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ABSTRACT

A novel model-based prognostics and health management
(PHM) system has been designed to monitor the health of a
photovoltaic (PV) system, measure degradation, and indicate
maintenance schedules. Current state-of-the-art PV monitoring
systems require module and array topology details or extensive
modeling of the PV system. We present a method using an
artificial neural network (ANN) which eliminates the need for a
priori information by teaching the algorithm “good” performance
behavior based on the initial performance of the array. The PHM
algorithm was tested on two PV systems under test at the
Outdoor Test Facility (OTF) at the National Renewable Energy
Laboratory (NREL). The PHM algorithm was trained using two
months of AC power production. The model then predicted the
output power of the system using irradiance, wind, and
temperature data. Based on the deviation in measured AC power
from the AC power predicted by the trained ANN model, system
outages and other faults causing a reduction in power were
detected. Had these been commercial installations, rather than
research installations, an alert for maintenance could have been
initiated. Further use of the PHM system may be able to indicate
degradation, detect module or inverter failures, or detect
excessive soiling.

INTRODUCTION

Photovoltaic (PV) monitoring systems have been designed
to measure module and array performance, grid stability,
islanding, and power factors. Often monitoring systems are
built into inverters or converters and designed to connect and
disconnect from the grid during low or high voltage events,
prevent islanding, and report on PV status (e.g., current,
voltage, power). There is growing interest in PV PHM systems
for arc-fault and ground-fault mitigation. Series arc-fault
protection devices are newly required by the 2011 National
Electrical Code [1]; however fault prevention via PHM tools is
preferred over reactive arc-fault circuit interrupters: the best
fault is one that never occurs.

PV monitoring system concepts are designed to detect,
classify or locate faults when system behavior deviates from
the expected [2-8, 10]. To predict the expected PV
performance at a given time, various PV system models using
meteorological conditions inputs have been created. Often
these models calculate expected power using temperature and
irradiance data gathered from sensors [2-4] or weather and
satellite systems [5-6]. Different PV system models have been

employed including PV circuit models [2, 7], PV plant-
specific fits [6], matter-element models [3], and expert
systems with updating warning criteria [8]. The models in
conjunction with current, voltage, or power measurements
from the physical system are used to detect a number of fault
conditions such as shading [2, 5-8] , inverter failure [5-6, 8],
snow cover [5-6], module failures or short circuiting [4, 7-8],
and string-level malfunctions [2, 5-6]. Learning algorithms [4,
8-9], Bayesian networks [10], and fuzzy logic [11-12] have
also been used successfully to estimate PV output or perform
fault diagnoses. Unfortunately, most of these systems are
designed to detect catastrophic failures and do not monitor
system degradation over time. Hamdaoui designed a method
of tracing I-V curves to measure degradation of the modules
[13], but this is not practical for field installations.

In previous work, artificial neural network (ANN) models of
PV systems were shown to closely match performance array
models [14]. The current work combines the areas of PV
modeling with prognostics and health management. This
learning technique can be performed in situ—requiring only
basic system monitoring hardware. Advantages of the ANN
PV health monitoring system are 1) it requires no a priori
information of the system components or topology to
accurately model the output power, 2) the system can monitor
the degradation of the system over its lifetime, and 3) the
system can prognostically indicate catastrophic failures by
monitoring the degradation rate.

PV PHM SYSTEM

Two systems, each approximately 1.1 kWp, were monitored
at NREL’s Outdoor Test Facility (OTF). System 1 was
monitored for 6 years, while System 2 was monitored for 1.5
years. The health of each photovoltaic systems was monitored
by the difference in performance of the physical PV system
and the artificial neural network model. Plane of array (POA)
irradiance, wind speed, ambient air temperature, and AC
power output data were used to perform the study; information
regarding the PV system components or configuration was not
necessary. The performance metric used in this study was AC
power; however, other outputs of interest could also be
implemented.

