ = JdQ’JdE’Zs(E',Q' — E,Q)y(r,E', Q')

Fission{ Z:E) DdE v(E)Z, (F,E )Jdﬂ’l//(r E', Q1) |+5(F,E, Q)

¢ NUCLE,
o kl-‘

O

%
m
a

leed source
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3. Interface & Boundary Conditions

O Steady state: Time derivative vanishes

4 Interface condition: Angular flux continuous along direction
of motion, , across material boundaries

O Physical intuition: Can specify what goes into a system
* What comes out is a consequence of the transport process inside
“ Example: shining light into crystal
» Can choose color/intensity of incoming light

» Can’t choose color/intensity of outgoing light: depends on what
happens inside

O Typical Boundary Condition (BC):
s Setincoming flux W(FS,E,ﬁ,t):wm(f;,E,fz,t) for:

> All times t

> All energies: E €[0,0]

> Each r, on the boundary S

» Each incoming angle: fz-és <0, és is the normal unit vector pointing out
% The function y_(r,, E,fz,g) can be specified explicitly or implicitly

» Vacuum BC: v _(r,,E,Q,1)=0

Massively Parallel Discrete Ordinates Dept of Nuclear Engineering
University of Florida — February 14, 2013 NC State University
15 of 60




3. Discretization of Transport Equation

0 Implementation on digital computer = discretize
Independent variables & consequently dependent variables
4 Energy: Multigroup = discretization into bins (g , E; ;)

* Victory, 1985: Total & scattering cross section fluctuations diminish
with refinement of energy group structure

= Multigroup solution = exact solution
O Angle: Discrete-ordinates = discretization along discrete ﬁn
% Madsen, 1971: Quadrature formula converges with increasing order
= Discrete Ordinates solution = exact one-speed solution

O Space: Multitude of methods discretize vy on spatial mesh
% Madsen, 1972: Exact solution has bounded 3" derivatives
= Diamond Difference solution = exact Discrete Ordinates
solution
% Smoothness hypothesis unrealistic for most applications

¢ NUCLE,
o kl-‘,"
<
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4. Traditional Solution Algorithms

O Difficulty of solving the transport equation (partial list):

s Steady-state 3-D problems: phase space is 6-D = 100 discrete
variables per phase space dimension yields 10'% unknowns

» Neutron cross sections sensitive to energy & nuclide composition
» Source (fission & scattering) depends on solution = iterate

&

)

L)

&

)

L)

O Nested loops:
» Outer Iteration: converge fission/scattering source

% Loop over energy groups: from highest to lowest E
* In each group sum fission + inscattering source guess into q

“ Inner (or Source) Iteration: reconcile within group source & flux
» Starting with guess for group ¢ within-group scattering source
> Invert 15t order PDE on source distribution = group w
» Integrate over angle = new ¢: test if too different from starting guess
> Yes: Repeat unless already used too many iterations
» No: solution converged successfully to group flux for into-group sources
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4. Cell Equations

O Kernel operation: Solving 15t order PDE for given source
* Conducted via mesh sweep algorithm: 1 cell, 1 angle at a time

O Discretized equations per energy group/angle/cell:
< Balance: Include fission & inscattering from other groups in q,

5

g_:(w:,out _l//:,in)—i_g_;(l//r{out _l//r{in ) +;:(l//rf,out _l//rf,in>+ Oy l/7n = O (ﬁ+ qn

* Auxiliary: Method-dependent, simplest

is Diamond Difference Y

_ 1

W, = E(l//:,out +er1j,in)’ u=XxYy,z

0.

y

AN
NN

¢ Quadrature formula: 0

e TITTTTT a
» = a)n l//n
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4. Cell Equations

O Kernel operation: Solving 15t order PDE for given source
* Conducted via mesh sweep algorithm: 1 cell, 1 angle at a time
O Discretized equations per energy group/angle/cell:

“ Balance: Include fission & inscattering from other groups in q,

H, M

5_)( 1 + §_(l//r¥,out

y

* Auxiliary: Method-dependent, simplest

IS Diamond Difference ///////
_ 1, y B - |
W, = E(l//n,out +Wn,in)’ u=xX,Y,2 W §y /

% Quadrature formula: g Oy -
n T
Q=) oV, .

n=1
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4. Cell Equations

O Kernel operation: Solving 15t order PDE for given source
* Conducted via mesh sweep algorithm: 1 cell, 1 angle at a time

