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This dissertation presents a systems-level approach to multi-scale structural health 

monitoring (SHM) with specific focus on wind turbine rotor blades, combining innovative 

sensing platforms for incipient damage detection with state estimation for structural 

performance assessment. The practical implementation of this approach rests in three areas: 

hardware development and deployment for embedded data acquisition; demonstration of 

incipient damage detection using embedded systems for active-sensing SHM, including an in-

depth assessment of sensor diagnostics; and development of a nonlinear observer for state and 

loads estimation applied to a geometrically nonlinear beam model. 
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Structural Health Monitoring is generally defined as the development of an in-situ 

damage assessment capability, and when combined predictive loading and failure models, 

enables risk-informed models for decision-making. These decision models require contributions 

from a wide variety of technology areas. Sensing systems (in many cases, capable of providing 

multiple data types) must be developed specifically to provide the data necessary for structural 

damage detection and performance assessment. A means of sensor diagnostics is necessary to 

provide confidence in the recorded data. Statistical modeling and classification feed the 

development of optimal detectors necessary to ascertain the presence, location, and severity of 

damage. Methods of state estimation are needed to map kinematic measurements to physical 

performance metrics. A probabilistic representation of future loads applied to a structural model 

enables an assessment of the structure’s future performance. Finally, a cost model is combined 

with a probabilistic risk assessment, given the detectors’ output and the structure’s estimated 

future performance, to render the risk-minimizing decision. This dissertation presents key 

contributions among the underpinnings of this ultimate decision model: (1) embedded sensor 

development and deployment; (2) sensor diagnostics for active-sensing methods; (3) an 

assessment of incipient damage detection performance for large-scale composite structures; and 

(4) the development and application of a state observer, demonstrated in the specific case of a 

geometrically nonlinear beam model. 
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Chapter 1  
Introduction 
 

1.1. Overview 

1.2. Structural Health Monitoring 

Structural Health Monitoring (SHM) offers the possibility of improving production 

quality, boosting manufacturing output, or increasing customer satisfaction, but the underlying 

motivation for the application for SHM systems is always and must be economic. The promise 

of SHM is always some combination of reduced maintenance costs, increased asset/resource 

availability, and improved life safety. Presentations of SHM as found in the literature often 

follow a process similar to that depicted in Figure 1: some data are collected, and a projection of 

that data onto a much smaller subspace (feature extraction) shows a change correlated with 

some physical change in the system (damage). However, connecting SHM research to realizable 

gains for asset owners requires a more comprehensive approach. 
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Figure 1: A simplistic view of structural health monitoring 

An SHM system that delivers positive value to asset owners must ultimately provide the 

ability to make risk-informed decisions. Expanding the simplistic view of SHM given in Figure 

1, an SHM system for risk-informed decisions requires: (1) feature extraction; (2) detection and 

response; and (3) planning and action. Each of these primary phases is supported by multiple 

processes, requiring multiple technologies. This process is shown pictorially in Figure 2. The 

Feature Extraction phase requires hardware to collect appropriate data, as well a sensor 

diagnostics system to verify that the sensors are performing correctly. In order to identify the 

type and extent of damage, the Detection and Response phase requires real-time measurements 

combined with a physics-based model to provide the “Informed Model” that informs the 

detection process. The Planning and Action phase requires the observations from the detection 

phase, as well as measurement-informed simulation results (state observer) and estimates of 

future performance in response to potential loads (loads model). Furthermore, in producing 

these estimates, known uncertainty on the various inputs must be propagated to enable 

quantification of the uncertainty associated with the estimates and predictions. 
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Figure 2: Applied structural health monitoring with informed decision models 

1.3. Overview of the Dissertation 

1.3.1. Embedded Sensing for SHM 

Embedded sensing entails incorporating data acquisition hardware with processing and 

communications capability into the structure being monitored in such a way that the monitoring 

can take place while the structure is operational. The embedded sensing approach differs from 

most conventional sensing approaches, which are typically implemented using commercial-off-

the-shelf (COTS) acquisition systems to collect data from a structure in a controlled, off-line 

environment. Experimental model validation (such as modal testing for test-analysis 

correlation) and nondestructive evaluation (NDE) are typically approached in this manner. In 

these cases, the sensing equipment may be too expensive to justify its permanent installation in 

the structure, it may be too bulky to permit ordinary operation of the structure, or its operation 

may require such specialized training that leaving the equipment in place in the absence of a 
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qualified technician would be impractical. For assets of high value or that are inaccessible 

following deployment, the capability to perform such “conventional” sensing may be actually 

embedded in the structure, but the cost justification for such cases is rare. However, continuous 

advances in low-power computation, communication, and sensing are enabling embedded 

systems for SHM to become more cost-effective and commonplace, with such systems being 

specifically developed for mobile structures, such as airplanes, automobiles, ships, and 

locomotives, as well as for static structures, such as bridges, buildings, and large pieces of 

industrial machinery. 

Chapter 3 focuses on embedded sensing development application to SHM. The 

embedded systems developed and presented in this dissertation have contributed to the areas of 

civil infrastructure monitoring [11], wireless communication for embedded SHM [2], integrated 

sensing and diagnostics [12], and multi-scale sensing [1, 13]. 

1.3.2. Sensor Diagnostics 

In permanent SHM system installations or long-duration tests, the ability to assess the 

condition of the sensors and actuators installed on a structure being monitored is essential. 

Transducer failure can be a significant source of SHM system failure, and a lack of adequate 

sensor diagnostics capability can lead to false positives in damage detection and also contribute 

to system downtime. Although a separate sensor diagnostic capability may suffice when 

utilizing conventional data acquisition systems, an embedded SHM system requires a seamless 

ability to implement sensor diagnostics in real time, so that deviations from baseline 

measurements can immediately and confidently be attributed to structural changes rather than 

sensor malfunction. 

Chapter 4 focuses on diagnostics for piezoelectric sensors using impedance 

measurements, and in particular provides two key contributions to the SHM community in the 
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application of piezoelectric transducers: (1) the assessment of sensor performance and failure 

modes over a long-duration fatigue test in a severe loading environment, and (2) the 

identification and normalization of nonstationary impedance measurements collected during 

cyclic loading of a structure [6]. This situation is significant, because many structures 

commonly considered candidates for embedded SHM undergo cyclic loads while in operation, 

including aircraft, automobiles, bridges, and wind turbine flexible members. 

1.3.3. Experimental Damage Detection Performance 

In the experimental fatigue test described in Section 2.5, decisions for sensor 

placement, acquisition hardware type, and analysis methods applied were motivated by standard 

practices for active sensing SHM [14], which have been proven effective in smaller-scale 

experimental contexts [15]. The active sensing approach to SHM entails interrogating the 

structure by intentionally exciting it in some manner and measuring its subsequent response. 

The relative performance of the hardware systems and analysis methods implemented were then 

compared in terms of their ability to detect and localize incipient damage. By implementing a 

number of distinct SHM system possibilities and assessing their relative detection performance, 

this portion of the dissertation points toward a more effective approach for composite rotor 

blade SHM. Although this process follows established methods, it does so with a careful 

comparison of the actual detection performance for each permutation. This example ultimately 

highlights the need for a model informed by the physics of the structure and clearly defined 

performance metrics/requirements. 

Chapter 5 focuses on experimental applications of SHM on a wind turbine rotor blade 

under fatigue loading, and it details two main contributions to the SHM community: (1) the 

publication of a large scale fatigue test with a thorough active-sensing component for SHM; and 
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(2) the exploration and comparison of methods commonly implemented in SHM literature to a 

large-scale problem [7]. 

1.3.4. State Estimation 

Effective structural prognostics of wind turbine blades will require estimates of 

quantities directly related to performance metrics, such as an ultimate load limit or absolute 

maximum deflection. To this end, a state observer is proposed for a geometrically nonlinear 

beam finite element model. This model was developed as a fast-running simulation to capture 

the relevant dynamics of wind turbine flexible members. Although much more complicated 

models can be implemented to predict the behavior of such composite structures, they would 

not be feasible for implementation in real-time, embedded systems for SHM. The state observer 

enables the evaluation of structural performance in light of detected damage with respect to 

measureable performance metrics, such as an ultimate load or maximum deflection. 

Chapter 6 focuses on observers for state and loads estimation. In a typical observer 

application, a reference model is used to observe the behavior of a physical system, which is 

commonly referred to as a ‘plant’. The observer implements a Newton-Raphson iterative 

scheme to drive the measured output error toward zero by updating a fictitious external force 

exerted on the model. By updating an external force rather than estimating the state directly, the 

proposed state observer is intended to produce an estimate of the state that is consistent with the 

structure’s behavior even in the face of model uncertainty, provided the model is sufficiently 

“close” to the plant. The contribution of this chapter is in the development and application of a 

state observer to feed the decision models described above. 
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1.4. Contributions of the Dissertation 

1. Development and deployment of SHM-specific data acquisition hardware for multi-

scale sensing with integrated capacity for impedance-based sensor diagnostics 

2. Demonstrated a new design of a hybrid wireless sensor node network for civil 

infrastructure monitoring utilizing a network-hopping mobile-host 

3. Publication of sensor diagnostics results from a large-scale experimental campaign, 

including an assessment of failure modes, transducer performance, and longevity 

4. Proposed a normalization scheme for nonstationary impedance measurements for 

sensor diagnostics with piezoelectric transducers under cyclic loading 

5. Publication of incipient crack detection results from a large-scale experimental 

campaign, including a statistical comparison of common methods and features 

6. Proposed a method to adapt diffuse wave field measurements for processing using 

methods common to processing ultrasonic guided wave measurements for SHM 

7. Derived a Newton-Raphson state observer for implementation with a nonlinear 

finite element code, and showed its relationship to the Kalman filter 

8. Demonstrated the proposed Newton-Raphson state observer in a bench-top 

experiment with a vertically cantilevered beam 
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Chapter 2  
Experimental Test Platforms 
 

2.1. Introduction 

This chapter presents six experimental test platforms referred to through the course of 

the dissertation. Some of the platforms utilized have multiple applications, so it is convenient to 

concentrate their descriptions here. 

