

LA-UR- 11-02457

Approved for public release;
distribution is unlimited.

Title: Dislocation Dynamics Model of the Plastic Flow of fcc Polycrystals from Quasi-static to High Strain Rates

Author(s): Dean L. Preston

Intended for: JOWOG 32 Materials, LANL, 9-13 May 2011

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Dislocation Dynamics Model of the Plastic Flow of fcc Polycrystals from Quasi-static to High Strain Rates

JOWOG 32 Materials, LANL, 9 -13 May 2011

Dean L. Preston

ABSTRACT

A new internal state variable model of plastic flow is discussed. The state variables are the mobile and immobile (network) dislocation densities. The model is comprised of three coupled ordinary differential equations: a kinetic equation, which relates the strain rate to the stress, the state variables, the temperature, and the density, and two dislocation evolution equations. The evolution equations account for dislocation generation, storage of dislocations in the network and on grain boundaries, and several dynamic recovery processes. The kinetic equation is not a Van't Hoff-Arrhenius thermal activation model, as is the case for all other rate-dependent strength models, but rather a mean first-passage time model that extends the validity of the kinetic equation to arbitrarily high strain rates. The dislocation recovery processes in the model include mobile-immobile and mobile-mobile annihilation, and single cross-slip plus screw-screw annihilation. Dislocation are generated in the model by Frank-Read sources, the Koehler mechanism (double cross-slip followed by loop/dipole formation), and grain boundary nucleation. Preliminary results on copper deformation are presented.

Dislocation Dynamics Model of the Plastic Flow of fcc Polycrystals from Quasi-static to High Strain Rates

JOWOG 32 Materials 2011

*Dean L. Preston
Computational Physics
LANL*

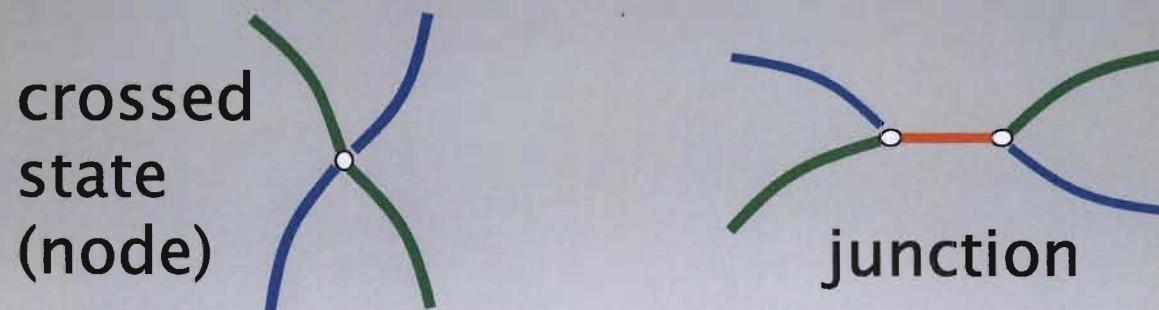
Model overview

- Currently applicable to pure fcc polycrystalline metals
- Two internal state variables
 - ρ_m – mobile dislocation density
 - ρ_i – immobile density
- Comprised of 3 coupled ODEs
 1. Kinetic equation $\dot{\varepsilon}(\sigma, \rho_m, \rho_i, T, P)$
 2. Mobile and immobile dislocation evolution equations
$$\dot{\rho}_{m,i} = g_{m,i}(\sigma, \dot{\varepsilon}, \rho_m, \rho_i, T, P)$$

