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ABSTRACT 

A novel model-based prognostics and health management 
(PHM) system has been designed to monitor the health of a 
photovoltaic (PV) system, measure degradation, and indicate 

maintenance schedules. Current state-of-the-art PV monitoring 
systems require module and array topology details or extensive 
modeling of the PV system. We present a method using an 

artificial neural network (ANN) which eliminates the need for a 
priori information by teaching the algorithm “good” performance 
behavior based on the initial performance of the array. The PHM 

algorithm was tested on two PV systems under test at the 
Outdoor Test Facility (OTF) at the National Renewable Energy 
Laboratory (NREL). The PHM algorithm was trained using two 

months of AC power production. The model then predicted the 
output power of the system using irradiance, wind, and 
temperature data. Based on the deviation in measured AC power 

from the AC power predicted by the trained ANN model, system 
outages and other faults causing a reduction in power were 
detected. Had these been commercial installations, rather than 

research installations, an alert for maintenance could have been 
initiated. Further use of the PHM system may be able to indicate 
degradation, detect module or inverter failures, or detect 

excessive soiling. 

INTRODUCTION 

Photovoltaic (PV) monitoring systems have been designed 

to measure module and array performance, grid stability, 

islanding, and power factors. Often monitoring systems are 

built into inverters or converters and designed to connect and 

disconnect from the grid during low or high voltage events, 

prevent islanding, and report on PV status (e.g., current, 

voltage, power). There is growing interest in PV PHM systems 

for arc-fault and ground-fault mitigation. Series arc-fault 

protection devices are newly required by the 2011 National 

Electrical Code [1]; however fault prevention via PHM tools is 

preferred over reactive arc-fault circuit interrupters: the best 

fault is one that never occurs. 

 

PV monitoring system concepts are designed to detect, 

classify or locate faults when system behavior deviates from 

the expected [2-8, 10]. To predict the expected PV 

performance at a given time, various PV system models using 

meteorological conditions inputs have been created. Often 

these models calculate expected power using temperature and 

irradiance data gathered from sensors [2-4] or weather and 

satellite systems [5-6]. Different PV system models have been 

employed including PV circuit models [2, 7], PV plant-

specific fits [6], matter-element models [3], and expert 

systems with updating warning criteria [8]. The models in 

conjunction with current, voltage, or power measurements 

from the physical system are used to detect a number of fault 

conditions such as shading [2, 5-8] , inverter failure [5-6, 8], 

snow cover [5-6], module failures or short circuiting [4, 7-8], 

and string-level malfunctions [2, 5-6]. Learning algorithms [4, 

8-9], Bayesian networks [10], and fuzzy logic [11-12] have 

also been used successfully to estimate PV output or perform 

fault diagnoses. Unfortunately, most of these systems are 

designed to detect catastrophic failures and do not monitor 

system degradation over time. Hamdaoui designed a method 

of tracing I-V curves to measure degradation of the modules 

[13], but this is not practical for field installations. 

 

In previous work, artificial neural network (ANN) models of 

PV systems were shown to closely match performance array 

models [14]. The current work combines the areas of PV 

modeling with prognostics and health management. This 

learning technique can be performed in situ—requiring only 

basic system monitoring hardware. Advantages of the ANN 

PV health monitoring system are 1) it requires no a priori 

information of the system components or topology to 

accurately model the output power, 2) the system can monitor 

the degradation of the system over its lifetime, and 3) the 

system can prognostically indicate catastrophic failures by 

monitoring the degradation rate. 

PV PHM SYSTEM 

Two systems, each approximately 1.1 kWP, were monitored 

at NREL’s Outdoor Test Facility (OTF). System 1 was 

monitored for 6 years, while System 2 was monitored for 1.5 

years. The health of each photovoltaic systems was monitored 

by the difference in performance of the physical PV system 

and the artificial neural network model. Plane of array (POA) 

irradiance, wind speed, ambient air temperature, and AC 

power output data were used to perform the study; information 

regarding the PV system components or configuration was not 

necessary. The performance metric used in this study was AC 

power; however, other outputs of interest could also be 

implemented. 

 

In general, the PV PHM system compares the measured 

metric of interest (in this case AC power) to a prediction of the 
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metric from a model. As emphasized in [14] the benefit of 

using a neural network based model is that the user does not 

need to know any specifics about the PV system components. 

