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Light-Emission Applications
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Quantum Dots (QDs):
Functionality for Light-Emission Applications

- Quantum-confinement effects afford functionality
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- Size-tunable bandgap / fluorescence

- Narrow & bright emission
- Broadband & efficient absorption

A\ Absorption

Emission

450 550 650
ya Wavelength (nm)

2m_R?

- Low-cost / scalable synthesis

- Solution processible

- High-quality: Low polydispersity (+/- 4%) &
single-crystalline
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Quantum Dots:
Functionality for Light-Emission Applications

* Potential applications

v Biological optical tags / reporters

v Color-tunable lasing

v Single-photon source

v Light-emitting diodes (solid-state lighting)
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The darker side of QDs:

Blinking and non-radiative Auger recombination

= Quantum dot fluorescence intermittency

v

- Nirmal et al. Nature (1996) 802
- Efros Nature Mater. (2008) 612

» Conventional blinking model:

- QDs randomly cycle through uncharged and charged states
- In charged state, QD blinks ‘off’ due to Auger recombination

= Efficient non-radiative Auger recombination

] Ar T B « Reduces optical gain lifetimes
C C * Reduces optical gain bandwidth
€ n il * Restricts time available to extract multiple excitons
¢ ¢ * Limits ability to reliably extract single photons
h =] h q‘ - Leads to non-radiative losses in LEDs (via charge build-up)
Al
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The darker side of QDs:
Traits that impede solid-state performance

Why are solid-state QD quantum yields an order-of-magnitude less than
solution QD quantum yields?

= Optical properties depend on organic ligand layer
- Damage to ligands diminishes NQD performance
- Ligands can impede charge transport / injection
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= Efficient QD-QD energy transfer in close-packed films

- Excitons “funnel” to lowest-energy state, which can be a non-emitting trap state
(a) REF, hot excitons (b) REF, cold excitons

uem)

Adapted from Klar et al.
Adv. Mater. 2005
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QD blinking: The subject of intense investigation

= Early attempts to suppress blinking L2000} Tris 10 mM, [Na'] = 50 mM
used charge-mediators/ 2
compensators to suppress charging g
» Short-chain thiols: “BME” g

 Organic conjugated ligands
* Propyl gallate (“antioxidant”)

- Hohng & Ha JACS 2004, 126, 1324; Hammer et al. JPC B 2006, 110, 14167; Fomenko & Nesbitt Nano Lett. 2008, 8, 287
= “Ligand” approach hard to reproduce and not robust

« Effects are concentration, time, pH dependent
* Thiolate ion passivates electron traps at low concentrations (acidic pH)

* Thiolate introduces hole traps at high concentrations (basic pH)

ZnS ZnS
conduction ‘ CdSe

conduction

CdSe
band '._/ band
l electr
valence trap . valence M -
—_ Thiol
band o— Thiolate band ——  hole lolate
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Conclusions from early work on QD blinking:
Role of surface chemistry

- Careful application of charge-donating ligands affords “window of
opportunity” for photoluminescence enhancement

- However, control and long-term stability difficult to achieve

- Clearly, charging and/or surface trap states play a key role

What about an inorganic approach?
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Inorganic shell approach: Is it possible to impact both
charging/trapping and Auger recombination processes?

= Epitaxial growth of wide-bandgap shell on a QD core improves PL efficiencies
and stability

 But, core/shell QDs still blink and still exhibit efficient Auger recombination
= Advanced ‘shell engineering’

* Thick shell to isolate carriers from surface / impede charge ejection

@ Successive lonic Layer Adsorption & Reaction (SILAR)
CdSe core ‘

Cd(oleate),

0
240°C S $
\8 )
cd ca Qe;a ‘CdSe/nCdS
c d S,/ c i =10 -20
8 s s (n )
c Cd octadecane ¢ st anneal

Cd
@ 240°C ‘CdSe/1CdS’

* ‘Type-II’ core/shell band alignments: Partial or full electron-hole spatial
separation reduces e-h overlap with repulsive Coulombic interactions possible

m@I [g CdSe/CdS
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‘Giant’ quantum dots: New functional class of QD

