

1

2

3 **Advances in Geological CO₂ Sequestration and Co-Sequestration with O₂**

4

5 Circe A. Verba*, U.S. DOE National Energy Technology Laboratory & Oregon State
6 University, USA

7 William K. O'Connor, U.S. DOE National Energy Technology Laboratory
8 Jason H. Ideker, Assistant Professor & Kearny Faculty Scholar, Oregon State University,
9 USA

10 **9Circe Verba** is a Ph.D. candidate at Oregon State University & University of Oregon in
11 Geology/Civil Engineering. Her research with the U.S. Department of Energy, National
12 Energy Technology Laboratory addresses the potential of carbon sequestration and
13 cement stability in a CO₂-rich environment.

14 **13William O'Connor** is a geologist at the U.S. Department of Energy, National Energy
15 Technology Laboratory who studies carbon sequestration by geologic and mineralization
16 methods among other activities. He acquired his MS in Geology & Geophysics from the
17 University of Missouri-Rolla.

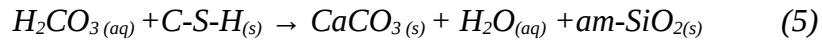
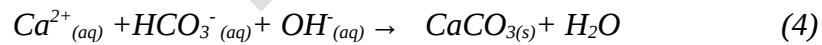
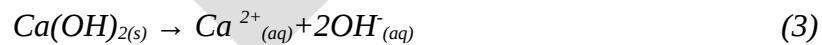
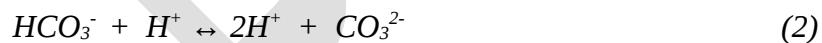
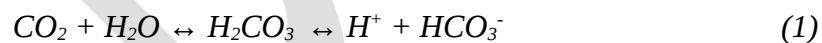
18 **17 Jason H. Ideker** is an assistant professor at Oregon State University who studies concrete
durability and early-age properties of cement-based material.

19

20 **ABSTRACT**

21 The injection of CO₂ for Enhanced Oil Recovery (EOR) and sequestration in brine-bearing
22 formations for long term storage has been in practice or under investigation in many locations
23 globally. This study focused on the assessment of cement wellbore seal integrity in CO₂- and
24 CO₂-O₂-saturated brine and supercritical CO₂ environments. Brine chemistries (NaCl,
25 MgCl₂, CaCl₂) at various saline concentrations were investigated at a pressure of 28.9 MPa
26 (4200 psi) at both 50°C and 85°C. These parameters were selected to simulate downhole
27 conditions at several potential CO₂ injection sites in the United States. Class H portland
28 cement is not thermodynamically stable under these conditions and the formation of carbonic
29 acid degrades the cement. Dissociation occurs and leaches cations, forming a CaCO₃ buffered
30 zone, amorphous silica, and other secondary minerals. Increased temperature affected the
31 structure of C-S-H and the hydration of the cement leading to higher degradation rates.

32






33 **Keywords:** Carbon sequestration, oil-well cement, oxy-fuel combustion, secondary ettringite
34 formation

INTRODUCTION

2The Intergovernmental Panel on Climate Change recommended that mitigation of
3anthropogenic CO₂ derived from the use of fossil fuels for energy production is necessary.
4(1). To this end, brine-bearing formations with large potential storage capacity for geologic
5sequestration of CO₂ have been identified (2,3,4). Candidate formations include enhanced oil
6recovery reservoirs and pilot tests sites in saline formations under the National Energy
7Technology Laboratory (NETL) Phase III Regional Partnership programs (5,6). Proposed
8wellbores use oil-well type portland cements to plug the well and bond the host rock to the
9steel casing, and are subjected to specific bore depths, high temperature, and high pressure
10environments (7, 8). In addition, injection of CO₂ into a brine-bearing formation results in the
11formation of carbonic acid. Portland cement is not thermodynamically stable under these
12conditions and is subject to dissolution and ionic migration in a CO₂-rich environment. Thus
13the integrity of the wellbore seal may be compromised, providing a potential leakage pathway
14up the wellbore into the atmosphere and/or surrounding substrates (9).

15

16CO₂ exists both as a supercritical fluid (SCCO₂) and dissolved in CO₂-saturated brines at
17sequestration injection depth (10). The production of carbonic acid (H₂CO₃) from dissolution
18of CO₂ into water, heavily alters cement as the portlandite (CH) is dissolved and replaced by
19CaCO₃ (s), which fills pore spaces (11). Compressive strength increases initially and CaCO₃
20provides a pH buffer (12). Ongoing diffusion of carbonic acid leaches Ca²⁺ from the cement,
21creating a zoned alteration rind of amorphous silica. CaCO₃ solubility is significantly lower
22than that of CH so CaCO₃ becomes unstable, causing bicarbonate to reach aqueous saturation
23and local dissolution of calcium species (11, 13). The diffusion of calcium species out of the
24cement is driven by the fluctuating pH and propagates further degradation. The following
25equations show the degradation process:

33The precipitation of salts is encouraged as suggested by [Pruess and Müller \(14\)](#), as injection
 34of CO_2 into the brine increases aqueous phase salinity. Downhole conditions are assumed to

1

1be static due to low formation permeability and porosity, so the CO₂ system and cement
2reaction can be considered homogeneous (15).

3

4Previous findings suggest that the rates of alteration are low (1 mm to 1 cm [0.04 to 0.4 in]
5over 30 years) in simple brines (5, 9, 12). It is therefore suggested that CO₂ sequestration is a
6probable means of carbon storage at those conditions. However, formation brines range in
7salt species and in salinity, which impact the degree of cement alteration. In the subject study,
8where salinity was ≤ 1 M, higher CO₂ solubility led to a depth of cement degradation
9exceeding 1 mm (0.04 in). Where salinity was >1.2 M, depth of degradation was ~ 0.5 mm
10(0.02 in) after CO₂ exposure of the same duration (16).

11

12Carbon dioxide co-sequestration studies have been limited to SO₂ models (17, 18) and
13experimental work with CO₂-H₂S, where Fe²⁺ in the C-S-H and iron substitution in ferrite
14clinker precipitated ettringite and pyrite (19, 20). The interest in co-sequestration is driven by
15the high cost of CO₂ capture from conventional combustion flue gas, thus novel types of
16fossil fuel energy conversion systems, such as oxy-fueled combustion, chemical looping
17combustion, and coal gasification are under investigation. The flue gas from these
18technologies consists mostly of CO₂ and is therefore ready for sequestration without
19post-combustion separation. However, excess O₂ and oxidized acid gas species such as SO₂
20remain at low concentrations (1-4%) in the untreated combustion flue gas, requiring
21separation or a co-sequestration methodology. The latter could provide an economic
22advantage by eliminating the need to remove the O₂ and SO₂ prior to injection. However,
23these gas species would likely produce a more aggressive environment and potential
24degradation to cement well seal integrity that is not currently well understood.