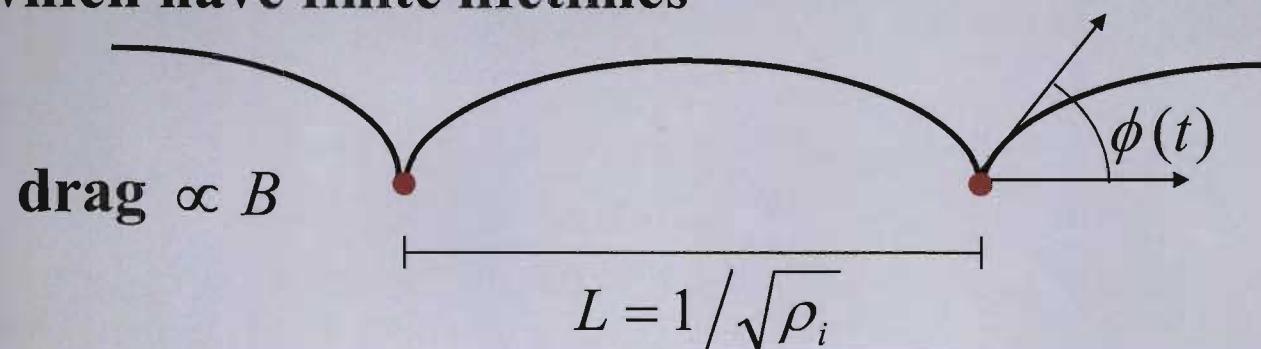
Account for: dislocation generation
network & grain boundary storage
dynamic recovery

Kinetic equation

Rate controlling mechanism is the intersection of attractive, non-coplanar mobile & immobile dislocations



Applied stress bows dislocations between nodes/junctions which have finite lifetimes



High strain rates require MFPT theory

It is generally accepted that the intersection controlled strain rate is related to the stress according to

$$\dot{\varepsilon} = \dot{\varepsilon}_0 \exp \left\{ -\frac{E(\sigma)}{kT} \right\} \quad \text{Van't Hoff-Arrhenius thermal activation (VATA)}$$

but VATA is only valid for $\frac{E(\sigma)}{kT} \gg 1$

$$\text{High } \dot{\varepsilon} \Rightarrow \text{large } \sigma \Rightarrow \frac{E(\sigma)}{kT} \ll 1$$

VATA \rightarrow mean first-passage time (MFPT) model of dislocation intersection

\exists local stress fluctuations at nodes/junctions.
Distribution & correlation time needed for
MFPT calculation.

- $T = 0$ node/junction dissolution condition $\sigma \geq \sigma_c$

- $T > 0$
$$\frac{\text{local stress fluctuation}}{\sigma} + \sigma \geq \sigma_c$$
 Fluctuation distribution is approximated as Gaussian

$$\langle \sigma_{\text{local}}^2 \rangle^{1/2} \sim \sqrt{G k T / b^3} \sim \text{rms atomic displacement}$$

Fluctuation correlation time is $\bar{\nu}^{-1}$ $\bar{\nu} = \frac{\text{avg phonon frequency}}{\text{frequency}}$

MFPT (σ fluctuations) \rightarrow Kinetic Equation

MFPT calculation

specific to dislocation intersection

$$t_w = \bar{v}^{-1} \frac{\mathcal{P}}{\ln^2(1-\mathcal{P})}$$

mean node/junction lifetime

$$\mathcal{P}(\sigma, \rho_i, T, P) = \frac{1}{2} \operatorname{erfc} \left\{ \frac{\kappa b L}{\sqrt{Gb k T}} (\sigma_c - \sigma) \right\} \quad L = 1/\sqrt{\rho_i}$$

$$\sigma_c = \frac{5}{8\pi} \phi_c G \frac{b}{L} \ln \left(\frac{L}{b} \right) \quad \phi_c \approx 1/2 \approx 30^\circ \text{ Cu}$$

Kinetic equation $\dot{\varepsilon} = \dot{\varepsilon}_0 \left\{ \frac{\ln^2[1-\mathcal{P}(\sigma)]}{\mathcal{P}(\sigma)} - \frac{\ln^2[1-\mathcal{P}(-\sigma)]}{\mathcal{P}(-\sigma)} \right\}, \quad \dot{\varepsilon}_0 = b \rho_m L \bar{v}$

Kinetic equation - limits

- $$\frac{E(\hat{\sigma}_c - \hat{\sigma})^2}{kT} \gg 1 \quad E = \kappa^2 G b L^2 \quad \hat{\sigma} = \sigma / G$$
$$\dot{\varepsilon} = \dot{\varepsilon}_0 \frac{G}{2\sigma_c} \left(\frac{kT}{\pi E} \right)^{1/2} \exp \left\{ - \frac{E(\hat{\sigma}_c - \hat{\sigma})^2}{kT} \right\}$$

