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Logistics, Planning, and Response for Disasters 
Russell Bent, W. Brent Daniel, Tim McPherson, Don O'Sullivan 

Los Alamos National Laboratory 

1. Introduction 

Natural and manmade disasters have the potential to inflict substantial damage on 
infrastmcture systems, resulting in degradation of the ability to perform their function. 
Emergency response planners at all levels of government and in the private sector can use 
LogiSims and RestoreSims analyses results to assess and plan for disasters by pre­
positioning (i.e., stockpile) resources and respond to disasters by distributing resources 
and repairing infrastmcture efficiently after a disaster. 

LogiSims and RestoreSims analysis results can be used to provide recommendations on 
prioritizing restoration efforts to meet the goal of restoring infrastmcture as quickly as 
possible given availability of transportation systems and resources. 

Stockpiling analyses are used to provide recommendations on how to use an available 
budget to stockpile resources that can be used to mitigate the impacts of a disaster in the 
most effective way. The analysis is able to hedge stockpile decisions against an ensemble 
of possible hazards. 

Budget utilization tradeoff analyses provide results that decisionmakers can use to set 
priorities for budget utilization. As an example, decisionmakers can use analysis results 
to understand how a budget can improve resource delivery time or how to meet as much 
demand for resources as possible. The analysis results can be used to understand the 
tradeoffs between metrics, i.e., allocating budget to delivery efficiency verses meeting 
demand. 

2. Disaster Planning and Response 

LogiSims is a Los Alamos National Laboratory (LANL) capability to provide 
stakeholders with recommendations on stockpiling and distributing relief and restoration 
supplies. These tools include the following capabilities: 

o Weighted metrics for evaluating pre-positioning options - examples ofmetrics 
include cost and demand met in planning scenarios 

• Weighted metrics for evaluating schedules of distribution of relief and restoration 
supplies - examples include efficiency, cost, and demand met 

o Ability to model corporate giving 

• A flexible damage model based on hazard 

• A flexible model for incorporating decisionmaker constraints 

• Incorporation of dependencies on transportation systems 



• Repair and restoration of infrastructure systems 

2.1. Logistics and Restoration Model 

Figure 2-1 presents the overall LogiSims analysis method. The analysis begins with the 
input of a hazard scenario or a set of hazard scenarios. Hazard scenarios are either 
generated by an internal model or provided by an external source (this is noted in first 
box of Figure 2-1). A hurricane is an example of a hazard scenario. The second step (Box 
2 of Figure 2-1).predicts damage to infrastructure. The predictions are provided by 
LANL's Fragility tool, which is based on the Federal Emergency Management Agency 
HAZUS model of damage. In this case, damage is applied to transportation and 
dependent infrastructure networks. The third step (Box 3 of Figure 2-1) calculates how 
infrastructure systems operate in the damaged state using LANL's suite of physics and 
agent-based models of infrastructure. Examples include the Interdependency 
Environment for Infrastructure Simulation Systems modeling tool which is used to 
calculate the physics of systems such as electric power and natural gas[l]. FastTrans is 
used for transportation modeling. The fourth box of Figure 2-1 shows the final step. This 
step computes the optimal restoration schedule based upon a decisionmaker's metric for 
prioritizing repairs. This step uses state-of-the-art optimization technology developed 
within the LogiSirns and RestoreSims capabilities to determine the best restoration 
schedule to meet the metric of choice. 
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Figure 2-1. Overview of the analysis flow used in modeling the logistics of 
disaster planning and management 

2.2. LogiSims Algorithm for Relief Supply Distribution 

LANL has used LogiSims in a synthetic simulation environment to analyze the 
stockpiling of relief supplies (e.g., bottled water) in anticipation of and preparation for a 



potential hazard. The capability could be used to generate plans for distributing supplies 
to locations where an impacted population could pick them up (e.g., emergency shelters). 

