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Andrew J. Jason 
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I. Introduction 
Foreword 

Here we mainly discuss the longitudinal ring beam dynamics and RF control for the 
bunching needed to maintain the short (a few nanoseconds) proton pulses required by the 
Weapons Neutron Research Center (WNR) for measurement of neutron cross sections 
and reaction dynamics, as specified in the recent upgrade proposal known as “Pulse 
Stacking.” Single micropulses, each containing 6x108 protons, are to be delivered to the 
Proton Storage Ring (PSR) from the LANSCE linac and successively overlaid in from 1 
to 4 RF buckets per ring turn until a maximum number of particles in the bucket is 
achieved. This is distinct from the currently used long-pulse mode in which the bucket 
equals the ring circumference and a 201-MHz micropulse stream is injected at each turn 
to fill ¾ of the bucket to obtain pulses ~270 ns long.  

That the short-bunch mode requires a buncher system to maintain a short pulse of a few 
nanoseconds is evident from kinematic considerations; with injection at a relative rms 
momentum spread of ~6x10-4, during 100-µs accumulation, the first-turn beam will have 
broadened by 20-ns rms plus additional space-charge broadening if bunching is not 
implemented1. Longitudinal considerations are primarily dealt with in this note; in a 
previous memo [1], other aspects and a more general discussion of specific facility 
modifications to implement this mode are discussed. In particular, the required voltage of 
the bunching system is determined by the beam intensity as are, consequently, power, 
space considerations, and control requirements. The number of protons in each bunch is 
limited to ~1x1011 per ns of bunch length from transverse-stability considerations. 
Tracking with available beam-dynamics programs may further define this quantity, but 
such analytical conclusions are usually close to limiting values. 

The basic ground rules are 1 to 4 pulses stored in the ring with successive extractions at 
varying time separations ranging from 120 µs to 8.3 ms with substantial increase in beam 
current from present WNR operation (micropulse mode,) wherein a series of micropulses 
each containing ~6x108 protons is used during the 625-µs macropulse. The increase 
depends on the neutron energy of interest; for low energies the spacing between the 
micropulses in the micropulse mode must be large to prevent frame overlap, hence 
decreasing the total current, whereas the pulse-stacking mode provides a constant current. 
Additionally, the pulse length should be short enough not to dominate the resolution, 
balanced against a decreasing proton number/pulse with shorter pulse lengths. Further 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  An experiment at the PSR was performed to assess a short bunch mode using the present 1st-harmonic 
buncher. Single bunches with up to 1.7x1011 particles and rms widths of 3-ns but with long tails were 
accomplished. See L. Rybarcyk, R. McCrady, and T. Spickermann, “A Test of Short-Bunch Stacking in the 
PSR,” PSR Tech Note 06-001 
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discussion of the pulse structures and advantages to WNR is given in [1]. Repeating some 
of the information in [1] for reference, three modes are envisioned:	
  

1) Accumulation of one pulse in the ring with immediate extraction during each	
  
macropulse, i.e. at 100 Hz;  

2) four pulses in the ring with extraction ~every 2 ms, then immediate reload;  
3) a new attenuated pulse injected every 120 µs with immediate extraction, thus 5 

pulses/macropulse. 

Three pulse lengths are dealt with here: 1.5, 5, and 10 ns that likely span the useful range 
of timings. At present, WNR favors the 10-ns pulse, but this study began with the shorter 
two pulse lengths, later modified to include the 10-ns option. Further study may exclude 
the 10-ns pulse as unviable, particularly in mode 2, because of the increased response 
time of the buncher cavity needed to support this pulse width. The three pulse widths are 
to be captured in ¾ of the phase width of the buckets produced by 503.125, 145.347 MHz 
and 72.673 MHz (or equivalently the 180th, 52nd, and 26th harmonic of the nominal ring 
frequency2 of 2.795 MHz.) A choice of a single frequency is likely mandated to avoid the 
substantial complication of a further cavity. Bunch occupation numbers for the three 
respective frequencies are then nominally 1, 3, and 6x1011 protons/bunch.  

It is tempting to find a scheme whereby successive buckets could be filled to ~double or 
triple the basic pulse width. Then the only possible buncher frequency would be 201 
MHz to produce a basic pulse width of 3.75 ns as well as 6.25- and 11.25-ns pulses 
containing 2.5, 5, and 7.5x1011 protons, respectively. With the present (desirable) off-
energy ring tune (see footnote 2) and the requirement that each injected micropulse 
contains 2x108 protons, such a filling would marginally take the entire macropulse of 625 
µs with no allowance for increasing the particles/pulse, unless the 201 MHz micropulse 
intensity were increased3. It would also introduce ripple in the delivered pulses.  

In stating the given pulse lengths, beam spreading in transport (some 50 m) to the target 
has been neglected. With the predicted maximum momentum spread ~4x10-3, a kinematic  
increase in pulse length of 0.2 ns is predicted (with negligible lengthening by space-
charge effects.) This substantial transport distance to the target invokes consideration of 
RF manipulations in the transport line to shorten the pulse lengths. However, the 
transport distance is too short at the beam energy to achieve substantial changes in the 
pulse length without large voltages (estimated to be ~10 MV to 100 MV) on the low-
frequency (less than half the ring-buncher frequency) cavity needed. The needed voltages 
are derived in Appendix A. Also note that bunch compression in the ring can be done by 
increasing the buncher voltage on a stored beam after storage, albeit with an attenuated 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 Note that the ring is now operated at the 72.07th subharmonic of the linac frequency 201.25 MHz rather 
than the 72nd, to prevent overlap of micropulses in the long–pulse mode. This variation works out well for 
the micropulse mode since the injected pulse is walked along the bucket, excepting the 1.5-ns pulse that 
requires longer injection time and a more complex chopping since pulses from the regular pattern must be 
dropped as lying outside the RF bucket. 
3	
  A scheme has been proposed to further increase the WNR micropulse as well as to introduce RFQ 
compatibility by bunching the beam at 80 keV just after the ion source. See L. Rybarcyk, LINAC 06 and L. 
Rybarcyk and J. Lyles, PAC 07. The bunching per se would not help make the 201-MHz bucket concept 
feasible (a higher current ion source is needed,) but would be welcome for the three modes. 	
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pulse. Such a technique is not discussed here, with major emphasis on obtaining a fixed-
width bunch by injection techniques and maintaining RF control. 

 

Parameters and symbol definitions 

Relevant ring parameters are: 

Radius R 14.4 m 
Transition gamma γT 3.2 
Slippage factor η − 0.198 
First harmonic current/1011 protons 0.0889 A -note that the Fourier component 

is 2x the average current 
Fundamental frequency ω0 2π x 2.795 MHz – harmonic number h=1 
Proton velocity relative   
to the speed of light β 0.84 
Lorentz factor γ 1.84 
Ring period T 360 ns 

   
Most of the symbols used extensively are listed: 

Cavity voltage (not including transit time factor) Vc 
Cavity decay constant α=ω/2Q in sec-1 
Classical proton radius, rp=1.5x10-18 m 
Proton mass, mp=938 MeV 
Phase in cavity field φ in radians 
Maximum bunch-length phase φm 

Detuning phase φ0	
  
Number of particles in a bunch N	
  
Eventual	
  number	
  of	
  particles	
  to	
  be	
  stored	
  in	
  a	
  bunch	
  N0	
  	
  

Document contents 

The document is organized as follows:  

First, Beam dynamics is discussed in Sections II - VII 

-­‐ Section I. Above, gives a brief summary of document scope. In particular, defines 
the three modes of operation and refers to reference [1] for details. 

-­‐ Section II. A first-order calculation of transverse limitations on beam intensity is 
presented.  

-­‐ Section III gives an overview of possible RF-cavity configurations and gives likely 
parameters that are used in subsequent calculations. 

-­‐ Section IV summarizes older calculations on beam storage parameters to establish 
notation and formalism for further excursions into beam dynamics. 

-­‐ Section V provides formalism for tracking beam longitudinal envelopes during 
changing particle number. 

-­‐ Section VI utilizes the results of Section V to track beam envelopes during 
injection, providing a means to determine needed cavity voltages. 
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-­‐ Section VII gives results for needed cavity voltages and particularly notes that the 
static determinations of Section IV do not apply to an injected beam. 

RF-confinement stability with the given dynamic parameters are discussed in Sections 
VIII – XV 

-­‐ Section VIII calculates the Fourier components of the beam-current to be used in 
determining cavity response. 

-­‐ Section IX shows how ring cavities must be tuned to achieve beam storage, in 
particular, with a minimum-power solution. 

-­‐ Section X gives the conditions for RF stability. 
-­‐ Section XI calculates instability damping time as a function of particle number 

and tuning angle, particularly noting that the minimum-power solution is stablest. 
-­‐ Section XII gives numerical results for tuning parameters for the 4-bunch mode 

and a single-bunch mode. 
-­‐ Section XIII offers an alternative to the minimum-power solution that eases 

cavity-tuning range with subsequent requirements on the RF generator power and 
phase. 

-­‐ Section XIV gives details of stability parameters for modes 1 and 3, defined 
above. 

-­‐ Section XV briefly comments on further aspects of stability and beam dynamics. 
-­‐ Section XVI summarizes the note 

The subsequent appendices give further detail to the main text and are therein referred to. 