O Discretized equations per energy group/angle/cell:
“ Balance: Include fission & inscattering from other groups in q,

di —
l//nln)+_n =0,90+(,
53’
* Auxiliary: Method-dependent, simplest n,out
Is Diamond Difference //////;,
v7=£(t//” V) U=XY,2 q. &p o
n 2 n,ou n,in / 5 Wn ¢ ? Wn,out
¢ Quadrature formula:
N known T / — X
&, — a) n
< v il Vn unknown
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4. Mesh Sweep

O For each discrete ordinate sweep cells along fzn
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4. Mesh Sweep

4 Interface angular fluxes couple neighboring cells

o
7
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4. Mesh Sweep

Y S\«
/! A
ATg ynNE

o

7
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4. Mesh Sweep

O Upon reaching end of row go to next row along fzn

o
7
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4. Mesh Sweep

O Note sequential nature: must compute upstream cell first

.o Slow convergence If Sl often demands acceleration (DSA)

Massively Parallel Discrete Ordinates Dept of Nuclear Engineering
University of Florida — February 14, 2013

NC State University
26 of 60



4. Parallelization Strategies

O Domain decomposition: split range of phase space variable
In P subdomain & assign each to different process
“ Perfect parallelization = reduce execution time by factor P

“ Synchronous DD: processes fully independent = computation
(e.g. number of iterations) independent of P

* Asynchronous DD: coupled processes = work P dependent

4 Possible DD for S algorithms:
* Energy: speedup limited by # groups (hundreds at most)
» Coarse-grain = easy to implement & high parallel efficiency
» Asynchronous & pointless unless there is fission &/or upscattering
* Angle: speedup limited by # angles (few thousands at most)
» Medium-grain = easy to implement & good parallel efficiency
» Synchronous in Cartesian coordinate system
¢ Spatial: speedup limited by # cells (potentially many millions)
» Fine-grain = difficult to implement & OK parallel efficiency
» Synchronous implies retaining sequential order among subdomains
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4. Spatial Domain Decomposition

1 Koche- Baker-Alcouffe SDD: synchronous
“ Maps 3D mesh onto 2D processor topology A
<+ Sweep mesh by subdomain in natural sequence per €2
s Concurrently sweep ready subdomains (on waverfront) = SDD
“ Pipeline angles to reduce processor idleness
% Communicate outgoing interface y to neighbors across wavefront

Stage 1 for | Processor 3

Previous € _if any Processor 2

Processor 1

Processor O
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4. Spatial Domain Decomposition

1 Koche- Baker-Alcouffe SDD: synchronous
“ Maps 3D mesh onto 2D processor topology A
<+ Sweep mesh by subdomain in natural sequence per €2
s Concurrently sweep ready subdomains (on waverfront) = SDD
“ Pipeline angles to reduce processor idleness
% Communicate outgoing interface y to neighbors across wavefront

Stage 2 for Processor 3

Previous € _if any

Processor 2

Processor 1

Processor O
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5. Parallel Block Jacobi (PBJ)

4 Asynchronous SDD alternative to KBA:
“ Eliminate processor idleness & increase concurrent processes
% Combine all angles computations in subdomain via ITMM operators

“* Replace Sl with iterations on subdomain interface fluxes:
Communicate y between iterations

< Need ¢ = ®(v,, ,q) & ¥y, = ¥(0, ¥, ,Q)

T T LT T T
ENEEENEE ot [uf-fo- ol
1 11 =2 I T I L
RN RN Lol - o - ol v el
EEEREREE z z d v
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5. Outline of ITMM

O Express Sl as a mapping of flux €iterate into ¢+1 iterate:
o =T, (0 42 )+ Ky, = I, =00 [0p"
* Upon iterative convergence:
(1-3,)" =3 2 q+K y,, - ®(v,.q)
“ For full domain where y, is known from BCs:
Vor =3, (0" +2q)+ K, v, = ¥(0.0,.9)
d Apply to subdomain: g, is not known requires iteration

ad ITMM operators are response matrices:
< J,: cell-averaged scalar flux due to unit distributed source
<+ K, : cell-averaged scalar flux due to unit incident angular flux
< J, : outgoing angular flux due to unit distributed source

Massively Parallel Discrete Ordinates Dept of Nuclear Engineering
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5. Construction of ITMM Operators

O Differential Mesh Sweep (DMS): concurrently in all
subdomains

« Perform single sweep to compute elements of J ,via J = aga(f*l)/@gp(g)
s Compute elements of other operators along the way

O Dense operators: memory limitations as size grows

“ Operators sizes grow superlinear with # cells, linear with # angles
¢ Full coupling of cell- and face-fluxes

“ Expensive to invert for large subdomains

O Applicable to high-order spatial discretizations &
anisotropic scattering (¢ = angular moments)
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5. PBJ Algorithm

O For each energy group, fully concurrent:
s Perform DMS per subdomain/processor = 4 ITMM operators
< Need to effect (I - J ) = LU factorization only once then store

» Execute PBJ iterations on subdomain interface angular fluxes:
(4)

> Given ¥/;,~ compute for each subdomain (0(/”1) = (I)(Wi(n/l),Q)

» Test convergence of scalar flux: 1—(9(“1)/(0(2) small?