Figure 2-2 shows the overall process flow for the algorithm. The input to the algorithm is 
resource demand scenarios as derived from the process in Figure 2-1; for example, 
demand for bottled water is derived from damage to the water distribution infrastructure 
and impacted population. In Figure 2-2, Step 1 of the algorithm determines which 
stockpile locations should be used that is best for a set of hazard scenarios. This portion 
of the algorithm uses a mixed-integer programming (MIP) model that includes 
information about the probability of survival of a stockpile, damage to the transportation 
system, demand for relief supplies, and available budget for stockpiling for a defined set 
of hazard scenarios. Step 2 of the algorithm determines the amount of relief supplies to 
store at each stockpile location. This pOliion of the algorithm also uses a MIP model that 
includes the same information used in Step 1 and the results from Step 1. 
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Figure 2-2. Process flow diagram for the algorithm used to model to stockpiling 
and distribution of relief supplies 

Step 3 of the algorithm assigns, for each hazard scenario, surviving stockpiled supplies to 
distribution locations. The assignments are based up the demand for supplies and the 



ability of the transportation system to support distribution of supplies from the stockpiles 
to the distribution locations. The affected population will be directed to these locations to 
obtain relief supplies. Locations may include evacuation shelters, schools, churches, 
temporary Red Cross centers, etc. This step is modeled using a constraint programming 
(CP) model. Step 4 of the algorithm schedules, for each hazard scenario, relief trucks to 
deliver the stockpiled supplies according to the assignments of Step 3 and available 
transportation infrastructure. This step is modeled using a local search (LS) model. The 
overall approach is designed to provide the best possible distribution of supplies that can 
be computed in a user-specified time. The capability has undergone considerable 
scientific peer review to validate the state-of-the-art nature of the approach (see 
references [2-5]). It is important to note that Steps 3 and 4 can be operated independently 
from Steps 1 and 2 when stockpile decisions are provided to LogiSims as input. I 

In 2010, capabilities were added to model the effects of "corporate giving,,2 on the need 
for stockpiling and distribution. Capability was also added to allow decisionmakers to 
weight the importance of different goals of the model, such as meeting demand for 
supplies and/or efficiency of delivery. Section 3 of this report presents the results of an 
analysis used to test these capabilities. 

2.3. RestoreSims Algorithm for Restoration Scheduling and 
Prioritization 

RestoreSims is a LANL capability that can be used to model restoration scheduling and 
prioritization for several types of damaged infrastructure systems. To date, LANL has 
tested and developed this capability on electric power system restoration scenarios in 
simulation environments. Restoration options are evaluated based on how the 
infrastructure system responds (improving service or not improving service) to repairs as 
opposed to being evaluated against static (e.g. , level of service provided) or pre-incident 
measures of priority. There are two important remarks to highlight prioritizing restoration 
scheduling: (1) Assets that were oflow importance in the undamaged system (small 
consequence-of-Ioss) may have high restoration priority and vice versa because the 
undamaged network operates differently than the damaged network; and (2) It is 
important to account for the availability of roads when prioritizing restoration. Critical 
infrastructure is highly dependent on transportation to move resources during restoration. 
The objective in this scenario is to schedule repairs as to minimize the cumulative time 
critical assets (or all assets) are without service. More formally, the metric is the equation 

This metric sums the amount of time all components spend without service. The term P is 
used to parameterize the importance of restoring service to a component i. The integral 
measures the amount oftime (t) component i is without service. 

1 For example, if stockpile decisions had already been made through another process. 
2 This refers to the practice of large corporations donating resources and services after an incident. 