2.2. Sensor Diagnostics Demonstration Plate 

An aluminum plate with 12 piezoelectric transducers bonded to its surface is shown in 

Figure 3. The plate measures 12x12x0.5 inches, and has 12 APC International D-0.500-0.020-

851 PZT patches, fabricated using APC International’s 851 material [16]. Each patch is a disc 

measuring 0.5 inches in diameter and 0.02 inches thick. The patches operate in the 3xd  mode, 

such that strains in the planar x  direction induce voltages in the out-of-plane 3 direction and 

vice-versa (see Figure 45). Six of the transducers were mounted according to standard 

procedures, bonded using a cyanoacrylate adhesive. Three of the transducers were mounted to 

simulate progressive debonding, with segments of wax paper placed nominally under 25%, 50% 
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and 75% of each patch surface, respectively. The last three transducers were mounted to 

simulate broken sensors; they were first mounted according to standard procedures, and then a 

rotary cutting tool was used to cut away 25%, 50% and 75% of each patch. This test platform 

was used as a laboratory demonstration of the impedance measurement capabilities of the 

embedded sensor nodes presented in Chapter 3. Although there were originally six healthy 

transducers, two of the transducers’ leads have broken off, so that only four healthy transducers 

remain useful. 

 

Figure 3: Sensor Diagnostics demonstration plate with healthy, debonded, and broken sensors 

2.3. Alamosa Canyon Bridge 

The Alamosa Canyon Bridge, located in southern New Mexico, USA, is a traditional 

steel girder bridge with a reinforced concrete deck 25 cm thick. This bridge has been 

decommissioned and is utilized by the New Mexico Department of Transportation as a test bed 
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for structural health monitoring systems from university and research organizations. The bridge 

has multiple spans, and a typical joint in the bridge is fastened with 14 bolts, making it an ideal 

test platform for applications related to bolted joint monitoring. A photograph of the bridge, 

inset with a detailed view of a joint and an instrumented washer installed with a bolt, is shown 

in Figure 4. These washers are used in the same manner as their conventional counterparts. 

When mounted in a structure, the dynamics of these washers will change as the preload is 

changed. Specifically, the resonant peaks of the device shift to higher frequencies and their 

magnitudes drop as the preload increases. For experiments conducted using the Wireless 

Impedance Device (WID3) described in Section 3.3, a total of 12 washers instrumented with 

APC International D-0.500-0.020-851 PZT transducers were installed, and these transducers 

could then be interrogated to monitor changes in the washers’ boundary conditions caused by 

changes in the bolt preload. 

 

Figure 4: Alamosa Canyon Bridge with detail of bolted joint and instrumented washer 
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2.4. RAPTOR Telescope Drive System 

Comprising the primary hardware component of the Los Alamos Thinking Telescope 

Project [17], the RAPid Telescopes for Optical Response (RAPTOR) observatory network is 

made up of several autonomous astronomical observatories designed to search for astrophysical 

transients, namely, gamma-ray bursts (GRBs) [18]. Although they are intrinsically bright, GRBs 

are difficult to detect because of their short duration. Typically, GRBs are first observed by 

orbiting satellites, and in conjunction with this information, the RAPTOR telescopes are able to 

identify and record these events using a two-step process. First, a large field-of-view telescope 

provides location information on potential events of interest. Once such an event is identified, 

narrow-field telescopes are moved quickly to perform more detailed spectroscopy and light 

curve measurements. Because of the large number of potential events of interest, this process 

must be maintained on a continual basis throughout the night at rates more than 10 times faster 

than that of typical astronomical mounts. 

An individual RAPTOR “observatory,” shown in Figure 5 (left) is a standalone 

structure with two main structural components: an automated enclosure and the telescope drive 

system. The SHM focus of this test bed is on the telescope drive system, specifically, 

components referred to as “capstans,” which provide the friction interfaces between the motors 

that drive the mounts and the drive wheels for both the right ascension and declination axes. 

The capstan itself is a 3.38 inch (8.58 cm) long stainless steel rod, 0.25 inch (6.35 mm) in 

diameter, with a urethane coating. This coating wears with use, resulting in irregular travel of 

the drive wheel and the eventual inability to actuate the wheel. Figure 6 shows capstans at 

various levels of wear. 
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Figure 5: RAPTOR telescope and enclosure, or “observatory” (left); telescope system with mount and 
drive mechanisms (right) 

  

Figure 6: Capstans showing varying levels of wear 

The RAPTOR telescope systems employing this capstan-based drive mechanism are 

currently operated in a run-to-failure mode; the capstans, which are almost invariably the first 

component to fail, are often replaced only after an inability to control the telescope optics is 

observed. Left unchecked, the inevitable wearing away of the urethane coating can eventually 

cause damage to other, considerably more expensive components, such as the large drive 

wheels. Given the variability in both the geospatial locations and the duty cycles associated with 

these telescope systems, the rates at which the capstans experience wear are highly inconsistent, 

precluding the development of a cost-effective maintenance schedule for individual telescope 

systems or for the network as a whole. Conversely, replacing the capstans without regard to 

their condition at a conservatively chosen interval is hampered by the man-hours involved in 

accessing the remotely-located systems. An SHM system deployed across the entire RAPTOR 

observatory network, which has the potential to grow into a globally distributed sensing system, 
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would offer a means of monitoring the condition of each observatory, enabling managers to 

plan maintenance schedules that adapt to the real-time needs of each installation and to make 

more cost-effective use of the limited maintenance resources. 

2.5. CX-100 Rotor Blade Fatigue Test 

2.5.1. Overview 

The CX-100 wind turbine rotor blade, developed by researchers at Sandia National 

Laboratory (SNL) [19], was an experimental rotor blade design that included a carbon fiber spar 

cap, with a fiberglass shell laid over a balsa wood frame. The rotor blade was mounted to a 7-

ton steel frame designed to approximate a fixed-free boundary condition. Loads were 

introduced to the blade using a universal resonant excitation (UREX) system, which 

hydraulically actuated steel masses along linear rails oriented in the flapwise direction at the 

rotor blade’s first resonance. In the experiment described here, a 9-meter CX-100 wind turbine 

rotor blade  was subject to fatigue loading until failure in a controlled laboratory environment 

[20, 21]. Drawings of the rotor blade are shown in Figure 7, and a photograph of the test setup is 

shown in Figure 8. The UREX system, which had a mass of 582 kg, was mounted 1.6 m from 

the rotor blade’s root, and an additional proof mass of 145 kg was mounted to the blade 6.75 m 

from the root. The addition of these masses reduced the blade’s resonant frequencies further 

below their corresponding free-free values than simply mounting it to the test stand; the first 

three resonant frequencies for these three configurations are given in Table 1. 
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Figure 7: CX-100 rotor blade schematics: low and high-pressure side views. 

 

Figure 8: Fatigue test experimental setup 

Table 1: CX-100 Resonant Frequencies (Hz) in three configurations 

Mode Free-Free [15] Fixed-Free [21] Fixed-Free with 
UREX [21] 

1st Flapwise 7.61 4.35 1.82 
1st Edgewise 18.1 6.43 2.68 
2nd Flapwise 20.2 11.5 9.23 

    

2.5.2. Instrumentation for Active Sensing 

The surface of the rotor blade was instrumented with active sensing arrays composed of 

APC International D-0.500-0.020-851 PZT transducers, bonded to the surface of the rotor blade 

using Loctite 234790 cyanoacrylate adhesive. In the root area of the rotor blade, the transducers 

were installed in three main configurations. On the low-pressure (LP) side, arrays LP-A1, LP-

A2 and LP-A3 were arranged as “inner” arrays, observing a 0.75-m diameter region centered on 

collocated actuators located 1 m from the rotor blade root, while array LP-A4 was arranged as 

an “outer” array, observing a 2-m elliptical region centered on its actuator located 1.5 m from 
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the rotor blade root. The “inner” and “outer” designations refer to two concentric array layouts, 

in which the smaller elliptical array, dubbed the “inner” array, is surrounded by the larger 

“outer” array. On the high-pressure (HP) side, arrays HP-A2 and HP-A3 were collocated arrays 

observing a 0.75-m diameter region centered on collocated actuators located 1 m from the rotor 

blade root. In the case of collocated sensor arrays, multiple PZT patches were installed at each 

location so that separate data acquisition systems could independently interrogate the same 

array geometries. The sensor array layout for each PZT array is summarized in Table 2 and 

depicted graphically in Figure 9. Each sensor path is numbered. The centrally located actuator is 

labeled ‘A’, and path 0 is the path from the actuator to a collocated sensor, if present. 

