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Overview of technical accomplishments over entire project

Self-organized pattern formation enables the creation of nanoscale surface
structures over large areas based on fundamental physical processes rather than an
applied template. Low energy ion bombardment is one such method that induces the
spontaneous formation of a wide variety of interesting morphological features (e.g.,
sputter ripples and/or quantum dots). This program focused on the processes controlling
sputter ripple formation and the kinetics controlling the evolution of surfaces and
nanostructures in high flux environments. This was done by using systematic,
quantitative experiments to
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kinetic phase diagram that showed how different regimes of pattern formation depend on
the temperature and flux. Continuum models and Kinetic Monte Carlo (KMC)
simulations were used to show that the atomistic mechanisms included in the models lead
to the type of patterning behavior observed.

However, these experiments also illustrated serious discrepancies between the
model and the experiments, i.e., the rate of ripple growth seen experimentally was much
slower than predicted by the model (e.g., a factor of >100 for our measurements of Cu).
We therefore focused in the final stages of the project on considering other mechanisms
that might account for the enhanced growth rate of ripples. Note that this level of
understanding could not have been achieved without the systematic experiments and
modeling that related ripple formation to the processing conditions.

Summary of impact

The following report summarizes the significant
contributions that our DOE-funded program has made to
understanding the fundamental mechanisms of ripple
formation. The program has resulted in 32 publications
(including invited reviews in Journal of Applied Physics [1]
(cover shown in figure 2) and J. Phys. Cond Mat [2,3] and 3
book chapters) and 45 presentations (18 invited to
international meetings). Our Phys. Rev. Lett. in June 2007 on
composition modulations during sputtering was highlighted in
the table of contents as an editor’s suggestion, chosen “to
promote readings across fields”. A list of the publications and ) )
presentations is given in the section following the results of Figure 2. Invited

the research program. review published in
Prog J. Appl. Phys. 2007.

Summary of research results

Quantification of BH ripples and linear instability in Cu

The early work in this program was focused on the systematic study of ripple
formation kinetics within the context of the Bradley-Harper (BH) linear instability theory.
The measurements were performed on Cu surfaces because, prior to this work, BH-type
ripples had only been observed in semiconductors and insulator materials. Measurements
of ion-induced pattern formation on metal surfaces had been of the type controlled by
Ehrlich-Schwoebel (ES) barriers to surface diffusion. Our results showed that in the
appropriate kinetic regime (higher flux and temperature than previous studies), ripples of
the BH-type could in fact be formed on the Cu surface [4]. The ripples were oriented
with the ion beam direction, had a fixed wavelength and grew exponentially in the early
stage.

Measurements of the wavelength as a function of flux and temperature (figure 3)
[5] showed a complex non-Arrhenius behavior and a flux dependence that is different at
high T (A~/") and low T (A~f°). These results could be understood within the context of
the BH model by considering the dependence of the defect concentration on the flux and
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Figure 3. Measurements of the ripple wavelength on Cu(001) as a function of a) temperature
and as a function of flux at b) T = 481K and c¢) T= 409 K. The solid lines are a fit to a model
based on the BH theory with a temperature- and flux-dependent defect concentration.

temperature. Chan et al. [1] developed a model for the surface defect concentration that
included thermal and ion-induced defect generation processes:

2
C..(f, T)=n,exp(-E; /kT)+%Yf exp(E,, /kT) Q)
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where Y refers to the sputter yield. At low temperature the defects are primarily created
by the ion beam while at high temperature the defects are formed thermally so that the
average concentration is dependent on the temperature and flux. The combination of the
BH theory with this defect model explains both the temperature and flux dependence of
the wavelength (solid lines in figure 3).

Kinetic Monte Carlo (KMC) simulations

In addition to the experimental studies of BH ripples, we developed a KMC
simulation model that included the Sigmund mechanisms for sputtering as well as
diffusion of ion-induced vacancy and adatom defects [6]. In the KMC simulations, the
interaction between the ion and surface is identical to the one in the Sigmund model, in
contrast with the experiments in which we cannot be sure of the ion-solid interaction.
The defect kinetics are implemented by allowing the individual atoms to hop around with
transition rates that depend on the local atomic configuration which allows the actual
time dependence of the surface evolution to be simulated. In addition, we allow the
vacancies on the surface to be mobile, consistent with measurements of surface vacancy
diffusion on Cu that indicate the vacancies are mobile. The presence of mobile vacancies
is essential to the ripple formation since there are more vacancies created during ion



bombardment than adatom-type defects.
In comparing the KMC with the BH
theory, we do not need to model the
defect concentration but can instead
count the actual number of defects on the
surface.