Single-dot-level optical stability: Suppressed blinking and photobleaching

Conventional core/shell QD ‘Giant’ core/shell QD
c 02513 c 025 =77
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Blinking suppression:
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‘Giant’ quantum dots: New functional class of QD
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Process of thick-shell growth is complex: Numerous
reaction parameters acting individually or in concert

- Non co-
ordinating - Shell Repeat Core / n ML shell

solvent precursor Shell  core /1ML Pprecursor
Core -Co-ordinating anion Precursor gpej addition cycle
O solvent cation @ (n-times) O
> ' '
- Heat - Heat >
-TimeX -TimeY

(n = number
* Ligand:Core ratio e Unequal * Non constant  of
*® Core concentration X, Y X, Y anneal monolayers)
¢ Ligand identity anneal times
times ¢ Non constant
ligand:core
ratio

= Correlate process conditions that control adatom
addition at the solution-NQD interface with properties
* Particle shape
* Crystal structure

< - Photophysical properties/performance (QYs,
o

blinking, lifetimes)

» Los Alamos
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Beyond shell thickness: Effect of core size

= Non-blinking fraction as a function of core size (2.2 to 5.5 nm) and shell

thickness
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Shell monolayers

 Universal behavior: Non-blinking fraction increases as a function of shell thickness
 Onset of blinking-suppression begins at different shell thicknesses for different core sizes
v Largest cores exhibit earliest onset of non-blinking
v Smallest cores reach transition at much thicker shells
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Understanding non-blinking behavior as a volume effect
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= Non-blinking fraction trends explicitly with NQD volume

= “Volume threshold” at ~750 nm3
* By either a combination of a small core and thick shell or a large core and thinner shell
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Implications of core-size effect on blinking suppression

Non-blinking NQD fraction

Percent on-time

« Largest cores achieve fully suppressed blinking at thick shells
(>85% of the NQDs are non-blinking)

» Smallest cores exhibit relatively little non-blinking behavior even after addition of
ultra-thick CdS shells

Slide 14
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Applications: QD LEDs

Conventional-QD light-emitting devices

= Hybrid organic/inorganic devices

Ag
Mg:Ag

40 nm TPBi

40 nm spiroTPD

PEDOT:PSS
ITO anode

78

-EQE’s up to ~3%
- Power efficiencies up to ~5 ImW-?

- Now18%!
- Kim et al. Nat. Photonics (2011) 176

= “All” inorganic devices

40 nm

Ag

50nm
Zn0: Sn0O,

QDs

ITO

- EQE’s up to 0.09% (left) and 0.2% (right)
- Now >1%

- Caruge et al. Nat. photonics (2008) 247
-Wood et al. ACS Nano (2009) 3581
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Applications: g-QD LEDs

Possible challenges to g-QD LEDs

= g-QD quantum yields ~50-60%
= Large per-particle volume translates to low density of emitter centers

]
I
|.

= | =

|q l—H—l-

= The thick shell might impede charge injection “Giant”: >10
monolayers of shell
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Test-bed direct-charge-injection light-emitting diode
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g-QD device outperforms similar QD device by two
orders-of-magnitude!

= Performance comparable to more sophisticated “all-inorganic” QD LEDs
Voltage (V)

* Low EL turn-on voltage: 3.0 V

« ‘Standard video brightness’ (200 Cd/m?)
reached at 6.5 V and 180 mA/cm?

« High maximum luminance ~2000 cd/m?

Cd/m?)

10°
102
10°
100

(

* No deep-level trap emission even at high
current densities

Luminance

 Higher order excited states may be
present due to Auger suppression!

Energy (eV)

Pal et al. Nano Lett. 2012, 12, -336
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g-QD device outperforms similar QD device by two
orders-of-magnitude!