II. Transverse considerations 
The first-order transverse limitation on the ring beam intensity arises from the space-
charge tune shift toward an integer value from the nominal x and y tunes of 3.17 and 
2.14. Known as the Laslett tune shift the tune shift from beam defocusing in a uniformly 
charged bunch of radius r is given as 

Δν = −
rpR

2

γ 3β 2r2ν
N
L
,  1) 

where rp is the classical proton radius 1.5x10-18 m, ν is the tune, R the ring radius 14.4 m, 
and N/L is the number of protons/m. Setting Δν = −0.1 and r	
  =1 cm a longitudinal particle 
density of ~1x1011/ns is obtained. The same result is obtained for the PSR long-bunch 
mode with 2.5x1013 protons. In present operation, somewhat higher particle densities can 
be obtained, but with a larger r	
  (a	
  1.6-­‐cm	
  bump). It is desirable to inject a smaller-radius 
beam in the short-bunch mode by bumping strategies to avoid foil interactions and losses 
during the long storage times contemplated. While the present specification is 
conservative, a factor of two increase in the given pulse intensities is not likely. 

The real impedance of the ring is apparently low enough to avoid traditional transverse 
instabilities and should not occur with the lower short-pulse stored current (< 1 A as 
compared to ~15 A.) We have not gone through higher transverse-instability analyses for 
this exercise, particularly since the impedance of the ring is not available. The transverse-
optics behavior of the ring has been well explored [2] and the low-order caveats appear to 
be entirely longitudinal as explored here. The transverse-injection process for the long- 
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and short-pulse modes remains the same so that little attention is likely needed to the ring 
optics except for increasing the bump magnets’ rise and fall rate. Adding a horizontal 
bump may be propitious, but is not included in this proposal. 

 
III. RF systems overview 
Properties of the three cavity systems insofar as determined are listed.  

503-MHz cavity 

Substantial thought had gone into short-pulse bunching at the PSR inception. Although 
recent considerations indicate that the 1-ns-pulse-length requirement then in vogue is not 
optimum in a balance between intensity and neutron-energy resolution, we include this 
study as an option and as prototypical of longer pulse length. The parameters then 
specified included application of harmonic number 180 (503.125 MHz) to capture of 
single micropulses [3]. Instead of the originally specified 1-ns bunch (180° full phase 
width) we adopt a 1.5-ns bunch (270° width) to enhance stability. Stability requirements 
were to be met by fast (for injection and individual-bunch extraction) detuning of the 
cavity through a coupled auxiliary cavity that contained microwave ferrite (YIG, Trans-
Tech G810, still the apparent best choice here) magnetically biased perpendicular to the 
cavity’s RF field and above saturation to limit losses. Until this innovation, cavity tuning 
had universally been done with intrinsically slower ferrite arrangements magnetically 
biased along the cavity RF magnetic field, e.g., the PSR fundamental mode cavity and 
most synchrotrons. Perpendicular biasing (with field above the gyromagnetic resonance) 
using the appropriate ferrite results in faster response and lower losses. More recent 
applications of such tuning are sparsely evident [4] and a custom tuner can be made 
commercially [5], possibly advisable to avoid substantial development. At the demise of 
the short-bunch mode, a prototype system had been nearly completed but not tested 
although a model-tuning cavity performed well in prior tests.  Further investigation of 
ferrite properties had been done in connection with synchrotron design for LAMPF II [6].  

A drawing of the planned 503-MHz system is shown in Fig. 1 taken from [2] wherein 
further details can be obtained. Main cavity parameters are given for suggested operating 
conditions and with two cavities in the ring: 

Total cavities voltage Vc 1.57 MV 
Total shunt impedance Rs 43 MΩ 
Unloaded Q 31000 
Harmonic number h  180 
2-cavity length (4 cells) 2 x 0.502 m 
Transit-time factor 0.79 
Total cavities’ power at Vc=1.7 MV 105 kW 
Unloaded cavity time constant (exponential) 19.6 µs 
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Fig. 1 . The PSR 503-MHz short-pulse buncher assembly showing the tuning 
arrangement. The two-cell cavity length in the figure is ~0.5 m and four such assemblies 
were envisioned in the ring. 
The tuning cavity concept, prototypical of all our tuning provisions, also taken from [2] is 
shown in Fig. 2. The (exponential) cavity time constant is 3.5 µs, faster than the main 
cavity. 

 
Fig. 2. Cross section of the ferrite-tuning cavity envisioned for the PSR short-bunch 
mode. The magnet gap is ~3.2 cm. A 1-kG field alters the tuner-cavity frequency by ~5 
MHz for a 100- G variation with a then 100-kHz variation in the main-cavity frequency. 
Only a few-percent change in the tuning-cavity Q (~5000) with the magnetic-field tuning 
was noted since the ferrite is saturated with µ varying from ~3 to 5. 

145 MHz cavity 

A possible (145.34 MHz, harmonic number 52 and folded λ/2) cavity type is shown in 
Fig. 3. This frequency produces a 5-ns bunch. Its advantages include a lower bunching 
voltage with lower power requirements at higher intensities and use of only one cavity.  
Disadvantages include a narrowed stability range and a slower tuning rate and 
requirement of a larger tuner.  
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A suitable tuning cavity has not been designed but could follow the 503-MHz plan, i.e., 
addition of a coupled cavity. Cavity parameters are given 

Cavity voltage Vc 0.56 MV 
Cavity shunt impedance Rs 9.81 MΩ 
Unloaded Q 20000 
Harmonic number h 52 
Transit-time factor 0.98 
Cavity length (λ/2) 1.03 m 
Cavity radius 25 cm 
Cavity gap 20 cm  
Aperture radius 6 cm 
Power at Vc =0.52 MV 28.7 kW 
Unloaded cavity time constant 44 µs 

 

 
 

Fig. 3.  Microwave Studio drawing of a possible 145 MHz cavity. Drawing and 
parameters are from Sergey Kurennoy. The distribution of surface currents is shown with 
scale in A/m for a gap voltage of 667 kV. An auxiliary tuning cavity is not shown.  
 
73 MHz Cavity 

We have not gone through the cavity design process for this frequency. However there 
are literature concepts that we can extrapolate from to form approximate parameters. 
Illustrations (Fig. 4) and parameters adapted from these literature articles are shown 
below. 

Cavity voltage Vc 0.21 MV 
Cavity shunt impedance Rs 4.4 MΩ 
Unloaded Q 21000 
Harmonic number h 26 
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Transit-time factor 0.98 
Cavity length 2.6 m 
Cavity radius 50 cm 
Cavity gap 10 cm  
Aperture radius 6 cm 
Power at Vc =0.21 MV 10.6 kW 
Unloaded cavity time constant 93 µs 

  
 
Fig. 4. Variants of possible 73-MHz cavities taken from literature. The left figure is 
adapted from [3], Early and Thiessen, while the right figure is directly from [6]. Cavity 
parameters above are extrapolated from [3]and may not be correct for a thorough 
design. 
 
Remarks on RF system design 

The cavity Q can be affected by design and should be minimized to provide the fastest 
response since beam parameters change rapidly and longitudinal-instability-damping 
becomes most favorable by a fastest response. Additionally, the shunt impedance should 
be minimized, a seemingly counter-intuitive requirement since the cavity power is 
thereby increased. However, power is modest and the tuning necessary to achieve 
maximum stability is minimized with the shunt impedance since the beam-induced 
voltage is least. Note that the PSR long-bunch mode operation does not require tuning, 
despite heavy beam loading, since means were taken to reduce the impedance seen by the 
beam (~10 Ω) with RF-source loading (~4kΩ) unchanged. The scheme used cannot be 
readily implemented with the short-bunch frequencies unless an unprecedentedly clever 
technique is devised.  

IV. Capture calculations 
We first use the formalism of R. Cooper [7] for the bucket size with additional comment. 
The results are analytical with inclusion of a space charge model and were originally used 
in specification of cavity parameters. There is substantial agreement with many 
observations for PSR performance. Stability is not included but will be discussed later. 
More detailed derivations for the formulae cited may be found in [7] but are sketched 
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here in a different parameterization for an appreciation of their assumptions and as a 
guide to further performance elaboration.  However, as we will discuss later, the static 
conclusions of this formalism are not a good guide to an injection sequence. Nonetheless, 
the technique is of intrinsic and unique interest in obtaining a closed formalism 
incorporating much of the ring physics and we later use the results in formulating an 
injection scheme. 

To proceed we note Cooper’s space-charge model. Here we parameterize the motion in 
terms of RF phase, instead of the distance coordinate z. Note that expressing mass units 
in eV allows us to set e=c=1, hence mpc2/e→mp in relations after 2). With this, all 
relations are nonetheless in MKS units after inserting rp for the classical proton radius in 
meters. (The relations between the phase, distance, and time relative to the bunch center 

are given by φ = h
R
z = − hβ

R
t .) An approximate (and traditional) expression for the 

longitudinal electric field is 

 Ez = − ge
4πε0γ

2
∂λ
∂z
,   2) 

where λ is the particle number-density in z (here assumed parabolic to provide a uniform 
z field) and g = 1+ 2 ln b a( ) , the usual form factor for a transversely uniform beam of 
radius a and with pipe radius b. This dismissal of details of the transverse beam motion is 
common and is used in many tracking codes, e.g., identically so in ESME [8], since a full 
6-D simulation is difficult.  