The neural network simply identifies the relationships between 

the PV system’s environment (input) and its power production 

(output). 
 

 
 
Fig. 1: Schematic of the PV PHM system. 
 

ANN Design 

The ANN comprised of a simple 4×20×1 feed-forward 

multilayer perceptron, trained via particle swarm optimization. 

The data set used to train the ANN to recognize ―optimal‖ 

behavior was gathered from the PV monitoring data from the 

two months following system installation (this may be referred 

to as the ―training‖ data set). Within two months of 

installation, the system is assumed to be operating optimally, 

with little soiling, degradation, or faults. An individual ANN 

PV model was developed for each system. 

DEMONSTRATION 

Each ANN PV model was created using two months of 

monitored irradiance, temperature, wind speed, and AC 

power. With the neural network model weights locked after 

the training period (i.e. further learning was disabled) the PV 

models predicted the AC power produced by each system, 

given the irradiance, ambient temperature, and wind speed. 

The PV PHM system then compared the expected power given 

by the model and the actual power measured from the 

monitoring system using the equation: 
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Thus, if the sum of measured power is 5% less than the sum 

of modeled power, equation 1 yields ―-5‖. The testing duration 

is broken into ―windows‖ of fixed time period (e.g. 2 days), 

and the comparison calculation is performed for each window.  

 

An alarm threshold of -10% energy loss was set for this 

demonstration, but could be changed to any value desired by 

the user. Through the course of the work presented, the 

authors have noted that larger PV systems may be more 

amenable to a smaller energy loss alarm threshold. 

 

Figures 2 and 3 show the response of the PV PHM 

comparison to faults detected in each of the PV systems. In 

each case, the PV PHM was able to detect a power drop in the 

PV system which caused energy losses of greater than 10% 

over the 2 day window period.  
 

 
Fig. 2: PV PHM finds problems in system 1 
 

 
Fig. 3: PV PHM finds problems in system 2 
 

 

 



Effect of Training Period Length 

Initial implementation of the PHM system utilized a neural 

network trained on two months of concurrent weather and AC 

power data. When this neural network was used to predict 

performance of the PV system, the variance in predicted and 

measured power was highly correlated to seasons, i.e. the 

neural net performed best under temperature conditions over 

which it was trained. Figure 4 shows this seasonal variation in 

model errors from a neural network trained with only two 

months of data. Figure 5 shows the same PV system output 

prediction differences when the neural network was trained 

with six months of data. 
 

 
Fig. 4: ANN prediction differences, trained with two months of 
data. Note seasonal nature of errors. 
 

 
Fig. 5: ANN prediction differences, trained with two months of 
data. Note reduced seasonal errors. 
 

Evaluation of Comparison Criteria 

Early work on the PV PHM system utilized a 10% energy 

loss alarm as calculated from equation 1. However, the 

sensitivity of the alarm is greatly affected by the windowing 

period over which the sum occurs (i.e. the value of n in 

equation 1). For example, summing over two days, as shown 

in Figures 2-5, produces a good indication of problems only 

after a fault in the PV system has persisted long enough to 

cause a significant energy loss. The size of the windowing 

period may be reduced to increase the time sensitivity of the 

comparison, but may cause more false alarms, particularly 

during periods of low irradiance. Figure 6 shows a day and a 

half of performance data with a possible false alarm condition 

due to low irradiance and a short (twelve hour) window 

period. Conversely, the size of the windowing period may be 

increased to reduce the time sensitivity of the comparison. 

Increasing the window period to several days or weeks may 

also allow for a lower alarm threshold value of perhaps 4-6% 

instead of 10%.  
 

 
Fig. 6: Possible false alarm due to short 12-hour summation 
window. 
 

Thus, using the energy loss metric, there is a tradeoff 

between the length of time which must pass to trigger an alarm 

and the possibility of false alarms. A different comparison 

metric than the energy loss given by equation 1 may be able to 

more quickly determine an acute failure in a PV system. 