25

26

RESEARCH SIGNIFICANCE

27This research addresses a critical issue in carbon sequestration evaluation and the basic
28understanding of wellbore cement stability in a CO₂-rich environment. The experimental
29conditions selected for this study apply to in-situ conditions at potential CO₂ injection sites in
30the United States. The multiple chloride species and variable concentrations comprising the
31synthetic brines in this study mark a departure from prior studies. The addition of flue gas
32co-contaminate gases could provide an economic advantage due to reduced separation costs
33and potential storage enhancement (physical or mineral trapping). However, the impact of
34co-sequestration on cement integrity is not clearly understood.

1

EXPERIMENTAL PROCEDURE

2 Class H portland (Lafarge, North America) well cement was prepared based on the American
3 Petroleum Institute (API) practices 10B with a w/c of 0.38 (21). The cement powder (weight
4 percent) comprised of approximately 64.5% tricalcium silicate (C_3S); 11.77% dicalcium
5 silicate (C_2S); 13.24% calcium aluminosulfate (C_4AF); no tricalcium aluminate (C_3A); 2.94%
6 MgO ; 2.8% SO_4^{2-} ; 0.16% total alkali content (Na_2O); 0.62% free lime, and a loss on ignition
7 (LOI) of 0.73. The cement paste was cast into 25 mm diameter x 152 mm (1x6 in) long
8 PVC-pipe forms, cured at temperatures of 50°C and 85°C under a hydraulic pressure of 28.9
9 MPa (4200 psi), in 1.2 L stainless steel (316 CrNiMo) static autoclave vessels filled with 600
10 mL of the synthetic brine. After 24 hours, the forms were removed and the cement paste
11 cylinders held at temperature and pressure for the remainder of the 28 day curing period prior
12 to injection.

13

14 The cement paste cylinders were in contact with several CO_2 -saturated brines to simulate
15 formation brines and depths at three NETL Phase III Regional Partnership injection sites.
16 Discussion of results using the various brines will be presented in a subsequent publication.
17 This paper focuses on the synthetic “control” brine adjusted to a 1 M concentration (0.82 M
18 $NaCl$, 0.02 M $MgCl_2$, & 0.16 M $CaCl_2$) modeled after several NETL sandstone formation
19 brine chemistries (22).

20

21 The CO_2 mixed gas exposure tests were performed using two gas mixtures, 1) pure CO_2 and
22) a mixture of 96% CO_2 + 4% O_2 . The tests were conducted at geothermal gradients
23 designed to simulate the sequestration environment, including a supercritical CO_2 headspace
24 and CO_2 -saturated brine. The two temperatures were investigated to determine the effect of
25 temperature on the cement paste and specifically on C-S-H structure. Following the curing
26 interval, the autoclaves were purged with the CO_2 -gas mixture and then maintained at
27 temperature and pressure for exposure intervals up to 84 days (after the initial 28-day cure).
28 Corrosion of the stainless steel autoclaves was observed during conduct of CO_2 - O_2 exposure
29 tests, and is discussed later.

30

ANALYTICAL PROCEDURE

32 Petrographic analyses were performed with an optical microscope, and an FEI Inspect F
33 Scanning Electron Microscope (SEM) was used to obtain backscattered electron (BSE)
34 images and energy dispersive spectroscopy (EDS) data on polished epoxy-impregnated

1

1mounts. SEM elemental intensities were optimized using a Cu-K α standard for quantification
2and measurement of alteration depth, determined by EDS and spot analysis. Alteration in the
3cement paste was mapped by measuring the distribution of calcium, silicon, and chlorine in
414 samples over a total of 84 sites. Electron microprobe analysis (EMPA) using
5wavelength-dispersive spectrometry (WDS) with standard errors, and a correction matrix for
6cement [oxide weight percent concentrations] was utilized for quantification. X-rays
7diffracted by specific analyzing crystals (TAP: Na, Al, Mg; LPET: Si, Ca, S, Cl; and LIF: Fe,
8Ti) determine composition by comparison with intensities of known standards [Ca₁₀(PO₄)₆Cl₂,
9MgO, SiO₂, TiO₂, CaSO₄ (anhydrite), Fe₃O₄ (magnetite), and Na₃KAl₄Si₄O₁₆ (nepheline)] to
10the unknown materials in the cement paste. Analysis of cements is very difficult due to the
11composition of hydrated phases and its intrinsic heterogeneity. Atomic number, adsorption,
12and fluorescence (ZAF), time dependent intensity (TDI), background continuum, and oxide
13corrections provide a summation of concentrations representative to the stoichiometric
14analysis of calcium silicate grains, hydration products, and within alteration zones.

15

16The cementitious phases were identified using X-ray diffraction (XRD) collected by a Rigaku
17Ultima III with a 40KV/40mA Cu k- α source and a step speed of 1°/min over a scan angle,
185°-90° 2 θ . The qualitative analysis of XRD data was performed using the International Center
19for Diffraction Data (ICDD) pattern databases and Jade Plus software v9.1.4 (23).

20

21Solid chemistry on hydrated paste (ground into powder and vacuum sealed) was determined
22by several methodologies, including a LECO gas analyzer for sulfur and carbon, lithium
23meta-borate fusion with X-ray fluorescence (XRF) for metal oxides, carbonate leach and
24gravimetric analysis for SO₄, CO₂ by coulometer, and acid digestion and titration for FeO.
25Solution alkalinity was determined by titration, using sodium carbonate and hydrochloric
26acid. Nitric acid digestion with inductively coupled argon plasma spectroscopy (ICP-AES)
27methods were used for metals analysis, while ion chromatography was used for Br, Cl, and
28SO₄.

29

30 EXPERIMENTAL RESULTS AND DISCUSSION

31Results from pure CO₂ exposure tests (16) were compared to the CO₂-O₂ experimental
32results, each using the same raw cement batch composition, brine chemistries, and
33experimental conditions. This methodology isolated the change in conditions to the addition
34of 4% O₂ to the gas mixture, thus any change in mineralogy, alteration depth as indicated by

1

1CaCO₃ and Ca²⁺ depletion, and stainless steel corrosion can be attributed primarily to the O₂
2addition.

