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“Giant” Nanocrystal Quantum Dots for 
Light-Emission Applications 

Jennifer Hollingsworth 

Los Alamos National Laboratory 
Center for Integrated Nanotechnologies:  

Nanoscale Science Research Center and User Facility 
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§  Quantum-confinement effects afford functionality 

•  Size-tunable bandgap / fluorescence 
•  Narrow & bright emission 
•  Broadband & efficient absorption"

•  Low-cost / scalable synthesis 
•  Solution processible  
•  High-quality: Low polydispersity (+/- 4%) & 

 single-crystalline 

Quantum Dots (QDs): 
Functionality for Light-Emission Applications 



§  Potential applications 

ü  Biological optical tags / reporters 
ü  Color-tunable lasing  
ü  Single-photon source 
ü  Light-emitting diodes (solid-state lighting) 

Quantum Dots: 
Functionality for Light-Emission Applications 



•  Reduces optical gain lifetimes 
•  Reduces optical gain bandwidth 
•  Restricts time available to extract multiple excitons 
•  Limits ability to reliably extract single photons 
•  Leads to non-radiative losses in LEDs (via charge build-up) 

§  Efficient non-radiative Auger recombination"

The darker side of QDs:  
Blinking and non-radiative Auger recombination 

Ø  Conventional blinking model:  
-  QDs randomly cycle through uncharged and charged states 
-  In charged state, QD blinks ‘off’ due to Auger recombination 

§  Quantum dot fluorescence intermittency 
"

X
§  Nirmal et al. Nature (1996) 802"
§  Efros Nature Mater. (2008) 612"



§  Optical properties depend on organic ligand layer"
•  Damage to ligands diminishes NQD performance 

e- h+ E E 

•  Ligands can impede charge transport / injection 

The darker side of QDs:  
Traits that impede solid-state performance 

Why are solid-state QD quantum yields an order-of-magnitude less than  
solution QD quantum yields?  

§  Efficient QD-QD energy transfer in close-packed films"
•  Excitons “funnel” to lowest-energy state, which can be a non-emitting trap state 

Trap levels 

Adapted from Klar et al.  
Adv. Mater. 2005  



QD blinking: The subject of intense investigation 

§  Early attempts to suppress blinking      
 used charge-mediators/      
 compensators to suppress charging 

•  Short-chain thiols: “BME” 
•  Organic conjugated ligands 
•  Propyl gallate (“antioxidant”)!
-  Hohng & Ha JACS 2004, 126, 1324; Hammer et al. JPC B 2006, 110, 14167; Fomenko & Nesbitt Nano Lett. 2008, 8, 287 

 
§  “Ligand” approach hard to reproduce and not robust  

•  Effects are concentration, time, pH dependent 
•  Thiolate ion passivates electron traps at low concentrations (acidic pH) 
•  Thiolate introduces hole traps at high concentrations (basic pH) 
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Jeong et al. J. Am. Chem. Soc. 2005,127, 10126-10127; Jeong, PhD Thesis 2006 



Conclusions from early work on QD blinking: 
Role of surface chemistry 

§  Careful application of charge-donating ligands affords “window of 
 opportunity” for photoluminescence enhancement  

§  However, control and long-term stability difficult to achieve 

§  Clearly, charging and/or surface trap states play a key role 

What about an inorganic approach? 

Jeong et al. J. Am. Chem. Soc. 2005,127, 10126-10127; Jeong, PhD Thesis 2006 



n  Epitaxial growth of wide-bandgap shell on a QD core improves PL efficiencies 
 and stability 

•  But, core/shell QDs still blink and still exhibit efficient Auger recombination 
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Inorganic shell approach: Is it possible to impact both 
charging/trapping and Auger recombination processes? 

§  Advanced ‘shell engineering’ 
•  Thick shell to isolate carriers from surface / impede charge ejection 
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CdSe core 
Successive Ionic Layer Adsorption & Reaction (SILAR) 

•  ‘Type-II’ core/shell band alignments: Partial or full electron-hole spatial 
 separation reduces e-h overlap with repulsive Coulombic interactions possible  

CdSe/CdS 



‘Giant’ quantum dots: New functional class of QD 

“Giant”:  >10 
monolayers of shell 

  Conventional core/shell QD 

Blinking suppression: 
Chen et al. J. Am. Chem. Soc. 2008 
Vela et al. J. Biophotonics 2010 
Hollingsworth et al. U.S. Patent 2011 