Figure 2-3 shows the overall process flow for the restoration scheduling and prioritization 
algorithm. Step 1 of the algorithm determines the amount and type of repair supplies to 
store (e.g., power lines, generator components, etc.) given a budget constraint. Step 2 
determines where to stockpile the repair resources. Both steps take into account possible 
damage scenarios. Typically, it is not cost effective to stockpile enough resources to 
perform all repairs (additional supplies are often borrowed from neighboring utilities), so 
these steps stockpile as much as possible to allow for the largest number of repairs 
averaged across all the hazard scenarios. These steps use a MIP model with a column 
generation approach. Step 3, for each hazard scenario, determines which assets should be 
repaired. This step focuses on finding the minimal set of assets to repair to restore service 
to critical assets and/or restore service to all assets. This step uses a CP model. Step 4 
calculates a prioritized order of restoration. Priorities are assigned based upon how 
quickly critical services and/or all services are restored. It is important to note that this 
step relies on an infrastructure simulation tool to calculate the performance of proposed 
priorities. In Step 5, the priorities determined in Step 4 are used to determine how crews 
are routed to perform the repairs. The crews are scheduled to conduct repairs from high 
priority to low priority but may skip repairs if skipping them increased efficiency. For 
example, if a repair would require lengthy travel across the damaged transportation 
system to arrive in location that already has repair crews in the vicinity, then model may 
route a crew to a nearby high priority asset instead. This step also uses an infrastructure 
simulation tool to calculate the performance of different repair crew schedules in terms of 
how quickly the function provided by infrastructure is restored. 

The capability is currently undergoing considerable scientific peer review to validate the 
state-of-the-art nature of the approach (see references [6-8]). It is important to note that 
Steps 3, 4, and 5 can be operated independently from Steps 1 and 2 when stockpile 
decisions are predetermined. 



Step 3 

Step 4 

Step 5 

Step 1 

Step 2 

Determine 

Resources to Store 

• 
Determine Where 

to Stockpile 

Resources 

Hazard Scenario ., Hazard Scenario 

Determine Which 

Assets to Repair 

• 
Prioritize Repair 

Schedule 

Determine Which 

Assets to Repair 

• 
Prioritize Repair 

Schedule 

\J ~Infrastructure 
Simulation 

o 
Schedule Repair 

Crews 

Schedule Repair 

Crews 

Hazard Scenario 

Determine Which 

Assets to Repair 

• 
Prioritize Repair 

Schedule 

Schedule Repair 

Crews 

Figure 2-3. Process flow diagram for the algorithm used to model to stockpiling 
and distribution of repair supplies for infrastructure systems 



3. Analyses 

This section presents example analysis to demonstrate the capability. 

3.1. Analysis of Corporate Giving 

In this section, we show how LogiSims can be used to model the impacts of corporate 
giving (within a simulation environment). In this context, corporate giving denotes 
scenarios where large corporations decide to donate goods and services after a hazard 
incident occurs. Analysis results allow decisionmakers to understand how corporate 
giving can reduce the budgetary needs required to meet demand and distribute resources 
efficiently . . 

Two analyses were conducted. One analysis demonstrates the LogiSims capability to 
model corporate giving when goods and services are donated at the stockpile locations. 
Subsequently, these donations need to be delivered to distribution locations. In this 
particular analysis, the decisionmaker has placed high priority on meeting demand. The 
second analysis demonstrates the capability to model corporate giving directly at the 
distribution locations. Both analyses plot the ability of the decisionmaker to meet demand 
and distribute resources efficiency under varying levels of budget availability and 
corporate giving. 

Figures 3-1 and 3-2 provide analysis results based on corporate giving of bottled water at 
stockpile locations. In Figure 3-1, the y-axis shows the ability of emergency planners to 
meet demand as a percentage oftotal demand. In Figure 3-2, the y-axis shows the the 
time for which the last delivery of resources occurred last delivery time. In both figures, 
the x-axis shows the available budget. The graphs plot an analysis of the ability to meet 
decisionmaker metrics such as meeting demand and distribution efficiency when certain 
percentages of the demand for resources are met through corporate donations. In Figure· 
3-1, the analysis clearly shows that as corporations satisfy a higher percentage of 
demand, the decisionmaker is able to do more with a smaller budget. Interestingly, Figure 
3-2 shows that as corporate donations increase (when the budget is small), the latest 
delivery time is increased because the distribution crews have to make more deliveries 
under the same budget, which takes longer. This also explains why delivery time initially 
increases with increased budget. Under this scenario, the budget is initially used to satisfy 
more demand, which creates more deliveries. Once all demand is met, additional budget 
is used to improve delivery times. 
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Figure 3-1. Analysis example showing how corporate giving can impact the ability 
for emergency planners to meet demand under different budget constraints 
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Figure 3-2. Analysis example showing how corporate giving can impact the ability 
of emergency planners to distribute resources efficiently under different budget 

constraints 

Figures 3-3 and Figures 3-4 show an analysis of corporate giving when the corporations 
are responsible for directly providing resources to the distribution centers, rather than to 
stockpile locations. 

