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Orbit-averaged guiding-center Fokker—Planck operator
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A general orbit-averaged guiding-center Fokker—Planck operator suitable for the numerical analysis
of transport processes in axisymmetric magnetized plasmas is presented. The orbit-averaged
guiding-center operator describes transport processes in a three-dimensional guiding-center

invariant space: the orbit-averaged magnetic-flux invariant @, the minimum-B pitch-angle
coordinate &, and the momentum magnitude p. © 2009 American Institute of Physics.
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I. INTRODUCTION

Transport processes play a dominant role in the long-
time behavior of strongly magnetized plasmas. In the ab-
sence of wave-induced (or turbulent) transport, the long-time
magnetic confinement of plasmas is based on the small di-
mensionless parameter ez=p/Lg<<1 (the ratio of the char-
acteristic gyroradius p and the magnetic nonuniformity
length scale Lg). For such plasmas, the dimensionless param-
eter €,=Lg/\, (\, being the mean free path) can be used to
describe different classes of collisional transport processes,
such as classical collisional transport' (\, <L) and neoclas-
sical “collisionless” transport2 (N,>Lg). The quasilinear
(wave-induced) transport processes associated with rf-
induced heating and current drive, on the other hand, cause a
slow time evolution of the background plasma distribution
(as a result of one or more wave-particle resonances) with a
time-scale ordering that is quadratic in a small parameter
€,=|B,|/|Bo|<1 associated with the rf-wave amplitude.™*

Because the long-time behavior of the plasma distribu-
tion function for each particle species depends on competing
collisional and quasilinear transport processes, an accurate
treatment of both transport processes in realistic magnetic
geometry is a crucial element in determining the equilibrium
and behavior of fusion plasmas. For this purpose, the
use of dynamical-reduction methods (e.g., guiding-center
transformation™®) can yield reduced transport operators (in
phase space) that possess attractive numerical properties in
addition to accurately representing collisional’ and/or
quasilinear4 transport processes of interest.

The purpose of the present paper is to present a brief
derivation of a general orbit-averaged guiding-center
Fokker—Planck operator suitable for numerical studies of
transport processes in general axisymmetric magnetic geom-
etry. This reduced Fokker—Planck operator represents drag
and diffusion processes in a three-dimensional space com-
posed of guiding-center invariants. In this reduced formula-
tion, the conjugate orbital angles have either been eliminated
from the guiding-center Fokker—Planck operator by averag-
ing or are absent by axisymmetry.

The remainder of the paper is organized as follows. In
Sec. II, we discuss the guiding-center Hamiltonian dynamics
of charged particles in unperturbed axisymmetric magnetic
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geometry. In Sec. III, we introduce the guiding-center
Fokker—Planck operator previously derived for general mag-
netic geometry and arbitrary guiding-center orbit topology.7
In Sec. IV, we first introduce the orbit-averaging operation
for standard and nonstandard guiding-center orbits in axi-
symmetric tokamak geometry. Next, we present the orbit-
averaged guiding-center Fokker—Planck operator and discuss
its properties. In Sec. V, we briefly discuss the derivation of
the bounce-center Fokker—Planck operator obtained by per-
forming the bounce-center phase-space transformation®’ on
the guiding-center Fokker—Planck operator and discuss its
connection to the orbit-averaged guiding-center Fokker—
Planck operator derived in the previous section. Lastly, we
summarize our work in Sec. VI and discuss its applications.

Il. GUIDING-CENTER DYNAMICS IN AXISYMMETRIC
MAGNETIC GEOMETRY

The existence of the small parameter ez<<1 in magneti-
cally confined plasmas forms the basis of the unperturbed
guiding-center dynamical reduction,’ in which the fast gyro-
motion time scale associated with the gyroangle £, (with
égEel}lQ), with the gyroaction J,=uB/{) acting as its
canonically conjugate (adiabatic) invariant, is asymptotically
decoupled from the parallel and cross-field motions of a
guiding-center particle. The unperturbed guiding-center
dynamics is expressed in terms of the guiding-center position
X and the parallel velocity v,, where the guiding-center
velocity

A

. . b A . A
X=vyb+e—X(uVB+ mvﬁb -Vb) =uyb + ezvy
mi)
(1)

is decomposed in terms of a parallel velocity v, = b-X along
a field line and a slower cross-field drift velocity vy due to
weak magnetic-field nonuniformity. The guiding-center par-
allel acceleration,

Vs

U=—5<6+€Bv_> VB, (2)
I

guarantees that the guiding-center kinetic energy,
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e="v e up= (3)
= —0Uy + = -,
L M m

is a constant of motion (£=0 for a time-independent mag-
netic field and in the absence of an electric field). In Egs. (1)
and (2), the guiding-center magnetic-moment invariant u
and the coordinates (X,v;) in the reduced four-dimensional
guiding-center phase space are expressed as asymptotic ex-
pansions in powers of the small parameter eg, where first-
order corrections explicitly take into account magnetic-field
nonuniformity.5