® |f converged go to next group (if any)

® Otherwise start new iteration with: l//éjtﬂ) =Y ((0()#1) , l//i(n/l) , Q)

(A+1) (A+1)

¢ Communicate ¥/, " as ¥;, ~ toneighboring subdomains

U Observations:
** Reduced local computations to matrix-vector multiplies & adds

% Sources of parallel inefficiency:
» Increasing # iterations with P & tighter subdomain coupling: cT & Z, hl
» Network contention: Communicate subdomain interface angular fluxes
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5. Parallel Gauss-Seidel (PGS)

O Red/Black splitting of each subdomain:
+»» Each sub-subdomain is either red or black

* Operations per global iteration over interface angular flux:
» Solve local ITMM system for ¢ &
» Copy/send vy, = ¥, to intra-/iter-subdomain neighbor
» Solve local ITMM system for ¢ &
» Copy/send y,; = v, to intra-/iter-subdomain neighbor
“ Pros:
» Memory requirement | super-linearly with
{ number of cells
» Typically Gauss-Seidel convergence rate
better than Block Jacobi
% Cons:
» Smaller ITMM subdomains = slower
convergence of global iterations
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6. Implementation in PIDOTS

d Implemented PBJ & PGS in Parallel Integral Discrete
Ordinates Transport Solver (PIDOTYS)

O All tests performed with one-group, DD, with isotropic
scattering

O Preliminary testing on:

“ LANL’s Yellowrail:
» 139 compute nodes each with 8 Processing Elements (PE) & 16 GB
memory
» Runs up to P = 256 processes

* LANL’s Redtail:
> 1,834 compute nodes each with 8 PEs & 32 GB memory
» Runsupto P =1,024

% ORNL’s JaguarPF: All results here are for this platform
» 18,688 compute nodes each with 12 PEs & 16 GB memory
» Runsupto P = 32,768
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6. Weak Scaling Tests

O Evaluate parallel performance as problem size grows with P
0 Weak scaling = Number of
cells per processor fixed:

o Startwith L XL x L
domain

“ Comprised of 4 materials:

no symmetries

<+ Examine effect on number of
iterations = execution time:

> Cell size h setto

{0.1, 1.0, 10.0} cm
» Scattering ratio c set to

{0.9, 0.99}

A
- |
cubic-cells ,
|
i
9 1
L
OB |
5 |
A |
 0.625L
cells !
___________ v
< > e |
1 05L |~
- L
€ e e eee >
L cells

% Choice of L & S order is

memory-limited
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6. Growing Problem Size

Starting with the
base case:
LxLxLcells
on P processors

Massively Parallel Discrete Ordinates Dept of Nuclear Engineering
University of Florida — February 14, 2013 NC State University
39 of 60

s &
7arE gVt



6. Growing Problem Size

Stretch along z to
LxLx2L cells
on 2 P processors

2L

X L
|
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6. Growing Problem Size

Z
Stretch along y to
Lx2Lx2L cells
on4P processors
1
1
[
2L
y
#
J'"
4
. 2L
#
#
'f
VAR
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6. Growing Problem Size

Stretch along x to
2Lx2Lx2L cells
on 8 P processors

2L

——
y
A 2L
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6. PBJ vs PGS Performance

O 8x8x8-cell model per P, S, P up to 1,024 on JaguarPF

O PGS: eight 4x4x4-cell sub-subdomains per P = shorter
construction & per-iteration times

- . 512 cells 5,120 celis 524,288
3 z
10 = T T I'Iillll T T I'IIIIII T T llll'lll 3 10 E T T IIT'I!I] T T i'llll'll T T Illllll
2| | E - -
10 ¢ / - g 10 =
L% - -
S - - 31 F
g I =—=------- ] §
g F o iy s
! L — PBLA—0} g o -
10 E . ) = BN 10 E =
= — - PGS,i=D.1 [ : 3
N — PBLE=10 N
—-PGS,6=1.0 L »
— PBLL=10.00 |/
— - PGS, h=108
1 1 lllllll 1 1 Illllll T T LT T TTTOT E 1 ] lllllll 1 1 (llllll 1 11 Illl]l
0 1 z 3 10 o 1 2 3
10 10 10 10 10 1Q 10 10
Processes, P Processes, P
D ———————————————————————————————————————————————————————————————
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6. PBJ vs PGS Performance