An image of the simulated
surface morphology and results for the
simulated wavelength at different
temperatures and fluxes is shown in
figure 4. We find that the temperature
and flux dependence of the wavelength
and growth rate can be well explained by
the BH theory (solid lines in the figure).
This result validated that the BH model
is a good continuum approximation for
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Figure 4. a) Simulated ripple morphology
and b) simulated ripple wavelength as a
function of flux and temperature. Solid
lines are fits to BH theory using simulation

parameters.

the surface evolution when the ion-solid interaction is modeled by the Sigmund
mechanism. In particular, the relationship between the ripple growth rate and the ripple
wavevector is explained well by the BH theory. This is in marked contrast with the
experimental studies in which the measured ripple growth rate on Cu is significantly
faster than the growth rate predicted form the BH theory using reasonable approximations
for the ion parameters in the Sigmund mechanism. This is a strong indication that there
may be other mechanisms in the actual experiments beyond those included in the BH
model. In addition to the growth rate, the KMC simulations also predict that the ripples
travel with a velocity across the surface. The simulated velocity also agrees well with the
prediction of the BH theory, including the wavelength dependence of the velocity
(dispersion). This is significant because recent experiments [7,8] have found that the
ripples on amorphous surfaces produced by focused ion beams travel in the opposite
direction predicted by the theory. The simulations however indicate that the predicted

BH velocity is consistent with what occurs for
sputtering based on the Sigmund model.

Kinetic regimes of ion patterning

In a review for J. Appl. Phys. [1], we
presented a comprehensive picture of ion-
induced patterning in terms of the different
atomistic mechanisms that had been proposed
and the Kkinetic regimes in which they operate.
We showed how a wide range of behavior
observed on Cu surfaces could be organized in
terms of a “kinetic phase diagram” (figure 5)
that delineated the different regimes of
temperature and flux in which they were
observed (BH ripples, Ehrlich-Schwoebel or
diffusion controlled patterns, athermal ripple
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Figure 5. Kinetic phase diagram shows
regimes of pattern formation observed on
Cu(001) surfaces at different fluxes and
temperatures.



formation, non roughening behavior). The relationship between the different regimes can
be understood in terms of the linear instability model using the different kinetic
mechanisms described earlier. The wavevector-dependent growth rate for all these
processes acting together is given by:

r(k,.k,) ==v,(f)k,’ =v, (F)k,*+S.(f,T)k +S,(f, T)k,’ (2)
—B(f, T)k* =B, (f)k; —B, , ()k’kZ—B, (f)k;

where the parameter S comes from the instability due to the ES barrier [9]. The different
pattering behavior arises because the parameters can have different dependence on the
processing conditions of f and T so that different processes will dominate in different
kinetic regimes. For instance, the roughening due to ES barriers is maximum at
intermediate temperatures so that a transition from ES behavior to BH ripples can be
observed by raising the temperature. Similarly, lowering the ion flux can induce a
transition from BH ripple formation to non-roughening behavior.

Comparison of different observations with the linear instability model also served
to highlight the shortcomings of the BH theory and identify where other mechanisms or
effects must be considered [1]. For example, the quantitative predictions of the BH
theory for the growth rate of the ripples is consistently lower than the measured rate (by
200X for Cu), suggesting that other mechanism may be contributing to the roughening.
In addition, saturation of the ripple amplitude or formation of quantum dot-like structures
at normal beam incidence are outside the limits of the linear theory.

Stress effects in ripple formation

The large difference between the measured ripple
growth rate on Cu from the BH prediction M
suggested that there are other effects contributing on
to the ripple formation beyond sputtering. One

potential mechanism is the effect of stress induced
by the ion bombardment. In order to study this,
we measured the stress induced in the near-surface
region by the ion bombardment [10]. Surprisingly,
there has been very little study of this ion-induced
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was measured using wafer curvature in real time Figure 6. Measurements of stress
during the bombardment (figure 6). We found that  evolution in Cu during low energy
the stress was highly transient, decreasing rapidly ~ ion bombardment at different fluxes.

after the beam was turned off. We modeled the

ion-induced stress in terms of the balance between point defects (implanted Ar, vacancies
and interstitals) created by the ion beam. Volumetric expansion or relaxation around
each defect was used to relate the induced stress to the depth-dependent concentration of
each defect. Numerical calculations of the defect concentration evolution (including



annihilation between the different defects) were used to understand the evolution to a
steady-state stress distribution. Results of these calculations for the depth-dependent
defect concentration are shown in figure 7 after different amounts of sputtering.

Surface morphology changes can relax the stress in the surface which leads to a
surface instability similar to the BH mechanism (referred to as the Asaro-Tiller-Grinfeld
or ATG instability). In this picture, the rate of surface
roughening depends on &h/&® [11]. We combined the
stress induced roughening with the BH mechanism for 10
curvature-dependent sputter yield to develop a
continuum model for the surface evolution under the
combined effects of sputter removal and ion-induced
stress [3]. The combination leads to a linear instability
model with a rate that depends on the wavevector as r =
Alk? = BIk|* + C|k]*. The predicted wavevector and
roughening rate are given by:
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where kgr= (A/(2B))Y? , kate=3/4 and o = C/B.