As shown in Figure 3-3, the ability to meet demand improves when corporations make 
resource donations directly to the distribution centers. The difference between donations 
at the stockpiles compared to distribution centers is minimal. A larger impact is seen 
when delivery time is considered (Figure 3-4). By giving directly to the distribution 
centers, the impact to delivery times under small budgets is reduced. 
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Figure 3-3. Analysis example of how corporate giving can impact the ability to 
meet demand under different budget constraints 
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Figure 3-4. Analysis example of how corporate giving can impact the ability to 
distribute resources efficiently under different budget constraints 

3.2. Analysis of Distribution Efficiency and Meeting Demand 
Tradeoffs 

LANL has also performed an analysis to demonstrate LogiSims' capability (in a 
simulation environment) to model different types of decisionmaker metrics and the 
tradeoffs between those metrics. The analysis considers metrics related to meeting 
demand and efficiency of delivery. This analysis demonstrates the capability of LogiSims 
to model different decisionmaker metrics and their tradeoffs. 

Figure 3-5 provides an example analysis of stockpile decisions when the primary 
decisionmaker metric is meeting demand and the secondary decisionmaker goal is 
reducing the delivery times. 
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Figure 3-5. A graph showing the tradeoffs between meeting demand (across 
multiple scenarios) and making delivery time efficient as decision metrics when 

meeting demand is the most important metric 

As can be seen from Figure 3-5, initially the entire budget is used to increase the amount 
of demand satisfied across all scenarios. This causes an increase in the amount of time 
required to satisfy demand, meaning that there is more work to do with the same amount 
of delivery resources. Once all demand is satisfied, the remaining budget is used to 
reduce delivery times. 

Figure 3-6 shows the analysis results when the metrics of delivery time and demand met 
are equally important for the decisionmaker. As a result, the delivery time is dramatically 
improved at the expense of meeting only about 80 percent ofthe demand for a budget of 
$150,000. These metric tradeoffs can be further analyzed as seen in Figure 3-7. 
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Figure 3-6. A graph showing the tradeoffs between meeting demand (across 
multiple scenarios) and making delivery time efficient as decision metrics when 

both criteria have equal weighting 
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Figure 3-7. Graph showing the tradeoffs between meeting demand (across 
multiple scenarios) and making delivery time efficient as decision metrics when 

delivery time is the most important criteria 

In Figure 3-7, delivery time is the primary metric and meeting demand secondary. A side 
effect of this metric scheme is that resources are stockpiled only at the distribution 
centers (up to their capacity), which negates the need to deliver resources to distribution 
centers post-incident. Because delivery time is such an impOliant metric in terms of 
meeting demand and conserving budget, resources are distributed such that the last 
delivery time is 0 (no delivery). This analysis highlights the importance of carefully 
understanding the ramifications of a metric before employing it. 

3.3. Power Restoration Analysis 

LANL has also performed an analysis to demonstrate RestoreSims' capability to model 
infrastructure restoration and repair in a simulation environment. This demonstration 
used a model of the high-voltage electric power transmission system for the state of 
Florida and the NAVTEQ3 model of road networks. LANL used its Cyclone-Induced 
Commercial Loss of Power Simulator tool to generate hypothetical hurricane hazard 

3 NA VTEQ, www.navteq.comi. 



scenarios which is based on references [9-10]. The Hazus model was used to generate 
damage scenarios to the electric power and transportation systems. Hazus does not 
currently include a model of power line damage from wind speeds. Here the reference 
[11] is used to model damage. To test the scalability of LogiSims to scenarios where 
there are a large number of repairs to be made, the damage model of low-voltage 
distribution lines is applied to the high-voltage model of electric power. High-voltage 
transmission lines, particularly in hurricane prone areas, are engineered to withstand high 
wind speeds and do not typically suffer enough damage to require extensive repairs. 
Distribution power lines suffer a greater damage, thus this damage model creates larger 
repair scenarios.4 

Figure 3 -8 provides a graph of the restoration process produced by RestoreSims on a 41-
asset repair schedule. The best possible strategy assumes overly optimistic resource 
availability, with 41 repair crews available, i.e., one for each asset. The ad hoc strategy 
does not use RestoreSims as comparison point for what can occur without computational 
decision support and has five repair crews. Under this strategy, when a repair is 
completed, each repair crew is expected to repair the nearest unrepaired asset, which is 
the expected outcome without computational decision support or planning. The third 
strategy represents the outcome of a RestoreSims computational analysis. 