¢ =0.99 results:

512 cells 5,120 cells 524,288
’ cells
3 2
10 E T 1 T lIllII T lllllll T T T I-IIIII E 10 ; L] 1 TriTrrT T I ] ll!ill! T L L E
2 W, -»-":’W—V‘_

10 [ = @ 10 | e E
7)) o - £ n e .
s T - E .
= - _ c B i
o S p
b i y 3 2 = 7
T g o -7

10 F — MjbA=n1 1 X 10 F 3

- — - PGS, h=0.1 u - ]
- — PBLA=-10 [] B ]
_ - - PGS.h=148 || _ i
—_ PBLE—100 | i i
— - PGS, h=100

1 | - Il!lll 1 1 ]llllll 1 T LT T TTTT .l 1 J_ 11 lllII '] J_ 1 Illllj 1 11 l!llll

1 2 3 16 o 1 2 3

10 10 10 10 10 10 10

Processes, P
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6. Construction vs Solution Time

d Total execution time = construction time + iterative solution

time:

* Construction time: independent of ¢ & h = average over all cases
¢ Iterative solution depicted for c = 0.9 & h = 0.1 cm as example

9 -l @—e PB| Tot
-| — PBJ Sol

| | — — PB) Con
| |®—® PGS Tot

=
o

Execution Time (s)

2

™

— — PGS Con

— PGS Sol

P .

1 IIIIIIII | IIIIIlII | IIIII[II

1 2 3
10 10 10
Processes, P
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Weak Scaling Results

4 ¢=0.9, h=0.1

lterations

N &
ATg ynNE

£

10

10

10

10

2 3
10 10

Processes, P

4
T TTTITIT T |||||H_- 1U E T T TTTTIT T T TTTTIT T T TTTTIT T T TTTTIT T |||||H:-
| 3
—10 F 3
ik - =
E v [ §
. £ I ]
] =
— 2
. 510 F E
- = - .
= C 3
o B ]
Q
— > L 4
- i .
. 10 F =
— R/B-02[7 = =
— R/B-04[] .
— R/B-08[H L _
— R/B-16 .
L 11 ITTT T TTITh 1 |||||||| 1 |||||||| 1 |||||||| 1 |||||||| | R
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Weak Scaling Results

d ¢=0.9, h=1.0

3 4
10 F T TTTTTI T TTTTTI T TTTTTI T TTTITIT T |||||H_- 1U E T T TTTTIT T T TTTTIT T T TTTTIT T T TTTTIT T TTTTTIH
B i 3
—~10 F 3
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10 = w 2 .
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1| _ g i i
10 F E 5 g
- . 10 F 3
B — R/B-02[7 = =
i — R/B-04[] = ]
B — R/B-08[7 N
— R/B-16
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Weak Scaling Results

d ¢=0.9, h=10.0

3 4
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Weak Scaling Results

d ¢=0.99, h=0.1
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Weak Scaling Results

d ¢=0.99, h=1.0
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Weak Scaling Results

d ¢=0.99, h=10.0
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Periodic Heterogeneous Layers

O Alternating layers of optically thin and thick materials
4 Known challenge for SI-DSA convergence
O ITMM explicitly couples thick and thin materials

O Starting with h=1, increase every other layer by a factor of
‘a’ and decrease the other layers by a factor of ‘a’
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PHL Weak Scaling Results

d ¢c=0.9, a=10
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PHL Weak Scaling Results

d ¢=0.9, a=100
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PHL Weak Scaling Results

4 ¢=0.9, a=1000
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PHL Weak Scaling Results

d ¢=0.99, a=10
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PHL Weak Scaling Results

4 ¢=0.99, a=100
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PHL Weak Scaling Results

d ¢=0.99, a=1000
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7. Conclusions

0 The Nuclear Computational Science Group at NC State is
engaged in broad span of topics

O Topic illustrated today: Multiprocessing strategies
particularly suited for massively parallel architectures
* ITMM SDD avoids sequential mesh-sweeps
¢ Considered BJ & GS parallelizations: PGS bests PBJ
% Compared PGS to traditional KBS in PARTISN:

» Very large differences when Sl is accelerated with DSA

» Gap closes as optical thickness and scattering ratio are increased =
most difficult SI problems

» Sl & SI-DSA demonstrate larger growth in execution time as P 1T
» Conclusions must be validated for P > 1,024

4 PGS performance should improve with suitable
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