3

4Pure CO₂ and CO₂-O₂ Gas Injection: Microanalysis of Cement Specimens

5Verba et al. (16) found that exposure of Class H cement to pure CO₂ at 50°C and 28.9 MPa
6(4200 psi), in higher salinity brines of 1-2 M NaCl, MgCl₂, and CaCl₂, resulted in alteration
7zones in the cement that increase in depth and become more defined with time. The
8carbonation depths versus time are provided in Table 1, while the alteration zones are
9depicted in Fig. 1a. Total alteration depth extended into the core up to 1254±441 µm (0.049
10in) after an 84-day exposure period. Alteration included large hydration halos surrounding
11C₂S and C₃S grains as continuous hydration allowed for conversion into interstitial CH and
12C-S-H. Remnant calcium silicates and hydration products were in the Ca²⁺ depletion zone
13whereas all calcium silicates in the carbonated zone turned into amorphous silica with a
14banded appearance from zoning loss of Ca²⁺. SEM-EDS and EMPA confirmed a Cl-enriched
15(~3 wt%) and S-enriched zone (1-3 wt%) in the Ca²⁺ depletion zone, presumably incorporated
16into the C-S-H structure. EMPA identified both Fe³⁺ (at <5%) and Fe²⁺ (<2%) in the C-S-H
17structure as well.

18

19The higher salinity and multiple chloride species in the brine led to precipitation of large
20(50-1200 µm; 0.047 in) CH crystals on the exterior of the cement cylinder. Small cubic halite
21grains (1-15 µm) also crystallized in the cement while the cement maintained a lower pH (<6)
22and was dehydrated in the presence of early SCCO₂. The precipitation of the additional
23minerals, specifically exterior CH, reduced the maximum alteration depth and permeability
24after an exposure of 84 days.

25

26CO₂-O₂ (96% CO₂ + 4% O₂) exposures led to more rapid cement degradation and ionic
27migration behavior compared to the pure CO₂ studies (Fig. 1b,c). The cement cylinders
28displayed a banded Si-porous zone of remnant silicates, a CaCO₃ band with thickness
29dependent on temperature, and a Ca²⁺ depleted zone. EMPA analyses found that the C-S-H
30structure contained roughly 1.5 wt% Fe²⁺ and had 20-30% water bound unaltered C-S-H.
31Significant differences from the pure CO₂ studies included: 1) the transformation of calcium
32silicates (C₂S) with bordering ferrite grains into polymorphs with significant twinning and
335-10% less Ca²⁺; 2) precipitation of dendritic hydrotalcite [Mg₆Al₂(CO₃)(OH)₁₆·4H₂O] on
34C₄AF grains; and 3) the precipitation of 10-50 µm long ettringite [Ca₆Al₂(SO₄)₃(OH)₁₂·

2

3

1

126H₂O] needles within pores specifically in Ca²⁺ depleted zones (Fig. 2). The authors suggest
2that change in pH between the solution and the cement within the Ca depletion zone allowed
3for ettringite formation, coupled with leaching of Ca²⁺ and Al³⁺, as well as S previously bound
4in C-S-H.

5

6Ettringite formation occurred after the primary curing stage and during the CO₂-O₂ gas
7exposure interval, after carbonation had occurred as determined by SEM and XRD analysis.
8This secondary [delayed] ettringite formation (DEF) can lead to loss of cement paste
9integrity, degradation, expansion, and fracturing (13). Expansion of the cement paste or the
10development of microfractures could serve as potential leakage pathways for the injected
11gases or liquids, either out of the wellbore or to the wellbore steel casing. Microfractures
12ranging from 0.5-3 μm wide extend from many of the pores containing ettringite, and
13propagated in the least resistant pathway around mineral grains. These are not interpreted as
14an artifact of sample prep, due to the small fracture sizes, where fractures induced during
15sample prep often cut across mineral grains and stem into larger fractures. Etched and pitted
16features were also observed on the silicates and C₄AF, evidence of acid attack. EMPA data
17suggests <2% of the carbonate band contained FeCO₃, which could not be confirmed via
18other instrument analyses in such trace amounts.

19

20Total alteration depth versus time of the CO₂-O₂ exposure samples is listed in Table 1. At both
21temperatures, the alteration depth exceeded initial depths (28-days) in comparison to
22pure-CO₂ exposure, but displayed diffuse and nonuniform alteration as shown in Fig. 3. The
2385°C sample showed the highest rate of degradation with a large, thicker initial CaCO₃ band
24compared to pure CO₂ exposure. At 28 days of exposure, the alteration depth was minimal,
25up to 253±59 μm (0.01 in). After 53 days, the alteration zone extended to a depth of 916±94
26μm (0.036 in), and the Ca²⁺ depleted zone ranged from ~0.5- 1 mm (0.02-0.04 in), with large
27pores up to 160 μm (0.0063 in) in diameter. After 73 days, pieces of the cement shed off from
28the cylinder exterior, and alteration exceeded 1-2 mm (0.04-0.08 in). Thus, degradation
29increased in the higher temperature static conditions from 53-73 days of exposure. The 50°C
30sample, on the other hand, displayed an alteration depth at 514±109 μm (0.02 in) after 28
31days, exceeded 680±132 μm (0.027 in) after 56 days, but remained fairly constant over the
32duration of the test exposure.

33

1Solid and Solution Chemistry

2Solid chemistry of the unhydrated portland Class H cement, hydrated cement paste and
3post-gas exposure cement samples are included in Table 2. Brine solution chemistry for the
4post-curing interval and post gas-exposure intervals is included in Table 3.

6The product solids from the pure-CO₂ tests showed a slight decrease in SiO₂ concentration
7between the post-cure and post-gas exposure samples, and leaching of Si from the cement
8was clearly evident from the Si concentration in the product solution over time, which
9increased from <10 to >50 mg/L. These results are reflected in the 57-205 µm deep
10amorphous silica zone identified in the cement cylinders by microanalysis, which is
11indicative of dissolution of the CH and C-S-H in that zone, mobilization of the Ca²⁺ cations,
12followed by re-precipitation of most of the free silica. The CaO content in the pure CO₂
13exposure cement decreased nearly 5 wt% after 84 days, apparently due to leaching of Ca²⁺
14cations from the cement, as described previously. However, the Ca²⁺ trend in the product
15solution decreased dramatically over time, from >8000 to <2000 mg/L, once CO₂ was
16injected. This apparent contradiction is best explained by calcium carbonate precipitation
17during the CO₂ exposure interval which exceeded the Ca²⁺ dissolution rates. Locally, CH and
18C-S-H had become depleted and replaced by CaCO₃, whereby CO₃²⁻ decreased as bicarbonate
19became the dominant aqueous species in the system.

21Solids analysis for the cured hydrated cement and post-gas exposure cement samples for the
22CO₂-O₂ gas mixture tests indicated little to no change in SiO₂ and CaO concentration at both
23temperatures (85°C and 50 °C). This was reflected by the thinner silica-porous band observed
24in the cement cylinders during microanalysis. While Si concentration in solution increased in
25both the 50°C and 85°C tests, these concentrations compare favorably with those observed in
26the pure CO₂ tests, and are thus likely indicative of equilibrium concentrations at the
27experimental parameters utilized. Aqueous Ca²⁺ concentration initially increased after 28 days
28of exposure, from 3400 mg/L to 4400 mg/L in the 50°C sample, as cations diffused into
29solution, but then decreased in concentration after longer exposure time, likely due to CaCO₃
30precipitation. In contrast, the higher temperature solution displayed a 50% decrease in Ca²⁺
31concentration after both 28 and 53 days of exposure. These trends suggest that calcium
32carbonate mineral precipitation was favored kinetically at the higher temperature.