This electric field x 2π R gives the voltage change Vs of a particle per unit φ in a trip 
around the ring due to space charge 

 Vs =
3πgrpmpNh

2

γ 2Rφm
3  3) 

The zero-current equation of motion has then an added term proportional to φ, 
specifically 

d 2φ
dt 2

= −Ω2 sinφ +Ωs
2φ,  4) 

where Ω is the single particle synchrotron frequency 

 Ω2 = ω 0
2ηhVc

2πβ 2γ mp
,  5) 

and the contribution to the synchrotron motion from the bunch internal field is given by 

 Ωs
2 = ω 0

2ηhVs
2πβ 2γ mp

.  6) 

Integrating Eqn. 4) once and introducing the momentum spread as 
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 dφ
dt

= −ω0hη
δ p
p

 7) 

 yields a potential [bracketed quantity in 8)] in which a particle moves, i.e., 

 
δ p
p

⎛
⎝⎜

⎞
⎠⎟

2

+
1

ω0
2h2η2 2Ω2 1− cosφ( ) +Ωs

2φ 2⎡⎣ ⎤⎦ = constant  8) 

This potential has local maxima symmetrically around φ=0 and, for minimal 
containment, the phase at the maxima (turning points) φ must be equal to φm.  Thus, a 
minimum buncher voltage is obtained proportional to the number of particles, 

 Vc ≥
3πgrpmNh

2

γ 2Rφm
2 sinφm

. 9) 

Setting b=5 cm and a=1 cm, this may be evaluated for φm=3π/4 

	
   Vcmin = 2.99x10
−16Nh2 	
   10)	
  

or, for the frequencies 503, 145, and 73 MHz with 1, 3, and 6x1011 protons (in the single 
bunch,) Vc min=0.97, 0.24, and 0.12 MV, respectively.  

Since 6) is a conservation rule, it may be taken equal to its expression at the turning 
points where δp/p =0 to obtain a trajectory of the bucket bounding envelope, 

 
δ p
p

⎛
⎝⎜

⎞
⎠⎟

2

=
2

ω0
2h2η2 Ω2 cosφ − cosφm( ) + Ωs

2

2
φ 2 −φm

2( )⎡

⎣
⎢

⎤

⎦
⎥  11) 

applicable only for V0 ≥ V0min. A certain momentum spread (at φ=0) is associated with the 
minimum voltage and from 9) it is straightforward to show that this minimum spread is 

 
δ p
p

⎛
⎝⎜

⎞
⎠⎟

2

min

=
3grphN
4β 2γ 3ηR

φm
2
tanφm

2
− φm

2
⎛
⎝⎜

⎞
⎠⎟
3

φm
2

⎛
⎝⎜

⎞
⎠⎟
3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 12) 

Evaluated at the stated particle populations (δp/p)min is 0.25%, 0.23% and 0.23% for the 
three frequencies, respectively, about the same since we have scaled N approximately 
inversely with h. These latter quantities are of interest since a large intrinsic momentum 
spread may result in a too large beam from ring dispersion, while injection may lie 
outside the bucket with a small momentum spread. 

It may be of interest to compare these predictions with PSR observations. The calculated 
minimum RF voltage (h=1, φm=3π/4) for 4x1013 protons is 11.97 kV (not accounting for 
the transit time factor) and the minimum δp/p is 0.37%. If the buncher voltage is raised to 
its (current) maximum of 16 kV, δp/p becomes 0.48%. 

Figure 5 shows the bounding trajectories Eqn. 11) at the minimum voltages for 1x1011 
and 2x1011 particles in the bunch at h=180 and φm=3π/4. 
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Fig. 5. Plot of bounding trajectories for the calculated (see Eqn. 10) minimal voltages to 
capture 1x1011 (inner curve) and 2x1011 protons for the 503 MHz case. The respective 
applied buncher voltages are 0.97 MV and 1.94 MV. The bucket extends over 0.38 m or 
1.5 ns. 
Plotted as a function of phase, the minimal buckets for the other two frequencies look 
virtually identical and, in the interest of brevity, are not shown. 

In either case, the minimum momentum spread is above the nominal beam spread from 
the linac, allegedly ~0.0006 rms.  Redistribution of the beam will occur due to the 
synchrotron motion that evolves more rapidly than the injection time (unlike the long-
bunch mode.) Additionally, there exists a gratis painting along the phase axis from the 
present operation of the ring off the beam energy (see footnote 2.) Nonetheless, the final 
beam distribution will change with this painting and it may be well to consider the 
consequences with simulations. 

V. Longitudinal tracking 
Inspired by the above methods, a first-order algorithm for longitudinal particle tracking 
can be readily derived for the above model of space charge. For each turn of the ring, 
assuming a single cavity, the change in our variables is given by 

Δ δ p
p

⎛
⎝⎜

⎞
⎠⎟
= −Vc sinφ

β 2γ mp

+
3πgrph

2N
β 2γ 3Rφm

3 φ  13) 

 Δφ = −2πhηδ p
p

 14) 

Although derivation of these two equations is relatively straightforward given the 
formalism of section II, their proofs are shown in Appendix B. It is well to again note that 
the beam distribution in phase is not self-consistently obtained, but as noted is assumed to 
be parabolic providing a linear space-charge term and a well-defined extent. A true 
tracking program would produce its own self-consistent distribution given an injection 
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distribution and may be more accurate (within statistics) but parameter dependencies are 
not then readily apparent. 

A straightforward tracking program using 11) and 17) produces the results4 in Figs. 6, 7, 
and 8 for voltages just above the minimum values.  As would be expected identical axis 
intersections as in the previous section are found. A virtue of the tracking is that the 
space-charge-influenced synchrotron motion becomes apparent and for this reason we 
show the trajectories for all three cases.  

	
  
Fig. 6. Turn-by-turn tracking of synchrotron motion for the h=180, 1.5-ns pulse length, 
1x1011 particles, and minimal-voltage. 20 turns are shown for the initial conditions δp/p 
=0 with φ=-3π/4 (outer curve) and φ=-3π/8. 
 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4	
  The tilt in the trajectories envelope is from the phase change in motion around the ring and observation of 
each point just before buncher application. The tilt would be in the opposite direction if observed after the 
buncher. Such a tilt would be observed in an actual ring measurement depending on the measurement 
location.	
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Fig. 7. Turn-by-turn tracking of synchrotron motion for h=52, 5-ns pulse length, 3x1011 
particles and minimal voltage. 70 turns are shown for the initial conditions δp/p =0 with 

φ=-3π/4 (outer curve) and φ=-3π/8. 

                       
Fig. 8. Turn-by-turn tracking of synchrotron motion for h=26, 10-ns pulse length, 6x1011 

particles and minimal voltage. 130 turns are shown for the initial conditions δp/p =0 
with φ=-3π/4 (outer curve) and φ=-3π/8. 

In particular, increasing the particle number or lowering the voltage causes unstable 
motion, with the successive turns moving away from the bunch. Of course the 
synchrotron frequency increases with voltage as does the momentum spread. The 
monolithic space-charge model of Eqn. 2) has been augmented by addition of a 1/φ field 
outside the presumed bunch as noted in Appendix C. 
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These three options seem to bracket the desirable set of options for pulse stacking. A 
further attractive option might be a 201.25 MHz (h=72, 3.75-ns bunch length) cavity that 
uses RF technology more familiar to LANSCE.  

Thus a first-order tracking method has been established that will allow following a 
changing number of particles in the bunch, with the assumption that the bunch shape 
doesn’t vary, a desired end result in beam accumulation. It is to be noted that we are not 
troubled by computational accuracy; with our 20-digit calculation the motion is stable for 
10’s of thousands of turns, far more than planned storage times (<3000 turns.) 

VI. Bunch injection programming 
Criteria for voltage programming during injection is quite different than the storage 
conditions noted in the last Sections. We seek a scheme for programming the cavity 
voltage as injection proceeds and then further maintaining conditions for stable storage. 
An arbitrary voltage program will lead to bunch compression or loss of particles from the 
designated phase-space area. It is difficult for the present formalism to track situations in 
which the bunch width changes, since the formalism assumes a bunch width φm. 
However, it is clear that if the voltage tracks the space charge forces too rapidly, the 
bunch will be compressed and particle loss may ensue. If the eventual storage voltage is 
used during injection, particle loss will occur. Accelerator experience confirms this, as 
does a simulation shown in Fig. 9 where the voltage for minimum storage is maintained 
throughout injection. 

                  
Fig. 9. Dynamic particle trajectories over 210 turns at h=52, Vc=0.25 MV with constant 
minimal voltage Eqn. 9) for 3x1011 protons injected over 500 turns. Particle loss from the 
extreme trajectory is seen at accumulation of 1.2x1011 protons. Vc must be increased by a 
factor of 3 to attain stability over 2000 turns, but very large momentum spreads are seen. 
Again code exploration can be used to verify these assertions and tediously explore 
voltage programming, but we continue with an analytic approach to grasp the 
parameterization. In the present context, then search for a dynamic voltage sequence 
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versus particle number that maintains a constant bucket shape. This would occur if the 
buncher plus space-charge impulse were the same for each ring revolution. Because of 
the difference in forms of the kinematic and space charge terms in 13), this can only 
occur for one value of φ. 

Consider application of voltage linear in the number of particles injected, i.e., for 

 N = N0 t  15) 

up to the maximum number of particles to be injected N0 and t is the injection time from 
0 to 1. Then the buncher voltage Vc is set at  

 Vc = V1 + (V2 −V1)t  16) 

where V1 is an initial voltage and V2 is the final voltage, attained and held when the 
number of particles is N0, in general different from the storage voltage found above in 
Section III. Substituting in Eqn. 13) and setting the time dependent terms equal to zero, it 
is readily found that the required change in voltage during injection is given by  

 ΔV ≡V2 −V1 =
3πgrph

2mpN0

γ 2Rφm
3 sinφ

φ  17) 

The (remaining) time-independent part gives the magnitude of the momentum impulse 
per turn at a particular phase (same phase as Eqn. 17) of course.) 