We note that, while a nonrelativistic guiding-center for-
mulation is considered here, its generalization to a relativistic
formulation (appropriate for fast electrons) can easily be
accommodated.'” The kinetic energy (3) is thus replaced
with £=(y—1)mc?, the parallel velocity v, is replaced with
the relativistic parallel momentum p;=+ymuv;, and the mag-
netic moment u is replaced with the relativistic magnetic
moment u=|p,|?/2mB, where the relativistic factor is
y=(1+2uB/mc*+pi/m*c?)'"?. Additional details on relativ-
istic guiding-center dynamics in axisymmetric magnetic ge-
ometry can be found in Ref. 11.

A. Axisymmetric magnetic geometry

The general axisymmetric magnetic field considered in
the present paper is expressed in terms of three equivalent
representations: 12

Vo X Vi+q(h) VX V0,
B?9X/a¢p+B? X190,

where the two-covariant, covariant, and contravariant repre-
sentations (from top to bottom, respectively) are expressed in
terms of the (poloidal) magnetic flux ¢, which satisfies the
condition B- V=0 (i.e., magnetic field lines lie entirely on a
constant-¢ surface), and the poloidal and toroidal angles 6
and ¢. The toroidal and poloidal components of the magnetic
field (4) are B,,,=B,4/R=B’R, where R=|dX/d¢|=|V|™",
and By =|Vy|/R=B"|9X/36|. The safety factor (1) appear-
ing in the two-covariant representation is defined as

=" =" (5)

We note that, because of the magnetic-flux condition B- Vs
=0, the covariant component B,=-B (V8- V)/|Vy{* in Eq.
(4) vanishes only if the coordinates ¢ and 6 are orthogonal.
The spatial Jacobian )V associated with the coordinates

(.0,8) is
V=(VyxXVh-V)'=(B-VO ' =(BYH !, (6)

where BY is assumed to be positive. Lastly, the infinitesimal
length element along a magnetic field line is

B
ds = E,dﬁ. (7)

Note that, according to the standard axisymmetric tokamak
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ordering (with B=B,,), the ratio B/ B can also be expressed
as B/B=B/[B,,/(qR)]=gR, so that we recover the standard
approximation ds=qRd#.

B. Guiding-center motion in axisymmetric magnetic
geometry

The guiding-center motion in arbitrary magnetic geom-
etry described by Egs. (1) and (2) possesses two constants of
the motion: the total guiding-center energy (3) and the
guiding-center magnetic moment u. Guiding-center motion
in general axisymmetric magnetic geometry (4) is also char-
acterized, according to Noether’s theorem, by a third con-
stant of the motion: the toroidal canonical guiding-center
momentum

X (e A e

pPy= I}s'(;A+mUb)=—;(¢—PB¢)~ (8)
Here, the vector potential A=—iV ¢+, () VO (with
qg=di,/di defined in terms of the toroidal magnetic flux
ior) Was obtained from the two-covariant representation in
Eq. (4), where the coordinates (i, 6, ¢) now describe the
guiding-center position X, p=v,/{) denotes the parallel
gyroradius, and B,=B-JX/d¢ denotes the covariant com-
ponent of the axisymmetric magnetic field.

The projection of the two-dimensional drift surface,”

y—pBy= ¥, 9)
onto the poloidal plane (X,Z) generates a closed curve
Y= 1}(0) parametrized by the poloidal angle 6 and labeled by
the guiding-center invariants (i, &, u):

WO,0 0.8, 0) = Y+ SY 0,03 ,E, ), (10)

where the “bounce-radius” Siy= J/—J/ represents the depar-

ture of the drift surface (10), labeled by Jf, from a magnetic
surface ¢ and o= %1 denotes the sign of v A guiding-
center orbit O is obtained either by integrating the guiding-
center equations of motion,

‘Z’EX'V'//:UME"V'//"' vy Vi = ez
(1)
éE X . V6=UH6 -Vo+ €pVp - Vo= UHB(}/B‘I‘ 6363,

for a given set of guiding-center invariants (¢, 1) or gen-
erating the orbit directly by the constant-of-motion method. 14

For each generic set of guiding-center invariants (,&, u),
there corresponds a unique guiding-center orbit O, which is
either a trapped-particle orbit (if the bounce-radius &y van-
ishes along the orbit), or a passing-particle orbit (if the
bounce-radius ¢ does not vanish). Nongeneric orbits" in-

clude the stagnation orbits (where =0 or v,BY/ B=—¢p0y
#0) and the pinch orbits (barely trapped orbits in the zero-
banana-width limit).

