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THE BIPOLAR BEHAVIOR IN RICHTMYER-MESHKOV INSTABILITY (U) 

Akshay A. Gowardhan, (a) 1. Ray Ristorcelli, (b) and Fernando F. Grinstein (a) 

(a) XCP-4, Los Alamos National Laboratory, MS F644, Los Alamos, NM 87545 
(b) CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545 

Abstract 
A numerical study of the evolution of the multimode planar Richtmyer­
Meshkov instability (RMI) in a light-heavy (Air-SF6, Atwood number A=O.67) 
configuration involving a Mach number Ma=1.5 shock is carried out. Our 
results demonstrate that the initial material interface morphology controls the 
evolution characteristics of RMI, and provide a significant basis to develop 
metrics for transition to turbulence. Depending on the initial rms slope of the 
interface, RMI evolves into linear or nonlinear (mode-coupled) regimes, with 
distinctly different flow features and growth rates, turbulence statistics and 
material mixing rates. Some of our findings are not consistent with heuristic 
notions of mixing in equilibrium turbulence. The more turbulent the flow - as 
measured by spectral bandwidth - the higher the material mixing and, 
paradoxically, the smaller the turbulent kinetic energy and the slower the 
growth of the mixing layer. On the other hand, the least turbulent flow has 
more turbulent kinetic energy and higher mixing layer growth rate, with less 
material mixing. 
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Outline Innovation for our nation 

-Motivation 
-Setup & Simulation 
-Results 

• mixing width 
• turbulence metrics: k, w2, Ret .... 

-Conclusion 
-Future work 



Motivation 
LORD-DR "Turbulence by Design" 

Effect of initial condition on late time turbulence 
PI: Malcolm Andrews 

• How does interfacial morphology 
control the evolution of RMI? 

• Can turbulence transition be 
achieved with a single shock? 

• Is there a controlling parameter in 
RMI? 

Innovallon for our nation 



Point in scientific process 

1.Data (numerical) collection 
2.0bservation 
3.Hypothesis formulation 
4.Hypothesis verification 

innovatIOn for our nation 



Planar Richtmyer Meshkov 
Instability 

Innovation (or our nation 
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LANL's RAGE 
Gittings et al. LA-UR Report 2006 

• solves multimaterial compressible-Euler equations 

• high resolution (2nd order) Godunov scheme 

• ideal gas equation of state 

• adaptive mesh refinement capability 

• gradient terms (limiters) and interface treatment. 

~ for the gradient: min-mod (MM) ; Van Leer (VL) 

~ for the interface treatment: 

• (no IP) - monotonized centered VL limiter. 

• (IP) interface preserver, width -3 cells. 

innovation for our nation 



Problem Setup & Validation 
innovation for our nation 
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Validation 
o Hill et al. (2006) 

E 0 15r - Experimental slopes (V&S, 1995) 
Domain Dimension: 82cm x 24cm x 24cm ::::. -RAGE, IC : k4exp(-(klk )2) 
~ ________________________________________ ~ N 0 

~ 

Mach number: 1.5 ~ 
~----------------------------------------~ -B 0.1 

Simulations with and without reshock performed .~ 
c: 
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Grid Resolution: dx=dy=dz = O.lcm (llevel AMR) ~ 0.05 
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Does interfacial morphology 
innovation for our nation 

con t r 0 I the e vol uti 0 n of R M I? iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 

RMS Slope of the interface KoOo or 1]0 

if Xs(~z) is the interfacel then 
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Initial interface 
IIlnovauon for our nation 

Low rJo High flo 

• High 'TJo 
'1Jo= 10n/12 I 10n/S, 

10n/4 I 10n/2 

• Low'TJo 
'YJo= n/12 I n/B, n/4, n/2 

v-'-

Similar concept to the Cylmix Expts. (James Fincke) 



Planar RMI: Low rJo 
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innovation for our nalton 

Richtmyer 1960 
theory for low rJo 

v = AAU1]o 

For relatively low value of 'YJo' the Richtmyer's theory (growth is proportional to Ko) 
is valid, however for the case 'YJo = TT/2, the Richtmyer's theory is valid for a very 
short time after the first shock and soon the growth rate drops. 

Consistent with Classical RMI theory! 



Planar RMI: High rJo 

1 
(f)(x) = AI f(x,y,z'xiydz , A = I dydz, 

YSF. = PSF. / P, 6 6 
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innovation for our nauon 

At very short time, for all the cases, the Richtmyer's theory (growth is proportional 
to Ko) is valid. Soon after, the growth is actually INVERSELY proportional to Ko. 

NOT consistent with Classical RMI theory! 



Planar RMI: Effect of rJo 
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K is the zero crossing 
wavenumber of the 
density field 

-Higher K- smaller the small scalesl flow is more "turbulentll 

- Higher '110 produces more small scales 



Planar RMI: Theory 

x = iSin(KoY) 
2 

~ lo=21l/~ 

Case I: Low 'fJo ('fJo« 1&) - Jekyll 

innovation for our nation 

Richtmyer 1960 
theory for low KoO 

V = AAUrJo 

• increasing 'fJo --> more baroclinic vorticity is deposited --> higher growth. 

• growth is mostly ballistic (no mode coupling) 

• Higher the 'fJo higher the growth 

Case II: High 'fJo ('fJo> 1&) - Hyde 

• increasing 'fJo ' growth saturates due to secondary instabilities ... 

• flow becomes more turbulent (non linear, chaotic, mode coupling) 

• Higher the 'fJo lower the growth 



Planar RMI evolves into different 
class of flows 
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Turbulence metrics .... 
Innovation for our nation 
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"Spectral Bandwidth" 

Spectra bandwidth can be 
thought of as a measure of 

how turbulent the turbulence 
iSI loosely! 
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High initial 'YJo leads to high value at late timesl until 
the decay is for enough along ... 



Rate Decay of TKE innovation for our nation 
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Turbulence metrics .... In"ovatlon for our nation 
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Turbulence metrics .... 
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Ratio of enstrophy generation 
mechanisms 
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-Baroclinicity is important at all times for enstrophy production 

-Higher 'YJo produces more enstrophy by "stretchingN 

-Baroclinicity is much higher initially 



Can turbulence transition be 
achieved with a single shock? 
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Can turbulence transition be 
achieved with a Single sbock? 
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Questions answered innovation for our nation 

• Does interfacial morphology control the 
evolution of RMI? 

- Yes 

• Can turbulence transition be achieved · 
with a single shock? 
- Yes 

• Is there a controlling parameter in RMI? 
- K 6 o 



Conclusion 

• RMS slope 'YJo of the interface affects the 
evolution of RMI 

• Reshock effect can be achieved with single 
shock, if 'YJo > 1. 

• Higher 'YJo behaves like the reshock problem 

• Higher 'YJo leads to faster dissipation of TKE 
because of presences on more small scale 
structure 

innovation for our nahon 



Counter-intuitive results annovallon for our nahon 

• In non-linear regime, higher 110 leads to more 
material mixing, has smaller scales and is more 
isotropic 

BUT 
1. Lower TKE 
2. Lower ReT 
3. Smaller mix width 



Future work 
innovation for our nation 

• Study the effect of Mach number and Atwood 
number 

• Identify scaling parameters (Ko~o or Ko a~o a ?) 

• Enstrophy and TKE budget 

• Identify parameters which can predict the 
transition to turbulence . 


