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Optimal Control Methods for Explosives Detection
David S. Moore, Shawn McGrane, Margo Greenfield, Jason Scharff
Shock and Detonation Physics Group, WX-9

We are exploring the capabilities of optimal control methods to significantly enhance the
standoff detection of explosives. In collaboration with Princeton University, we take
advantage of the best capabilities of recent laser technology and recent discoveries in
optimal shaping of laser pulses for the optimal dynamic detection of explosives (ODD-
Ex). ODD-Ex is a methodology wherein laser pulses are optimally shaped to
simultaneously enhance the sensitivity and selectivity of any of a wide variety of
spectroscopic methods for explosives signatures while reducing the influence of noise
and environmental perturbations. Recent results from ODD-Ex enhanced selectivity of
signatures of target analytes in mixtures will be presented. In collaborations with Purdue
University and the University of Missouri-Columbia, we are exploring control of remote
stimulation of enhanced signatures via energy localization in bulk explosives. We will
also present results from a preliminary study of enhanced signatures from remote
stimulation using ultrasonic and mm-wave sources.
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« Princeton:
—Herschel Rabitz; Jon Roslund
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- David Moore; Shawn McGrane; Jason Scharff; Margo Greenfield,
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QOutline
— Background
—Optimal Control
—Bandwidth broadening / vibronic control
—Multiplex CARS / mixtures
- Other applications
—Summary
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NRC Review Existing and Potential Standoff
Explosives Detection Techniques (2004)
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DHS Workshop Transformational Breakthroughs - Physics
Approaches (LLNL - 2005)

Laser Spectroscopy Topic Area - Recommendations

¢ Tailored desorption methods to increase vapor phase concentration
and suppress substrate lift-off

—“spatial and temporal laser pulse shaping”

» Expand detected emission spectral range, especially for LIBS
—LIBS is destructive of both the explosive molecule and the surface
Pulse shaping (quantum control) should allow use of much lower laser
energies as well as lead to expanded emission spectral range
» Non-linear optical methods

~ Pulse shaping can enhance molecular resonances allowing long distance
stand-off detection (i.e., force target molecules to spill out their signatures, or
be strong emitters with a unique signature)

» Los Alamos

NATIONAL LARORATORY

(8]



Application to Explosives Detection
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Linear spectroscopy - unshaped pulses

+ Conventional steady-state
or linear spectroscopy
using unshaped pulses

— Poor molecular
discrimination
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Quantum Optimal Dynamic Discrimination (ODD)

» Concept: Optimally
tailored laser pulses
(photonic reagents)

— Enables selective
addressing of different
species
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Control of Quantum Systems

» Customization of molecular Hamiltonian by optimally shaped field

| H(t) = Ho — pe(t) |

« Optimally drive quantum system towards desired final state

‘ Laser Control Field e(t)
| .

"

= Constructive interference for ['5)
= Destructive interference for |5/) # |15)
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Discovery of Optimal Photonic Reagents

* Fully automated high duty cycle closed-loop operation
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» High finesse control of system without a priori model of the physical sample
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Creating Photonic Reagents on Demand

ixels individuall
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» Start with raw, featureless, ultrafast laser pulse (30-100 fs)
* Filter spectral amplitude and phase (SLM or AOM)
* Fully automated computer generation of photonic reagents
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Pulse Shaping : Time Dependent Electric Field

= Femtosecond optical pulse Spherical Mirrors
shaping

- Shape E(t) by adding phase to

E(w) and Fourier transforming

input output

A Grating
. E(t) = a(t)e“P(‘) Acousto-optic

modulator (mask)

Grating

compressed shaped
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Increasing the Control Bandwidth _
Filamentation New Laser Technology
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Broadband Coherent Raman
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Controlled Detection of Mixture Components
‘ Selectivity through pulse shaping ‘

CARS of mixture: toluene; acetone; nitromethane
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Faster Optimization
‘ ‘ Use of Gerchberg-Saxton Algorithm

» GS is independent of target complexity, pulse =T
shaper resolution; no cost functions, weight “_ Start J
factors or optimization parameters. Y I

+ Only requires known target spectrum and the R, ]

FFT of Vi(w)
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» Algorithm steps:
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- FFT of the laser pulse (spectrum), starting
. . v P
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retain phase ‘\_/
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Gerchberg-Saxton Simulation
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ODD-Ex with Gerchberg-Saxton Phase
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Building Blocks for ODD-Ex

= A compact, engineered ODD apparatus is envisioned
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Oyt Gostiol Spose

= Not only UV/visible spectroscopic regions can be controlled, but anywhere in the
entire EM spectrum where source bandwidth is available for manipulation
= Extent of application will depend only on technology

Radio Microwave, Infrared Visible Ultraviolet X-ray Gamma Ray
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Shaping Acoustic Stimulation

» Smart acoustic pulse stimulates target
—Creates a unique controllable stimulation

+ Alternate acoustic generation
—RF conversion via piezoelectric effect
—EM to acoustic conversion on container

THz Sensor

» Feedback for optimization from
—Thermal signal
—RF/THz/microwave emission
—Vapor or other chemical emission

IR Sensor

~

Summary

» Optimal Dynamic Detection offers a viable path to significant improvements in
selectivity and sensitivity

+ Photonic reagents are optimally tailored electromagnetic pulses that enable
selective addressing of different species

= Single pulse photonic reagent can be designed to create a tailored wavepacket in
the analyte excited state and interrogate the system by a stimulated signal

— The optimally controlled multispectral stimulated signal is sensitive to detailed sample
vibronic structure and dynamics

* Large bandwidth sources allow coherent Raman spectroscopies and vibronic
control of emission

* Multiobjective optimization to balance selectivity and sensitivity
» Optimal control of alternate signature methods
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