 Δ δ p
p

⎛
⎝⎜

⎞
⎠⎟
= − V1 sinφ

β 2γ mp

 18) 

as might be anticipated from 13). There are two parameters to be chosen on the basis of 
stability, φ=φc the phase at which the buncher kick is constant and V1 the initial voltage at 
injection start. In general, by trial, pick φc=π/2 and determine V1 by bunch stability. Note 
that we are required to have a linear voltage rise by the fact that the number of stored 
particles is increased linearly with time. 

As an example of how this works out, consider the 145-MHz case with injection (N0) of 
3x1011 particles. From 17) ΔV= 0.12 MV and setting V1=0.4 MV for a storage voltage of 
0.52 MV, kept constant at the end of injection. (Here we inject for 500 turns as would be 
required to accumulate the 3x1011 particles.) The injection history is shown in Fig. 8 as 
the change in momentum spread/turn. As advertised, the kick at φ =π/2 remains constant.  
At the bunch ends (φm=3π/4) the RF kick is smaller than at π/2 as noted in the figure. As 
injection proceeds the space-charge forces become larger and the bunch-ends kick 
smaller due to the balancing act between space-charge and RF fields at π/2.  
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Fig. 10. Upper figure, particle-momentum kick versus turn number for conditions as 
noted in the text. Lower figure, phase space trajectories for a particle started at φ=-3π/4 
(outer curve) and φ=-3π/8 followed for 2000 turns. 

One intuitive way of finding a value for V1 is, by noting that beam will not be confined 
without a net restoring force, we can determine the stability threshold implied by our 
model, assuming that bunch length is preserved throughout the injection process. Given a 
value for φ, we readily see that the kick 13) at φm is zero at injection end for  

 V1 =
3πgrph

2mpN0 φm sinφ − φ sinφm( )
γ 2Rφm

3 sinφ sinφm
. 19) 

This result, along with the value of ΔV Eqn. 15) is plotted in Fig. 11 for the 145 MHz 
case vs. φ=φc.  
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Fig. 11. Threshold voltages, as defined by 17] and 19] versus choice of optimum phase 
for bucket stabilization for the 145 MHz case with φm=3π/4. 

For a given choice of φc the sum of the two voltages in Fig. 11, equals the minimal 
storage voltage, the result of Eqn. 9), hence containing the static case of Section III. This 
says little about the injection process and the stable value for V1, to be determined by 
simulation.  

VII. Results for voltage assignments 

Results for the dynamic injection process are quite different than the quasi-static case 
noted in Section IV. There is a range of values for φc around π/2 that yield satisfactory 
bunch stability and tracking and such values minimize the eventual storage voltage.  
Using φc = π/2, ΔV is determined by 15) and use of its calculated value produces a 
uniform kick at φ = π/2 as seen in Fig. 10 for a wide range of V1 values. Table I 
summarizes the results with notation as follows: 

- ΔV is the change in cavity voltage seen by the beam during injection as calculated 
by Eqn. 17). All simulations discussed were done using this number. 

- V1	
  min	
  is	
  the	
  voltage	
  at the start of injection	
  as	
  calculated	
  by	
  Eqn.	
  19)	
  that	
  does	
  
not	
  produce	
  stable	
  beam.	
   

- V1 low is the voltage at the start of injection at which motion is stable for more than 
10,000 turns as determined by simulation. The onset of stability is sudden with V1. 
Note that if the particles/bunch is decreased, the value of V1 low will decrease. 

- V1 good is the voltage at the start of injection for which small bunch expansion is 
seen throughout injection and storage and at which our assumptions about a given 
bunch length are valid. Note that if the particles/bunch is decreased, the value of 
V1 good will decrease. 

- Vstorage gives the minimum voltage range to be maintained after injection, namely 
V1 min+ΔV to V1 good+ΔV. 

- δ p/p is the ± maximum beam-envelope momentum spread constant during 
injection storage voltage. 
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All voltages are peak voltages seen by the beam and do not include transit-time factors. 
Examples of the injection process are shown in Appendix E, inspection of which may 
help clarify the meaning of Table I. 

Table I. RF system gap voltages in MV  

 ΔV V1 min V1 low V1 good Vstorage δp/p (%) 

503 MHz 0.46 0.51 1.00 1.2 1.5 to 1.7 0.36 to 0.40 

145 MHz 0.12 0.13 0.24 0.31 0.36 to 0.43 0.32 to 0.37 

73 MHz 0.057 0.064 0.12 0.16 0.18 to 0.22 0.32 to 0.37 

Long pulse 
1x1014 protons 0.0057 0.0063 0.011 0.015 0.017 to 0.021 0.50 to 0.59 

	
  
The following are observed in the simulations: 

- Required voltages are independent of injection time. 
- The onset of stability is sudden as V1 is increased over a range of a few percent to 

V1 low. 
- The momentum kick Δ(δp/p) at the bunch ends is greater than zero in the stable 

region as is seen in Appendix E. 
- The bunch shape (orbits in longitudinal phase space) is maintained throughout 

injection and storage by the procedure in Section V and with φc~π/2. 
- The values of V1 low are seen to be closely equal to the minimum voltage for 

storage predicted by 9). 

The above injection and storage procedure is believed to closely represent the physics for 
the ring beam dynamics. Because of simplifications in modeling, experimentally 
determined quantities may depart from calculated values, but the ascribed range of 
voltages are likely to cover the performance values. Extended use of tracking codes may 
(perhaps) provide greater accuracy in performance assessment. However, the 
approximate agreement with the PSR parameters and provisional runs with the code 
ESME5 are encouraging. 

Only the basic first-order beam-dynamics instability has been so far discussed. Bunch-to-
bunch interaction is yet to be assessed, as are resistive wall instabilities. However, 
performance of the ring with the long-bunch mode is encouraging here. If beam is well 
confined, the e-p instability seen by the PSR may not occur with the lower currents in the 
short-pulse mode. Further measures to preempt longitudinal instability are needed 
through beam interaction with the cavities as discussed below.	
  
VIII. Beam spectra 
The cavity system responds to the beam current as the Fourier component at its resonant 
frequency. The original assumption of the PSR study was that the (short) beam pulses 
were delta functions in which case all harmonics saw twice the dc current. That is, for 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5	
  Runs with ESME by Jeff Kolski showed particle loss ending within the range of V1 given in Table I and 
substantial for voltages below V1 low.	
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N0=1011 particles in a single pulse, the current was 2eN0/T = 0.0889 A for any harmonic, 
where T is the ring period. This is not a good approximation particularly for the longer 
pulses that we use. 

Consistent with our space charge model, we use a parabolic distribution of beam current 
with full time width a,  

 I = 6Q0

a3
a2

4 − t 2
⎛
⎝⎜

⎞
⎠⎟

 20) 

where with the selected pulse width, h being the cavity harmonic number 

 a = 3T
4h

 21) 

giving for the Fourier component of beam current at harmonic k 

 Ik = −
32
9

Q0h
2 3πk cos 3πk

4h
⎛
⎝⎜

⎞
⎠⎟ − 4hsin

3πk
4h

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

π 3k 3T 2  22) 

Equation 22) is evaluated for 1011 particles in Fig. 12. 

	
  	
  	
  	
  	
  	
  	
   	
  
Fig. 12. Fourier component versus harmonic number for beam phase width of 3π/4 in the 
specified harmonic and charge of 1011 protons.  

For the 3π/4 phase width and 1011 particles gives Ik=0.048 A for each of the three 
frequencies under consideration, or indeed for any harmonic k=h, nearly half of the delta 
function approximation. That is, either case gives 0.528 of the first harmonic current or 2 
x 0.528 of the dc beam current. For the PSR original choice of a 1-ns pulse, I180=0.069 A. 
Of course Ik is proportional to the number of particles in a bunch times the number of 
bunches. 
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Equation 15) gives information about the effects of co-existing cavities on the long- and 
short-pulse modes. With 4x1013 particles in the fundamental mode (17.7 A) the current 
seen at the three harmonics (180, 52, and 26) are 0.00059, 0.0071, and −0.00046 A, 
respectively6. The effect is some tens of kilovolts induced in the higher-frequency bare 
cavities and will affect the long pulse beam. Similarly, the presence of the short-pulse 
beam (per 1011 particles) will show up as 0.089 A in the first harmonic for either 
frequency, that would be negligible for a linear system, since the 2.8 MHz cavity has an 
impedance of ~10 Ω. However, the presence of ferrite in the cavity likely increases the 
impedance greatly at high frequencies. In either case, (difficult) active feedback or 
(unlikely) mechanical shorting may be considered to eliminate such effects. 

Active feedback may be accomplished by insertion of a pickup in a cavity. One 
possibility is removal of the induced energy through a strongly coupled (but switchable) 
pickup, as is done in high-order-mode damping [9]. Alternatively, the pickup signal can 
initiate negative feedback in the cavity to zero its voltage. A worry is that such feedback 
may not be possible, i.e., controlling the cavity voltage around zero. 