On each flux-surface ¢, the magnetic field amplitude is
assumed to vary monotonically between a minimum value
By(1) and a maximum value B (), located at the poloidal
locations 6y(#) and 60,(i), respectively. The turning points
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(., 6,) of trapped-particle orbits (4, €, ) are located on the

drift-surface label =, where the magnetic field reaches its
maximum value along the orbit and 51#(0;, 14,8, 1)
=(. Consequently, the X point separating trapped-particle
and passing-particle orbits parametrized by the drift-surface
label ¢ is located at the position [, 6;())].

While the magnetic moment w is an important invariant
for guiding-center dynamics, the pitch-angle coordinate

&ho; E ) =vyv=0\1 - uB(P/E (12)

is better suited in describing the transition between trapped-
particle and passing-particle orbits. In order to convert the
pitch-angle coordinate into a suitable guiding-center invari-
ant, we replace the guiding-center magnetic-moment invari-
ant u with'®

gO( J/’ g, 55 M)
V1 - uBy()/E  (for trapped-particle orbits),
o\'1 - uBy()/E (for passing-particle orbits).

(13)

The physical interpretation of the pitch-angle invariant &, can
be given in terms of its connection with the bounce-action
invariant J;,. With this definition, the trapped-passing separa-
trix given by the relation

1-(1-&)B,($)/By(h) =0,

which is an even function of &, and does not depend upon the
energy & (important for numerical applications).

The guiding-center Jacobian in coordinates (X,p,§,,)
is J,.= p?, while in terms of the coordinates (X, P.&0. ), it
is Joe0=p>|0&/ 9&)|=p*W|&/ &, where we used the definition
W(i, 0)=B(, )/ By(1)) with the relation

| =\N1-V(1-8&). (14)

Next, the spatial Jacobian in coordinates X=(,0,¢) is
V=[B)]™", so that the total guiding-center Jacobian in co-
ordinates (14, 6, d;p, &, L) is

Y& _ P_2<£ <
B?| ¢| By\BY| ¢

In the next section, we express a general guiding-center
Fokker—Planck operator in terms of the guiding-center in-

jE ng00=p

I

variants (i,p, &) in a form that will be suitable for orbit
averaging in Sec. IV.

lll. GENERAL GUIDING-CENTER FOKKER-PLANCK
EQUATION

The Fokker—Planck equationz"%’17 forms a paradigm for
the investigation of classical, neoclassical, and quasilinear
transport processes in plasmas. When written in terms of the
test-particle phase-space coordinates (x,p), the general
Fokker—Planck operator is expressed as a local partial-
differential operator in momentum spa(:e:2
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CUlxp) = - (Kf(x,m D M) (16)
p p
where the Fokker—Planck momentum-friction vector K and
the momentum-diffusion tensor D are functions of (x,p).
When representing collisional transport processes, for ex-
ample, these Fokker—Planck coefficients K=2'K[f'] and
D=3'D[f’] are expressed as integral operators acting on the
field-particle distribution f” (where the field-particle species
may coincide with the test-particle species). Hence, the
Fokker—Planck operator (16) may either be a linear, bilinear,
or nonlinear operator acting f, depending on the type of
transport problem one wishes to investigate.

While collisions and wave-particle interactions take
place locally in particle phase space z=(x,p), the transfor-
mation to reduced phase-space coordinates z (e.g., guiding-
center coordinates) will generically introduce transport coef-
ficients in the full reduced phase space. This implies that the
Fokker—Planck coefficients (K’,DY) in three-dimensional
particle-momentum space are replaced with six-dimensional

reduced phase-space Fokker-Planck coefficients (K%, D),
defined as

K*(z) = {Ki(z)—aza(?)] and
2 P
(17)
7% =B
b¥(z) = [ P i) 2 } |
op &pl 2=2(Z)

and the Fokker—Planck operator (16) transforms to

T (7 __li 7 ker— _aﬁa_f>:|
Clfl@) = 3&?{7(Kf D ) | (18)

where f(z)=f(z) is the particle distribution expressed in
terms of the reduced phase-space coordinates and 7 is the
Jacobian for the transformation z—z. The most important
aspect of the transformation to Eq. (18) involves the choice
of the new phase-space coordinates z. Note that the defini-
tions (17) for the reduced phase-space Fokker—Planck coef-
ficients require that the transformation z—z(z) and its in-
verse Zz—z(z) must be known up to the desired order in
magnetic-field nonuniformity.