Van't Hoff-Arrhenius exponential with \sqrt{T} pre-factor

- $\sigma \gg \sigma_c \quad \dot{\varepsilon} = \dot{\varepsilon}_0 \left(\frac{E}{kT} \right)^2 \hat{\sigma}^4$

For $\dot{\varepsilon} = \text{const}$ $\sigma \sim T^{1/2} \Rightarrow$ thermal hardening

Dislocation Evolution Equations

$$\dot{\rho}_{m,i} = g_{m,i}(\sigma, \dot{\varepsilon}, \rho_m, \rho_i, T, P)$$

NETWORK
STORAGE
= JUNCTION
FORMATION

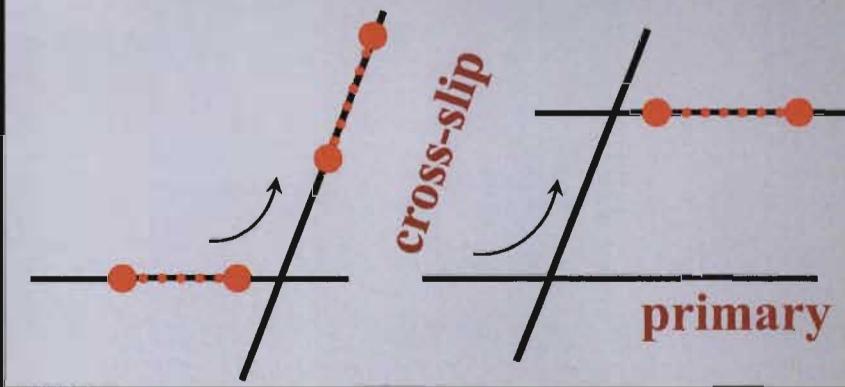
GRAIN BOUNDARY
STORAGE

MOBILE--
IMMOBILE
ANNIHILATION

Storage &
Recovery

MOBILE--
MOBILE
ANNIHILATION

CROSS-SLIP + SCREW--
SCREW ANNIHILATION

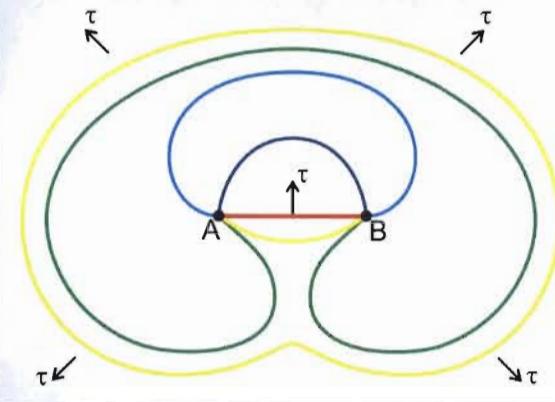


Dislocation Evolution Equations

$$\dot{\rho}_{m,i} = g_{m,i}(\sigma, \dot{\varepsilon}, \rho_m, \rho_i, T, P)$$

Generation

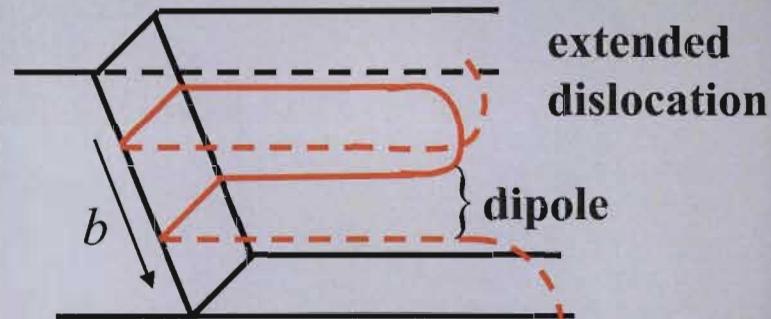
FRANK-READ



GRAIN BOUNDARY NUCLEATION

KOEHLER MECHANISM DOUBLE CROSS-SLIP + LOOP GENERATION

DOUBLE CROSS-SLIP + DIPOLE FORMATION



Network Evolution

$$\frac{d \rho_i}{d t} = g_{s\partial} \frac{\dot{\varepsilon}}{b D} + (g_{sn} - g_{ami}) \frac{1}{b} \sqrt{\rho_i} \dot{\varepsilon}$$