Table 2: PZT sensor array detail for CX-100 fatigue test 

Side of rotor 
blade 

Array 
No. 

Array 
Designation 

Array 
Config. 

DAQ Collocated 
Actuator 
& Sensor 

Number of 
Patches 

Low-pressure 1 LP-A1 “Inner” LASER Yes 7 
Low-pressure 2 LP-A2 “Inner” Metis Yes 7 
Low-pressure 3 LP-A3 “Inner” WASP No 6 
Low-pressure 4 LP-A4 “Outer” LASER Yes 8 
Low-pressure 5 LP-A5 “Linear” NI Yes 8 

High-
pressure 

1 HP-A2 “Inner” Metis Yes 7 

High-
pressure 

2 HP-A3 “Inner” WASP No 6 
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Figure 9: CX-100 root area sensor arrays with marked sensor locations: low-pressure-side inner array 
(top); low-pressure-side outer array (middle); and high-pressure-side array (bottom) 

Arrays LP-A1 and LP-A4 were monitored by a single Bruel & Kjaer LASER data 

acquisition system using an electronically controlled switch box. The LASER system was 

employed for diffuse wave field measurements, and it excited the blade while simultaneously 

measuring its response (referred to as “active interrogation”) with band-limited white noise 

from 500 Hz to 40 kHz, at a sampling rate of 96 kHz. For array LP-A1, a total of 1554 datasets 

were collected between 05/24/2011 and 11/16/2011. Of these, the first 120 datasets collected 
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through 08/31/2011 were used as baseline data, including 22 datasets collected prior to 

08/11/2011, when the rotor blade first underwent fatigue loading. The remaining 1434 datasets 

were utilized for detection purposes. For the array LP-A4, a total of 1275 datasets were 

collected between 05/24/2011 and 10/30/2011. Of these, the first 125 datasets collected through 

08/31/2011 were used as baseline data, including 30 datasets taken prior to 08/11/2011. The 

remaining 1150 datasets were utilized for detection purposes. Only datasets taken through 

10/30/2011 were utilized because the actuator patch for the inner sensor array became damaged 

on that day. 

Arrays LP-A2 and HP-A2 were monitored by the MD7 IntelliConnector [22], by Metis 

Design, which was employed for ultrasonic guided wave (UGW) interrogation over several 

transmission frequencies ranging from 50 kHz to 250 kHz at a sampling rate of 10 MHz. On the 

low-pressure side, a total of 709 datasets were collected between 05/24/2011 and 11/16/2011 

using the IntelliConnector system. Of these, 88 were used as training data, corresponding to 

data collected through 08/31/2011. Of the training data, the first 20 datasets were collected prior 

to 08/11/2011, when the rotor blade first underwent fatigue loading. Data were collected both 

during fatigue loading and during rest periods. Because data collected during fatigue loading 

exhibited a time-varying mean, the data were high-pass filtered prior to further processing using 

an equiripple filter [23] with a cutoff frequency 20 kHz. 

Arrays LP-A3 and HP-A3 were monitored by the Wireless Active Sensing Platform 

(WASP), the prototype embedded sensor node described in Section 3.4, deployed in order to 

assess its performance in comparison to the commercial systems employed. Because the 

WASP’s firmware was still in development at the start of the test, it was limited for this test to a 

50 kHz sampling rate.  
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Array LP-A5 was monitored by two four-channel National Instruments (NI) 4431 

modules linked together to interrogate the 8-patch array. The excitation signal from the NI 4431 

modules was band-limited white noise up to 50 kHz, with a sampling frequency of 100 kHz. 

2.5.3. Fatigue Test Progression 

The fatigue test began on 08/11/2011, and it ran intermittently for approximately 8.5 

million cycles until a catastrophic fatigue crack became visible on 11/08/2011. Based on prior 

fatigue test experience with this blade design, the duration of this fatigue test exceeded three 

times the expected number of cycles, There is little information available concerning PZT 

patches in an active-sensing SHM system being subjected to such abusive conditions for this 

length of time. During the test, some transducers failed and required replacement or repair for 

various reasons, including cable connection breaks, patch de-bonding, and physical patch 

fracture. The dates and locations of patch failures are indicated in Figure 10, overlaying a plot 

of fatigue cycle counts versus date. The transducer failures are divided into three location 

categories: low-pressure inner array location 3 (LP-I3), low-pressure inner array location 4 (LP-

I4), and all other locations. Locations LP-I3 and LP-I4, which are indicated in Figure 9 (top), 

were directly adjacent the crack, and they experienced the majority of the sensor failures. 

Although the catastrophic crack that surfaced on 11/8/2011 was obvious under visual 

inspection and in terms of its impact on the blade’s dynamics, the incipient damage, which 

beforehand was not obvious in either of those two modes, was first detectable between 

10/18/2011 and 10/22/2011 using various methods [24-26], including those presented in 

Chapter 5. The majority of the sensor failures experienced that did not occur as the crack 

surfaced on 11/08/2011 were near these dates, around 10/20/2011. In hindsight, the slowly 

developing crack may have caused some less visibly obvious changes at the rotor blade’s 

surface, further causing some of the sensors in close proximity to fail. 
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Figure 10: Fatigue cycles versus date with sensor failures indicated by group location (left) and 
photograph of surfaced fatigue crack (right) 

2.6. Vertically Cantilevered Aluminum Beam 

An aluminum cantilevered beam was utilized as a surrogate wind turbine blade to test 

the proposed observer for state estimation. The model parameters are given in Table 3. 

Table 3: Model parameters for aluminum cantilevered beam 

Parameter Symbol Value Units Source 
Length L 0. 8382 m Measured 
Density ρ 2687 kg/m3 Textbook 

Elastic Modulus E 68.9 GPa Textbook 
Cross Sectional Area A 83.4 mm2 Measured 

Area Moment of Inertia I 74.8 mm4 Calculated 
from 

measurements
     

The beam is depicted in Figure 11 as: (a) the physical beam; (b) a 21-node (10-element) 

beam model with 3-noded quadratic elements; (c) a 5-node (2-element) beam model; and (d) an 

SDOF spring-mass model. The beam is vertically cantilevered to a relatively massive (6.5 kg) 

base that is constrained to move only in the X-direction. 
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Figure 11: Diagrams of upright cantilevered beams with base excitation 

2.6.1. SDOF Model 

The beam was modeled as a single-degree-of-freedom (SDOF) system as shown in 

Figure 11. The stiffness was first computed using Euler-Bernoulli beam theory as 

  312k EI L , and the sprung mass was taken as the mass of the beam, m AL . Then, the 

stiffness value was adjusted so that the natural frequency of the system matched the first 

resonance of the NLBeam model, 3.745 Hz. The value of the damper was selected to achieve 

0.2% critical damping. Denoting the motion of the base and of the mass in the X-direction 0x  

and 1x , respectively, the system EOM are 

 1 1 1 0 0mx bx kx bx kx      , (2.1) 

where m  is the mass in kg, b  is the damping constant in N/(m/s), and k  is the stiffness in N/m. 

Cast in the form of Eq. (6.1), with the base displacement and velocity as the system inputs, the 

mass acceleration as the system output, the observer system state space matrices are 
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2.6.2. Numerical Beam 

The beam was modeled with the parameters given in Table 3 using NLBeam, a research 

finite element code developed at LANL for the purpose of modeling wind turbine flexible 

structural components within a multi-physics wind farm simulation code. NLBeam implements 

a geometrically nonlinear, generalized Timoshenko beam theory, capable of representing fully 

3D motion as a function of a single beam reference coordinate. However, because the excitation 

is restricted to act in one direction, and the material for this example is isotropic, the motion is 

restricted to the planar case, so each node has effectively 3 degrees of freedom (DOFs): 

translation in X, translation in Y, and rotation about Z. The elements implemented in NLBeam 

are 3-noded elements with quadratic interpolation functions, so the 10-element model has 21 

nodes. The equations of motion are solved in NLBeam using an implicit Newmark time 

integration scheme, which for the plant model was implemented with parameters 0.5625   

and 1  . These values, defined in the customary manner for Newmark integration [27], were 

based on a numerical damping value of 0.5  , where   is a numerical analog to percent 

critical damping, and 

 
 
 

1
2
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4 1

 

 

 

 
. (2.3) 
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2.6.3. Experimental Beam 

Simultaneous acceleration and video data were collected from the beam as it underwent 

base excitation at a frequency near its first resonance. The video data were captured using a 

Photron FASTCAM 512PCI, which recorded a 512x64 pixel image at 250 frames per second. 

For the distance at which the video data were collected, the camera covered the 0.8382m length 

of the beam in 440 pixels, or 1.9mm per pixel. The base excitation motion was visually 

observed to be ~3 mm peak-to-peak, so that motion could be captured by the camera using at 

most 3 pixels, depending on the exact location of the motion with respect to the camera’s lens. 

Because of the low camera resolution, the measured displacement was highly quantized; the 

measured displacement time traces are plotted for the beam tip, midpoint, and base in Figure 12. 