One possible choice is to adopt a canonical action-angle
formulation,'®  where 2:(3,_6) includes the three-
dimensional action invariants J for magnetically confined
particles and their canonically conjugate angles @ (which are

ignorable coordinates by construction df/ 90=0). While the
three-dimensional action-space Fokker—Planck operator de-
rived by Bernstein and Molvig18 formally describes classical
and neoclassical transport processes in axisymmetric mag-
netic geometry, it is not suitable for numerical implementa-
tion since some of the action coordinates (e.g., the bounce
action J,) are not local coordinates. Hence, the action-space
Fokker—Planck operator does not describe local transport
processes, which makes the transport analysis of its results
difficult to interpret.

Another choice is to adopt local noncanonical guiding-
center coordinates”'® leading to the construction of a re-
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duced guiding-center Fokker—Planck operator. In a weakly
nonuniform plasma with a strong axisymmetric magnetic
field, for example, the reduced guiding-center Fokker—
Planck equation describes transport processes in a four-
dimensional space: the poloidal-flux and poloidal-angle co-
ordinates (i, ) in physical space and the energy and
magnetic moment coordinates (£,u) in velocity space,
which are invariants for the guiding-center motion. Here, the
reduction from six to four dimensions is associated with the
fact that the guiding-center plasma distribution is indepen-
dent of the gyroangle , (by definition) and the toroidal angle
¢ (by axisymmetry), so that transport along these ignorable
angles is irrelevant. While Zaitsev et al.'® considered the
lowest-order definitions (in magnetic-field nonuniformity)
for their choice of guiding-center coordinates, Brizard’ con-
sidered first-order corrections (eg=p/Lz<<1) as well. In both
works, classical collisional transport appears in Eq. (17) as a

result of the lowest-order relation &X/&p:—ls XT1/mQ
for the guiding-center position X(x,p)=x—p,(x,p), where
pOEISXp/ m() represents the lowest-order gyroradius. The
higher-order guiding-center corrections kept by Brizard’ are
consistent with the low-collisionality regime, where the
mean-free-path N,>Lp is longer than the magnetic-
nonuniformity length scale Lg.

A. Guiding-center Fokker—Planck operator

The derivation of a reduced Fokker—Planck operator that
is suitable for numerical implementation must begin with
finding local invariant coordinates that also allow relative
computational simplicity for realistic magnetic geometries.
In the present work, the exact invariants associated with the
time-independent axisymmetric magnetic geometry are the
kinetic momentum p= \% and the drift-surface label
=1y, (for trapped particles) or i, (for passing particles). As
our third invariant coordinate, we use the pitch-angle invari-
ant &, defined in Eq. (13), which allows an explicit repre-
sentation of the trapping and detrapping transport processes.

Once a set of invariant guiding-center coordinates
I“:(J/, p. &) is chosen (not necessarily action coordinates),
the transformation of the Fokker—Planck operator (16) can be
greatly simplified by writing it in Poisson-bracket form as

Clfl= = -\ (Kf - DY ), (19)

where the noncanonical Poisson bracket {---} is used to re-
place momentum partial derivatives dg/dp;={x’,g}. The sig-
nificant computational advantage of this Poisson-bracket for-
mulation (19) is based on the fact that Poisson brackets
transform naturally under the type of phase-space transfor-
mations considered in the present work (i.e., those generated
by Lie-transform methods).

The general guiding-center Fokker—Planck operator was
derived by Brizard’ as a result of the guiding-center dynami-
cal reduction of the Fokker—Planck operator (16):
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Coll[F1= (T IC[T, F]),
== (X' + pL (T K'F = T DX + pLF}, )} o0
(20)

where T,. and T;CI denote the pull-back and push-forward
(Lie-transform) operators associated with the guiding-center
transformation for a nonuniform magnetic field, (--->g de-
notes an average with respect to the guiding-center gy-
roangle ,, and {---},. denotes the guiding-center Poisson
bracket. In Eq. (20), the generalized gyroradius vector p,.
contains first-order corrections associated with magnetic-
field nonuniformity.

When we use the phase-space-divergence property of
Poisson bracket

1 9
{F’ G}gc = }E(j{F’Za}ch)s

where F and G are two arbitrary guiding-center phase-space
functions, we can write the divergence form of the guiding-
center Fokker—Planck operator (20):

1 9 F
M P R

where J is the total Jacobian (15). The guiding-center
Fokker—Planck friction components,

Ko =(T,K-A%,, (22)

ColF]=

and the guiding-center Fokker—Planck diffusion components,
aff — o\ T -1
Dgc - <(A ) : Tch : Aﬂ>g’ (23)

are expressed in terms of the guiding-center push-forward
expressions TgclK and T;D of the particle momentum-space
Fokker—Planck friction vector K and diffusion tensor D, and
the vector-valued projection coefficients

9Z* 9Z*
AY={X+p.Z%,. =A% - VZ*+ A*— + A*—. (24)
7 o

Here, the guiding-center vector-valued projection coeffi-

cients in (X,&, u) space,7

AX=b X I/(mQ) =— (AX)T

Af=pJm (25)