IX. Detuning the cavity 
We follow the treatment and notation of references [10,13]. As with most such studies, an 
RLC circuit is used to model the system (shown to be a correct representation.) Relating 
the circuit to cavity parameters, the resulting differential equation is    

 
V + 2α V +ω0

2V = αRs I  23) 

where V is the cavity voltage, I the driver current (both beam and RF generator,) ω0 the 
unperturbed resonance frequency of the cavity, and α, as defined above, is the decay 
constant for transient behavior (equal to 1.0x105, 4.6x104 and 2.2x104 sec-1 for the 503-, 
145-, and 73-MHz cavities, respectively using loaded Q values for a coupling constant 
=1.)  Consider driving the cavity with frequency ω (or rather drive the cavity with ω0 and 
detune the cavity to ω.) Using phasor notation, insert exp(jω t) as the phase of the 
variables V, I with corresponding amplitudes ( j = −1 .) The result looks complex, but 
neglecting small terms (assuming α<<ω) the admittance is defined by the phasor 
quantities 

 


Vc =

Rs

2 1+ j δωα
⎛
⎝⎜

⎞
⎠⎟

I ≡ Rs

2 1+ j tanφ0( ) I , 24) 

additionally defining the relative phase φ0 by driving the cavity off resonance, where δω 
=ω − ω0, assuming the difference in the two frequencies to be relatively small.  That is, in 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6	
  The	
  sensitivity	
  of	
  Ik	
  to	
  distribution	
  form	
  is	
  small	
  for	
  k=h	
  and	
  other	
  smooth	
  distributions	
  (than	
  the	
  
assumed	
  parabolic)	
  with	
  similar	
  rms	
  sizes,	
  e.g.,	
  a	
  Gaussian	
  distribution.	
  These	
  values	
  will	
  be	
  used	
  in	
  
succeeding	
  calculation.	
  However,	
  the	
  effect	
  of	
  a	
  first	
  harmonic	
  current,	
  using	
  the	
  k	
  of	
  our	
  cavities,	
  can	
  
vary	
  substantially	
  with	
  distribution	
  width	
  and	
  shape.	
  Hence	
  the	
  stated	
  effect	
  of	
  the	
  long	
  pulse	
  beam	
  
on	
  the	
  buncher	
  cavities	
  is	
  not	
  well	
  defined.	
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phasor space the angle between the voltage and the current is φ0 when the cavity is driven 
off resonance. 

Set the current equal to the sum of the generator current (to the cavity) − 
Ig  and the beam 

current − 
Ib . Arbitrarily set the phase of the beam current along the real axis of a phasor 

diagram (that rotates counterclockwise with angular frequency ω) so that  
Ib → Ib . Also 

note that for bunching the voltage must precede the beam bunch by 90°, hence 

 
Vc→ − jVc where the two quantities are now scalars. 

Eqn. 24) now becomes 

 
Ig = − Ib +

2Vc
Rs
tanφ0

⎛
⎝⎜

⎞
⎠⎟
+ j 2Vc

Rs
 25) 

This is the condition for bunching established by the choice of phase for  
Vc . Not that we 

a priori have to, but power can be minimized and the cavity matched to the generator (no 
reflection to the isolator if the transmission line impedance is matched to the cavity) for 

tanφ0 = −
IbRs
2Vc

 26) 

thus setting the phase of the generator current lagging the beam current by 90° (remaining 
term in Eqn. 18.) The phasor diagram now looks like Fig. 13.  The diagram makes clear 
the need for cavity tuning7. The generator power is just sufficient to energize the cavity 
since the beam is not accelerated. 

If the condition 26) is not maintained, the generator current must be increased to maintain 
bunching and will have a real component. This changes the phase angle between and 

, a potentially useful possibility as shall be discussed in Section XII. The cavity power 
remains the same Vc

2/Rs, with the excess power reflected to the isolator. Of course, the 
RF generator must produce the excess power to be dumped in a load. For all of our cases 
the beam current is substantially greater than the generator current at maximum beam. 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7	
  	
  That cavity detuning is necessary (as well as difficult) is demonstrated by the SNS struggle to prevent 
loss from their ring bunch (see Y. Zhang, et al., “Simulation study and initial test of the SNS ring RF 
system,” Proceedings of PAC 07; some details of their control system are included.) The SNS has chosen 
not to build in a low-impedance shunt to their cavity as in the PSR and so must control the beam/RF phase 
as indicated here.  

 !
Ic

 !
Vc
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Fig. 13. Phasor diagram for minimum generator current.  Note that the cavity current Ic 
is opposite the sum of the beam and generator currents, a straightforward consequence 
of the sign convention adopted for the RLC circuit. 

X. First-order longitudinal stability 

The lowest-order (dipole) longitudinal instability, known as the Robinson instability, was 
stated most lucidly by Cooper and Morton [10] in direct application to the PSR short-
bunch mode.  We draw heavily on their treatment but extend their conclusions and 
evaluate for our parameters.  

The theory of the Robinson instability stems from perturbations to a particular steady 
state condition. The variables to be perturbed (for a given generator voltage and phase) 
are: 

-­‐ the beam centroid phase (for a given generator voltage and phase)  
-­‐ the beam-centroid energy 
-­‐ the cavity-voltage phase 
-­‐ the cavity voltage 

The relation between the time derivative of these quantities and their values as well as 
other parameters can be derived from the phasor diagram Fig. 13. For details see 
references in [10].  

The totality of these perturbations yields a set of coupled equations that have a range of 
solutions with time dependence exp(γ+jωt). Picking out the solutions for which damping 
occurs, γ < 0, the condition on the phase is the condition derived by Robinson. 

sin2φ0 > −
4Vc
IbRs

 27) 

with the additional constraint that tan φ0 <0 placing φ0 in the second quadrant, 0 to −π/2. 
There are two regions of such solutions extending from the ends of the interval as shown 
in Fig. 14.  
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Fig. 14.  Regions of longitudinal stability (shaded areas) for the cavity system as per Eqn. 
27). 
To interpret this diagram let x = 4Vc /Ib Rs. the negative of the right-hand side of Eqn. 27). 
If x >1, corresponding to a low current or high buncher voltage, the motion is stable for 
any value of φ0 between 0 and −π/2. For the minimal generator current case 26), it is 
straightforward to show that φ0 lies in the left shaded area. These latter two assertions 
will be more evident in evaluation of the damping time in Section XI. If the generator 
current is not minimized, the restriction 26) need not be met but 27) must be. This 
requirement is analogous to restrictions on a linac or an accelerating ring where the beam 
center must be located on the time-rising side of the RF voltage, thus negative phases are 
needed. At our high currents, x<1, the beam drives the cavities and phase slippages must 
be corrected by the generator. 

The offhand conclusion is that the cavity must be rapidly tuned to match the beam time 
structure and to the extent depending on the voltage program. Injecting particles occurs 
over 120 to 360 µs during which time the phase and voltage amplitudes must be varied in 
a program to match the storage conditions. Even more severe, when each pulse is 
extracted, the retuning of the system must occur very rapidly to accommodate the change 
in Ib .and stability is to be determined for a finite tuning time. 

It is noted that for the PSR long-bunch mode, with 4x1013 protons, the motion is always 
stable according to 27) and the detuning angle for minimum power is only ~2°, implying 
a frequency shift of ~350 Hz. 

XI. Damping time 
The theory of the Robinson instability stems from perturbations to a particular steady 
state condition. The variables to be perturbed (for a given generator voltage and phase) 
are: 

-­‐ the beam-centroid phase (for a given RF-generator voltage and phase)  
-­‐ the beam-centroid energy 
-­‐ the cavity-voltage phase 
-­‐ the cavity voltage 

The relation between the time derivative of these quantities and their values as well as 
other parameters can be derived from the phasor diagram Fig. 13. For details see 
references [10]. Letting the time dependence of the quantities be exp(γ t), a set of four 
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coupled equations is obtained, linear in the variables.  Requiring that the determinant of 
the variables’ coefficients vanish gives  

γ 4 + 2αγ 3 + α 2 1+ tan2φ0( ) +ω s
2⎡⎣ ⎤⎦γ

2 + 2αω s
2γ +α 2ω s

2 1+ tan2φ0 +
IbRs tanφ0
2Vc

⎛
⎝⎜

⎞
⎠⎟
= 0   28) 

where ωs is the synchrotron frequency ω0 ηhVc 2πmpγ β
2 .  (That the synchrotron 

frequency enters notationally into the results does not mean that space charge need be 
taken into account; the derivation physics contains only the longitudinal centroid as 
appropriate for the Robinson instability.)  

The quartic equation looks formidable, but is numerically solvable. Divide through by α4 
and let the quartic variable be  

z = γ
α

 29) 

thus comparing the decay constant to the cavity time constant α as well as simplifying the 
computation. 

To understand the ensuing results, first note that if the beam current is zero, the four 
equations are decoupled into two sets with solutions of the resulting quadratic equations 
in two conjugate pairs 

z1,2 = −1± j tanφ0

z3,4 = ± jω s

α
 30) 

As the beam current is turned on, these solutions to 28) will evolve into stability criterion 
depending on selection of the roots and the sign of the root real part. Note also that for 
the minimum power solution Eqn. 26) the bracketed part of the last term in 28) becomes 
1 with the remainder of the bracket reversing sign as the phase or current is changed. 
Here the expected solution discontinuity will be seen as the most stable operating point 
for our parameters, though not so in general. 

Solutions to 28) were obtained (tediously) by the method of Ferrari [11]. The physically 
meaningful of the four solutions is determined by the Routh-Hurwitz criterion [12] 
applied to the coefficients of 28) that determines Eqn. 27), although the relevant solution 
is obvious by inspection. This selection corresponding to one of the first set of solutions 
in 30) is shown in Figs. 15 and 16.  
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Fig. 15. For the 145 MHz case, shown is the real part of Eqn. 28) root versus tuning 
phase as a function of particles/bunch that shows RF system stability. Evolution from the 
zero-beam case (z1,2 in Eqn. 30) is evident; with no particles the ordinate =-1. The zero 
crossings correspond to the prediction of Eqn. 27). The (lower) discontinuities in the 
traces’ derivative correspond to the minimum generator-power settings 26), while the 
significance of the cusp is unexplained.  