‘Giant’ core/shell QD 

Single-dot-level optical stability: Suppressed blinking and photobleaching 



Evidence for suppressed Auger recombination 
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Long-lived biexcitons 

‘Giant’ quantum dots: New functional class of QD 

Auger recombination: 
García-Santamaría et al. Nano Lett. 2009 
Htoon et al. Nano Lett. 2010 
Park et al. Phys. Rev. Lett. 2011 
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Process of thick-shell growth is complex: Numerous 
reaction parameters acting individually or in concert 
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§  Correlate process conditions that control adatom 
addition at the solution-NQD interface with properties 

•  Particle shape 
•  Crystal structure 
•  Photophysical properties/performance (QYs,       
blinking, lifetimes) 

Ghosh et al. J. Am. Chem. Soc. 2012, 134, 9634-9643 



Beyond shell thickness: Effect of core size 
n  Non-blinking fraction as a function of core size (2.2 to 5.5 nm) and shell 

thickness 
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•  Universal behavior: Non-blinking fraction increases as a function of shell thickness 
•  Onset of blinking-suppression begins at different shell thicknesses for different core sizes  

ü  Largest cores exhibit earliest onset of non-blinking 
ü  Smallest cores reach transition at much thicker shells 

§ Black = 2.2 nm 
§ Red = 3.0 nm 
§ Green = 4.0 nm 
§ Blue = 5.5 nm 

Ghosh et al. J. Am. Chem. Soc. 2012, 134, 9634-9643 



Understanding non-blinking behavior as a volume effect 
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Black = 2.2 nm 
Red = 3.0 nm 
Green = 4.0 nm 
Blue = 5.5 nm 

§  Non-blinking fraction trends explicitly with NQD volume  
§  “Volume threshold” at ~750 nm3 

•  By either a combination of a small core and thick shell or a large core and thinner shell 

Ghosh et al. J. Am. Chem. Soc. 2012, 134, 9634-9643 



Implications of core-size effect on blinking suppression 
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•  Largest cores achieve fully suppressed blinking at thick shells            
 (>85% of the NQDs are non-blinking) 

•  Smallest cores exhibit relatively little non-blinking behavior even after addition of 
 ultra-thick CdS shells 

Ghosh et al. J. Am. Chem. Soc. 2012, 134, 9634-9643 



Applications: QD LEDs 
Conventional-QD light-emitting devices  

§  Hybrid organic/inorganic devices 

  

§  “All” inorganic devices 

- Caruge et al. Nat. photonics (2008) 247 
- Wood et al. ACS Nano (2009) 3581 - Kim et al. Nat. Photonics (2011) 176 

•  EQE’s up to ~3% 
•  Power efficiencies up to ~5 lmW-1 

•  Now18%! 

•  EQE’s up to 0.09% (left) and 0.2% (right) 
•  Now >1% 



Applications: g-QD LEDs 

Possible challenges to g-QD LEDs 
§  g-QD quantum yields ~50-60% 
§  Large per-particle volume translates to low density of emitter centers 
§  The thick shell might impede charge injection “Giant”:  >10 

monolayers of shell 



Test-bed direct-charge-injection light-emitting diode 

Band alignments vs. electrode work functions 

Pal  et al. Nano Lett. 2012, 12, 331-336 



•  Low EL turn-on voltage: 3.0 V 

•  ‘Standard video brightness’ (200 Cd/m2) 
 reached at 6.5 V and 180 mA/cm2 

•  High maximum luminance ~2000 cd/m2 

•  No deep-level trap emission even at high 
 current densities 

•  Higher order excited states may be 
 present due to Auger suppression! 

§  Performance comparable to more sophisticated “all-inorganic” QD LEDs 

g-QD device outperforms similar QD device by two 
orders-of-magnitude! 

Pal  et al. Nano Lett. 2012, 12, 331-336 



•  Low EL turn-on voltage: 3.0 V 

•  ‘Standard video brightness’ (200 Cd/m2) 
 reached at 6.5 V and 180 mA/cm2 

•  High maximum luminance ~2000 cd/m2 

•  No deep-level trap emission even at high 
 current densities 

•  Higher order excited states may be 
 present due to Auger suppression! 

•  Max. EQE of 0.17% reached at 100 mA/
 cm2 (7.0 V) – NOT intrinsic limit 

•  Stable in repeated testing for >1 month 
 stored/tested in air 

§  Performance comparable to more sophisticated “all-inorganic” QD LEDs 

g-QD device outperforms similar QD device by two 
orders-of-magnitude! 