The camera was controlled by a dedicated desktop PC, and a camera trigger signal was routed 

to a National Instruments PXI chassis, which also recorded the signals from accelerometers 

mounted on the beam. In this manner, time-synchronized acceleration and video data could be 

collected. 
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Figure 12: Measured beam displacement using high-speed, low-resolution camera 

Two PCB Piezotronics 354C10 triaxial accelerometers were mounted on the beam at its 

tip and midpoint. Acceleration data were recorded in the x and y directions in the beam 

coordinate system, as defined in Figure 11. The base plate was physically excited using an 

Agilent 33210A arbitrary waveform generator connected to a Techron model 5530 power 

supply amplifier, which drove a Vibration Test Systems electrodynamic shaker. The shaker was 

connected to the base plate using a 0.25-inch (6.4-mm) diameter stinger through a PCB 

Piezotronics 208C02 force transducer, which measured the force between the shaker stinger and 

the aluminum base plate to which the beam was vertically cantilevered, and which was 

constrained along linear bearings to slide only along the x direction. On the opposite side of the 

aluminum base plate, a PCB Piezotronics 352C22 uniaxial accelerometer was mounted to 

measure the corresponding base acceleration. The accelerometers were calibrated using a 

handheld PCB Piezotronics 394C06 calibrator, and the values are listed in Table 4. 
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Table 4: Accelerometer locations and calibration values 

Coordinate Direction Accelerometer Serial Number (Location on Beam) and 
Calibration (mV/(m/s2)) 

Accelerometer 
Coordinates 

Beam 
Coordinates 

SN 3186 (Tip) SN 2899 
(Midpoint) 

SN38951 
(base; uniaxial) 

Z X 0.878 0.985 1.057 
X Y 0.922 0.789  
     

Although the input signal to the shaker was a pure sinusoid, the shaker utilized was 

slightly broken, and it introduced significant harmonics into the motion of the base plate. These 

harmonics are well-captured by the force transducer and the base plate accelerometer, and 

because the excitation control is open-loop only, it is more important that the input is measured 

than that the structure be excited with a particular waveform. 

2.7. USDA/ARS CPRL LIST Turbine 

A Micon 65/13 wind turbine was utilized as a test bed for operational deployment of a 

multi-scale sensing system. This turbine was part of the Long-Term Inflow and Structural Test 

(LIST) program at the US Department of Agriculture’s (USDA) Conservation and Production 

Research Laboratory (CPRL). The LIST facility and two turbines are shown in photographs in 

Figure 13. Located in Bushland, TX, the CPRL is part of the USDA’s Agricultural Research 

Service (ARS). The site was selected because it is representative of a commercial wind energy 

production site in the Great Plains. The Micon 65/13 model turbine at the CPRL has a 115 kW-

rated generator, and while modern utility scale turbines are at least an order of magnitude larger. 

The Micon 65/13 model wind turbine was a popular production turbine in the 1980s, and the 

particular turbine utilized in this work was a used turbine that had been in production service in 

the Palm Springs, CA area. The LIST is described in detail by Jones, Sutherland and Neal in 

[28], and has been reported on extensively by Sutherland et al. [29-34]. More recently, White et 
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al. have utilized this Micon 65/13 wind turbine as the subject of structural monitoring 

investigations using inertial measurements [35-38]. 

In the experimental application presented in this dissertation, the Micon 65/13 was 

equipped with three 9-m CX-100 blades, of the same design as that utilized for the fatigue test 

described above. Each blade was equipped with two triaxial and two uniaxial accelerometers. 

The accelerometers were positioned on the side high-pressure at 2m and 8.15m from the root, 

with the triaxial accelerometers positioned near the leading edge, and the uniaxial 

accelerometers positioned near the trailing edge. The rotor blades were also instrumented with 

fiber Bragg grating optical strain gauges with unbounded, collocated FBGs for temperature 

compensation. The strain measurement points were on the HP side, aligned with the triaxial 

accelerometers, located at 2.2m, 4.5m, and 7m from the blade root. In addition to these sensors, 

one blade was manufactured with four internally embedded PZT patch arrays, monitoring the 

leading edge, trailing edge, spar cap, and root area of the blade. 

  

Figure 13: USDA CPRL LIST turbine facility: control building and turbine “A” (left); turbine “B” (right) 
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Chapter 3  
Embedded Sensing 
 

3.1. Introduction 

This chapter focuses on embedded sensing, with a review of current research in 

embedded sensing, sensor nodes, and sensor networks. Section 3.2 reviews applications of 

sensor networks and sensor nodes found in the literature, as well as current and recently 

developed sensor nodes for embedded SHM, including research platforms and commercial-off-

the-shelf (COTS) devices. Sections 3.3 and 3.4 present two specific sensor nodes for embedded 

SHM developed as part of this dissertation: the Wireless Impedance Device v3 (WID3); and the 

Wireless Active Sensing Platform (WASP). Their features are detailed, with specific emphasis 

on their innovations and unique contributions to embedded sensing for SHM. Demonstration 

and deployment examples are also presented for these sensor nodes. 
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3.2. Literature Survey 

3.2.1. Networks for Embedded Sensing 

Structural Health Monitoring requires the collection of measurements from a structure 

in operation and processing those measurements to make decisions about the ability of the 

structure to perform its intended function. These systems will require a communications 

network so that measured data can be shared and processed, whether in a centralized or 

decentralized manner. Some examples of communications networks for SHM systems, detailed 

by Farrar et al. [39], are described below. 

In a wired network with central processing, any number of devices with potentially 

large power requirements collects and transfer data from the transducers to a central processing 

location, which is often a nearby PC, but may be an off-site location. The centralized approach 

is the most common network type for SHM systems and can be easily implemented in an ad hoc 

manner for small systems, but it has the disadvantage for large installations [40] that cable 

management and sensing infrastructure maintenance become unwieldy [41]. 

A wireless sensor network implementing a hopping protocol can overcome many of the 

disadvantages of wired systems, especially for large installations [41-43]. Wireless 

communication can remedy the cabling issues with the traditional monitoring system and 

significantly reduce the maintenance costs. With standardized communications protocols 

including IEEE 802.11 through 802.16 (e.g., Wi-Fi, Bluetooth, and ZigBee), data transfer is 

more robust, and transfer rates can approach those of wired networks. Some of the technical 

challenges for wireless sensor networks include the uncertain and often harsh deployment 

environments, the need for autonomous reconfigurability in order to maintain robustness against 

individual node failures or to permit network expansion, data security for sensitive information, 

and the potential need to integrate with both mobile and stationary network devices. A major 
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consideration in deploying a wireless sensor network is that of powering the nodes, leading to a 

trade-off between local computation and radio transmission. Zimmerman et al. developed a 

parallel processing algorithm using a wireless sensor network to address this very issue [44]. 

Ambient energy harvesting may be sufficient to operate the nodes for short periods of time, 

[45], but the interplay between local computation and data transmission must be carefully 

balanced with the amount of energy available. 

A combined approach to communication and powering, first demonstrated by 

Mascarenas et al. [46, 47] integrates wireless energy transmission technology and remote 

interrogation platforms based on unmanned vehicles to assess damage in structural systems. An 

example of this type of network is shown in a photograph in Figure 23 as part of the field 

demonstration described in Section 3.3.4. This approach involves using an unmanned mobile-

host node (delivered via UAV or robot) to deliver radio-frequency (RF) power to rectifying 

antennas connected to embedded sensor nodes. Operating on transmitted RF energy, the sensors 

measure the desired response at critical areas of the structure and transmit the signal back to the 

mobile-host. 

In this dissertation, the mobile-agent paradigm has been extended to support a hybrid 

network configuration, with multiple localized sensor networks within a single structure. This 

hybrid networking approach would be useful following critical or catastrophic events, where the 

data from one network could be used by the mobile-agent to identify the next network it should 

interrogate, enabling the mobile-agent to bypass certain networks and interrogate those likely to 

have the most pertinent data for emergency response or security personnel. Furthermore, this 

approach can be used in a combined powering configuration where the sensor node equipped 

with energy harvesting devices could be supplied supplemental energy by the mobile-agent. If 

the energy harvesting device provides sufficient power, the mobile-agent can wirelessly trigger 

the sensor nodes, collect information and provide computational resources, further reducing the 
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power demand at the sensor node level. This networking approach has contributed to research in 

the field of distributed sensing for SHM and other applications [48-52]. 

3.2.2. Embedded Sensor Nodes 

As the technology that enables embedded sensing becomes more compact, inexpensive, 

energy efficient, and computational powerful, researchers in structural health monitoring (SHM) 

and related fields have been integrating more sophisticated sensing capabilities into structural 

assets. While some very large structures can support full-sized, permanently installed data 

acquisition systems, such as the well-known Tsing Ma Bridge in Hong Kong [40], structures 

designed with little or no carrying capacity beyond their own self-weight, such as a wind turbine 

rotor blade, may demand a compact, lightweight, embedded system. Each embedded system 

installation brings specific challenges in terms of communications, data collection, and system 

power. In terms of power consumption, embedded sensor nodes for SHM generally fall either 

into the “low-power” or the “wall power” categories. Low-power sensor nodes typically have 

limited functionality, minimal processing capabilities, and are often intended for use with 

energy harvesting systems [53, 54]. In this loose definition, wall-power systems may draw 1W 

or more, far less than a standard data acquisition (DAQ) system or desktop PC, but, except at 

very low duty cycles, they would be beyond the serviceability of most energy harvesting 

systems, with the exception of reliable solar power. These systems may have more sophisticated 

signal conditioning circuitry, onboard processing, and may have the ability to mechanically 

excite the structure, which is required for active sensing. 