 
Fig. 16. For the 145 MHz case, the imaginary part of Eqn. 28) root versus tuning phase 
as a function of particles/bunch. Evolution from the zero-beam case (z1,2 in Eqn. 30) is 
evident; the zero particle case is identically tanφ0. Here the imaginary part of the 
solutions is zero up to the minimum-power phase defining the region of critical damping. 
The discontinuities in the traces at ~ −85° correspond to the cusp in Fig. 15. 
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In these plots the buncher voltage is Vc=V1 good+ΔV N/N0, where N gives the 
particles/bunch. This specifies the voltage required for beam dynamics of any number of 
bunches. However, the total current in the ring is the relevant parameter and is set for 
four bunches, i.e., Ib in Eqns. 25) to 27) is 4 times the Fourier component of the current in 
a single bunch. Solutions outside the fourth quadrant are non-physical as is the other 
solution to z1,2 and the solutions z3,4. The solutions for the 503- and 73-MHz case are 
qualitatively the same as the 145 MHz case shown, but may be of interest to view in 
Appendix F. All plots may be compared with the numbers in Tables II and III below. 

The salient conclusions here are  

1. The damping of the instability is not faster than the cavity relaxation rate despite 
assertions of certain literature formulae. Assuming matched coupling between the 
RF generator and cavity, these time constants are 9.8, 21, and 46 µs, respectively 
for the three frequencies. 

2. The fastest damping occurs at the phase for minimum power. Hence, with the 
heretofore results it seems counterproductive to move substantially further 
(increasing −φ0) into the stable region as had been suggested. 

3. The imaginary part of the (alleged) physical solution is zero below the minimum-
power phase, indicating critical damping (or pure exponential rise for ℜe(γ ) >0) 
of the instability. 

4. The salient parameters in increasing areas of stability are the shunt impedance Rs 
(minimize) and the cavity Q (maximize.) Note however, that the solutions shown 
are yet a function of Q, i.e., through terms with ωs/α in the reduction of 28). 

XII. Results with minimal generator power 
To minimize power from the generator, it would seem desirable to maintain relation 26) 
and thus eliminate reflected power. However, there are some possible reasons to violate 
this injunction as will be discussed later. In this Section Eqn. 26) is assumed. As 
mentioned, the stability criterion is automatically fulfilled and the instability is best 
damped if 26) is followed. Only a scattering of examples will be presented, but the effect 
of variations will be apparent. In each case assume two (there were four in the original 
proposal) 503-MHz cavities, one 145-MHz cavity, and one 73-MHz cavity. There may 
not be space in the ring for four RF stations. 

It is evident that a linear rise in voltage Vc=V1 +ΔV N/N0 and adjusting ΔV by setting φc 
near π/2 in 17) produces a stable bunch shape and minimizes cavity voltages, according 
to the formalism presented. The “best” value for V1 is determined by simulation although 
particle loss is not seen for somewhat lower voltages as discussed above. Results are 
accordingly presented for the voltages 

V503=1.2+4.6x10-12 N  MeV for 1x1011 particles 

V145=0.31+4.0x10-13 N  MeV for 3x1011 particles 31) 

V73=0.15+9.6x10-14 N  MeV for 6x1011 particles 

Table II shows RF-parameter results for 4 pulses in the ring. Ib is the Fourier component 
of the total beam current. Here the detuning frequency is calculated from the definition 
24) for the minimum power phase 26) using the stated cavity Qs. The cavity powers (at 
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full voltage) were calculated using the given transit-time factors, but these are not 
included in the cavity voltages. Blanks in the stability tuning angle (5th column) indicate 
that the sine of column 4>1.  

Table	
  II.	
  RF	
  system	
  parameters	
  for	
  4	
  pulses	
  in	
  the	
  ring	
  
	
  

protons/pulse Ib (A) Vc (MV)  
stability 
φ0 (deg) 

min pow 
 φ0 (deg) 

detun 
freq 

(kHz) Pcav (kW) 
        

503 MHz Rs=43 4 pulses 2 cavities     
0 0 1.20 <-1 - 0 0.0 54.3 

2.5E+10 0.05 1.32 -2.61 - -37.5 -12.5 65.3 
5.0E+10 0.09 1.43 -1.42 - -54.7 -22.9 77.2 
7.5E+10 0.14 1.55 -1.02 - -63.0 -31.8 90.1 
1.0E+11 0.19 1.66 -0.82 -62.3 -67.6 -39.5 104.0 
2.0E+11 0.38 2.12 -0.53 -74.2 -75.3 -61.8 169.6 

        
145 MHz Rs=9.8 4 pulses 1 cavity     

0 0 0.31 <-1 - 0 0 10.2 
7.50E+10 0.14 0.34 -0.99 -49.9 -63.8 -14.8 12.3 
1.50E+11 0.28 0.37 -0.54 -73.8 -75.0 -27.1 14.5 
2.25E+11 0.42 0.40 -0.39 -78.6 -79.1 -37.6 17.0 
3.00E+11 0.56 0.43 -0.31 -80.9 -81.1 -46.7 19.6 
6.00E+11 1.13 0.55 -0.20 -84.3 -84.3 -73.0 32.1 

        
73 MHz Rs=4.4 4pulses 1 cavity     

0 0 0.16 <-1 - 0 0 6.1 
1.50E+11 0.28 0.17 -0.56 -72.9 -74.3 -12.1 7.2 
3.00E+11 0.56 0.19 -0.30 -81.1 -81.3 -22.3 8.4 
4.50E+11 0.84 0.20 -0.22 -83.7 -83.8 -31.2 9.8 
6.00E+11 1.13 0.22 -0.18 -84.9 -85.0 -38.8 11.2 
1.20E+12 2.25 0.27 -0.11 -86.8 -86.8 -61.4 17.9 

 

Similarly, the results for a single pulse in the ring are shown in Table III. 

Table	
  III.	
  RF	
  system	
  parameters	
  for	
  1	
  pulse	
  in	
  the	
  ring	
  

protons/pulse Ib (A) Vc (MV)  
stability 
φ0 (deg) 

min pow 
 φ0 (deg) 

detun 
freq 

(kHz) Pcav (kW) 
        

503 MHz Rs=43 1 pulse 2 cavities     
0 0 1.20 <-1 - 0 0.0 54.3 

2.5E+10 0.012 1.32 -10.43 - -10.9 -3.1 65.3 
5.0E+10 0.023 1.43 -5.67 - -19.4 -5.7 77.2 
7.5E+10 0.035 1.55 -4.08 - -26.1 -8.0 90.1 
1.0E+11 0.047 1.66 -3.29 - -31.3 -9.9 104.0 
2.0E+11 0.094 2.12 -2.10 - -43.6 -15.5 169.6 
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145 MHz Rs=9.8 1 pulse 1 cavity     
0 0 0.31 <-1 - 0 0 10.2 

7.50E+10 0.035 0.34 -3.94 - -26.9 -4 12.3 
1.50E+11 0.070 0.37 -2.15 - -43.0 -7 14.5 
2.25E+11 0.11 0.40 -1.55 - -52.3 -9 17.0 
3.00E+11 0.14 0.43 -1.25 - -58.1 -12 19.6 
6.00E+11 0.28 0.55 -0.80 -63.6 -68.3 -18 32.1 

        
72 MHz Rs=4.4 1 pulse 1 cavity     

0 0 0.16 <-1 - 0 0 6.1 
1.50E+11 0.070 0.17 -2.25 - -41.6 -3.0 7.2 
3.00E+11 0.14 0.19 -1.22 - -58.7 -5.6 8.4 
4.50E+11 0.21 0.20 -0.87 -59.5 -66.4 -7.8 9.8 
6.00E+11 0.28 0.22 -0.70 -67.7 -70.7 -9.7 11.2 
1.20E+12 0.56 0.27 -0.44 -76.8 -77.5 -15.3 17.9 

The	
  voltages	
  cited	
  are	
  considered	
  nominal,	
  but	
  higher	
  voltages	
  should	
  be	
  
provisioned	
  in	
  actual	
  design	
  to	
  enhance	
  stability,	
  consistent	
  with	
  allowable	
  
momentum	
  spread.	
  	
  
XIII. Remove restrictions on generator power to decrease tuning range 
It is possible to restrict the cavity tuning range by allowing the forward generator current 
to increase above its minimal value. This may be desirable in reducing the tuning section 
range and power. It is then necessary to vary the generator phase (relative to the beam 
current) from 90° to a value such that the cavity voltage remains constant and orthogonal 
to the beam current on a phasor diagram. This situation is shown in Fig. 17. 

	
  
Fig. 17. Phasor diagram for the (controlled) RF system when the generator current is no 
longer minimized.  
As the beam current changes during injection, the minimal phase (Eqn. 27) starts from 
zero and increases with the current.  We consider adjusting both the generator current Ig 
and phase φg so that the cavity voltage is correct and the sweep of φ0 is reduced, 
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appropriate to the constraints of Eqn. 27 and perhaps Eqn. 26).  The price is power 
reflected from the cavity and lost in the isolator as well as more complex tuning.  

Calculation of these quantities for a transmission line matched to the cavity (unity 
coupling constant) is straightforward and has been done in all generality for a given 
matching in [13]. Assuming this matching the following relations are obtained: 

PF =
Vc
2

Rs
1+ 1

4
IbRs
2Vc

+ tanφ0
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 31) 

tanφg = −
2

IbRs
2Vc

+ tanφ0
 32) 

where PF is the forward power of the generator. For the matched condition 19) our 
conditions in the previous Section are fulfilled with the disappearance of the denominator 
in Eqn. 23), i.e., φg=π/2, and the forward power PF=Vc

2/Rs. 