1The free water content in the CO₂-O₂ exposure samples was 7-8 wt % greater than that in the
2pure-CO₂ samples. However, chemically-bound water content, calculated as the difference
3between the LOI and other volatiles (CO₂, free moisture, and sulfate) in those same samples
4was virtually zero, while that in the pure CO₂ samples was 4-7 wt%. This could be interpreted
5as an indication of the advanced degradation of the cement paste, resulting from the CO₂-O₂
6exposure tests, in which all of the hydration water bound in the CH (replaced by CaCO₃),
7ettringite, and C-S-H was freed due to advanced alteration of those phases. The loss of Fe
8from ferrite grains was not evident based on the solids analysis, as the Fe₂O₃ concentration in
9the cement pastes was either relatively constant or increased. The increase in Fe, Ni, and Cr
10concentrations in solution, specifically in the higher temperature sample, suggests that these
11cations were derived from corrosion of the stainless steel autoclave, which complicates the
12interpretation of the cement alteration.

13

14Semi-Quantitative XRD

15Crystalline phase identification of dominant mineral species and precipitated phases post-CO₂
16exposure were completed by XRD on the exterior ~2 mm (0.08 in) rim of the cylinders (Table
174). Phases identified in typical hydrated portland cement analysis included portlandite (CH:
18Ca(OH)₂), brownmillerite (C₄AF: 2*Ca₂AlFeO₅), alite (C₃S: Ca₃SiO₅), belite (C₂S:
19β-Ca₂SiO₄), a hydrated calcium silicate polymorph pattern (Ca₃SiO₅-type), and an amorphous
20background hump, indicative of C-S-H. The influence of CO₂ mixed gas exposures on the
21cements shows the formation of ettringite, hydrotalcite, and carbonates, including calcite,
22vaterite, aragonite, and trace dolomite.

23

24Carbonation differences were identified between the different gas-exposure samples. The
25amount of total carbonate is higher in the CO₂-O₂ cement samples than the pure-CO₂ samples.
26As expected when CaCO₃ is a dominate precipitant, CH is low, and vice versa. At both
27temperatures, the concentration of CH in the CO₂-O₂ tests is significantly lower (50% less)
28than that in the CO₂ tests. Carbonate formed more rapidly in CO₂-O₂ than pure CO₂, with total
29CaCO₃ nearly double (54.6±3.3 wt%) at elevated temperature, an indication that temperature
30has a significant influence on carbonation rates as well as C-S-H degradation. The lower
31temperature sample reflected an increased amorphous content with less carbonation than the
32higher temperature sample. The addition of oxygen may increase the solubility and efficiency
33of mineral dissolution in a ligand-type complex behavior. Although calcite was the dominant

1

1carbonate, both vaterite and aragonite appeared to have higher saturation with increasing
2temperature from 50 to 85°C.

3

4Precipitation of a hydrotalcite-type (HT) phases is known to occur in hydrated cement, and
5while only trace amounts were found in pure-CO₂ samples, significant amounts were found
6throughout all the CO₂-O₂ samples after petrographic and SEM examination. The
7precipitation of HT is believed to result from hydration coupled either a) with Mg salt attack
8or b) as an alternative to brucite formation. With a constant supply of Mg-rich brine for
9hydration, the combination of a less permeable CaCO₃ zone and rapid penetration rate of O₂
10allowed nucleation of this carbonate only on C₄AF grains, rather than within the C-S-H
11structure. This released Fe³⁺, which may have contributed to the cylinder's dark
12brownish-red, rusty color, more so than seen in the pure-CO₂ exposed samples. The source of
13Fe was assumed to primarily be the stainless steel autoclave, with only small concentrations
14derived from C-S-H and ferrite clinker. No siderite, goethite or Fe-oxide were identified by
15XRD within the cement itself. However, spalled solids collected from the bottom of the
16vessel did contain goethite and Fe-oxides, which corroborates the presumed source of Fe.

17

18The ettringite increase is of interest because Class H cement has little or no C₃A content;
19therefore, the main source of Al is from the C₄AF. In the pure-CO₂ samples, sulfur was bound
20in the C-S-H structure and was fairly uniform in unaltered cement paste. The gypsum (~5 wt
21%) addition to the cement did not differ in either test as the same cement batch was used.
22Ettringite was absent in pure CO₂ samples, and increased over time in CO₂-O₂ studies at both
23exposure temperatures. The ettringite precipitation appeared to be dependent on the rate of
24CO₂ and O₂ migration into the cement, and occurred after hydrotalcite had formed. As with
25previous studies examining the Fe-replacement in alumino-ferrite grains, the addition of O₂
26must influence the Fe²⁺ present, resulting in ettringite precipitation. This increase, coupled
27with the formation of microfractures, suggests that detrimental DEF could be initiated at
28higher temperature exposure.

29

30pH Estimate and Mineral Saturation

31The measurement of pH at experimental conditions is difficult but of great interest because
32carbonic acid produced in a high-pressure CO₂ system is a primary component in the cement
33reaction sequence. Geochemical modeling of the influence of CO₂ and the CO₂-O₂ mixture
34was conducted using CHIM-XPT methods outlined by Reed and Spycher (24) and Reed (25)

1

1with multiple iterations to demonstrate kinetically-favored phases used to predict mineral
2saturation and pH at downhole conditions. At selected temperature and pressure conditions
3CHIM-XPT computed the distribution of thermodynamic components of aqueous species,
4gases, and minerals, using equilibrium constants derived from the database *SOLTHERM*.
5These equilibrium constants are modifications of mineral thermodynamic data where log K's
6(saturation index based on dissolution reactions) were computed for cement minerals. The
7aqueous activity coefficients are determined by using the modified extended Debye-Hückel
8equation and gas fugacity coefficients (26). A H⁺ mass balance was applied to the brine
9solution chemistry measured at one atmosphere and 25°C to calculate pH under: 1) base pH at
10neutral waters after the curing process, with a result of 11.8; 2) under CO₂ conditions yielding
11a pH of 3.0; and 3) CO₂-O₂ mixture conditions with a predicted pH of 3.95. The pH
12prediction for the solution enhanced the understanding of the pH gradients diffusing into the
13cement and identified specific conditions for mineral dissolution and precipitation.