This theory predicts that the ripple will grow faster in
the presence of stress than in the simple BH theory, with
a rate that rises as the wavevector approaches the value
predicted by the ATG theory.
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Figure 7. Results from
model for defect
concentration vs. depth for
sputtered surfaces. Stress

Prediction of composition modulations

The linear instability theory described was calculated from
previously considers the evolution of a surface due to a concentration profiles based
balance between sputter roughening and surface on relaxation volume around
diffusion in a single component system. We extended each defect.

this model to consider the sputtering of alloy surfaces

[12] and found that sputtering can be used to produce composition modulations on the
surface, in addition to height modulations. Composition modulations arise when each
component of the alloy (A, B) has a different sputter yield (Y a, Yg) and/or surface
diffusivity (Da, Dg). The difference in sputter yields leads to a different steady state
concentration on the surface relative to the bulk. The sputter yield is taken to have the
same curvature dependence for both of the components. The difference in diffusivity and
yield leads to the development of a sinusoidal composition modulation.

The results of the model indicate that the surface will develop modulations in the
height and also in the composition on the surface (figure 8). Depending on the relative
values of the diffusivities and sputter yields, the phase between the surface height and the
composition modulation can be changed. If Da/Dg > Ya/Yg, then the composition of A



will be enriched at the bottom of the ripple. For the opposite case, the composition of A
will be enriched at the top of the ripple. The theory predicts that the composition
modulations can be significant. The amplitude of the composition modulation ({)
depends on the relative values of the diffusivity and yield as shown in figure 8; the
maximum modulation can be as large as 0.7. Although this model predicts composition
modulations, there has not yet been an experimental verification of the effect. Looking
for these modulation is a part of the proposed experimental work.

Figure 8. (Top) Schematic of
composition modulations (shown by
color variations) that accompany
shape modulations on an alloy
surface predicted by our theory.
(Bottom)  The  amplitude  of
composition as a function of the ratio

of the yields and diffusivities.

Relaxation of alloy surfaces

As an alloy surface evolves under capillary : B -
forces, differing mobilities of the individual "
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components can lead to kinetic alloy
decomposition at the surface (figure 9). We have
addressed the relaxation of nanoscale faceted and
rough sinusoidal ripples on alloy surfaces by
considering the effects of both surface and bulk
diffusion. On rough surfaces, in the absence of
bulk diffusion, we have derived exact analytical
expressions for relaxation rates and identified two
natural time scales that govern the relaxation
dynamics. Bulk diffusion was shown to reduce enrichment in the A species at the
kinetic surface segregation and enhance relaxation  pottom of the “valley” occurs due
rates, owing to intermixing near the surface. Our to rapid diffusion of fast-moving A
results provide a quantitative framework for the
interpretation of relaxation experiments on alloy surfaces, which we plan to carry out as
part of this renewal proposal.

In the case of faceted alloy surfaces, we find that the interplay of material
transport kinetics and singular features associated with facets leads to evolution behavior

Figure 9. Vertical compositional
gradients for an almost fully
relaxed sinusoidal ripple
modulation with D, 1/Dg=100. The



that is remarkably different from that of unfaceted or rough surfaces. In the latter case,
kinetic alloy decomposition arising from the differences in the mobilities of the alloy
components, progressively evolves to the equilibrium composition as the surface relaxes.
In contrast, the presence of facets permanently locks the surface composition at a non-
stoichiometric, near-constant profile during relaxation. Based on scaling laws derived
from an analytical model, we find that small feature sizes and large differences in
diffusivities can enhance composition locking on faceted surfaces.

KMC simulations of ripple formation with ES barriers

The continuum model predicts that the flux-
normalized amplification rate of the ripple amplitude (r*/f)
depends on the square of the ripple wavevector (k*). As
shown in figure 10, the computer simulations using KMC
agree with this prediction when we use the same

mechanisms as those in the continuum model. We used the

simulations to examine other effects not in the continuum
model that might increase the ripple growth rate: multiple
defects per ion and Ehrlich-Schwoebel (ES) barriers to
prevent the recombination of vacancy and adatom defects
The multiple traces on figure 2 correspond to the results of
these studies. Although they have a small effect on
increasing the ripple growth rate, they cannot account for
the large factor difference between the experiments and
model.

lon-induced stress as ripple driving force

Stress induced by ion bombardment is another
possible mechanism for enhancing ripple formation. This
was incorporated into a theory that combines effects of
curvature-dependent sputtering yield (as in the standard
Bradley-Harper (BH) theory of ripple formation) with the
effect of stress to form patterns (known as the ATGS
theory). As shown in figure 11, stress in the layer is
predicted to strongly modify the ripple growth rate (r*).