In general, the PV PHM system compares the measured
metric of interest (in this case AC power) to a prediction of the



metric from a model. As emphasized in [14] the benefit of
using a neural network based model is that the user does not
need to know any specifics about the PV system components.
The neural network simply identifies the relationships between
the PV system’s environment (input) and its power production
(output).
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Fig. 1:  Schematic of the PV PHM system.

ANN Design

The ANN comprised of a simple 4x20x1 feed-forward
multilayer perceptron, trained via particle swarm optimization.
The data set used to train the ANN to recognize “optimal”
behavior was gathered from the PV monitoring data from the
two months following system installation (this may be referred
to as the “training” data set). Within two months of
installation, the system is assumed to be operating optimally,
with little soiling, degradation, or faults. An individual ANN
PV model was developed for each system.

DEMONSTRATION

Each ANN PV model was created using two months of
monitored irradiance, temperature, wind speed, and AC
power. With the neural network model weights locked after
the training period (i.e. further learning was disabled) the PV
models predicted the AC power produced by each system,
given the irradiance, ambient temperature, and wind speed.
The PV PHM system then compared the expected power given
by the model and the actual power measured from the
monitoring system using the equation:

0, — Zn(Pmeas) _
% Energy Loss = 100 * (—Zn PorogeD 1) (D)
where
n = number of measurements in the time window
Preas = Measured AC power
Prodger = AC power modeled by ANN model

Thus, if the sum of measured power is 5% less than the sum
of modeled power, equation 1 yields “-5”. The testing duration
is broken into “windows” of fixed time period (e.g. 2 days),
and the comparison calculation is performed for each window.

An alarm threshold of -10% energy loss was set for this
demonstration, but could be changed to any value desired by
the user. Through the course of the work presented, the
authors have noted that larger PV systems may be more
amenable to a smaller energy loss alarm threshold.

Figures 2 and 3 show the response of the PV PHM
comparison to faults detected in each of the PV systems. In
each case, the PV PHM was able to detect a power drop in the
PV system which caused energy losses of greater than 10%
over the 2 day window period.
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Fig. 2: PV PHM finds problems in system 1
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Effect of Training Period Length

Initial implementation of the PHM system utilized a neural
network trained on two months of concurrent weather and AC
power data. When this neural network was used to predict
performance of the PV system, the variance in predicted and
measured power was highly correlated to seasons, i.e. the
neural net performed best under temperature conditions over
which it was trained. Figure 4 shows this seasonal variation in
model errors from a neural network trained with only two
months of data. Figure 5 shows the same PV system output
prediction differences when the neural network was trained
with six months of data.
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Fig. 4:  ANN prediction differences, trained with two months of

data. Note seasonal nature of errors.
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Fig. 5 ANN prediction differences, trained with two months of

data. Note reduced seasonal errors.

Evaluation of Comparison Criteria

Early work on the PV PHM system utilized a 10% energy
loss alarm as calculated from equation 1. However, the
sensitivity of the alarm is greatly affected by the windowing

period over which the sum occurs (i.e. the value of n in
equation 1). For example, summing over two days, as shown
in Figures 2-5, produces a good indication of problems only
after a fault in the PV system has persisted long enough to
cause a significant energy loss. The size of the windowing
period may be reduced to increase the time sensitivity of the
comparison, but may cause more false alarms, particularly
during periods of low irradiance. Figure 6 shows a day and a
half of performance data with a possible false alarm condition
due to low irradiance and a short (twelve hour) window
period. Conversely, the size of the windowing period may be
increased to reduce the time sensitivity of the comparison.
Increasing the window period to several days or weeks may
also allow for a lower alarm threshold value of perhaps 4-6%
instead of 10%.
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Fig. 6: Possible false alarm due to short 12-hour summation
window.

Thus, using the energy loss metric, there is a tradeoff
between the length of time which must pass to trigger an alarm
and the possibility of false alarms. A different comparison
metric than the energy loss given by equation 1 may be able to
more quickly determine an acute failure in a PV system.