14

15The mineral saturation indices were calculated using the post-reacted brine chemical analysis.
16In both gas exposure experiments, the post-curing interval pH of 11.8 was reflected
17experimentally by the presence of the CH crystals on the cement cylinder surface, which
18produced a pH buffer during CaCO₃ precipitation. The pure CO₂ solutions were
19undersaturated in minerals, except for quartz, which was not observed. Modeling of the
20CO₂-O₂ mixture predicted precipitation of quartz and goethite, which was confirmed
21experimentally by XRD results of spalled material.

22

23Corrosion of Stainless Steel Autoclaves

24The experimental apparatus for the subject tests consisted of stainless steel (316 CrNiMo)
25autoclave vessels and fittings. Although CO₂ can be corrosive when dissolved in water,
26carbonic acid has no corrosive impact on stainless steel as confirmed in the pure-CO₂
27experiments (27). However, the addition of O₂ led to corrosion due to chloride attack (pitting
28and/or crevice corrosion), particularly at higher temperature, and termination of the tests after
29~ 2 months duration (Fig. 4). The mechanism is too complex for detailed discussion here, but
30the presence of hydrated iron oxides and lack of FeCO₃ in the corrosion products, as
31identified by XRD, confirms the deleterious role of Cl⁻ and oxygen in the degradation of
32stainless steel, which can be explained by the autocatalytic mechanism of pit growth (28).

33

1The CO₂-O₂ gas exposure tests were repeated using Teflon liners placed in the autoclave
2bodies to prevent further corrosion of the vessel. However, corrosion of the thermocouple
3thermowell, which extends down into the brine from the autoclave head, led to termination of
4the repeated tests after 73 days. Lessons learned from the corrosion experienced during these
5O₂-bearing gas exposure tests include 1) the use of protective liners and/or coatings (Teflon)
6on all stainless steel parts exposed to the high chloride brine during O₂-bearing gas exposure
7intervals, 2) curing of the cement cylinder specimens at pressure under argon as a substitute
8for hydraulic curing, to eliminate the exposure of all fittings in the head to the high chloride
9brine, and 3) minimization of local static environments created by improper alignment of
10parts and specimens in the autoclave, which can exacerbate corrosion issues. The corrosion
11experience and analysis garnered from these tests, while not part of the original test plan,
12provided valuable insight into the impact of O₂ addition to the gas injection stream. These
13results suggest that co-sequestration of O₂ may present a significant challenge to the integrity
14of both the well cement and well casing when injecting the gas mixture into high salinity and
15higher temperature saline formations.

16

17

FURTHER RESEARCH

18The effects of co-sequestration using a mixture of ~4% O₂, 1.5% SO₂, and balance CO₂ will
19also be investigated and compared with the subject tests. The results of these experiments are
20intended to contribute to the evaluation of co-sequestration as a valid sequestration
21methodology. Flue gases containing SO_x or sour hydrocarbon gas (H₂S) could potentially
22produce pyrite or other sulfur-bearing species in the cement via mineralization trapping.
23Additional research on the potential for DEF under these conditions is necessary, as ettringite
24is a possible precipitate in sulfur gas exposure studies.

25

26

CONCLUSIONS

27The addition of 4% O₂ to the CO₂ gas injection stream during Class H portland cement
28exposure tests resulted in rapid formation of CaCO₃, enhanced cation diffusion, and
29mineralogical differences in the cement, compared to pure CO₂ exposure tests. In addition,
30secondary ettringite formation (possibly DEF), dicalcium silicate (C₂S) polymorphs, and
31hydrotalcite-like phase were observed in the CO₂-O₂ exposed cements. Modeling of this
32system suggests that the observed mineralogical changes were made possible by pH changes
33from the brine into the cement during exposure and extended hydration periods. The
34formation of delayed ettringite could potentially result in expansion and fracture formation;

1however, it is difficult to quantify any direct damage after the duration of subject tests. These
2observations suggest that the integrity of the wellbore is a concern with O₂ addition to the
3injected gas stream. Higher salinity and temperature affected the structure of C-S-H and
4hydration of the cement, which led to higher degradation rate and advanced degradation. Poor
5cement consolidation, poor bonding to the wellbore casing, or fracture development could
6lead to corrosion of the casing and degradation of the cement which could provide a leakage
7pathway along the well bore for the injected gas (CO₂). The potential for corrosion of the
8steel casing in formations with high chloride brine concentrations was demonstrated, as
9corrosion of the experimental stainless steel autoclaves was observed in the subject tests.

10

11

ACKNOWLEDGMENTS

12This work was supported by the Carbon Sequestration Program of the U.S. DOE National
13Energy Technology Laboratory (NETL). Special thanks to the NETL Seal Integrity team,
14Barbara Kutchko, Hank Rush, Corinne Disenhofer (XRD), James Palandri and Mark Reed
15(University of Oregon) for contributions. Any opinions or conclusions expressed herein are
16those of the authors and do not necessarily reflect the views or does not imply endorsement
17by the United States Department of Energy.

18

19

REFERENCES

201. Working Group III of the Intergovernmental Panel on Climate Change, *IPCC Special*
21 *Report on Carbon Dioxide Capture and Storage*, eds Metz, B., Davidson, O., de Conink,
22 H.C., Meyer, L.A., Cambridge University Press, New York, 2005.
232. Bergman, P.D., and Winter, E.M., *Disposal of Carbon Dioxide in the U.S. Energy*
24 *Conversion Mgmt.*, V. 36, 1995, pp. 523-526.
253. Bruant, R. G.; Guswa, A. J.; Celia, M. A.; and Peters, C. A., "Safe Storage of CO₂ in Deep
26 Saline Aquifers," *Environ. Sci. Technol.*, V. 36, 2002, pp. 240-245.
274. Department Of Energy Carbon Sequestration Technology Roadmap and Program Plan,
28 U.S. Department of Energy: Washington, DC, 2007.
295. Carey, J. W.; Wigand, M.; Chipera, S. J.; Wolde Gabriel, G.; Pawar, R.; Lichtner, P. C.;
30 Wehner, S. C.; Raines, M. A.; and Guthrie, G. D., "Analysis and Performance of Oil Well
31 Cement with 30 years of CO₂ Exposure from the SACROC Unit, West Texas, U.S.A.,"
32 *Intl. J. Greenhouse Gas Control*, V. 1, No. 1, 2007, pp. 75-85.

16. McGrail, B.P., Schaefer, H.T., Ho, A.M., Chien, Y.J., Dooley, J.J., and Davidson, C.L.,
2 "Potential for Carbon Dioxide Sequestration in Flood Basalts, *J. of Geophysical*
3 *Research*, V. 111: B12201, 2006.