A* = (Q/B) d pdac,,

are constructed from the guiding-center Poisson-bracket ex-
pressions involving the guiding-center push-forward of the
particle posmon T X=X+p,, where the generalized gyro-
radius p.= Tgcp and the generalized guiding-center momen-
tum

d,.X d,p
E-I-—l — ( gc gc s) 26
Pe=Tpp=m|= =+~ (26)

contain first-order corrections associated with the guiding-
center transformation. Note that, while the projection coeffi-
cients A® and A* in Eq. (25) retain first-order corrections in
magnetic-field nonuniformity, we omitted first-order correc-
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tions in AX since they yield second-order contributions in the
final expressions for Eq. (21).

B. Guiding-center projection vectors

Using the definitions for the invariant-space coordinates
I“=(,p, &), the guiding-center vector-valued projection co-
efficients A%= (A%, A?,A%) are expressed as’

A

- _ b B
AV = AX'VI,U:EXVI/I, (27)

APEAfal:&

& (28)

9%
I

=<1—§§) (&_&&_pe) ALY P
2&, m&  uB ¢, d’ﬂ '

We now discuss the physical nature of the projection vectors
(27)-(29).

0
Abo= AX-VgO+Afﬁ+A
9E

1. Guiding-center radial projection
Using the magnetic representation (4), the guiding-
center radial projection vector (27) becomes

A

_ b _
AV=— XV
m{) v

- é[lv@lz V- q(Vi X Vo) X Vi

c|Vyf
=- ; 32 VlﬂX’ (30)

where we introduced the anglelike coordinate x= ¢—q()6,
such that the two-covariant representation of the axisymmet-

ric magnetic field (4) becomes B=VyXxVy. Here,
V0= (VX VO) X ViJ/|Vif* denotes the projection of the
gradient of ¢ that is perpendicular to Vi, while V,6=V¢
(since V- Vip=0). Hence, the guiding-center radial projec-
tion vector (30) projects momentum-space transport pro-
cesses onto a magnetic-flux surface in a direction that is lo-

cally perpendicular to b.

The guiding-center radial projection vector AY, whose
magnitude is

|V(r/,| cB “Ppol

Aw
ja%1= mQ ~ eB

therefore generates the local projection of the guiding-center

push-forward of the momentum-space Fokker—Planck
friction,
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A

b
IG”—(T 'K), - —wa (31)
and the momentum-space Fokker—Planck diffusion
a¢1 B

Di=(A"-T,D), e Vi, (32)
b b

DW— — X Vi (T!D),- — XV 33
— 5 XV (TID), - —— X Vi, (33)

where a# i in Eq. (32). These projections only take into
account transport processes occurring within a magnetic-flux
surface. The connection between radial transport and toroidal
and/or poloidal rotation is therefore naturally contained
within this projection.

2. Guiding-center energy projection

The guiding-center energy projection vector (28) is ex-
pressed as

Ar=Pe _
Ipd

where Af denotes the first-order correction of A”. It can be
explicitly expressed in terms of the gyroangle-independent

P+eAl+ -, (34)

first-order gyroradius p,.= (b/Q) X vy and p.=p,+ep; as’

1 1%
A€=—< b+—)+§b Vipy= A~ I3+A“1’§ P
p 9L, 23 aL,’
(35)

where p=p/(m{}) is the gyroradius magnitude for a deeply
trapped particle (i.e., for &=0) and

. |1 P
’_)gcxb=pb><{§(l—§2)v InB+&b-Vb|.

It can be shown explicitly, however, that A7 does not have
any component directed along the zeroth-order unit vector p
(because the guiding-center Kinetic energy is identical to the
particle Kinetic energy). Hence, the magnitude of the
guiding-center energy projection vector (28) is |A?|=1 up to
second order in magnetic-field nonuniformity.

3. Guiding-center pitch-angle projection

The guiding-center pitch-angle projection vector (29) is
expressed as

!1 2
A§o=\'__§0|:i” , 2(A119_wp—1/‘9§5’l

E+ eVl =&
pé& | \Ww ’ po(1 - &)
. Vi-
Py BO)} 8 E e g
2 ré \"‘I’

where Ag‘) denotes the first-order correction of A%. To
lowest order in magnetlc -field nonuniformity, we find

|AS|=\1- 8¢/ (p\W&).
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C. Guiding-center Fokker—Planck equation

Now that the guiding-center Fokker—Planck components
are expressed in terms of the invariant-space coordinates

I“=(J/,p,§0), we turn our attention to the guiding-center
Fokker—Planck kinetic equation. When the original guiding-
center coordinates (i, 6, $;&, ,u,g’g) are used in describing
guiding-center dynamics in axisymmetric magnetic geometry
(where we replace the guiding-center parallel velocity v
with the guiding- center energy & and the gyroangle £, is an
ignorable coordinate),”” the guiding-center Vlasov evolution
operator is ordered as’

d,, d B? .\ o .0
L= —+|v—+ 0)—+ —, 37
o (UB s8], GB%(M (37)

where we used d/d¢p=0 (by definition of axisymmetry),
explicit time dependence is over long time scales (i.e.,
d/ dt=¢€,d/ 97 is ordered small), and the guiding-center dy-
namics on the poloidal plane is represented by Eq. (11).