For example, if the statistics of the training data set are
examined for PV system 1, the neural network’s model
residuals (i.e. Pacmodel - Pac,measures) May be used to identify
the likelihood of a PV system performing below the modeled
performance. Figure 7 shows a portion of the model residual
cumulative distribution function (CDF) obtained from the
neural network training data. Assuming that the training data
set is representative of the PV system’s operation, there is a
1% chance that the model will overestimate the PV system’s
AC power by more than 71 watts, and a 0.18% chance of the
model overestimating by more than 200 watts.



CDF of ANN model errors
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A method of detecting acute PV system faults can utilize the
improbability of differences in the model prediction and the
PV system output to detect a fault condition. This PV system
fault detection method is shown in Figure 8. With an energy
summation window of 20 days, the PV system would not
register a 10% loss in energy in the one and a half days of time
where the system was malfunctioning. However, the
abnormally large drop in power triggers the acute fault
detection many times in a short period of time.
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Fig.8: PV PHM system energy alarm not triggered, but many

acute alarms are triggered due to high power loss.

It should be noted that this method of fault detection may be
susceptible to generation of false positives under certain
situations; any instance where the inverter is shut off (e.g.
temporary shading or grid abnormalities) may register a fault
due to abnormally high power loss. Thus it may be desirable
to only trigger alarms after a series of consecutive fault
detections over a time period long enough to allow for the
inverter to reconnect to the grid or regain maximum power
point tracking.

These two fault detection criteria may be used
simultaneously to monitor PV system performance and detect
various types of PV system faults. The energy loss fault
detection method is useful for detecting long-term faults
which may reduce PV system output such as material
degradation, shade from growing trees, or excessive soiling.
The acute fault detection method is better at quickly detecting
PV system faults which greatly reduce power output.

Prognostics

The advantage of a PV PHM system over a monitoring
system is that a PHM system is capable of predicting PV faults
based on failure precursors. Determining precursors is difficult
and often requires extensive historical analysis of system
behaviors prior to different failure types. In some fault cases,
failure precursors may be linked to failure modes. For
instance, an instant drop of power could be attributed to the
removal of one of the strings in the array. Ideally, precursors
would indicate specific failures, but some fault types may be
indistinguishable by short term power comparisons—e.g.
power reduction from shading appears the same as module
failure. Further, over long time-periods, a slight degradation
may be due to soiling or long term degradation of the
photovoltaic material. Arguably, the degradation curves due to
browning would be different from soiling, but it is difficult to
know without historical data. In the case of arc-faults, one
precursor could be acceleration in the degradation rate due to
module corrosion. These precursors can be incorporated into
the PV PHM to identify or predict failures in the PV system.

CONCLUSIONS

The PV PHM could eliminate some of the long-standing
problems associated with detecting performance reduction in
PV systems. The PV PHM system utilizes a system-specific
ANN model with meteorological and power input data to alert
system owners of significant performance reductions without
the need for information about system components and design.
Comparisons between system data and the PHM model can
provide scheduling of maintenance on an as-needed basis. The
PHM may also provide the means of monitoring system
degradation over the lifetime of the PV system.

We show that the PHM neural network model benefits from
a longer training data set which includes larger ranges of
incident weather conditions. As expected, a more
representative training data set reduces seasonal errors in the
neural network model.

Two fault detection criteria have been established to better
monitor PV system health. The energy loss fault detection
method measures the sum of power loss compared against the
neural network model over a relatively lengthy time period
(several days to weeks). An alarm threshold of perhaps 5%,



may be implemented to detect long-term effects such as
soiling or material degradation and alert the user to the need
for maintenance.

The acute fault detection method evaluates the likelihood of
the PV system performing well below the model predictions
and should alert the user to a significant system failure such as
loss of a string of modules or failure of an inverter.

When used together, these two fault detection schemes may
be used to detect both short term PV system faults and long
term PV system output reduction. Further analysis of the
combination of these two measurement metrics may allow the
PV system operator to determine PV system failure precursors
linked to failure modes. Upon recognition of a failure
precursor, preventative inspections and maintenance may be
performed.
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