Pal  et al. Nano Lett. 2012, 12, 331-336 



§  Shell series (4CdS, 8CdS, 13CdS, 16CdS) compared 

Directly probing the influence of shell thickness 

Pal  et al. Nano Lett. 2012, 12, 331-336 



•  g-QD solution-phase performance 
 is poor compared to 
 thinner-shell QDs 

•  Fewer g-QDs in a QD monolayer 

§  The starting point 

QD LED performance as a function of shell thickness 



•  EQE jumps for thick shells >10ML 

•  Shell thickness threshold for max. 
 luminance, too  

§  g-QD solid-state performance surpasses solution-phase behavior 

QD LED performance as a function of shell thickness 



•  Turn-on voltage: shell- 
     thickness independent 

•  Reduced leakage current 

§  g-QD solid-state performance surpasses solution-phase behavior 

QD LED performance as a function of shell thickness 



§  g-QD luminescence is ligand-independent 
§  Auger recombination is suppressed; charged excitons emit!  
§  QD-QD energy transfer ‘shut-down’ at thick shells 

Why do g-QDs outperform QDs in LEDs? 

•  Photoluminescence decay curves 

Pal  et al. Nano Lett. 2012, 12, 331-336 



§  ‘Test-bed’ device architecture: so simple even a chemist can make it! 
•  Commercial ‘blue-emitting’ electroluminescent (EL) phosphor: Cu/Cl-doped ZnS 
•  EL phosphor sandwiched between indium tin oxide (ITO) bottom electrode and 

Cu tape top electrode 
•  QD-polymer composite coated on backside of glass substrate  

g-QDs as ‘replacement’ color-converting phosphors 

Kundu  et al. Nano Lett. 2012, 12, 3031-3037 



§  Large effective Stokes shift 
§  Absorption well matched to EL 

Key g-QD enabling characteristic:  
Unique absorption profile 

Kundu  et al. Nano Lett. 2012, 12, 3031-3037 

§  High down-conversion efficiency: 
22% (green trace) 

§  High spectral purity: 84% 
§  ‘Green-yellow’ retained 
§  30 Cd/m2 



§  g-NQDs can be packed at high densities without self-reabsorption losses 

Key g-QD enabling characteristic:  
Unique absorption profile 

Kundu  et al. Nano Lett. 2012, 12, 3031-3037 

g-QDs  
QDs 



§  In thick-shell QDs, precise engineering of nanoscale architecture 
affords independent control over absorption & emission properties  

§  Importantly, these functions remain intimately and efficiently coupled, 
allowing energy relaxation in g-NQDs to outcompete energy transfer 
in simple mixtures of absorbers/emitters   

Key g-QD enabling characteristic:  
Efficient shellècore energy relaxation 

Kundu  et al. Nano Lett. 2012, 12, 3031-3037 

g-QD 
CdS only 
9:1 CdS:CdSe 
(matched OD) 
9:4 CdS:CdSe 
(excess CdSe) 
 



§  Temporal device stability as a function of continuous biasing time 

Key g-QD enabling characteristic:  
Stability 
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Transitioning proof-of-principle for g-QD down-
conversion phosphors to high-power DC LEDs 

§  Characteristics of LED source: high luminous flux & temperature 
•  Many conventional rare-earth phosphors characterized by long radiative 

lifetimes exhibit PL saturation 
•  Many phosphors, including QD alternatives, are reversibly & irreversibly 

partially quenched by elevated temperature 
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partially quenched by elevated temperature 
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Transitioning proof-of-principle for g-QD down-
conversion phosphors to high-power DC LEDs 

§  Characteristics of LED source: high luminous flux & temperature 
•  Many conventional rare-earth phosphors characterized by long radiative 

lifetimes exhibit PL saturation 
•  Many phosphors, including QD alternatives, are reversibly & irreversibly 

partially quenched by elevated temperature 
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•  Flatter decline 
•  Full recovery  
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Transitioning proof-of-principle for g-QD down-
conversion phosphors to high-power DC LEDs 

§  Characteristics of LED source: high luminous flux & temperature 
•  Many conventional rare-earth phosphors characterized by long radiative 

lifetimes exhibit PL saturation 
•  Many phosphors, including QD alternatives, are reversibly &/or  

irreversibly partially quenched by elevated temperature 

g-QD 
•  Lifetime changes   
  reversible 
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Effect of temperature cycling: 23 °C to 90 °C (hold) to 23 °C 
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Limited examples of dual suppression of blinking and 
Auger recombination 