= Performance comparable to more sophisticated “all-inorganic” QD LEDs

[~ -=(O-CdSe/16CdS .
- -[-CdSe/CdS-ZnS
K
10 3 .
—~~ [~
S| .
R 2
w 10"
8 - R
-3
10 E | (9 V, 450 mA/cm?) °
- 1 1 1 1 1 1

0 300 600 " 900 1200
J (mA/cm”) « Max. EQE of 0.17% reached at 100 mA/

cm? (7.0 V) — NOT intrinsic limit
* Stable in repeated testing for >1 month

Sal ef al. Nano Lett. 20 6 stored/tested in air
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Directly probing the influence of shell thickness

= Shell series (4CdS, 8CdS, 13CdS, 16CdS) compared

CdSe/4cdS

Pal et al. Nano Lett. 2012, 12, 331-336
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QD LED performance as a function of shell thickness

= The starting point
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QD LED performance as a function of shell thickness

= g-QD solid-state performance surpasses solution-phase behavior
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QD LED performance as a function of shell thickness

= g-QD solid-state performance surpasses solution-phase behavior
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Why do g-QDs outperform QDs in LEDs?

= g-QD luminescence is ligand-independent
= Auger recombination is suppressed; charged excitons emit!
= QD-QD energy transfer ‘shut-down’ at thick shells

Energy (eV) Energy (eV) Energy (eV)
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e F - i - i
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i | | L1111 - B e
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* Photoluminescence decay curves
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g-QDs as ‘replacement’ color-converting phosphors

= ‘Test-bed’ device architecture: so simple even a chemist can make it!

« Commercial ‘blue-emitting’ electroluminescent (EL) phosphor: Cu/Cl-doped ZnS

« EL phosphor sandwiched between indium tin oxide (ITO) bottom electrode and
Cu tape top electrode

* QD-polymer composite coated on backside of glass substrate

» Los Alamos V] vI :i
NAT'ONAELSTL:;’:’RATORY Kundu et al. Nano Lett. 2012, 12, 3031-3037



Key g-QD enabling characteristic:
Unique absorption profile

= Large effective Stokes shift High down-conversion efficiency:

= Absorption well matched to EL 22% (green trace)
= High spectral purity: 84%

= ‘Green-yellow’ retained
= 30 Cd/m?

Absorbance (a.u.)

Normalized PL/EL intensity
PL intensity (a.u.)

400 500 600 700 400 500 600 700
Wavelength (nm) Wavelength (nm)

)/ .\ '.'D‘?Zﬂ
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Key g-QD enabling characteristic:
Unique absorption profile

- g-NQDs can be packed at high densities without self-reabsorption losses
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Key g-QD enabling characteristic:
Efficient shell=»core energy relaxation

= |n thick-shell QDs, precise engineering of nanoscale architecture
affords independent control over absorption & emission properties

= |Importantly, these functions remain intimately and efficiently coupled,
allowing energy relaxation in g-NQDs to outcompete energy transfer
iIn simple mixtures of absorbers/emitters

= g-QD
= i‘; CdS only
:‘i I 9:1 CdS:CdiSe
B |E (matched QD)
2 /\J 9:4 CdS:CdSe
El 4\%V5avelengt?15((r)1m) (excess CdSe)

lllllllll

450 500 550 600 650 700 750
Wavelength (nm)
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Key g-QD enabling characteristic:
Stability

= Temporal device stability as a function of continuous biasing time
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Transitioning proof-of-principle for g-QD down-
conversion phosphors to high-power DC LEDs

= Characteristics of LED source: high luminous flux & temperature
« Many conventional rare-earth phosphors characterized by long radiative
lifetimes exhibit PL saturation
- Many phosphors, including QD alternatives, are reversibly & irreversibly
partially quenched by elevated temperature

Slide 30
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Transitioning proof-of-principle for g-QD down- i
conversion phosphors to high-power DC LEDs

= Characteristics of LED source: high luminous flux & temperature
« Many conventional rare-earth phosphors characterized by long radiative

lifetimes exhibit PL saturation

« Many phosphors, including QD alternatives, are reversibly & irreversibly

partially quenched by elevated temperature
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Transitioning proof-of-principle for g-QD down-
conversion phosphors to high-power DC LEDs

= Characteristics of LED source: high luminous flux & temperature
 Many conventional rare-earth phosphors characterized by long radiative
lifetimes exhibit PL saturation

- Many phosphors, including QD alternatives, are reversibly & irreversibly
partially quenched by elevated temperature
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Transitioning proof-of-principle for g-QD down-
conversion phosphors to high-power DC LEDs

= Characteristics of LED source: high luminous flux & temperature
 Many conventional rare-earth phosphors characterized by long radiative
lifetimes exhibit PL saturation

« Many phosphors, including QD alternatives, are reversibly &/or
irreversibly partially quenched by elevated temperature
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Effect of temperature cycling: 23 °C to 90 °C (hold) to 23 °C

PL intensity (a.u.)