Since, to our approximations, the system behavior is independent of time as long as the 
RF programming can be followed, characterize the sequence of events as  

n = N
N0

 33) 

where N0 is the maximum number of protons injected, 1x1011, 3x1011, and 6x1011 
particles, for the frequencies cases, respectively. Consider a linear voltage ramp as was 
done in Tables II and III, 

Vc =V1 + nΔV  34) 

To characterize the tuning, vary tanφ0 linearly from some initial value to the maximum of 

the minimum-power value tanφmax = − IbmaxRs
2Vmax

(with Vmax equal to the final value of Vc ,

Vmax =V1 + ΔV ) as seen from 26), i.e., 

tanφ0 = n + 1− n( )κ⎡⎣ ⎤⎦ tanφmax  35) 

so that, when κ = 0, the tangent of the detuning angle is directly proportional to n and 
when κ =1 the detuning equals φmax throughout changes in n. This is acceptable as long as 
tanφ0 is within the stable region, Eqn. 27).  This variation with n produces more-
digestible results than other power laws. We can also add an angle to φmax, but that has 
proven ineffective. 

145 MHz case 

Following the above prescription 34) and 35), there are many variations to explore that 
are not all described in this space. A reasonable solution for 145 MHz with 3x1011 ppp 
and 4 pulses is found for κ=0.5 with a −24 kHz tuning frequency change during injection 
(about half the value needed for the minimal power case) and a generator forward power 
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of initially 36 kW decreasing to the nominal value of 20 kW at injection end, to be 
maintained for storage. The final tuning angle equals the minimum-power tune. Results 
for the 145 MHz case are shown in Figs. 18 and 19. 

 

Fig. 18. Exemplary plots at 145 MHz of the tuning angle (left) and frequency (right) 
versus the relative number of particles injected as a function of the tuning parameter κ 
using relations 34) and 35) for the tuning program. There are 4 pulses in the ring and 
N0=3x1011 It is evident that κ=0 is not a viable solution. 

 

Fig. 19. Plots at 145 MHz of the generator power (left) and phase (right) versus the 
relative number of particles injected as a function of the tuning parameter κ  using 
relations 34) and 35) for the tuning program. 
The tradeoffs are apparent: 
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-­‐ The detuning range can be decreased by varying the generator output. In fact, zero 
dynamic cavity tuning is possible at the expense of power and large variation in 
the generator phase, i.e., the cavity can be detuned dc (κ=1) some 47 kHz. 

-­‐ The technique drives the phase into a lower tuning angle that has less instability 
damping; see Figs. 15, F1, and F2. 

-­‐ Power higher than the minimum is only needed during injection and perhaps 
around extraction. Storage can proceed at minimum power.  

-­‐ Note that the cavity voltage is kept at the correct beam-dynamics values 
irrespective of the sequencing. 

-­‐ There is no gain in speed by the above subterfuge. The cavity fields must be 
changed in either case and are limited by the cavity time constant. 

73 and 503 MHz case 

We forbear from including plots for the other two frequencies. Qualitatively, the same 
results are obtained with a likely reduction of tuning frequency by a factor of two and no 
tuning is required for κ=1 Estimates of any gains can be obtained by inspection of Tables 
II and III or a particular case can be easily calculated by the above formulae. 

XIV. Single-pulse scenarios 
The 4-bunch case has so far been emphasized as the more difficult and more rewarding 
option. Three scenarios have been described above in Section I and more fully in 
reference [1]. Option 1 specifies injection of a single full pulse and immediate extraction 
repeated each macropulse. Option 3 has a 120 µs injection period with immediate 
extraction 5 times in a macropulse, easiest if the extraction kicker can be cycled so 
rapidly. This allows 2x1011 protons in each pulse. These two scenarios can serve as a 
fallback position for operation while the 4-pulse case is being developed. They are far 
simpler than the 4-pulse case in that the ring current is lower, storage times are short, and 
stability does not need to be maintained after each extraction. Hence, they are deemed 
worthy of further elaboration. 

Consider the 73-MHz case as the manifestly most difficult, but as currently favored. Here 
we show plots for the RF control of these two options as for the 4-pulse case in Sections 
XI and XIII. 

Option 1 

This requires 6x1011 protons accumulated in 360 µs in a single bunch. The beam 
dynamics are unchanged so that the required cavity voltage is the same as for the 4-pulse 
case. We show in Fig. 20 the equivalent of Fig. 15 and in Fig. 21 the equivalent of Figs. 
18 and 19. Numbers are available in Table II. 
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Fig. 20. Stability diagram as discussed in Section X1 circa Fig. 15 for the single full 
bunch at 73 MHz. 

 

 
Fig. 21. Tuning diagrams as discussed in Section XIII circa Figs. 18 and 19 for the single 
full bunch at 73 MHz. 
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Option 3 

The beam dynamics for this case (accumulation of 2x1011 particles in 333 turns) is quite 
different than for the full pulse. One could inject with the parameters for 6x1011 particles 
stopping the voltage increase at ΔV/3 as in Table II, but the momentum spread is then 
larger than need be as well as requiring greater power and tuning. Table IV shows the 
beam dynamics quantities for this case as in Table I and II.  

Table	
  IV.	
  RF	
  system	
  parameters	
  for	
  1	
  pulse	
  in	
  the	
  ring	
  with	
  2x1011	
  protons 

 ΔV V1 min V1 low V1 good Vstorage δp/p (%) 

145 MHz 0.077 0.086 0.15 0.21 0.23 to 0.29 0.25 to 0.30 

73 MHz 0.019 0.021 0.040 0.062 0.059 to 0.081 0.19 to 0.22 

 

For the 73-MHz case at this reduced charge, the equivalents of Figs. 20 and 21 are shown 
below in Figs. 22 and 23. Since the voltages have been reduced along with the beam 
current, tuning is similar to the full bunch case. 

Fig. 22. Stability diagram as discussed in Section X circa Fig. 15 for the single bunch 
with 2x1011 protons at 73 MHz. 
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Fig. 23. Tuning diagrams as discussed in Section XII circa Figs. 18 and 19 for the single 
bunch with 2x1011 protons at 73 MHz. 

 

XV. Other stability considerations 
We have limited discussion here to first-order stability and beam dynamics. To augment 
the conclusions presented, we note that:  

-­‐ Each extraction in the 4-bunch case must be accompanied by a change in the 
cavity (or generator) phase to prevent particle loss. Changes in the ring current 
during injection must also be followed by cavity tuning and voltage changes. A 
finite cavity response time cannot be avoided and studies are underway to develop 
stability criteria and tuning tactics. Hardware strategies include decreased cavity 
Q and lowered shunt impedance as well as appropriate feedback setups.  

-­‐ Despite having a smaller Q, the lower frequency cavities have a larger time 
constant, detrimental to rapid tuning. Additionally, with the lower voltages, 
synchrotron frequencies are lower at the smaller required voltages, so that 
distribution of particles into symmetrical distributions is slower. 
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-­‐ Although fast cavity detuning can be avoided (κ=1 in Sections XIII and XIV,) dc 
tuning should be available to empirically accommodate realistic conditions. 

-­‐ Ferrite-loaded inductances were placed in the PSR to compensate space charge 
forces without increasing momentum spread [14]. Because of the ferrite 
properties and container dimensions, a resonance at the 26th (!) harmonic with 
consequent beam instability was seen and removed by heating to change the 
ferrite properties. While the long-bunch mode works well with the inductors, the 
broader frequency spectrum of the short-bunch mode may make the present 
inductors a showstopper. Since these devices were installed to further compensate 
space charge (provide an inductive longitudinal force against the beam current,) it 
is likely that an increase in the 2.8-MHz buncher voltage would (better) replace 
the inductors.  

-­‐ An important issue has been cited in Section VIII, regarding the effect of the 
long-pulse buncher on the short-pulse beam, and conversely. It seems apparent 
that the unused cavities cannot remain idle, but must be kept with zero gap 
voltage. Additionally, closer evaluation of the remainder of the ring-impedance 
frequency structure would be appropriate to assess the effect of undesirable 
resonances. 

-­‐ Investigation of beam stability during injection and single-bunch extraction may 
change the magnitude of some of our quantities, including cavity parameters. 
Such a study will be presented in a future publication. 

Higher-order instabilities are under study. Prominent here is the effect of bunch-to-bunch 
coupling for the 4-bunch case. Again, effects of the ring-impedance frequency spectrum 
needs further study. 

It is not clear that existing codes will substantially improve the results presented here, but 
such studies need to be done to provide a self-consistent beam distribution. Note that 
preliminary runs with ESME have corroborated the magnitude of parameters cited for 
stable beam dynamics. 

XVI. Summary and conclusions 
Simply said, this work has come to conclusions about the first-order beam dynamics and 
RF control of the beam in a short-pulse mode, providing parameters deemed sufficiently 
accurate for initial hardware studies to proceed. An analytic formalism has been 
developed for tracking beam envelopes during injection and ranges of minimal buncher 
voltages have been calculated. The conditions for RF stability of a stored beam have been 
evaluated for the three requested modes of operation to specify needed tuning measures. 
Programs now exist for further exploration of parameters in the present context. Work 
with existing (or ad hoc) ring tracking codes needs to be done to verify our conclusions 
as does further probing into the morass of instability theory. Some assurance of 
correctness is had from ESME calculations and comparison of the PSR long-bunch 
operation with predictions, but without inclusion of the effect of beam on the RF system. 