For each generic set of guiding-center invariants
(,E, ), the guiding-center Fokker—Planck kinetic equation
is expressed as

IF (a
e—+0
Tor

LX)
a6 " a6 aw>F &Ll F] (8)

where the magnetic-flux drift motion

= @6 (39)

a6
is expressed in terms of the bounce radius (10) when it is
projected onto the guiding-center orbit O associated with the

guiding-center invariants (#,&, ). While the topology of
these orbits can be rather complicated,m’ls’zo_22 our discus-
sion will remain as general as possible concerning the nature
of the axisymmetric magnetic geometry. Whether a guiding-
center orbit O corresponds to a trapped-particle orbit or a
passing-particle orbit, however, the motion is periodic in the
poloidal plane (i, 6) and a generic orbital period in the po-
loidal plane,

o=¢ 2 (40)

o0

is defined as a closed-loop integral along the drift-orbit curve
O parametrized by the poloidal angle 6 (at constant
invariants ¢, & and w). Note that the definition (40) of the
orbital period can also be given in terms of di/ i, ' Which,
when evaluated along the guiding-center orbit O, yields
(dil ) o=d (38! 96)/ y=d 6/ 6 upon using Eq. (39).

IV. ORBIT-AVERAGED GUIDING-CENTER
FOKKER-PLANCK EQUATION
IN LOW-COLLISIONALITY REGIME

A. Orbit-averaging operator in axisymmetric magnetic
geometry and low collisionality regime

In the neoclassical transport regime €,=v7H<<l,
the guiding-center Fokker—Planck kinetic Eq. (38) reduces
to leading order to 6JF/d6=0, which states that
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F=F(,0,E,u;7) is independent of the poloidal angle 6.

The physical picture is that guiding centers orbits undergo

many poloidal cycles before being perturbed by collisions.
We now introduce the orbit-averaging operation

(o= (- )4 @1)

TO 0

where the orbital period 7 is defined in Eq. (40). By orbit-
averaging the guiding-center Fokker—Planck kinetic Eq. (38)
in the low-collisionality approximation, we finally obtain
the orbit-averaged guiding-center Fokker—Planck kinetic
equation

&2 = eAC,dF Do, (42)

which describes the collisional time evolution of the orbit-
averaged guiding-center distribution

<F>O=F((Z7O-7£’IU';T)7 (43)

and the guiding-center Fokker—Planck operator is given by
Eq. (21).

Lastly, we note that the relation between the magnetic
flux ¢ and its orbit-averaged value () (the “drift-center”
position) is expressed as

b= Yo+ (8= (6o, (44)

where the drift-surface label is = () —{6¥) 0. For trapped
and passing particles, we therefore obtain the following re-
lations for the deviations from a magnetic-flux surface:

w—<a/f>h):( Sy )
(w—<w>, - \Sy— (s, )’ 43)

where we used the fact that (Sy), =0 for trapped particles,
while (Sy),#0 for passing particles (since S does not
change sign along a passing-particle orbit). These relations
show that, while the deviation 8y for a trapped particle may
be large, the deviation (Sy—(Sy),) for a passing particle is in
general small.

B. Approximate orbit-averaging operator

In this section, an explicit expression for the orbit-
averaged guiding-center Fokker—Planck operator that ap-
pears on the right side of Eq. (42) is derived. In general, the
orbit-averaging operation (41) must be computed along nu-
merically calculated orbits. However, useful analytical ex-
pressions of the orbit-averaged guiding-center Fokker—
Planck operator can be obtained when the orbit deviation
Syl |Vl is small as compared to the local minor radius r.
The difference between the exact incremental time element

d6/ 6 and the approximate time element ds/v is of order eé
and can be neglected when compared to the corrections of
order €z in the Fokker—Planck operator. The orbital period
(40) thus becomes
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- ds 1 d6  B(4,0)
TO(lp’U’g’M) = ___§ — 0 .
ovu O &0 E, 1) B (4, 6)

(46)

The orbit topology is explicitly taken into account in Eq. (46)
through the dependence of the integrand B/(£B?) on the
bounce-radius SY(0, o ,E, ) = h— i defined in Eq. (10),
where =1, (for trapped particles) or ¢, (for passing par-
ticles). Note that the orbital period (46) is exact for stagna-
tion orbits (where #=0 yields 63=-v,B’/B).