Thin shel
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Limited examples of dual suppression of blinking and
Auger recombination

m  Alloyed CdZnSe/ZnSe system: Wang et al. Nature 2009
e Suppressed Auger recombination via smoothing of the confinement potential

m  Quasi type-ll, thick-shell CdSe/CdS: Chen et al. J. Am. Chem. Soc. 2008 and
Mahler et al. Nature. Mater. 2008

e Suppressed ionization/charging via thick, protective shell

« Suppressed Auger recombination via combined size, carrier-separation and (possibly)
interface effects

Moving beyond CdSe:

InP-based core/shell heterostructuring also affords suppressed blinking
and Auger recombination
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InP/CdS g-QDs: Addressing the effects of both
electronic structure and shell thickness

| i i
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m Distinguishing features of te InP/CdS C‘or-e/shéll system

Type Il electronic structure: Fully charge-separated state

Synthetic challenge: InP amenable to high-temperature SILAR growth only after low-T
application of first, protective monolayer

— Susceptibility to surface oxidation
— Tendency to etch at high-T in presence of acidic/basic ligands
Hexagonally faceted, wurtzite shells: Structurally equivalent to CdSe/CdS system
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Spectral and dynamic signatures of the type-li
heterojunction

“CT state”
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Unprecedented single-dot infrared-QD blinking studies

= Room-T blinking studies of type-ll QDs previously unknown
Though well-known for quasi type-ll CdSe/CdS and CdTe/CdTe,Se,/CdSe QDs

Type II's photobleached

= Single example of single-dot emission from type | infrared emitting QD

Correa et al. Nano Lett. 2012 (Bawendi’s lab)

Specialized superconducting nanowire single-photon detector required to
surmount:

— Materials instability issues

— ~Long radiative lifetimes

= Our work: Standard sample-preparation and single-photon detection
methods adequate

Slide 38
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Effect of shell thickness and electronic structure on
single-dot blinking behavior and photostability

InP/1CdS (~15-20% dots: on-time % >80%)
InP/4CdS (~15-20% dots: on-time % >80%)
InP/10CdS (>60% dots: on-time % >80%; some ‘non-blinking’)
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» Type-ll bandgap alignment transitions the room-T, non-blinking excitonic
emission into the near-IR for the first time
= Blinking less clearly shell-thickness dependent; Photobleaching more so
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INP/CdS biexciton lifetimes trend with shell thickness

= Pump-intensity-dependent transient photoluminescence: traces converge at
long times for thick-shell variants indicating long-lived multiexcitons
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Examples of both non-blinking and blinking behavior
for thin and thick-shell InP/CdS

= on/(on+off) ratios defined: “high” and “low” evident at each shell thickness
~non-blinking blinking

2500 2500
2000 ‘ ‘ ‘ 2000 on/(on+off)=0.2
N ~
4CdS < 1500 £ 1500
[ = c
s s
@ 1000 @ 1000
c [
3 500 3 500
o on/(on+0off)=0.94 o
0 v r r v 04 y r v r |
0 30 60 90 120 150 0 30 60 90 120 150
2000 Time (s) 2000 Time (s)
1600 1600 on/(on+off)=0.49
N : ~N
7CdS < 1200 Z 1200
c c
S s
2 & 8004
[ =
3 3
o 00X LUl LIENE.. 1AL ... AL O 4004 4. RS , L A
. on/(on+off)=0.94 .
0 30 60 90 120 150 0 30 60 920 120 150
2000 Time (s) 2000 Time (s)
1600- on/(on+off)=0.48
N ~
= T 1200
[ =] [ =
10CdS ¢ £
a2 & 800
c c
3 3
S . .. . . . | 8 400
on/(on+off)=1.0
0 T T T T { 04 T T T T {
0 30 60 90 120 150 0 30 60 90 120 150
Time (s) Time (s) Slide 41