Advances in impedance-based methods for SHM [55, 56], the development of sensor 

diagnostics methods for the piezoelectric transducers that implement them [6, 56, 57], and the 

availability of low-power integrated circuits (ICs) for impedance measurement, such as the 

AD5933 from Analog Devices, have combined to unleash a deluge of low-power, impedance-
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based sensor nodes on the SHM community. Some of these nodes are listed in Table 5. The 

wireless impedance device (WID) series of sensor nodes [1, 58, 59] is a prime example low-

power, impedance-based wireless sensor nodes (WSNs), with applications to civil infrastructure 

monitoring [2, 11]. Similar devices have been developed with applications to damage detection 

in lab tests and on a bridge structure [60]. In addition to impedance measurements, low-power 

sensor nodes have been applied to fatigue cycle counting [61] and force input estimation [62]. 

Although the impedance method is an active sensing method, it is limited to detecting 

highly localized changes in structural behavior. Advances in SHM with active sensing 

techniques, especially guided wave-based methods, have motivated the development of 

(necessarily) higher power devices with arbitrary waveform excitation capability. The wireless 

active sensing platform (WASP) trades low-power operation for greater computation and 

structural excitation capabilities. Two devices similarly designed for active-sensing SHM, listed 

in Table 5, are the commercially available IntelliConnector node [22], which has been applied 

to detect damage in a mock naval structural panel [63], and the SHiMmer active sensing node 

[64] which has been applied to detect loose bolts in a highway bridge using a sparse sensor 

array [65]. 

Active sensing methods for SHM are often restricted to purely empirical 

implementation, with emphasis placed on numerical damage indices, rather than incorporating 

data into an appropriate physics-based model. Applications of the impedance method tend to 

focus on small, local changes, such as loosened bolts or crack formation in specific, 

predetermined areas, because it is difficult to develop a physical model that correctly reflects 

these small changes on a local scale. In attempt to address this issue and incorporate existing 

structural models into the SHM process, researchers have begun implementing multi-scale 

sensor nodes. The wireless data acquisition (WiDAQ) extension for the WID3 demonstrated the 

ability to collect low-frequency vibration data for modal analysis in addition to the node’s core 
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impedance function [2]. Some recent work has aimed to extend the iMote2 to multi-scale SHM 

applications [66, 67], by including an accelerometer connected to spare analog input channel on 

the iMote2’s SHM board, utilizing both measurements in a multi-scale SHM assessment of a 

test structure. The WASP implements multi-scale sensing functionality on a single platform, 

using a single 6-channel analog-to-digital converter (ADC) to record passive, low-frequency 

sensor output or transducer response to simultaneous, high-frequency excitation. 

As power requirements and size of electronics decrease, and as wireless communication 

becomes more advanced, conventional systems for data acquisition are becoming more suitable 

for SHM applications. Such devices that could be utilized for SHM include the G-Link 

accelerometer sensor nodes by MicroStrain, and the WLS-9163 Wi-Fi module carrier from 

National Instruments equipped with an appropriate acquisition module. These devices are still 

power intensive compared to the low-power sensor nodes described above, and they perform no 

operations other than data acquisition and telemetry, but they could certainly be integrated into 

a functional, deployed SHM system. 

Table 5: Sensor Nodes in SHM Literature 

Node Power Purpose Reference

Imote2 SHM Module 200 mW Acceleration [68] 

WID 1.5  75 mW Impedance [58] 

WID 3  75 mW Impedance [1] 

SHiMmer  1 W Active Sensing [69] 

MicroStrain G-Link 1 W Acceleration, Strain  

NI WLS-9163 4.5 W General  

IntelliConnector  10 W Active Sensing [22] 

WASP 1 W Active Sensing, 
Impedance, General 

[4] 
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3.3. Wireless Impedance Device 

3.3.1. Development and Design 

The wireless impedance device (WID) was originally developed based on capabilities 

demonstrated in previous studies of impedance-based structural health monitoring [55]. In the 

Impedance method, changes in the electrical impedance of a piezoelectric material bonded to a 

structure are attributable to mechanical changes in the host structure. The theory underpinning 

impedance-based SHM is described in detail in Section 4.2. Because the impedance method is 

an inherently local measurement technique requiring no appreciable propagation of a 

mechanical wave through the structure, it can be implemented with much lower power than the 

wave-based active sensing techniques typically implemented with the same transducers. The 

impedance method is uniquely suited for sensor self-diagnostics, the focus of Chapter 4, 

because of its sensitivity to transducer boundary conditions [6, 57]. 

The Wireless Impedance Device is a low-power sensor node specifically designed to 

implement impedance-based SHM [58, 70]. In Figure 14, three generations of WID designs are 

shown together, including theWID3, which improved on the field utility of the prior versions 

and enabled the integration of the device into a multi-scale sensing system. Although the 

impedance measuring function of the WID3 is the same as for prior versions of the node, its 

unique capabilities include its energy harvesting circuitry and its versatility in implementing 

various sensor network paradigms for SHM. 

In general utility, the WID3 provides increased capabilities over the previous 

generations, with advanced communication capabilities, increased triggering options, data 

storage capabilities, as well as multiple powering options coupled with a power-conditioning 

circuit that permits its use with a variety of energy harvesting sources. Using the 802-15.4-based 

ZigBee protocol, the WID3 can self-configure into a network with neighboring sensor nodes at 
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fixed time intervals or in the presence of a mobile-host that physically approaches and 

interrogates the sensor network. The WID3 has been designed to operate using multiple power 

options, utilizing onboard storage capability to operate from energy harvested from the 

environment or RF energy transmission. 

Furthermore, the WID3 was designed to function as part of a modular hardware 

platform that incorporates time-domain sensing capabilities on separate boards. By combining 

modules, resources such as the telemetry, processing, data storage, and the respective 

measurement capabilities of each module can be shared, increasing the functionality of the 

overall sensor node. One such configuration is shown in Figure 14 (right), where the WID3 has 

been combined with a data acquisition (DAQ) board. This combined modular sensor node, 

dubbed the WiDAQ, aimed to combine high-frequency impedance measurements and low-

frequency passive sensing capabilities in a single package, providing the ability to implement 

multiple SHM techniques. The WID3 system and its unique capabilities have been presented in 

several journal publications and conference proceedings, including [2, 12, 13, 59, 71-74]. 

 

Figure 14: Three generations of wireless impedance devices (shown left) and the combined WID3 / 
WiDAQ module (shown right) 

The major hardware components of the WID3 are shown in Figure 15. The WID3 is 

controlled by an 8-bit ATmega1281v microcontroller, which controls the primary measurement 
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device, an Analog Devices AD5933 impedance chip, and the transceiver, an Atmel AT86RF230 

802.15.4-compliant radio. The microcontroller and transceiver are packaged together in the 

Meshnetics ZigBit module. The AT86RF230 has very low energy requirements and low 

external component counts, making it particularly attractive for an embedded SHM device. The 

AD5933 impedance chip has many built-in functions that ordinarily require several additional 

components, including a signal generator, high-speed analog-to-digital converter (ADC), fast 

Fourier transform (FFT) analyzer, high-speed digital-to-analog converter (DAC), and anti-

aliasing filter. While the packaging of all these components in a single chip allows for 

convenient, low-power impedance measurements, the lack of flexibility precludes the use of the 

WID3 for other active sensing techniques, such as those requiring controllable excitation 

waveforms or the use of multiple sensors engaged simultaneously. 

The WID3 has also been designed with specific operating modes for field-deployability, 

and it can be woken from sleep states in several ways depending on the deployment mode. The 

WID3 includes a low frequency wake-up chip, the ATAK5278, which monitors an inductor 

antenna for a 125 kHz wake-up signal. This monitoring occurs at very low power (<1W), but 

at limited range of only up to 2.5m. The ATAK5278 chip is shown in Figure 15, and the 

inductor coil antenna is located directly opposite the PCB from it. This wake-up capability 

would be used for on-demand measurements wirelessly triggered by a mobile base station, 

which receives the data telemetered by the WID3 on completion of a measurement. The second 

wake-up option is an internal timer in the ATmega1281v that can wake the WID3 at intervals 

from on the order of a few seconds (limited primarily by the WID3’s start-up time) to a few 

weeks, permitting an extremely low duty cycle operating mode. 
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Figure 15: Major components of the WID3 

The WID3 has multiple powering options, all of which can also be utilized to 

communicate to the WID3 the desired behavior on power-up or awakening. From a zero-power 

state, the WID3 can be initialized by powering it through its 0.1F Aerogel capacitor, controlled 

by the energy harvesting switch circuit, either through harvested energy or RF transmission. In 

one mode of operation with RF energy, the WID3 could default to a sleep state on power-up, 

and by concurrently utilizing the WID3’s wake-up chip, it could be instructed to perform 

context-specific tasks, such as transmitting stored measurements to an inspector’s computer or 

collecting additional, on-demand measurements. From a low-power sleep state maintained by 

an energy harvester or a small rechargeable battery, the low-frequency trigger or the WID3’s 

internal timer can be utilized to collect on-demand or scheduled measurements, respectively. 

With these solutions available, the WID could run in low duty cycle operation with additional 

on-demand measurements indefinitely using an energy harvester and a small local power 

storage capability. 