$$D = \frac{\text{grain}}{\text{diameter}}$$

$$+ g_{FR} \frac{D}{b d_{FR}} \dot{\varepsilon} \frac{d}{d t} \int_0^{(t-\tau)\theta(t-\tau)} \sqrt{\rho_i(t')} dt'$$

$$\tau = \frac{b D \rho_m}{2 \dot{\varepsilon}}$$

$$- g_{ax} \frac{h_c}{b} \rho_i \dot{\varepsilon} - g_{tx} \rho_m \bar{v} \exp\{-E_x(\sigma)/kT\}$$

$$+ g_{xx} \frac{D}{d_{xx}} \exp\{-E_{xx}(\sigma, 2)/kT\} \bar{v} \frac{d}{d t} \int_0^{t-\tau} \rho_m(t') dt'$$

$$+ \frac{2}{\pi} g_{xx} \frac{1}{b d_{xx}} \exp\{-E_{xx}(\sigma, 1)/kT\} \bar{v} \dot{\varepsilon}$$

$$\times \frac{d}{d t} \left\{ t^2 \theta(\tau - t) + \tau (t - \tau/2) \theta(t - \tau) \right\}$$

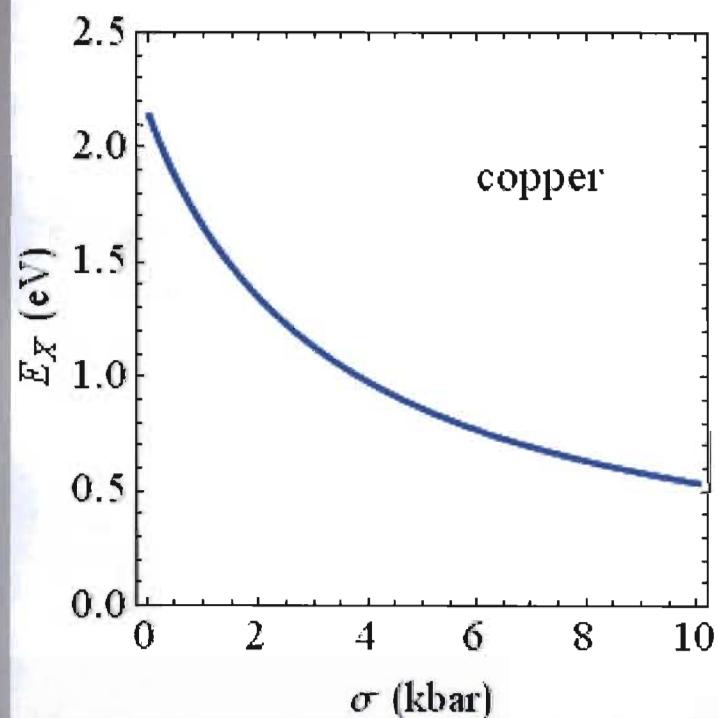
$$E_x, E_{xx} = \text{activation energies}$$