In the definition of the orbital period (46), it is conve-
nient to extract the magnetic-geometric factor

A& = f LN (47)
—r B4, 0)

which defines the length of an orbit on the drift-surface la-

beled by . In the standard axisymmetric tokamak ordering,

we find A =2mq()R,, where R, denotes the major radius of
the magnetic axis. Next, we define the normalized orbital
period

B
Np.&) = fﬁdai; (%)m (48)

which satisfies the condition \(#,,p,|&|=1)=1 for com-
pletely passing particles (i.e., |£=1 and x=0 so that v;=v is
a constant of motion). Note that the orbital period (46) [or
normalized orbital period (48)] becomes infinite on the
boundary that separates trapped-particle orbits and passing-
particle orbits (i.e., pinch orbits). Hence, the low-
collisionality approximation (JF/d6=0) does not technically
hold very close to the trapped-passing boundary, where the
bounce and transit periods become much larger than the
characteristic collisional time scale »~'. However, the frac-
tion of particles with A>1 is very small since the corre-
sponding singularity is integrable. Indeed, by introducing &y,
such that 1-W(1-&,)=0, it can be shown that

(I lf” B fl &odéo
)\ D, d i _da T—
JO (.p.&)d& A) B N1-w(1- &)

which is a geometrical factor of order unity.
Using the Jacobian (15), the normalized bounce period
(48) is now expressed as

— B B
Np.p, &) = A_ljzf}g Jdo = ZWJOA_I(;Q’ (49)
o

so that the orbital period (46) becomes

277\7030

. 50
UP2|§0| G0)

To=

The orbit-averaging operation (41) becomes
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<~->O(Za,p,§o)=i§§ (B
TO o U

Bdo
véB?

——()

jg (- )J—. (51

For trapped-particle orbits, the orbit-average (51) yields the
explicit formula for bounce-averaging operation

+

d0 B
<"'>b(¢b’P7§O) E ; U|§|B0
1|1 b, do
=?0l5§} H;("')J;T- (52)

Here, the summation is over the sign o of ¢ and, therefore,
the symbol (1/2)X takes the average (for trapped particles)
between values of the integrand for £>0 and values of the
integrand for £<<0. For passing-particle orbits, on the other
hand, the orbit-average (51) yields the explicit formula for
transit-averaging operation

ot = [ 782 (53)

Jols

C. Orbit-averaged guiding-center Fokker—Planck
operator

In the expression for the guiding-center Fokker—Planck

operator (21), the guiding-center function F is independent
of the angle coordinates (6, ¢,{,), in the limit of weak col-
lisionality and under the assumptions of axisymmetry and
gyroangle invariance. Hence, only derivatives of the guiding-

center distribution F with respect to the guiding-center in-
variants [* will remain in Eq. (21). The coefficients
(IC;C,DZIC’) and the Jacobian 7 in the guiding-center Fokker—
Planck operator (21), on the other hand, still depend on the
poloidal angle 6. We therefore need to orbit average the
guiding-center Fokker—Planck operator (21) according to the
orbit-averaging procedure (51).

The orbit-averaged guiding-center Fokker—Planck opera-
tor is expressed as

1 JoF
j Ia{f@(@%)@” (Dy Do I”)}

(54)

(Col Fo = -

where the averaged Jacobian J» now becomes the Jacobian
for the orbit-averaged guiding-center Fokker—Planck opera-
tor (54). Orbit-averaged guiding-center Fokker—Planck op-
erator that treat friction and diffusion in three-dimensional
space have been derived previously.16 While these previous
operators retained only the lowest-order terms in magnetic-
field nonuniformity, the orbit-averaged guiding-center
Fokker—Planck operator (54) retains first-order corrections
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as well, which allows a realistic magnetic geometry to be
considered.

The orbit-averaged guiding-center Fokker—Planck opera-
tor is widely used in the physics of magnetized plasmas
(earth magnetosphere,4 thermonuclear fusion,”’23 etc.) For
practical applications (such as studying fast particle dynam-
ics generated by rf waves or a constant electric field*"), ana-
lytical expressions often correspond to an oversimplified de-
scription of the problem of interest, and therefore a more
realistic approach requires full numerical calculations.