In order to prevent the charge in the storage capacitor from being drained by attempts at 

powering the microcontroller, an ultra-low power switch originally developed by Mascarenas et 

al. [75] was adapted for use with the WID3 [53, 76]. One innovation of the switch developed for 
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the WID3 was that, in addition to withholding energy from the node until the storage capacitor 

reached a predetermined voltage level, it would turn off after the capacitor dropped below a 

lower, predetermined level. This action permitted a pre-charge to be maintained on the storage 

capacitor, which would increase the effective duty cycle of the sensor node. The diagram of the 

switch as implemented on the WID3 is shown in Figure 16. Figure 17 shows the response of a 

free 0.1F capacitor being charged directly with RF energy and the WID3’s operational voltage 

level with the same charging method. Until the capacitor reached its critical voltage, no energy 

was released to the sensor node. After reaching the critical voltage of 3.6 V, the WID3 powered 

on, took the measurements, and wirelessly sent the data before the voltage dropped below the 

pre-defined 2.7V pre-charge level. With the 2.7V pre-charge, the time required to obtain repeat 

measurements was significantly reduced. 

 

Figure 16: WID3 extremely low-power switch architecture 

E
xt

er
na

l E
ne

rg
y

(R
F,

 S
ol

ar
, e

tc
.) REF1

IN-2

IN+3

VEE4 NC 5
OUT 6
VCC 7

NC 8

U4

MAX9015

COM1

NO2

GND3 IN 4

V+ 5

U5

MAX4626

COM1

NO2

GND3 IN 4

V+ 5

U6

MAX4626

COM1

NO2

GND3 IN 4

V+ 5

U7

MAX4626

REF1

IN-2

IN+3

VEE4 NC 5
OUT 6
VCC 7

NC 8

U8

MAX9015

R23
820k

R24
820k

R25
1M

R26
1.5M

R27
100k

J2

Jumper 2-pin

C3
0.1 F



39 
 

 
 

 

Figure 17: RF energy charging response of a 0.1F capacitor and the WID3 operational response 

3.3.2. DAQ Board Hardware and Capabilities 

A data acquisition (DAQ) board was developed to extend the capabilities of the WID3 

system to collect low frequency measurements from a variety of sensors providing a voltage 

output, such as accelerometers or strain gauges. The combined modular sensor node, the 

WiDAQ, is shown in Figure 14 (right). The major components of the DAQ board are shown in 

Figure 18. The DAQ board is controlled by a dedicated ATmega1281 microcontroller, but it 

lacks its own telemetry. Having its own microcontroller, the DAQ board could function as a 

stand-alone device using wired communication, but it is primarily intended to be used in 

combination with the WID3. The module connectors, indicated both in Figure 15 and Figure 18, 

provide each module with the ability to share resources, including processing power, data 

storage, and telemetry. 
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Figure 18: WiDAQ Components 

The DAQ board was intended to support both data acquisition and signal generation, so 

it was equipped with an Analog Devices AD7924 analog-to-digital converter (ADC) and an 

Analog Devices AD5621 digital-to-analog converter (DAC). Sensor-specific conditioning 

circuitry was excluded from the WiDAQ, so any specific conditioning requirements, such as 

ICP™ for accelerometers, was provided on another PCB. The four-channel AD7924 has a 12-

bit resolution over a range from zero to 2.5 Volts, and when controlled by the ATmega1281, 

had a maximum useful sampling rate of 40 kHz. Although the DAQ board was intended for 

both passive and active sensing, the Analog AD5621 DAC was not used for any active sensing 

tests because (1) no signal amplification capability was included in the module, and (2) the 

design did not permit the synchronization of the ADC and DAC at sufficiently high frequencies 

for active sensing applications. These issues were remedied in the design of the WASP, 

described in Section 3.4. 
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3.3.3. WID3 Demonstration: Impedance Measurements 

This section presents experimental results for sensor diagnostics using the aluminum 

plate test platform described in Section 2.2. The raw data collected using the WID3 and the 

processed results obtained using the instantaneous baseline [56] method for sensor diagnostics 

implemented in the SHMTools software package [69] with these data are shown in Figure 19 

for data collected from seven sensors, two of which were in a debonded condition, and in Figure 

20 for data collected from seven sensors, two of which were in a broken condition. In each case, 

the sensor conditions were correctly identified. 

 

Figure 19: Raw scaled admittance data with two partially debonded sensors collected with the WID3 
(left) and auto-classification results from SHMTools (right) 

 

Figure 20: Raw scaled admittance data with two partially broken sensors collected with the WID3 (left) 
and auto-classification results from SHMTools (right) 
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3.3.4. WiDAQ Demonstration: Modal Analysis 

The WID3/WiDAQ system was used to collect time-domain vibrational data for modal 

analysis. The experimental setup with the sensor node network and test structure is shown in 

Figure 21. Two WID3/WiDAQ nodes with ICP conditioning boards were wirelessly networked 

with a commercially available development board for the microcontroller/ transceiver package. 

The experimental setup with the sensor network is shown in Figure 21. Four PCB 352A24 

accelerometers were mounted on the test structure and connected to Node A, and a PCB 

086C03 impact hammer was connected to Node B. 

 

Figure 21: Experimental setup for modal testing using the WiDAQ system 

The wireless network implemented in this experiment utilized a “star” topology, in 

which the coordinator communicated directly with each sensor node. The coordinator was 

connected to a laptop computer using a serial port. On command, the coordinator broadcasted 

an instruction to the two sensor nodes to begin recording sensor data simultaneously. The nodes 

recorded at 969 Hz for just over 4 seconds and stored the results in nonvolatile memory. After 

completing the measurement, each sensor node transmitted its buffered results to the 

coordinator, which relayed them to the laptop for analysis. Frequency response functions were 
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estimated using the recorded data, and the test structure’s resonant frequencies and mode shapes 

were extracted using the rational polynomial curve-fitting method implemented in DIAMOND, 

a modal analysis software package developed at Los Alamos National Laboratory [77]. The 

extracted resonant frequencies and mode shapes were compared with those obtained using data 

collected using a conventional 4-channel Dactron™ data acquisition system. The extracted 

resonant frequencies using each system and the modal assurance criterion (MAC) between the 

two sets of extracted mode shapes are shown in Table 6 for the first four modes of vibration. 

Table 6: Test structure natural frequencies and MAC values 

Mode 
No. 

Measured Frequencies (Hz) Dactron and WID3/WiDAQ 
Cross-MAC Dactron WID3/WiDAQ 

1  71.42 70.94 0.97 0.01 0.00 0.15 
2  106.02 105.98 0.00 0.94 0.68 0.00 
3  185.82 185.68 0.01 0.68 0.98 0.01 
4  287.26 287.27 0.19 0.00 0.00 0.88 
       

In this experiment, the correlation between two sets of mode shapes was less than 

desirable. Some discrepancies between the mode shapes extracted using the traditional data 

acquisition system and the WiDAQ system can be seen in a line plot of the deformed structure, 

shown in Figure 22. These discrepancies might be improved by the use of a higher resolution 

ADC, or they could be the result of discrepancies in the time-synchronization between the two 

end devices. 
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Figure 22: Line plots of the first four mode shapes obtained using the Dactron and WiDAQ systems 

3.3.5. WID3 Deployment: Alamosa Canyon Bridge 

The WID3 was deployed on the Alamosa Canyon Bridge, an experimental platform 

described in Section 2.3, for various tasks related to sensor networking and damage detection. 

Eight sensor nodes were mounted along the longitudinal rails of the bridge. Four sensor nodes 

installed along the east side of the bridge are shown in Figure 9. The nodes were spaced at 

intervals of 5 meters. The sensor nodes were mounted on top of the deck for ease of access, and 

each node was connected to three instrumented washers below the deck that were mounted 

using 19-mm diameter steel bolts that secured a steel cross member to the outer girder of the 

bridge. A series of three instrumented washers is visible in Figure 4, with an exploded view of 

an individual washer clamped between the girder and the steel nut. The tightness of these 
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components was varied throughout the experiment to test the sensor node’s ability to identify 

the state of each instrumented bolt mounted on the bridge. All the sensor nodes were configured 

to be wirelessly triggered by the 125 kHz radio signal, which would be initiated by the mobile 

agent vehicle. 

To demonstrate the WID3’s triggering capability, a remotely controlled mobile-host 

approached the sensor node and established a range of 3 m between the RF triggering antenna 

installed on the side of the vehicle (visible in Figure 23) and the sensor node. On command, a 

125 kHz RF wake-up signal was sent to the sensor node, bringing the sensor node out of its 

sleep status. The WID3 then took measurements from the instrumented washers, locally 

determined the magnitude of the resonant peak for each sensor, and transmitted the result to the 

mobile-host vehicle. These data were relayed to a computer, which classified the results to 

assess the state of each joint. After the mobile-agent made several passes through the network, 

damage was introduced by loosening one bolt to a finger-tight state for two of the sensor nodes. 

The mobile-host reported a significant increase in the magnitude of the resonance on the third 

bolt and correctly identified it as an outlier. Because the change in the location of the resonant 

peak was so significant, the a 95% confidence rate for an assumed Gaussian distribution of 

baseline measurements resulted in perfect separation of the baseline healthy data from the 

loose-bolt data. 
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Figure 23: Layout of the field test conducted at the Alamosa Canyon Bridge, NM 

3.3.5.1. Hybrid Networking 

A simulated permanent installation network test was performed using multiple local 

networks with a data aggregator present in each network. A visual schematic of the local 

network is shown in Figure 24 (left). In normal operation, end devices in each network would 

awaken at regular intervals, perhaps once per day, collect measurements, and transmit the 

results to an always-on data-aggregating node. Maintaining separate local networks has the 

advantages with very large structures that additional routers to transmit data over large distances 

are not required, and that the loss of a single node following a catastrophic event would not 

destroy the entire network. Three separate local networks were implemented on the bridge, each 

operating on a different frequency channel. Each coordinator was constantly powered, and the 

end devices operated in low-power mode, waking at regular intervals to take measurements. 