4 Electric power utilities are not required to repOit distribution network data and these data were not 
available for this analysis. The high-vo ltage system was used as proxy to demonstrate capability. 



"0 
<II 
~ 
<II 

875 

825 

~ 775 
<II :: o 
c.. -~ 725 .... .... 
111 
:: 
111 

aJl 675 
~ 

625 

575 

o 

Restoration Progression on 41-Asset 
Electric Power Repair Scenario 

500 1000 1500 2000 2500 

Time (minutes) 

- Best Possible 

- Ad Hoc 

- LogiSims 
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This figure compares three strategies. As can be seen, RestoreSims represents a 
significant improvement over an ad hoc strategy and very nearly matches the 
performance of the unrealistic best possible scenario. Similar results are observed in a 
scenario with 50 percent more repairs, as seen in Figure 3-9. 
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As shown in Figures 3-10, 3-11, 3-12, and 3-13, RestoreSims also has the capability to 
produce geographic information system output of the restoration schedule. This allows a 
decisionmaker to see what regions have electric power or do not have electric power at 
various points in time while the repair schedule is being executed. 

Figure 3-10 shows the electric power transmission system for the state of Florida and a 
hypothetical hurricane track. 
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Figure 3-10. Electric power transmission system of Florida and a hypothetical 
hurricane striking the state 

Figure 3-11 shows the service areas of the electric power system after this hypothetical 
hurricane incident. Areas shown in red do not have power due to damage to the electric 
power system. Green indicates unaffected areas. 
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Figure 3-11. RestoreSims results showing the initial damage to the electric power 
system. Green areas show estimated electric power service areas where power 

remains. Areas in red show areas estimated to have lost electric power. 

Figure 3-12 shows the service areas of the electric power system 14 days into the 
execution of the restoration schedule. Areas shown in red do not have power due to 
damage. Yellow indicates partial restoration. 
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Figure 3-12. RestoreSims results showing the remaining damage to the electric 
power system halfway through the restoration process. Green areas show 

estimated electric power service areas where power remains. Areas in red show 
areas estimated to have lost electric power. 

Figure 3-13 shows the completed restoration of the power system. This analysis 
demonstrates the capability of RestoreSims to model infrastructure repair and restoration. 
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3.4. Analysis of Unique Capabilities 

LANL performed an analysis in a simulation environment to demonstrate two unique 
capabilities shown in Figures 2-4 and 2-5. The first capability is the ability to model 
priorities of restoration in a damaged network, which differs from consequence-based 
prioritization in the undamaged network. The importance of this capability is shown in 
Figure 3-14. 
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Figure 3-14. A comparison of different prioritization methods in a restoration 
scenario 

Figure 3-14 compares three different approaches for prioritizing electric power 
infrastructure restoration. The first approach prioritizes restoration based upon utilization 
of power (e.g., power consumed, power generated, or power carried by a line). The 
second approach uses consequence-of-loss in the undamaged system to assign priorities 
(amount of unserved demand for power if the asset is lost). The third approach uses the 
prioritization scheme of RestoreSims, which includes a measurement of how much the 
system can improve if an asset is repaired in the damaged network. It is clear from this 
figure that the RestoreSims prioritization approach more quickly restores power to a 
greater amount of the system. For a period at the end of the restoration process, the other 
two approaches are slightly better, but this minimal benefit is vastly outweighed by the 
performance of LogiSims early in the restoration process. 