For computational purposes, the orbit-averaged guiding-
center Fokker—Planck operator (54) is recast in a flux-
conservative form

(Col Flo = - —j (Tl oSt - ——(JOSQ
09y
1 | &
+ Top ago(jo\ f() St ), (55)

such that the usual two-grid discretization technique may be
applied for the finite-difference method.” Particle conserva-
tion is therefore naturally satisfied numerically up to second

order in the truncation error. In Eq. (55), S f describes particle
flux across magnetic flux surfaces, while S} and S account
for momentum and pitch-angle dynamics, respectively. From
Eq. (54), we have

by b Dl

st (&t
s |=\kp |F-| ppr DY Df™
SE" KEO DEOJ' DEOP Diofo
Vuloatay |
X aldp F, (56)
—pN1-8a/0¢,

where the friction coefficients K{ and symmetric diffusion
coefficients D“b=Dfa may be expressed in terms of guiding-
center friction and diffusion components (22) and (23) ac-
cording to the general relations

K“’——< "o (57)
IViglo
Kf. = <IC§C>O’ (58)
Ké = - —2— (K@), (59)
VI-§
and
0> (60)
Y |0
pr“ﬁ@ "o, (61)
()
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— p 1 —
D= - ———=——(D}%),), (62)
V=&V, ©
DY = (D)o, (63)
DPéo— _ (D p§0> (64)
L /— 0
VI-§
DEo&o — 2<D§o§o>o (65)
1-§

The numerical implementation of the orbit-averaged
guiding-center Fokker-Planck operator (55) is described in a
forthcoming paper25 using a novel three-dimensional scheme
with fully implicit time evolution. It is incorporated in the
code LUKE,26 which was initially developed for fast electron
physics, and will therefore extend its range of applicability to
multispecies physics and transport processes.

V. BOUNCE-CENTER FOKKER-PLANCK OPERATOR

The next step in the derivation of a reduced Fokker—
Planck operator is to proceed with the construction of a
bounce-center Fokker—Planck operator

Coe F1= (T3 0Co [Ty D, (66)

where T;j and T,, are the push-forward and pull-back op-
erators associated with the bounce-center phase-space

transformation® (and references therein), F =T,!F denotes
the bounce-center distribution (which is independent of the
bounce angle ), and (---), denotes averaging with respect
to ¢,. In the bounce-center Fokker-Planck operator (66),
finite-orbit effects will explicitly be taken into account.

To see how these finite-orbit effects might arise in the
bounce-center Fokker—Planck operator (66), we first express
the bounce-center push-forward and pull-back operators as
T,.=exp(*€G,-d), where G,-d=Gd, is defined in terms
of the components G{ of the first-order generating vector
field for the bounce-center transformation and e=¢;=7,/ 7,4
<1 denotes its ordering parameter. Next, we expand the
transformed operator,

[TyeF1= TlemCr9C, [eCreF]), (67)

cgc

in powers of € where the bounce-center Jacobian :7
is defined in terms of the guiding-center Jacobian [J as
J=TJ-€d,(G{J)+: . By keeping terms up to second order
in €, and rearranging terms, we obtain

(T + €d,(G1T) + ---)Cgc[l:“+ €GOF + -]

— €0,(TGICo [F + €GhapF + -+ ) + -+, (68)

where the first term is simply the original guiding-center
Fokker—Planck operator multiplied by the guiding-center
Jacobian J= :7+ eﬁa(G?ﬁ)+- -+ (i.e., the first term is an exact
divergence), while the second term is also an exact diver-
gence in bounce-center phase space. The total bounce-center
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Fokker—Planck operator is therefore guaranteed to retain its
phase-space divergence form.

In future work, it will be our purpose to show that finite-
orbit effects will appear in the bounce-center Fokker—Planck
operator (66) in the form of the second-order term

. oF
A A jG'ingc G’ib_,\ >
J oy apl/,

where lAﬂ denotes the bounce-center position and G‘f’ denotes
the corresponding component of the bounce-angle-dependent
bounce-radius. In the present work, (/)= i plays the role
of the bounce-center position 1} for a trapped-particle orbit
(8¢ plays the role of G‘f), while the nonlocal bounce-action
J;, (canonically conjugate to the bounce angle ;) is repre-

sented by the minimum-B pitch-angle coordinate &.

VI. SUMMARY

The present work presents the derivation of a general
guiding-center Fokker—Planck equation in axisymmetric
magnetic geometry (38) that allows first-order corrections in
magnetic-field nonuniformity to be retained. The Fokker—
Planck operator (21) is obtained from a guiding-center trans-
formation using the set of invariants (Jf, p.&). Next, the
orbit-averaging procedure is introduced and an explicit
Fokker—Planck operator (54) is derived in the low-
collisionality limit. This operator is also expressed in a con-
servative form (55) that is best suited for numerical applica-
tion. In the continuation of this paper (based on work briefly
outlined in Sec. V), future theoretical work will consider
finite-orbit effects in a different way by deriving a general
bounce-center Fokker—Planck operator using Lie-transform
methods.
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