The results were transmitted to the data aggregators, which stored the received measurements in 

non-volatile memory until they were retrieved by the mobile-agent. The experimental set-up for 
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this field-test is shown in Figure 24 (right). This local network approach was a novel 

development for SHM applications, as SHM sensors and sensor nodes do not have to be 

deployed on to the entire structure. Instead, the nodes could be installed on critical areas of a 

structure, following a targeted, active-sensing SHM strategy. End device sensor nodes does not 

have to attempt to identify any neighbor nodes or relay the data, as in the case of a hopping 

networking protocol [43], and the sensors can be more optimally placed on a structure to 

improve the performance of the SHM process. 

 

Figure 24: Separate local networks schematic (left); Mobile-agent approaches coordinator A to join 
network A and retrieve data from network A (right) 

3.3.6. Deployment Example: Spaceflight 

The WID3 was utilized by a research group at the New Mexico Institute of Mining and 

Technology for an SHM investigation in low-gravity environments. In this investigation, the 

WID3 collected impedance measurements as part of an SHM system packaged in a rocket 

conducting a parabolic maneuver with an apex of 62.5 miles. This effort was reported in [78]. 
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3.4. Wireless Active Sensing Platform 

3.4.1. Overview 

In attempting to extend the capabilities of the WID3 to include passive data acquisition 

for acceleration measurements, as well as active sensing capabilities with multiple transducers, 

it became clear that the low-power, impedance measurement-centered sensor node did not have 

adequate power or computational capability to be extended into a self-contained sensor node for 

multi-scale SHM. A new platform was developed, based on a more powerful ARM processor, 

and intended for operation with a dedicated power supply. The Wireless Active Sensing 

Platform (WASP) was designed as a multi-scale sensor node to operate in three distinct modes: 

(1) passive measurements, (2) active sensing, and (3) impedance measurements. The WASP can 

acquire simultaneous measurements on any of six channels with a bandwidth from DC to 70 

kHz, while providing a synchronized excitation output signal on any non-sensing channel. With 

an innovative digital switching arrangement, each channel can be used to obtain impedance 

measurements, deliver an excitation signal for structural interrogation, or passively monitor a 

voltage-output transducer. By appropriately configuring each channel’s separate input signal 

chain, the WASP can easily record low-frequency vibration or strain data. These data could be 

utilized in concert with a physics-based model of a structure for state and loads estimation, such 

as that described in Section 6.2. Combining these estimates with active sensing-based estimates 

of damage location and severity, such as those provided by the methods of Chapter 5, would 

enable predictions of future structural performance. 

The assembled WASP prototype is shown Figure 25. The main processor is an ARM 

Cortex-M3 processor, seated in an STM3210C evaluation board. Two custom printed circuit 

boards (PCBs) sit atop the evaluation board: an interface ‘daughter’ board and a ‘mezzanine’ 

board. 
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Figure 25: WASP assembled prototype system 

The daughter board, shown in Figure 26, provides: (1) physical connectivity for 

communication between the ARM processor and the analog front end; (2) the WASP’s data 

acquisition clock timing control circuitry; and (3) system power from a Power over Ethernet 

(PoE) source. 

 

Figure 26: WASP daughter board 
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The mezzanine board, shown in Figure 27, houses the physical SMA sensor connectors 

and the WASP’s analog front end, which contains: (1) the input signal chains (filter banks) and 

ADC, (2) the DAC and output signal chain with signal amplification; and (3) the high-current 

switches and logic control for measurement mode selection. The major components of the 

WASP detailed below are listed in Table 7. 

 

Figure 27: WASP mezzanine board 

Table 7: Major components of the WASP 

Function Manufacturer Part No 
Processor development 

Board 
ST Microelectronics STM3210C-EVAL 

PoE Module Murata NMPD0112C 
Output Switches Analog Devices ADG1419 

DAC Linear Technology LTC2642IDD-16 PBF 
Voltage Amplifier Linear Technology LT1678CS8#PBF 
Current Amplifier National Semiconductor LME49600TS-ND 

ADC Linear Technology LTC2351IUH-14#PBF-ND 
Input Amplifier Linear Technology LT6233IS6#PBF 

Differential ADC Driver Linear Technology LT6350CDD#PBF 
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3.4.2. Development 

3.4.2.1. Power and Communication 

Both power and communications are delivered to the WASP through an Ethernet cable 

utilizing the IEEE 802.3af PoE standard. The NMPD0112C PoE module separates 48-Volt AC 

power from TCP/IP communications and provides a regulated 12V power supply at a maximum 

of 15W, which is converted to ±15V, ±5V, and ±3V supplies on the Daughter board to power 

both the Mezzanine board and the STM3210C. The communications lines are routed via a short 

Ethernet cable to the standard RJ-45 port on the STM3120C board. Commands and data were 

passed between the WASP and a command PC using a web-based interface. This method 

enables the implementation of remote or automated data interrogation. Wireless operation is 

enabled by use of a Wi-Fi bridge, as was implemented in the wind turbine rotor blade flight 

deployment test described in Section 3.4.6. 

3.4.2.2. Seamless Mode Switching 

A unique arrangement of software-controlled Analog Devices ADG1419 switches 

enables any of the six channels to be implemented as a measurement channel, an excitation 

channel, or an impedance measurement circuit. With a ± 15V power supply, the switches are 

capable of carrying 215 mA per channel, which is comparable to the current capacity of the 

output signal chain, described below. The switch configuration, shown schematically in Figure 

28, enables each of the 6 channels to be configured for excitation, response measurement, or 

impedance measurement. The switch configuration for each mode is given in Table 8. In 

excitation mode, the center pin of the SMA connector is connected to the output signal chain, 

while in response mode, the center pin connects to the input signal chain. In impedance 

measurement mode, the output and input signal chains are connected across the SMA connector 
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through the sensor, with the output signal chain on the center pin, and the input signal chain 

connected to the SMA connector sheath measuring the voltage across the resistor RIMP to 

ground. 

 

Figure 28: Three-mode switch arrangement for WASP sensor connectors 

Table 8: Operational modes for WASP sensor connectors 

Channel Mode 
(*as shown in Figure 28) 

Switch Status 
S1 S2 S3 

Excitation* up up up 
Response down up up 

Impedance up down down 
    

3.4.2.3. Output Signal Chain 

The output signal chain, shown schematically in Figure 29, is the path for excitation 

signals in either active-sensing or impedance measurement mode. The excitation signals are 

generated from a LTC2642 DAC, which has a 1 µs settling time, about 7 times faster than the 

WASP’s ~140 kHz sampling rate. As a result, the analog signal generated is essentially a stair-

step curve, injecting higher frequency content into the excitation signal. In order to mitigate this 

issue, a single-pole output filter was inserted in the output signal chain prior to amplification. 

This filter smoothed the output signal significantly, but did not completely eliminate the higher 

frequency excitation or the potential for aliasing on the response channels. The LT1678 voltage 

amplifier scales the DAC output to ±15V and feeds the signal to an LME49600TS-ND high-

current audio buffer that provides up to 250 mA per rail at ±15V. The output power is sufficient 
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to implement elastic-wave based SHM methods in metallic structures, but requires additional, 

external amplification for the thick fiberglass material making up the skin of the CX-100 wind 

turbine blade on which the WASP was deployed. 

 

Figure 29: WASP output signal chain 

3.4.2.4. Input Signal Chain 

The input signal filter chain, shown schematically in Figure 30, is the path for measured 

signals in either active-sensing measurement mode or impedance measurement mode. Each of 

the 6 input channels has an individually configurable 5th-order low-pass Bessel filter with 
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multiple feedback topology, along with two optional single-pole RC filters preceding the first 

and last Bessel filter stages. These single-pole stages can be implemented as high-pass filters to 

AC-couple the signal (effectively producing a band pass filter), or as low pass filters to steepen 

the filter roll-off. Using two resistors, the position could also be implemented as a voltage 

divider to attenuate the input signal; this implementation is sometimes necessary to avoid 

saturation of the ADC when collecting low-frequency data with a DC offset. The ability to 

separately configure each input filter chain enables the WASP to function as a self-contained 

multi-scale SHM system. Each signal input chain is sampled simultaneously by an LTC2351 

ADC at 14 bit resolution over a range of ±1.25 Volts. To achieve simultaneous sampling, the 

ADC samples and holds all six channels at once, and reads the values into memory during the 

time between measurements. This process, in conjunction with the output signal 

synchronization, ultimately limits the WASP’s maximum sample rate to ~140 kHz. 