Mobile Dislocation Evolution

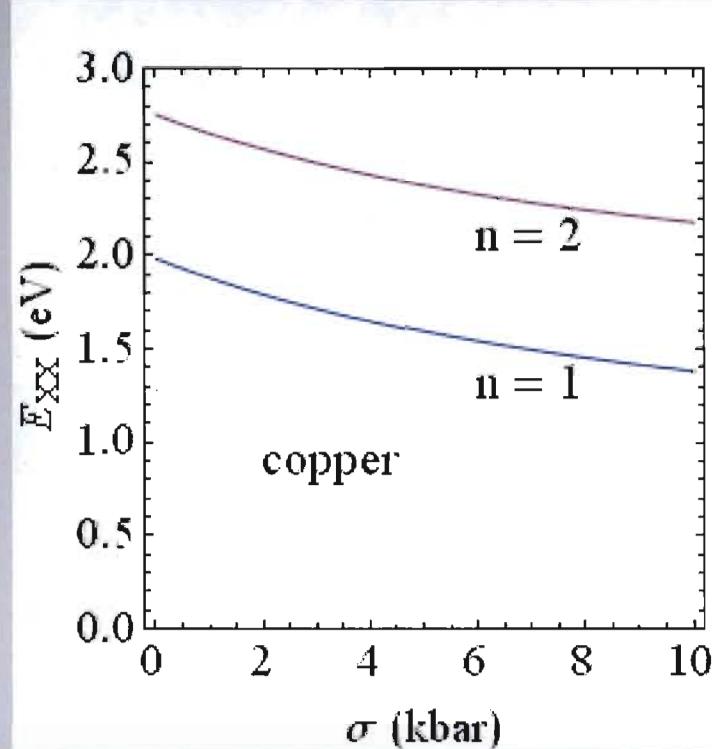
$$\begin{aligned}
 \frac{d \rho_m}{d t} = & -g_{amm} \frac{1}{b} \sqrt{\rho_m} \dot{\varepsilon} - g_{s\partial} \frac{\dot{\varepsilon}}{b D} - (g_{sn} + g_{ami}) \frac{1}{b} \sqrt{\rho_i} \dot{\varepsilon} \\
 & + g_{FR} \frac{D}{b d_{FR} \tau^2} \dot{\varepsilon} \frac{d}{d t} \int_{(t-\tau)\theta(t-\tau)}^t (t-t')^2 \sqrt{\rho_i(t')} dt' \\
 & - g_{ax} \frac{h_c}{b} \rho_i \dot{\varepsilon} - g_{tx} \rho_m \bar{v} \exp \left\{ -E_x(\sigma) / kT \right\} \\
 & + g_{xx} \frac{1}{2 b d_{xx}} \exp \left\{ -E_{xx}(\sigma, 2) / kT \right\} \bar{v} \dot{\varepsilon} \frac{d}{d t} \left\{ t^2 \theta(t-\tau) + \tau^2 \theta(t-\tau) \right\}
 \end{aligned}$$

cross-slip terms $\frac{d \rho_{m,i}^{x,xx}}{d \varepsilon} \sim \frac{\bar{v}}{\dot{\varepsilon}} \exp \left\{ -\frac{E_{x,xx}}{kT} \right\}$ **cross-slip enhanced at high T & low rates**