At low stress, r* is given by the BH results from the
Bradley-Harper instability theory (green line in figure), but
as the stress increases, the ripple formation becomes more
like the stress-induced ATGS instability (blue line in
figure).

Measurements of ion-induced stress
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Figure 11. Results of model
for effect of stress on ripple
growth rate.

We used wafer curvature to measure the stress induced by the ion bombardment
of Si surfaces. Careful measurements are needed because the stresses are small and there
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are many potential artifacts such as thermally induced stress. Measurements of the stress
as a function of time are shown in figure 12. The stress becomes increasingly
compressive and then saturates at a steady-state value that depends on the flux. This is
the first time that the flux dependence of ion-induced stress has been seen which shows
that the stress is mediated by the kinetics of the ion-induced defects. The flux dependence
of the steady-state stress is shown in figure 13. We also find that the stress relaxes
partially when the ion beam is terminated (also shown in figure 12).

Model for ion-induced stress in amorphous Si

We developed a kinetic model to explain our measurements of stress induced by
low energy ion sputtering of Si surfaces. This model is based on understanding how the
steady state is determined by a balance between stress generated by ion implantation and
relaxation processes in the amorphized Si. The relaxation occurs by viscous flow, but the
viscosity is enhanced by the non-equilibrium concentration of defects when the ion beam
is on. The evolution of the measured curvature (K) is governed by the following
equation:

Kk, -tk -
dt n (4)

where f is the flux and y is the sputter yield. The fluidity (1/n) is taken to be proportional
to the concentration of flow defects based on previous work by Witvrouw and Spaepen:

1:aC
n ®)



where C is the non-equilibrium concentration of defects induced by the ion beam. The
defect concentration is described by a balance between creation and annihilation

mechanisms:

Z-?: fC,— D,C—D,C*— fyC

(6)

where D; and D, are coefficients for either unimolecular or bimolecular processes.
Fitting our results to this model indicates that the bimolecular annihilation mechanism
gives the best agreement with the measurements of stress vs flux (solid line in figure 13)
and the time evolution of the stress (figure 12). These results are a critical extension of
earlier studies of viscous relaxation that connect ion-induced relaxation with other

relaxation processes in amorphous Si.

Surface morphology of alloys — thermodynamics, segregation and strain

Alloy structures such as core-shell particles, heteroepitaxial multilayer’s,
nanowires and surface ripples have received a lot of attention in recent years due to their
applications in logic, energy storage and optoelectronics. In typical growth conditions,
the surfaces of these structures are usually faceted i.e. they adopt low-energy singular
crystalline orientations. For alloy systems, the growth law for a fully faceted structure
requires the specification of the normal velocity of each facet, the incorporation rate of
each alloy component on the surface, and the exchange of surface atoms with the bulk.
The latter process requires consideration of both surface segregation and possibly bulk
material transport. By using only fundamental concepts of thermodynamics, recently, we

derived the governing equations for the growth
of strained and fully faceted two-component
crystals in regimes where surface material
transport may be governed by surface
attachment limited kinetics or surface diffusion
limited kinetics.

Molecular dynamics simulations of ion-induced
stress

Molecular dynamics simulations have
been developed to study the stress evolution in
fcc metals (with Prof K.S. Kim’s group). We
have discovered a new mechanism to explain
the “sawtooth” behavior in some metals (Ni,
Cu, Ag in figure 14). In these systems, we find
that the interstitial point defects aggregate into
platelets below the surface surrounded by a
dislocation loop. These loops are highly mobile
and collect more point defects as they sweep
below the surface. When the platelets become
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Figure 14. MD calculations of stress
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formation induced by the abrupt release
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sufficiently large, they cause the dislocation to cross-slip and glide to the surface. This
causes the formation of an atomic plateau on the surface (shown by the images at the top
of the figure) and relieves the stress in the layer (as indicated by the arrows on the stress
plot). This mechanism couples the stress and morphology evolution in a different way
than the Asaro-Tiller—Grinfeld instability and we are working to understand how it
affects pattern formation on the surface.
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Graduate student progress: The program has supported the effort from several
graduate students and the partial effort of one post-doc:

Wai Lun Chan (Asst. Prof. U of Kansas): measured the evolution of ion-induced ripples
under different kinetic conditions.

Yohei Ishii (Hitachi): performed experiments to measure stress and composition
modulations during sputtering.

Nikhil Medhekar (Monash U.): performed analysis of stress effects on ripples.

Rassin Grantab: performed MD simulations of ion-induced stress.

M.S. Bharathi (post-doc, Institute of High Performance Computing, Singapore): worked
on KMC simulations of ion-induced pattern formation.
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