47. Mehta and Monteiro. *Concrete: Microstructure, properties, and materials*, 3rd ed.,
5 McGraw Hill, 2006.

68. Nelson, E. B., *Well Cementing*. Schlumberger Educational Services, Sugar Land, Texas,
7 1990.

89. Duguid, A.; Radonjic, M.; and Scherer, G., "Degradation of Well Cements Exposed to
9 Carbonated Brine," *Proceedings of the 4th Annual Conference on Carbon Capture and*
10 *Sequestration*, May 2-5, 2005, Monitor and Exchange Publications and Forum,
11 Washington D.C.

1210. Hitchon, B., *Aquifer Disposal of Carbon Dioxide*, Sherwood Park, Alberta Resource
13 Council: Geoscience Publishing Ltd, 1996.

1411. Thaulow, N.; Lee, R. J.; Wagner, K.; and Sahu, S., "Effect of Calcium Hydroxide on the
15 Form, Extent, and Significance of Carbonation," *Calcium Hydroxide in Concrete*; edited
16 by Skalny, J., Gebauer, J., and Odler, I., Eds.; The American Ceramic Society:
17 Westerville, OH, 2001, pp. 191-202.

1812. Kutchko, B. G.; Strazisar, B. R.; Lowry, G. V., Dzombak, and D. A., Thaulow, N., "Rate
19 of CO₂ Attack on Hydrated Class H Well Cement under Geologic Sequestration
20 Conditions." *Environ. Sci. Technol.*, V. 42, No. 16, 2008, pp. 6237-6242.

2113. Glasser F. P., "The Role of Ca(OH)₂ in Portland Cement Concretes," *Calcium Hydroxide*
22 *in Concrete*, edited by Skalny, J., Gebauer, J., and Odler, I., The American Ceramic
23 Society, Westerville, Ohio, 2001, pp. 11-36.

2414. Pruess, K., and Müller, N., "Formation Dry-Out from CO₂ Injection into Saline Aquifers:
25 1. Effects of Solids Precipitation and their Mitigation," *Water Resources Research*, V. 45,
26 2009, W03402, doi:10.1029/2008WR007101.

2715. Zhang, M. and Bachu, S., "Review of Integrity of Existing Wells in Relation to CO₂
28 Geological Storage: What Do We Know?" *International J. of Greenhouse Gas Control*. V
29 5, No. 4, 2011, pp. 829-840.

3016. Verba, C.A., O'Connor, W., and Rush, G., "CO₂ Alteration Rates for Class H Portland
31 Cement." *9th Annual Conference on Carbon Capture and Sequestration*, Pittsburgh, PA,
32 U.S.S., May 10-13, 2010.

3317. Crandell, L. E.; Ellis, B. R.; and Peters, C. A., "Dissolution Potential of SO₂ Co-injected
34 with CO₂ in Geologic Sequestration," *Environ. Sci. Technol.*, V. 44, 2010, pp. 349-355.

118. Palandri, J.L., and Kharaka, Y.K., "Ferric Iron-Bearing Sediments as a Mineral Trap for
2 CO₂ Sequestration: Iron Reduction using Sulfur-Bearing Waste Gas," *Chemical Geology*,
3 V. 217, 2005, p. 351-364.

419. Jacquemet, N.; Pironon, J.; and Saint-Marc, J., "Mineralogical Changes of a Well Cement
5 in Various H₂S-CO₂(-brine) Fluids at High Pressure and Temperature," *Environmental
6 Science & Technology*, 42, 2008, pp. 282-288.

720. Kutchko, B., Strazisar, B., Hawthorn S., Lopano, C., Miller, D., Hakala, A., and Guthrie,
8 G. "H₂S-CO₂ Reaction with Hydrated Class H Well Cement: Acid-Gas Injection and CO₂
9 Co-sequestration," *Environmental Science and Technology*. V. 5, No. 4, 2011, pp.
10 880-888.

1121. API. Recommended Practice for Testing Well Cements; *API Recommended Practice 10B*;
12 API: Washington, DC, 1997; pp. 133.

1322. NATCARB, NatCarb: 2008, <<http://www.natcarb.org>>.

1423. International Centre for Diffraction Data, Powder Diffraction File Update, 2008, PDF-2.

1524. Reed, M.H., and Spycher, N.F., "Calculation of pH and Mineral Equilibria in
16 Hydrothermal Water with Application to Geothermometry and Studies of Boiling and
17 Dilution," *Geochim. Cosmochim. Acta*, V. 48, 1984, pp. 1479-1490.

1825. Reed, M.H., "Techniques in Hydrothermal Ore Deposits Geology," Chapter 5, *Reviews in
19 Economic Geology*, V. 10, 1998, pp. 109-124.

2026. Tanger IV, J.C., and Helgeson, H.C., "Calculation of the Thermodynamic and Transport
21 Properties of Aqueous Species at High Temperatures and Pressures: Revised Equations of
22 State for the Standard and Partial Molal Quantities of Ions and Electrolytes," *Am. J. Sci.*
23 V. 288, 1988, pp.19– 98.

2427. *Corrosion Resistance of the Austenitic Chromium-Nickel Stainless Steels in Chemical
25 Environments*, International Nickel Company, Inc., 1963.

2628. Ziomek-Moroz, M., O'Connor, W., and Bullard, S., *Investigations of Localized Corrosion
27 of Stainless Steel after Exposure to Supercritical CO₂*, National Association of Corrosion
28 Engineers (NACE) Corrosion 2012 Conference, March 2012.

29

30

31

32

TABLES AND FIGURES

2**Table 1-- Total alteration depth of CO₂ and CO₂-O₂ exposure at 50/85°C. Alteration**
3**depth of CO₂ from Verba, 2011.**

Gas Type	Temperature (°C)	Exposure Duration	Alteration depth (μm)
CO ₂	50	28	151±20
CO ₂	50	56	714±61
CO ₂	50	84	1254±441
CO ₂ -O ₂	85	28	253±59
CO ₂ -O ₂	85	53	737±94
CO ₂ -O ₂	85	73	1585±422
CO ₂ -O ₂	50	28	514±109
CO ₂ -O ₂	50	56	680±132
CO ₂ -O ₂	50	73	700±100

5**Table 2-- Solid chemical compositions of the unhydrated cement, the cured hydrated cement paste, and cement paste post-CO₂ and CO₂-O₂ exposure (wt%). Unit conversion: 7100 μm = 0.003937 in**