Single & double cross-slip activation energies



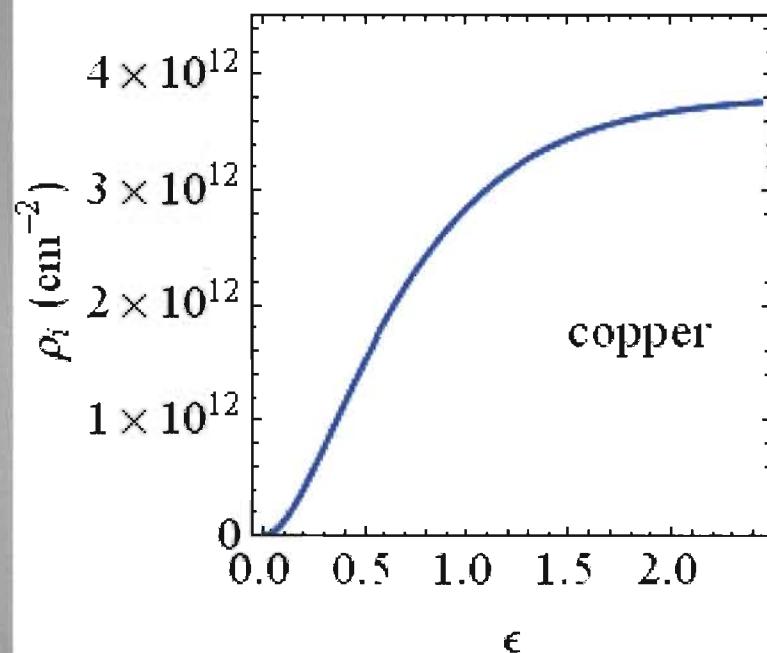
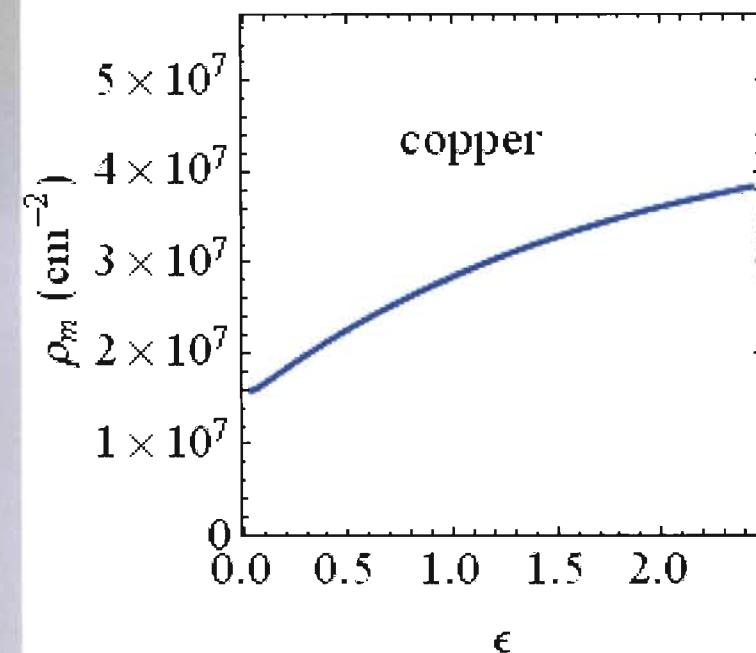
Single cross-slip:
modified Friedel-Escaig



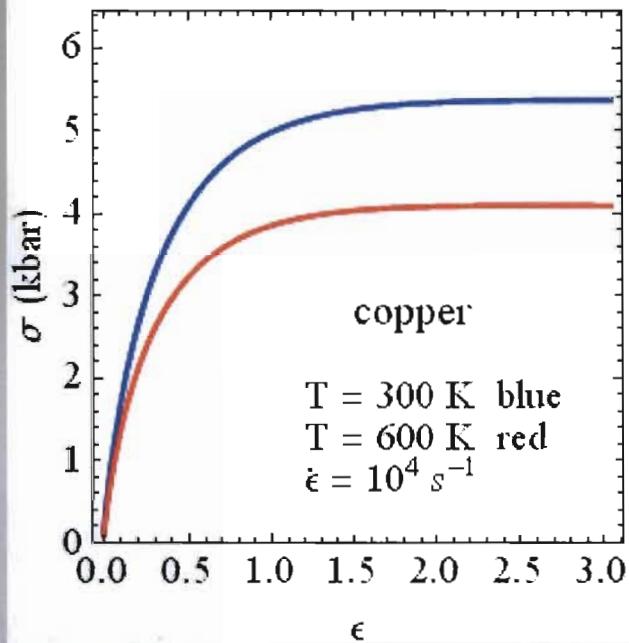
Double cross-slip:
extended Friedel-Escaig