Figure 3-15 considers the capability of incorporating the state of the transportation 
network when considering restoration. 
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Figure 3-15. Graph comparing restoration times when the damaged transportation 
network is used and when the undamaged transportation network is used 

Figure 3-15 compares the restoration time using the damage scenario also used in Figure 
3-9 when the transportation system is assumed to be intact and for its predicted damage. 
This plot shows that using the intact system underestimates the time required for 
restoration. It is likely that the time underestimations will be even greater in scenarios 
that severely damage a transportation system, such as earthquakes. 



4. Conclusion 

The LogiSims and RestoreSims capability suite enables LANL to provide decision 
support for emergency planners and other stakeholders regarding resource stockpiling 
and distribution for deliberate, accidental, or natural hazards. The presented analysis, 
intended to test LogiSims and RestoreSims capabilities, focused on resource distribution 
in response to an emergency and restoration and repair for electric power; however, 
LANL expects to be able to include other infrastructure systems that examine 
dependencies and interdependencies between systems as the full capability evolves. 

To facilitate this analysis, LANL has developed the following modeling capabilities in 
LogiSims and RestoreSims: 

• Weighted metrics for evaluating pre-positioning options 

• Weighted metrics for evaluating distribution schedules 

• Logistics for electric power infrastructure repair and restoration 

• Flexible damage model based on hazard 

• Flexible model for incorporating decision-maker constraints 

• Incorporation of restoration dependencies on transportation 

• Benefit-based prioritization of restoration efforts 

• System response-based restoration recommendations 

LANL is continuing to improve LogiSims and RestoreSims to capture a larger set of 
disaster planning and response scenarios. Future capability improvements include multi­
infrastructure restoration prioritization (including interdependencies), additional hazard 
scenario and infrastructure demonstrations, damage assessment, and additional decision 
variable support (such as number of repair crews to support). 



References 

[1] L. Toole, "Interdependent Energy Infrastructure Simulation System," in 
Handbook o/Science and Technology for Homeland Security, D. Kamien, Ed., ed: 
Wiley and Sons, 2009. 

[2] P. van Hentemyck, et aI., "Disaster Preparation and Recovery Water Allocation 
for Hurricane Preparation," Los Alamos National Laboratory, Los Alamos2009. 

[3] P. Van Hentemyck, et aI., "Strategic Planning for Disaster Recovery with 
Stochastic Last Mile Distribution," in Proceedings o/the Seventh International 
Conference on Integration 0/ Artificial Intelligence and Operations Research 
Techniques in Constraint Programming, Bologna, Italy, 2010, pp. 318-333. 

[4] C. Coffrin, et aI., "Spatial and Objective Decompositions for Very Large 
SCAPS," presented at the Proceedings of the Eighth International Conference on 
Integration of Artificial Intelligence and Operations Research Techniques in 
Constraint Programming (CP AIOR 2011), Berlin, Germany, under review. 

[5] P. Van Hentemyck, et al., "Strategic Planning for Disaster Recovery with 
Stochastic Last Mile Distribution," Operations Research, under review. 

[6] P. Van Hentemck, et aI., "Strategic Planning for Power System Restoration," in 
International Conference on Vulnerability and Risk Analysis, College Park, MD, 
under review. 

[7] P. Van Hentemck, et aI., "Vehicle Routing for the Last Mile of Power System 
Restoration," in 17th Power Systems Computation Conference, Stockholm, 
Sweden, under review. 

[8] C. Coffrin, et aI., "Strategic Stockpiling of Power System Supplies for Disaster 
Recovery," in Power Engineering Society General Meeting Detroit, Michigan, 
under review. 

[9] R. Schwerdt, et al., "Meteorological Criteria for Standard Project Hurricane and 
Probable Maximum Hurricane Windfields, Gulf and East Coasts of the United 
States," 1979. 

[10] C. Martino, et aI., "Simulation of Hurricane Waves with Parametric Wind Fields," 
in MrS/IEEE Conference (OCEAN), 2001, pp. 1323-1330. 

[11] D. Reed, "Electric utility distribution analysis for extreme winds," Journal of 
Wind Engineering and Industrial Aerodynamics, vol. 96, pp. 123-140,2008. 