Oxide wt%	Cement	Cured	CO ₂	CO ₂ -O ₂	CO ₂ -O ₂
	Powder	Paste	50°C	50°C	85°C
SiO₂	21.07	17.95	17.02	18.39	17.99
Al₂O₃	2.78	2.4	2.26	2.3	2.33
Fe₂O₃	4.37	3.64	3.54	5.64	3.77
CaO	64.02	54.55	49.82	52.25	52.45
MgO	2.94	2.49	2.27	2.39	2.29
Na₂O	0.05	0.09	<0.01	<0.01	0.01
K₂O	0.11	0.1	0.01	0.01	0.02
Cr₂O₃	0.01	0.01	0.02	0.02	<0.01
TiO₂	0.2	0.17	0.18	0.15	0.16
MnO	0.06	0.05	0.05	0.07	0.07
P₂O₅	0.131	0.113	0.105	0.107	0.116
SrO	0.1	0.08	0.06	0.08	0.08
BaO	0.07	0.05	0.04	0.05	0.06
LOI¹	0.73	16.85	22.9	17.05	18.9
Total	96.64	98.55	98.27	98.5	98.25
C	0.07	1.65	2.35	1.14	0.9
CO₂	0.3	6.1	8.6	3.5	3.2
FeO	0.19	0.19	0.13	0.26	0.19
H₂O²	<0.01	5.55	4.93	11.9	13.7
S	0.17	0.06	0.17	0.11	0.17
SO₃³	2.48	2	1.8	1.93	1.68

¹ LOI: Loss on Ignition, measured as the weight loss after 1 hour at 1000 C, in air.

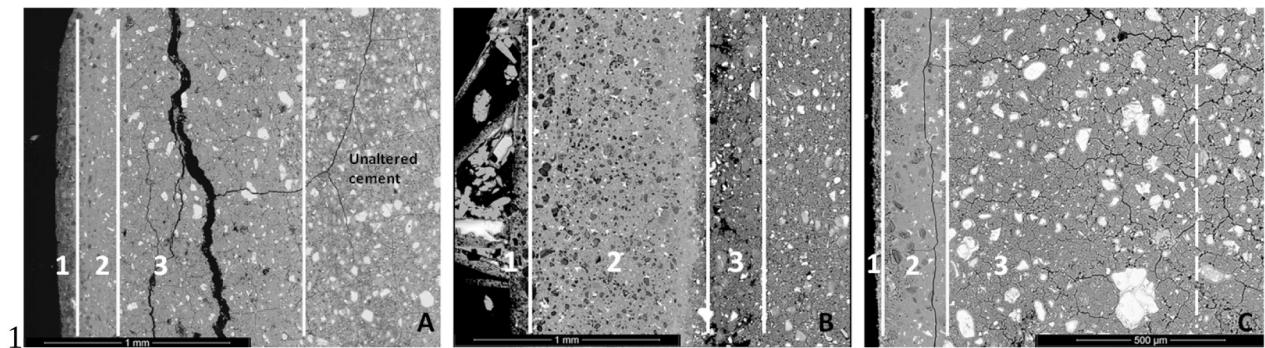
² Free moisture, measured as the weight loss after 1 hour at 105 C, in air.

³Sulfate sulfur- carbonate leach

1 **Table 3-- Brine solution chemical compositions of the post-cured solution and the**
 2 **post-gas exposure solutions taken at several exposure intervals (mg/L).**

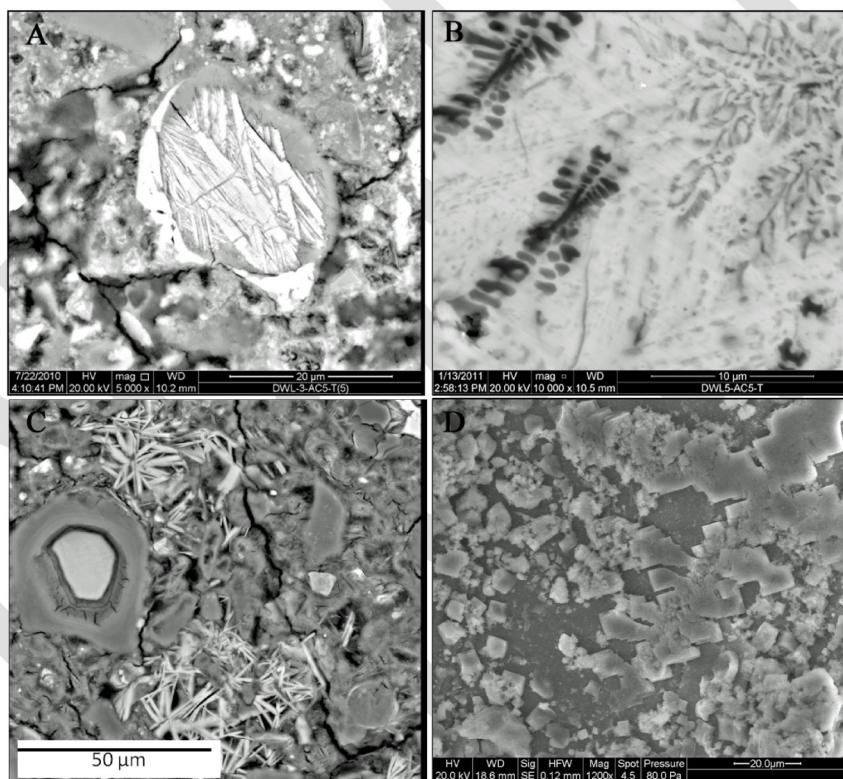
Duration (days)	Surrogate CO ₂ 50°C				Surrogate CO ₂ -O ₂ 50°C				Surrogate CO ₂ -O ₂ 85°C			
	Cured		Exposure		Cured		Exposure		Cured		Exposure	
	28	28	56	84	28	28	56	66	28	28	53	
HCO ₃	*	*	*	*	665	945	335	287	335	451	402	
Cl-	40700	37300	38100	39700	28000	31000	33000	17000	28000	31000	28000	
SO ₄	<1	8	7	8	480	50	100	100	1200	100 ¹	100 ¹	
Ca	8450	1869	1770	1694	3400	4400	3800	3600	4100	2000	2100	
Cr	0.0226	0.033	<DL	<DL	1.4	5.8	3.3	28	0.7	8.5	0.5 ¹	
Fe	0.0196	0.167	0.549	0.263	5	36	20	200	5	66	5 ¹	
K	6.13	59.8	56.6	57	750	79	120	110	600	50 ¹	62	
Mg	626	1395	948	784	79	360	430	660	50	360	350	
Na	24160	25530	18200	19700	14000	16000	17000	21000	13000	17000	14000	
Ni	1 ¹	12.58	15.85	22.94	1	61	180	380	1 ¹	750	260	
Si	7.644	47.6	53.68	52.01	5.1	51	51	46	2.5 ¹	78	9	
Free CO ₂	*	*	*	*	5.10E-05	1300	62	46	1.0E-04	950	17	

¹ concentration at or below detection limit


3 * no measurement

4 **Table 4-- XRD analyses of CO₂ and CO₂-O₂ exposure comparing the semi-quantified concentrations of minerals present due to gas and temperature differences in weight percent.**