 

For example, if the statistics of the training data set are 

examined for PV system 1, the neural network’s model 

residuals (i.e. PAC,model - PAC,measured) may be used to identify 

the likelihood of a PV system performing below the modeled 

performance. Figure 7 shows a portion of the model residual 

cumulative distribution function (CDF) obtained from the 

neural network training data. Assuming that the training data 

set is representative of the PV system’s operation, there is a 

1% chance that the model will overestimate the PV system’s 

AC power by more than 71 watts, and a 0.18% chance of the 

model overestimating by more than 200 watts.  
 



Fig. 7: CDF of model errors 

 

A method of detecting acute PV system faults can utilize the 

improbability of differences in the model prediction and the 

PV system output to detect a fault condition. This PV system 

fault detection method is shown in Figure 8. With an energy 

summation window of 20 days, the PV system would not 

register a 10% loss in energy in the one and a half days of time 

where the system was malfunctioning. However, the 

abnormally large drop in power triggers the acute fault 

detection many times in a short period of time. 
 

 
Fig. 8: PV PHM system energy alarm not triggered, but many 

acute alarms are triggered due to high power loss. 

 

It should be noted that this method of fault detection may be 

susceptible to generation of false positives under certain 

situations; any instance where the inverter is shut off (e.g. 

temporary shading or grid abnormalities) may register a fault 

due to abnormally high power loss. Thus it may be desirable 

to only trigger alarms after a series of consecutive fault 

detections over a time period long enough to allow for the 

inverter to reconnect to the grid or regain maximum power 

point tracking. 

 

These two fault detection criteria may be used 

simultaneously to monitor PV system performance and detect 

various types of PV system faults. The energy loss fault 

detection method is useful for detecting long-term faults 

which may reduce PV system output such as material 

degradation, shade from growing trees, or excessive soiling. 

The acute fault detection method is better at quickly detecting 

PV system faults which greatly reduce power output. 
 

Prognostics 

The advantage of a PV PHM system over a monitoring 

system is that a PHM system is capable of predicting PV faults 

based on failure precursors. Determining precursors is difficult 

and often requires extensive historical analysis of system 

behaviors prior to different failure types. In some fault cases, 

failure precursors may be linked to failure modes. For 

instance, an instant drop of power could be attributed to the 

removal of one of the strings in the array. Ideally, precursors 

would indicate specific failures, but some fault types may be 

indistinguishable by short term power comparisons—e.g. 

power reduction from shading appears the same as module 

failure. Further, over long time-periods, a slight degradation 

may be due to soiling or long term degradation of the 

photovoltaic material. Arguably, the degradation curves due to 

browning would be different from soiling, but it is difficult to 

know without historical data. In the case of arc-faults, one 

precursor could be acceleration in the degradation rate due to 

module corrosion. These precursors can be incorporated into 

the PV PHM to identify or predict failures in the PV system. 

CONCLUSIONS 

The PV PHM could eliminate some of the long-standing 

problems associated with detecting performance reduction in 

PV systems. The PV PHM system utilizes a system-specific 

ANN model with meteorological and power input data to alert 

system owners of significant performance reductions without 

the need for information about system components and design. 

Comparisons between system data and the PHM model can 

provide scheduling of maintenance on an as-needed basis. The 

PHM may also provide the means of monitoring system 

degradation over the lifetime of the PV system.  

 

We show that the PHM neural network model benefits from 

a longer training data set which includes larger ranges of 

incident weather conditions. As expected, a more 

representative training data set reduces seasonal errors in the 

neural network model. 

 

Two fault detection criteria have been established to better 

monitor PV system health. The energy loss fault detection 

method measures the sum of power loss compared against the 

neural network model over a relatively lengthy time period 

(several days to weeks). An alarm threshold of perhaps 5%, 



may be implemented to detect long-term effects such as 

soiling or material degradation and alert the user to the need 

for maintenance.  

 

The acute fault detection method evaluates the likelihood of 

the PV system performing well below the model predictions 

and should alert the user to a significant system failure such as 

loss of a string of modules or failure of an inverter.  

 

When used together, these two fault detection schemes may 

be used to detect both short term PV system faults and long 

term PV system output reduction. Further analysis of the 

combination of these two measurement metrics may allow the 

PV system operator to determine PV system failure precursors 

linked to failure modes. Upon recognition of a failure 

precursor, preventative inspections and maintenance may be 

performed. 
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