Preliminary results on Cu

Low T: cross-slip not exercised

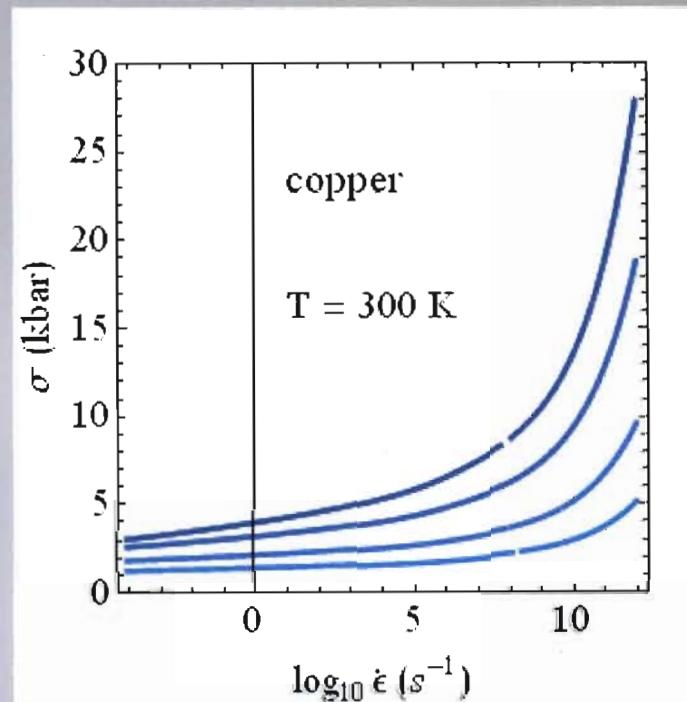


Preliminary results on copper



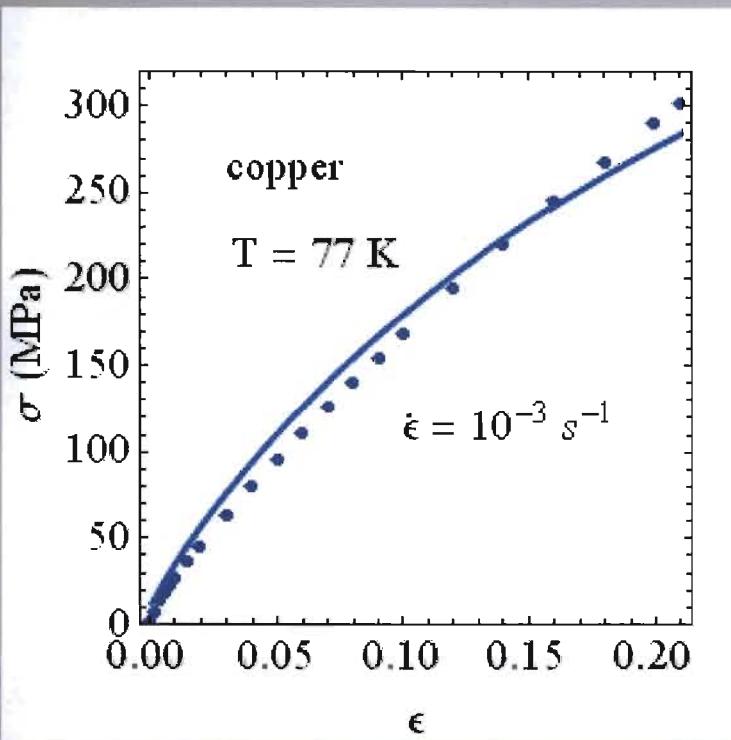
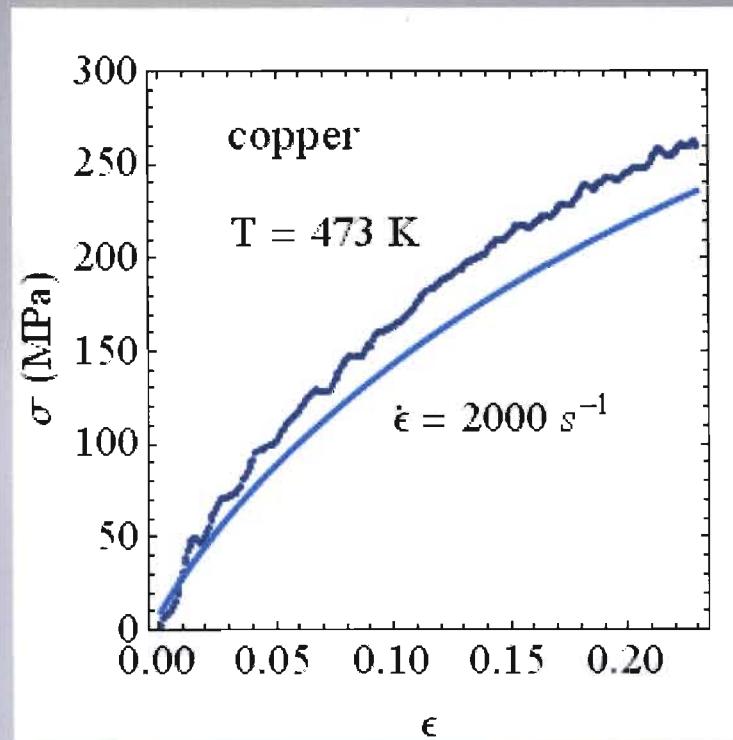
Thermal softening is due to T-dependence of mobile-immobile interactions