Note that injection and extraction stability, either from the RF or beam dynamics 
standpoints, have not been evaluated here but will be included in a further publication as 
necessary for a denouement of the study. Conclusions about RF storage voltages, tuning 
numbers, and other system parameters will likely change from this text. 
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Several caveats have been noted, including mode-buncher interaction, existing structures 
in the present ring that may be incompatible with short-bunch operation, and injection 
and extraction stability with the multi-pulse short-bunch mode. Other issues are included 
in reference [1]. 
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Appendix A - Pulse shortening in the extraction line 
Resolution of the WNR neutron pulse depends on the pulse width at the higher neutron 
energy range (>10 keV for the 10-ns pulse, see [1].) The 10-ns pulse provides greater 
intensity than the 1.5 ns pulse but at 1-MeV neutron energy has an order of magnitude 
poorer resolution. If sub-nanosecond bunches can be obtained by RF bunching in the 
extraction line, the neutron resolution will be dominated by target scattering and 
resolution better than 10-3 is achievable up to 10’s of MeV. We look here at this prospect 
and find bunching impractical to attempt with the usual RF means. (Here we keep the full 
value of c in determining velocities, but retain the proton mass in eV and momentum in 
eV/c.) Use of a pulsed-power device is also unlikely. 

Consider an uncorrelated beam with full time extent 2Δt and momentum spread 2Δp 
relative to the beam momentum (our Δp is usually denoted by δp/p.) The beam matrix in 
t,p space is given by  

 

σ 0 =
Δt( )2 0

0 Δp( )2
 A1) 

That the beam in this space is not elliptical, as A1) implies, matters little in the results 
that are virtually independent of the value of Δp for our range. Space charge effects are 
omitted from the calculation as unimportant. A linear voltage with time is assumed 
implying a cavity with frequency greater than twice the ring buncher. The beam is 
correlated early in the extraction line, with a voltage V at the beam edge, then allowed to 
drift longitudinally a distance L=50 m to the target. The matrices describing these steps 
are, respectively,- 

 Rbuncher =
1 0

−mγV
p2Δt 1  and Rdrift =

1 L
cβγ 2

0 1
, A2) 
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where p is the beam momentum 1.46 GeV/c. Transformation to the target by 
σ = RdriftRbuncherσ 0 RdriftRbuncher( )T yields for the beam length squared 

 σ 11 = Δt 2 − mVLΔt
βcγ p2

+ L
βcγ 2

m2γ 2V 2

p4
+ Δp2

⎛
⎝⎜

⎞
⎠⎟
L

βcγ 2 − mγVΔt
p2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 A3) 

The bunch length at the target, from this, the square root of A3) is shown as a function of 
V for our three bunch lengths in Fig. A1. For each bunch length an initial momentum 
spread of 0.003 was used. Sub-nanosecond beams are obtained (perhaps further limited 
by space charge,) but the buncher voltages needed are much too high to implement. Note 
further that a sinusoidal buncher will have peak voltages greater than twice those of Fig. 
A1 to do linear bunching.  

As a sanity check, we note that bunching at 750 keV to obtain a 3-micropulse intensity 
for WNR is readily done over 10-ns intervals at LANSCE. Use of A3) at this lower 
energy concludes that V~27 kV to form a WNR pulse and 18 kV to form the 201 MHz 
pulses, reasonable if not exact voltages. 

 
Fig. A1. Pulse length at WNR target 4 after a longitudinal drift of L=50 m vs. buncher 
voltage of a linear waveform measured at the bunch edges. 
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Appendix B.  Derivation of tracking equations 13) and 14) 

The first term in Eqn. 13) proceeds from the energy gain per turn δE = −V0 sinφ  and the 
relativistic expression for the change in the relative momentum  

 Δ δ p
p

⎛
⎝⎜

⎞
⎠⎟
= 1
β 2

δE
Etotal

= 1
β 2

δE
γ mp

. B1) 

The second term is derived from the expression for the electric field Eqn. 2) with the 
assumed parabolic distribution of charge along the z axis 

 λ = 3N
4zm

1− z
2

zm
2

⎛
⎝⎜

⎞
⎠⎟
,  B2) 

where zm is the maximum extent of the distribution. Using z=Rφ/h, the electric field 
becomes 

 Ez =
3πgrpmph

2N
γ 2R2φm

2  B3) 

The change in momentum for one turn with period T is  

 Δ δ p( ) = EzT = 2πR
β

Ez .  B4) 

Finally dividing by the momentum mpβγ , the second term is verified. 

------------- 

Eqn. 14) comes directly from the definition of the ring slippage factor for each turn 

 ΔT =ηT δ p
p  B5) 

Using the relations T = 2πR
β

 and Δφ = − hβ
R

ΔT , Eqn. 14) is obtained. Alternatively, 

integrate Eqn. 7. 

	
  

Appendix C  Field outside the bunch 
To our approximations, the field along the axis outside the bunch in the beam tube varies 
inversely as the distance from the bunch center. This was easily added as a piecewise 
continuous function. Otherwise, particles that move outside the desired bunch width will 
be further repelled, in violation of the model of a given bunch width. This addition makes 
little difference in the stable voltages. To illustrate the fields involved, Fig. A1 shows the 
momentum kick given per turn by the buncher and space charge for the case illustrated in 
Fig. 10 at 3x1011 particles/pulse. 



	
   40	
  

 
Fig. B1. Impulse given by buncher (green), by space charge (red), and by combined 
buncher and space-charge (black) terms per turn for the case of Fig. 10. 

Appendix	
  D	
  	
  Beam	
  transformation	
  around	
  the	
  ring	
  

The beam pulse passes through the buncher where it is influenced by the first term in 
Eqn. 13). Unlike the assertion of Eqns. 13) and 14), the space-charge forces influence the 
beam in traveling around the ring and will give a somewhat different result for the change 
in momentum and phase. To assess this, consider dividing the course through the ring 
into n divisions. We then have for each division 

Δφ = −
2πhη
n

δ p
p ≡

A
n
δ p
p

Δ
δ p
p

⎛
⎝⎜

⎞
⎠⎟
=
3πgrph

2N
nβ 2γ 3Rφm

3 φ ≡
B
n φ

 C1) 

defining the elements of the matrix 

R =
1 A

n

B
n 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

n

 operating on the vector 
φ
δ p
p

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 C2) 

to obtain the changes in the vector for one ring turn. Expanding R and taking the limit 

lim
n→∞

R =
cosh AB A

B
sinh AB

B
A
sinh AB cosh AB

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 C3) 
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This then provides the beam transformation around the ring. For small enough values of 
AB this reduces to 13) and 14). To see the effect on our calculation, evaluate C3) for the 
503 MHz case (the cavity voltage doesn’t matter here.) 

R∞ = 1.027 225.59
0.000242 1.027

⎡

⎣
⎢

⎤

⎦
⎥  C4) 

whereas without the correction (n=1) the matrix is 

R1 =
1 223.6

0.000239 1
⎡

⎣
⎢

⎤

⎦
⎥  C5) 

thus having small effect on the calculation results. 

 

Appendix E Beam-injection-tracking examples 
We follow the 145-MHz injection tracking from voltages below stability to well above in 
E1 to E3 below in each case with injection according to Eqn. 15) proceeding in 500 turns. 
E4 tracks the PSR long-bunch mode for allegedly stable settings with injection over 1738 
turns. In each case φc was set at π/2 to determine ΔV by Eqn. 17). The left-hand plot 
shows the motion in the bucket for a particle starting its motion at −3π/4 and −3π/8, the 
center plot the momentum kick/turn, and the right-hand plots the change in phase/turn. 

E1. Storage voltage Vc set at minimum voltage 0.24 MV from Eqn. 9) with V1 calculated 
from Eqn. 19). 0.128 MV. The storage voltage identically equals the sum of V1 (Eqn. 19) 
and ΔV (Eqn. 17) as calculated for this case, i.e. the static total Eqn. 9). As expected, 
unstable motion shows the phase monotonically increasing with turn number. The center 
and right-hand plots are certainly not accurate since the space-charge model does not 
correctly describe the situation, but are merely an indication of particles leaving the 
bunch and show qualitatively the expected behavior for particles in the continuum. 

 

 
E2. V1 set at simulation minimum 0.235 MV (V1 low in Table I) and ΔV at the calculated 
value 0.115 MV from 17). Motion is stable for >10,000 turns but becomes unstable at V1 

≤ 0.232 MV. Clearly a “threshold” but unconvincing since the calculation requires a 
definite bunch length. 
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E3. V1 set at guess 0.31 for “small-enough” excursions at bunch ends. (V1good in Table I) 

	
  
E4. V1 set at 0.015 MV, ΔV calculated 0.0057, storage voltage 0.0207 MV for the PSR 
long-bunch mode. (V1 good in Table I) 

 
 
Appendix F Damping-time plots for 503 and 73 MHz 
Plots of damping time for the voltages and particle numbers as explained in Section X. 
Although the plot of the roots’ imaginary parts are not shown, such plots are much like 
Fig. 16, mainly showing that the motion is critically damped for phase greater than given 
by Eqn. 26), the minimum generator power. The result for 73 MHz looks unfavorable but 
the cavity parameters used may be unrealistic. 
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Fig. F1. Plot of damping time/cavity response time versus phase φ0 as a function of 
number of particles/pulse for 4 pulses in the ring and a buncher frequency of 503 MHz.   

	
  

Fig. F2. Plot of damping time/cavity response time versus phase φ0 as a function of 
number of particles/pulse for 4 pulses in the ring and a buncher frequency of 73 MHz. 
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Dated postscript 
After further work on the injection and stability issues cited, the following document 
were issued concerning RF control and beam-dynamics interface during injection and 
extraction. 

Andrew.	
  J.	
  Jason,	
  “Stability	
  and	
  parameter	
  determination	
  for	
  injection	
  and	
  extraction	
  
in	
  the	
  PSR	
  short-­‐bunch	
  mode,”	
  LA-­‐UR-­‐13-­‐20496. 
 
	
  
	
  