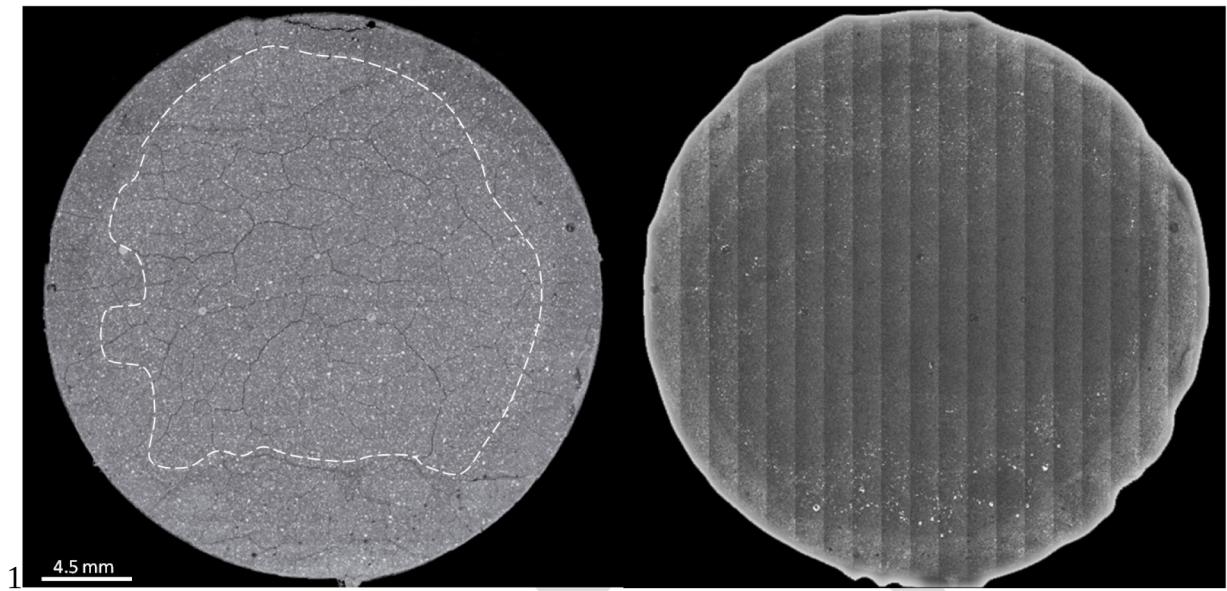
	Pure CO ₂ 50°C	96% CO ₂ -4% O ₂ 85°C	96% CO ₂ -4% O ₂ 50°C		
	84 days	28 days	53 days	28 days	56 days
Portlandite Ca(OH) ₂	24.2±4.2	10.5±1.8	11.2±2.1	19.5±1.2	12±2.1
Brownmillerite Ca ₂ FeAlO ₅	8.8±1.5	8.3±1.2	8.3±1.8	12.4±1.8	5.3±0.9
Hatrurite Calcium Silicate Ca ₃ SiO ₅	17±2.1	6.3±1.2	13.8±3.9	12.1±2.1	10±2.4
Larnite Ca ₂ (SiO ₄)	16.6±4.8	13.4±3.9	13.5±3.9	9.5±0.3	2.7±1.5
Ettringite Ca ₆ (Al(OH) ₆) ₂ (SO ₄) ₃ (H ₂ O) _{25.7}	0	3.9±0.9	7.5±2.1	9.6±2.1	12±2.4
Hydrotalcite Mg ₆ Al ₂ (CO ₃)(OH) ₁₆ *4H ₂ O	trace	2.3±0.9	2.3±1.2	4.2±1.2	3.5±0.9
Total CaCO ₃ (Calcite, Vaterite, Aragonite)	22.5±3.9	54.6±3.3	54.2±1.9	26.7±1.2	23.2±2
Amorphous	1.9±0.9	0.6±0.3	2.2±4.2	6±0.3	30.7±4.2


7 Error = reported error x3, Materials Data Inc., Jade

1

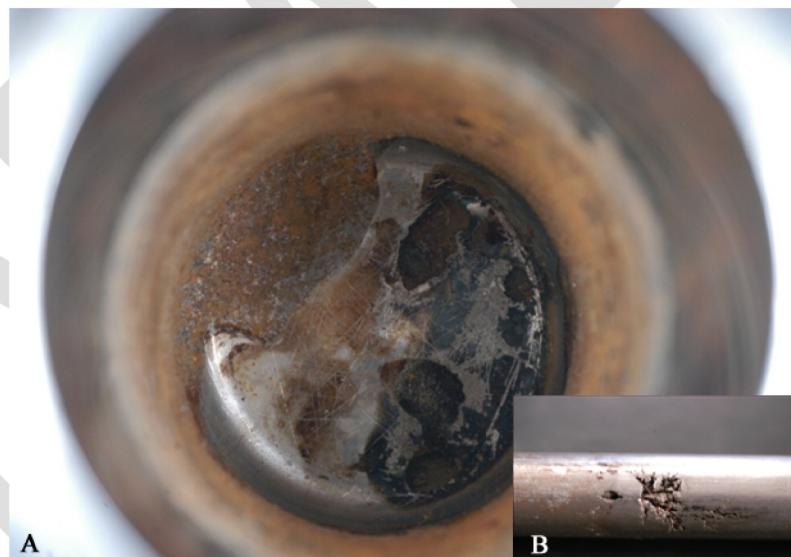
2Fig. 1-- Carbonation and alteration depth of portland cement cylinders exposed to A) 84
3days and pure-CO₂ at 50°C, B) 53 days CO₂-O₂: 85°C, and C) 66 days CO₂-O₂ 50°C.
4Zone 1 is the porous-Si, zone 2 is CaCO₃, and zone 3 is the Ca²⁺ leading into unaltered
5cement. Dashed line indicates diffuse Ca²⁺ leached zone; no boundary. Scale bar 1 mm
6(0.04 in).

7



8

9 Fig. 2-- Minerals and polymorphs in CO₂-O₂ injected samples. A) Calcium silicate
10 polymorph, B) Hydrotalcite forming on ferrite grains, C) Ettringite needles in the Ca²⁺
11 depleted zone, and D) Cubic halite grains within the carbonated zone.


12

1

2 **Fig. 3-- Montage backscatter (BSE) image (left) and Ca²⁺ EDS map (right) of CO₂-O₂
3 exposure sample with diffuse alteration boundary (white outline) extending into the
4 cylinder. Scale 4.5 mm (0.18 in)**

5

6 **Fig. 4-- A) Chloride attack on stainless steel autoclave and B) thermocouple thermowell
7 corrosion result of CO₂-O₂ exposure tests.**

8

2
3