Flow stress vs rate for strains 0.1, 0.2, 0.5, $\epsilon \gg 1$



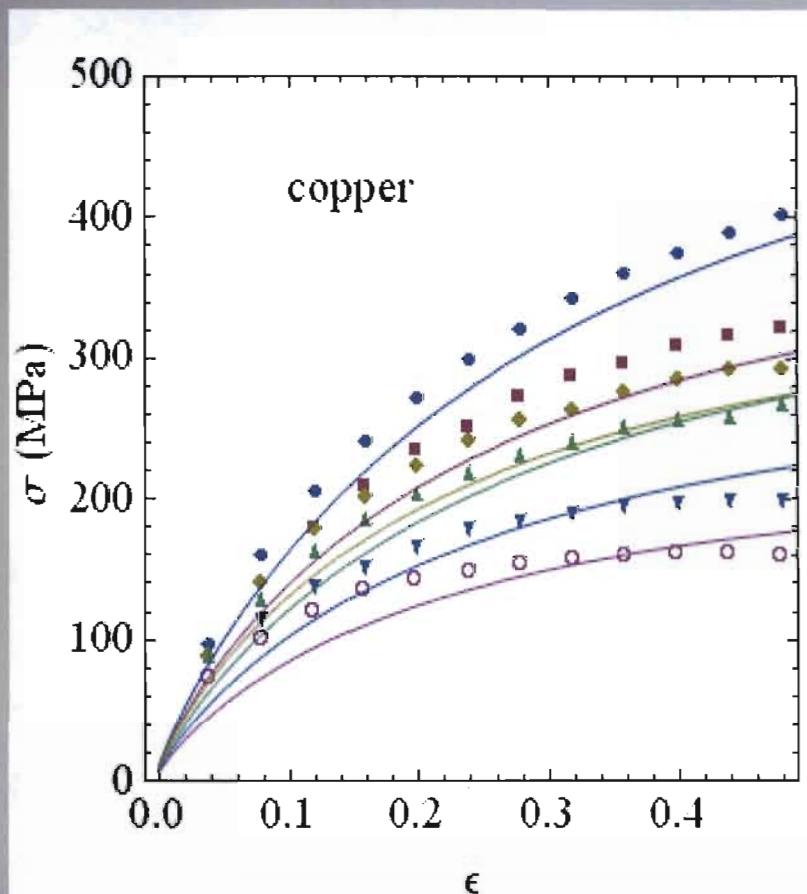
Increase in rate sensitivity not due to dislocation drag

Stress-strain: model vs data on OFE copper



Did not optimize parameter values

Comparison with PTW model



solid circles: $298\text{ K}, 2000\text{ s}^{-1}$

squares: $298\text{ K}, 0.1\text{ s}^{-1}$

diamonds: $298\text{ K}, 0.001\text{ s}^{-1}$

up triangles: $673\text{ K}, 2000\text{ s}^{-1}$

down triangles: $873\text{ K}, 2000\text{ s}^{-1}$

open circles: $1073\text{ K}, 2000\text{ s}^{-1}$

Future Directions

- Cu model: turn on cross-slip
- Include dislocation drag ➤ phonon drag, flutter, ...
- Account for dependence of strength on material density
 - Investigate shear modulus scaling
 $\sigma(\dots, \rho) / G(\rho, T)$ is assumed independent of density
- Compute fraction of plastic work dissipated
(usually taken to be 100%)
- Calculate dislocation cell formation due to mesoscale stress fluctuations
- May be necessary to “model the model”