 
 

n  Alloyed CdZnSe/ZnSe system: Wang et al. Nature 2009  
•  Suppressed Auger recombination via smoothing of the confinement potential 

n  Quasi type-II, thick-shell CdSe/CdS: Chen et al. J. Am. Chem. Soc. 2008 and 
Mahler et al. Nature. Mater. 2008 
•  Suppressed ionization/charging via thick, protective shell  
•  Suppressed Auger recombination via combined size, carrier-separation and (possibly) 

interface effects 

Moving beyond CdSe: 

InP-based core/shell heterostructuring also affords suppressed blinking 
and Auger recombination  



InP/CdS g-QDs: Addressing the effects of both 
electronic structure and shell thickness  

Dennis et al. Nano Lett. 2012, 12, 5545-5551 

n  Distinguishing features of the InP/CdS core/shell system 
•  Type II electronic structure: Fully charge-separated state 
•  Synthetic challenge: InP amenable to high-temperature SILAR growth only after low-T 

application of first, protective monolayer 
̶  Susceptibility to surface oxidation 
̶  Tendency to etch at high-T in presence of acidic/basic ligands 

•  Hexagonally faceted, wurtzite shells: Structurally equivalent to CdSe/CdS system 



Dennis et al. Nano Lett. 2012, 12, 5545-5551 

Spectral and dynamic signatures of the type-II 
heterojunction 

“CT state” 

1.25 eV vs. 
InP bulk: 1.34 eV 

All shells: “redder” than same-size InP  

Linear progression of average PL lifetimes 

PLE 

§  PL red shifts 
§  Abs broadens/red-shifts then dominated by shell for large “effective Stokes shift” 
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Unprecedented single-dot infrared-QD blinking studies 

n  Room-T blinking studies of type-II QDs previously unknown 
•  Though well-known for quasi type-II CdSe/CdS and CdTe/CdTexSey/CdSe QDs 
•  Type II’s photobleached 

n  Single example of single-dot emission from type I infrared emitting QD 
•  Correa et al. Nano Lett. 2012 (Bawendi’s lab) 
•  Specialized superconducting nanowire single-photon detector required to 

surmount: 
̶  Materials instability issues 
̶  ~Long radiative lifetimes 

n  Our work: Standard sample-preparation and single-photon detection 
methods adequate   
 



Dennis et al. Nano Lett. 2012, 12, 5545-5551 

§   Type-II bandgap alignment transitions the room-T, non-blinking excitonic 
 emission into the near-IR for the first time 

§   Blinking less clearly shell-thickness dependent; Photobleaching more so 

Effect of shell thickness and electronic structure on 
single-dot blinking behavior and photostability 

InP/1CdS (~15-20% dots: on-time % >80%) 
InP/4CdS (~15-20% dots: on-time % >80%) 
InP/10CdS (>60% dots: on-time % >80%; some ‘non-blinking’) 

Black ‘off’    /   Color ‘on’ 



InP/CdS biexciton lifetimes trend with shell thickness 
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Dennis et al. Nano Lett. 2012, 12, 5545-5551 

InP/4CdS InP/10CdS 

n  Pump-intensity-dependent transient photoluminescence: traces converge at 
long times for thick-shell variants indicating long-lived multiexcitons 



Examples of both non-blinking and blinking behavior 
for thin and thick-shell InP/CdS 
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Manuscript in preparation with Han Htoon’s team 

n  on/(on+off) ratios defined: “high” and “low” evident at each shell thickness 
~non-blinking blinking 

4CdS 

7CdS 

10CdS 



Detailed blinking statistics reveals nature of shell-
thickness dependence in InP/CdS system 

n  Non-blinking percentage ~constant, however… 
n  High on/(on+off) ratios become more prevalent with increasing #CdS 
n  Low on/(on+off) ratios decline in prevalence 

Manuscript in preparation with Han Htoon’s team 



n  Case 1: Perfect Poisson distribution 

Manuscript in preparation with Han Htoon’s team 

n  Case 2: Large deviation from Poisson distribution 

PL intensity trajectory:       
on/(on+off)>90% 

PL intensity trajectory:       
on/(on+off)>90% 

Mandel Q Parameter describes the degree of deviation 
from a Poissonian distribution of emission intensities 

Poissonian fits for 
intensity distribution 
of the trajectories 

Q = 0.85 

Q = 22.5 



Manuscript in preparation with Han Htoon’s team 

Thicker shells appear to be converging to smaller Q’s, 
i.e., tighter intensity distributions 