» Los Alamos N}

VS8
Rl Lab Ml Manuscript in preparation with Han Htoon’s team HVA

2
s
<



Detailed blinking statistics reveals nature of shell-
thickness dependence in InP/CdS system

= Non-blinking percentage ~constant, however...
= High on/(on+off) ratios become more prevalent with increasing #CdS
= Low on/(on+off) ratios decline in prevalence
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Mandel Q Parameter describes the degree of deviation

S
—_—
<

from a Poissonian distribution of emission intensities

m Case 1: Perfect Poisson distribution
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Thicker shells appear to be converging to smaller Q’s,
I.e., tighter intensity distributions
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New way to think about blinking: Single-dot
spectroelectrochemistry reveals two mechanisms

> Conventional blinking model: “Type A” Bright Dark
- QDs randomly cycle through uncharged and charged states
- QD blinks ‘off’ due to Auger quenching of charged exciton
- PL intensities and lifetimes fluctuate together
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> New blinking model: “Type B”

- Trapping of hot electrons to surface states “darkens” PL
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Fluorescence Lifetime Intensity Distributions (FLID):
Correlated lifetime-intensity plots reveal more about

“blinking” than intensity traces alone

A-type blinking
|

B-type blinking
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Clear impact of shell thickness on blinking “type” in !
InP/CdS system

60 -
) B type QDs
50 - -
. Comment; earlier onset
40 - of ‘suppressed blinking’
% 30. A+B, unclear, non-blinking QDs VS. CdSe/CdS SyStem:
O Apparent impact of
X 204 A type QDs transition to a fully type-
- Il electronic structure
10 -
0 T v T v T v T v T v T v T

4 5 6 17 8 9 1
CdS shell monolayers
s Decline in A-type blinking: consistent with our previous observation that Auger
recombination efficiency decreases with increasing shell thickness
s Continued presence of B type blinking: implies even thicker shell is required
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Other “light emission” applications of non-blinking g-QDs:
3D particle tracking

With Jim Werner, R&D 100 Award Winner

Suppressed blinking a
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Jim’s work more broadly:

«Three Dimensional Tracking of Individual Quantum Dots,
Lessard, G.A., P.M. Goodwin, and J.H. Werner, Applied Physics
Letters. 91(22): p. 2224106 /1-3, (2007).

- Time-Resolved Three-Dimensional Molecular Tracking in Live
Cells, Wells, N.P., G.A. Lessard, P.M. Goodwin, M.E. Phipps,
P.J. Cutler, D.S. Lidke, B.S. Wilson, and J.H. Werner, Nano
Letters. 10(11): p. 4732-4737, (2010).

- Time-Resolved, Confocal Single Molecule Tracking of
Individual Organic Dyes and Fluorescent Proteins in Three

NATIONAL LABORATORY

EST.1943

2 4 6 8 10 Dimensions, Han, J.J., C. Kiss, A. Bradbury, and J.H. Werner,
Seconds ACS Nano. (2012). Siide 48
Y} yb )

From: Vela et al. J. Biophotonics 2010, 3, 706-717

NI A



3D single-particle tracking in live mast cells:
20-fold increase in tracking duration!

- Tracked single gQD-IgE for 6.5 min!
| Average tracking duration
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Conclusions

s We addressed the long-standing QD ‘blinking challenge’

= g-QDs nano-structural motif characterized by enabling traits
Suppressed Auger recombination
Suppressed charging and/or surface trapping
Stability independent of surface chemistry/chemical environment
Large effective Stokes shift (minimal self, green/yellow re-absorption)
Enhanced solid-state performance
Etc.

s Demonstrated application of g-QDs in proof-of-concept direct-charge-
Injection and down-conversion devices

s Extended g-QD ‘approach’ to new InP/CdS system

Suppressed blinking, photobleaching and Auger recombination
First near-infrared non-blinking QD

s New, ‘sustainable’ compositions are required = ‘non-rare/non-toxic’
A Simplify synthesis and enhance efficiency for rapid exploration: automation
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