Q = 3 

Q = 5 

Q = 10 
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New way to think about blinking: Single-dot 
spectroelectrochemistry reveals two mechanisms 

Galland et al. Nature 2011, 479, 203-207 

Ø  Conventional blinking model: “Type A” 
-  QDs randomly cycle through uncharged and charged states 
-  QD blinks ‘off’ due to Auger quenching of charged exciton 
-  PL intensities and lifetimes fluctuate together 

Ø  New blinking model: “Type B” 
-  Trapping of hot electrons to surface states “darkens” PL  

Time (sec) Excitonic emission “short-circuited” 



Manuscript in preparation with Han Htoon’s team 
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A-type blinking  B-type blinking  Non-blinking (Q<1) 

Fluorescence Lifetime Intensity Distributions (FLID): 
Correlated lifetime-intensity plots reveal more about 
“blinking” than intensity traces alone 

“Ideal” case: single emitting state 



Manuscript in preparation with Han Htoon’s team 

Clear impact of shell thickness on blinking “type” in 
InP/CdS system 

CdS shell monolayers 

A+B, unclear, non-blinking QDs 

n  Decline in A-type blinking: consistent with our previous observation that Auger 
recombination efficiency decreases with increasing shell thickness 

n  Continued presence of B type blinking: implies even thicker shell is required 

Comment: earlier onset 
of ‘suppressed blinking’ 
vs. CdSe/CdS system: 
Apparent impact of 
transition to a fully type-
II electronic structure 
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Other “light emission” applications of non-blinking g-QDs: 
3D particle tracking 

n  With Jim Werner, R&D 100 Award Winner  

Jim’s work more broadly: 
§ Three Dimensional Tracking of Individual Quantum Dots, 
Lessard, G.A., P.M. Goodwin, and J.H. Werner, Applied Physics 
Letters. 91(22): p. 2224106 /1-3, (2007). 
§ Time-Resolved Three-Dimensional Molecular Tracking in Live 
Cells, Wells, N.P., G.A. Lessard, P.M. Goodwin, M.E. Phipps, 
P.J. Cutler, D.S. Lidke, B.S. Wilson, and J.H. Werner, Nano 
Letters. 10(11): p. 4732-4737, (2010). 
§ Time-Resolved, Confocal Single Molecule Tracking of 
Individual Organic Dyes and Fluorescent Proteins in Three 
Dimensions, Han, J.J., C. Kiss, A. Bradbury, and J.H. Werner, 
ACS Nano. (2012). 

From: Vela et al. J. Biophotonics 2010, 3, 706-717 



Average tracking duration 
‒  g-QD-IgE = 111 ± 26 s  
‒  Commercial QDot655-IgE = 4.8 ± 1.3 s  

 

§ Z (µm
) 

§  Tracked single gQD-IgE for 6.5 min! 

§  Heterogeneity in Diffusion Rates for Single IgE-FcɛRI now observable 

0 20 40 60
0

2

4

 

 

§ Region I 

§ D ~ 0.01 µm2/s 

0 5 10 15 20
0

4

8

12
§ Region II 

§ D ~ 0.1 µm2/s 

0 20 40 60
0.0

0.4

0.8

1.2
§ Region III 

§ D ~ 0.003 µm2/s 

0 4 8 12
0

5

10

15 § Region IV 

§ D ~ 0.2 µm2/s 

Δt (s) 

§ M
SD

 (µ
m

2 )
 

3D single-particle tracking in live mast cells:  
20-fold increase in tracking duration! 



Conclusions 
n  We addressed the long-standing QD ‘blinking challenge’ 
n  g-QDs nano-structural motif characterized by enabling traits 

•  Suppressed Auger recombination 
•  Suppressed charging and/or surface trapping 
•  Stability independent of surface chemistry/chemical environment 
•  Large effective Stokes shift (minimal self, green/yellow re-absorption) 
•  Enhanced solid-state performance 
•  Etc. 

 
n  Demonstrated application of g-QDs in proof-of-concept direct-charge-

injection and down-conversion devices 
 

n  Extended g-QD ‘approach’ to new InP/CdS system 
•  Suppressed blinking, photobleaching and Auger recombination  
•  First near-infrared non-blinking QD 
 

n  New, ‘sustainable’ compositions are required = ‘non-rare/non-toxic’ 
•  Simplify synthesis and enhance efficiency for rapid exploration: automation 
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