 

Figure 30: Signal input chain showing fifth-order Bessel filter with multiple feedback topology 
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3.4.3. Laboratory Demonstration: Impedance Measurements 

3.4.3.1. Background 

The theory of impedance measurements for SHM and sensor diagnostics is detailed in 

Chapter 4. However, the practical means of estimating impedance using the WASP is reviewed 

here. In the simplest case, impedance can be measured by applying Ohm’s Law to the circuit 

shown in Figure 31. With a voltmeter and an ammeter measuring both magnitude and phase, the 

complex impedance can be measured as 

    
 

V s
Z s

I s
 , (3.1) 

where Z is the impedance, V is the voltage, and I is the current. Because it requires a complex 

current measurement, this method is rarely implemented. The method implemented in 

commercial devices, including Agilent’s 4294A impedance analyzer and Analog Device’s 

AD5933 impedance chip, is the auto-balancing bridge method [79] shown in Figure 32. This 

method implements an operational amplifier (op-amp) as a current-to-voltage converter to 

estimate the current through the test object. The impedance measurement circuit implemented 

on the WASP is that shown in Figure 33. The measurement circuit input voltage is VDAC, which 

is not measured but assumed to be the DAC command signal ranging over ±15V, and the 

measurement circuit output voltage is VINT, which enters the WASP’s input signal chain. The 

voltage actually read by the ADC is ADCV . For the purpose of impedance measurements, the 

WASP’s input signal chain and any other effects of its analog front end are modeled generically 

in the complex impedances 1Z  and 2Z . 
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Figure 31: Impedance measurement using Ohm’s Law 

 

Figure 32: Impedance measurement using an auto-balancing op-amp 

 

Figure 33: Impedance measurement circuit implemented on the WASP 

The transfer function for the left half of the WASP impedance measurement circuit can 

be estimated using Ohm’s and Kirchhoff’s laws as 

 
 
   

INT IMP

DAC IMP

V s R

V s Z s R



, (3.2) 

where s is the Laplace domain variable. In practice, the complex functions in the Laplace 

domain will be evaluated on the unit circle by operating on the measurement data with a Fast 

Fourier Transform (FFT). Each WASP measurement record is 8050 points long, and impedance 
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data are collected at the maximum sample rate of ~140 kHz using a normally distributed 

random excitation sequence. Each transfer function estimate was obtained using the H1 

autocorrelation method with 1024 FFT points, 50% overlap and a Kaiser-Bessel window with 

7.85  . As noted in Chapter 4, the quantity of interest in sensor diagnostics for SHM is the 

admittance, which would be estimated from Eq. (3.2) as 

    
 

1

1DAC
IMP

INT

V
Y R

V







  

       
, (3.3) 

where  Y   is the complex admittance of the test object given in Eq. (4.1). In order to estimate 

INTV , an estimate of the transfer function  
 

ADC

INT

V

V


  must be available. In order to obtain this 

estimate, a 50 Ω terminating resistor was applied to an SMA connector on the WASP, and the 

response of the total measurement circuit to a broadband, white noise excitation signal was 

recorded. Noting that 100IMPR  , and 50Z  , INTV  was estimated from Eq. (3.2) as 

2
3INT DACV V . Then, the WASP analog front-end transfer function,  WASPTF  , can be estimated 

as 

    
 

 
 

3
2

50

ADC ADC
WASP

INT DAC Z

V V
TF

V V

 


 


 
  
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Combining Eqs. (3.3) and (3.4), the transducer admittance can be estimated as 
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. (3.5) 

3.4.3.2. Demonstration 

In order to demonstrate the WASP’s general impedance measurement capability, 

impedance data were collected for the same 50 Ω SMA termination resistor, 100 Ω breadboard 
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resistor, and 47 nF capacitor. The excitation voltage level was adjusted for each measurement in 

order to make better use of the dynamic range of the ADC. Component validation results are 

shown in Figure 34, in which plots of the real and imaginary parts of admittance (conductance 

and susceptance, respectively) are plotted versus frequency over the full bandwidth of the 

WASP. The WASP impedance measurement circuit breaks down at very low frequencies 

(below 2 kHz), but otherwise correctly returns the real admittance values for the 50 Ω and 100 

Ω resistors as 0.02 and 0.01 Ω-1, respectively. The measured susceptance for the capacitor 

increases linearly up to ~30 kHz, and then returns to zero at the top of the WASP’s 70 kHz 

bandwidth; this result is expected because it is not possible to measure both magnitude and 

phase at the Nyquist limit. The slope of the linear portion of the capacitor susceptance, from 2 

kHz to 30 kHz, corresponds to a capacitance of 47.3 nF. These results sufficiently demonstrate 

the WASP’s impedance measurement capability for simple components. 

 

Figure 34: WASP admittance measurements – component validation 
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Next, the WASP’s impedance measurement functionality for sensor diagnostics was 

demonstrated using the aluminum plate described in Section 2.2. Reference measurements were 

collected using the Agilent 4294A, and the measured admittance values are plotted for the four 

functional baseline patches. The real admittance (conductance) is plotted in Figure 35, and the 

imaginary admittance (susceptance) in Figure 36. There is a constant offset in the imaginary 

admittance slope between measurements obtained with 4294A and the WASP. This offset might 

be a result of a temperature change between when the data were collected, or caused by a bias 

error in estimating the WASP measurement circuit (recall that the circuit was calibrated using a 

single resistance value); however, because sensor diagnostics are implemented based on 

changes in measurements, it is only necessary that the WASP’s measurement circuit be 

consistent in order to be effective. 

 

Figure 35: Real admittance comparison – Agilent 4294A and WASP  
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Figure 36: Imaginary admittance comparison – Agilent 4294A and WASP  

Data were collected from the debonded and broken patches, and the susceptance slopes 

were compared with the average susceptance slopes for the healthy patches to determine the 

relative severity of the defects. The susceptance data are plotted for the debonded and broken 

patches in Figure 37 and Figure 38, respectively, and the sensor diagnostics results using the 

WASP are summarized in Table 9. Although the extent of the changes is greater for the broken 

patches than for the debonded ones, in each case there is a clearly observable trend, indicating 

the severity of the defect using the admittance measurements obtained with the WASP. These 

results demonstrate the WASP’s ability to perform sensor diagnostics measurements while 

deployed for active sensing SHM. 
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Figure 37: WASP admittance measurements – debonded sensors on aluminum plate 

 

Figure 38: WASP admittance measurements – broken sensors on aluminum plate 
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Table 9: Sensor diagnostics results 

Debonded Sensors Broken Sensors 
Capacitance 

(nF) 
% Change Capacitance 

(nF) 
% Change 

3.75 3.9% 3.18 -11.7% 
4.16 15.5% 2.00 -44.6% 
4.46 23.6% 1.08 -70.0% 

    

3.4.4. Deployment Example: Wind Turbine Rotor Blade Fatigue Test 

The WASP was deployed on the CX-100 wind turbine rotor blade for the fatigue test 

described in Section 2.5. In this deployment, the WASP monitored array HP-A3, as listed in 

Table 2, which had a centrally located patch that the WASP excited with a chirp signal. The 

chirp signal ranged from 5 kHz to 25 kHz, which was the top of the WASP’s bandwidth for this 

test. Only one actuator was utilized because the thick fiberglass of the rotor blade required 

external signal amplification in order to overcome signal attenuation in the structure, and a 

single channel had to be hard-wired through the amplifier. With the long-duration, broadband 

signal, the WASP effectively excited a diffuse wave field (DWF). The WASP data were 

processed according to the method presented for DWF data in Section 5.2, and ROC curves 

were generated using the Normalized Impulse Residual Energy (NIRE) test statistic also 

described in Section 5.2. To verify the WASP’s ability to collect active sensing data for SHM 

purposes, results are presented here alongside those for the commercially available 

IntelliConnector that monitored a collocated sensor array, HP-A2 in Table 2, using ultrasonic 

guided wave (UGW) measurements. 

The NRE test statistics for the Metis IntelliConnector are plotted versus test date in 

Figure 39 (left), and the corresponding ROC curves are shown in Figure 39 (right). The raw test 

statistics for path 3 are excluded because that patch fractured (although not a result of the 

structural failure) early in the test. Although the sensor paths on the high-pressure side were not 



63 
 

 
 

located near the crack, results with the IntelliConnector system monitoring array LP-A2, 

detailed in Section 5.3.3.1, show that at these relatively lower frequencies for UGW data 

(compared to 200 kHz), there is general sensitivity to underlying structural changes in the CX-

100 rotor blade that is not dependent on intimate proximity to the developing crack. The results 

with the Metis IntelliConnector indicate a good ability to detect the incipient damage, with an 

average AUC (excluding path 3) of 0.986. The NIRE test statistics for the WASP are plotted 

versus test date in Figure 40 (left), and the corresponding ROC curves are shown in Figure 40 

(right). The WASP demonstrates an ability on par with the IntelliConnector to detect the 

incipient damage, with an average AUC of 0.987. 

  

Figure 39: NRE results for IntelliConnector (UGW) data with array HP-A1 
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Figure 40: NIRE results for WASP (DWF) data with array HP-A2 

3.4.5. Deployment Example: Telescope Drive System 

In a data-driven example of low frequency vibration monitoring for SHM, the WASP 

was deployed to monitor the drive system of a RAPTOR telescope, described in Section 2.4. 
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Figure 41: WASP deployment graphical overview 

A preliminary study [3] reported the efficacy of outlier classification methods for 

detecting the onset of capstan wear prior to catastrophic capstan failure. In the telescope drive 

system, the main drive wheels, which directly contact the capstans, are often marred with slight 

imperfections in the interface surface. Because these imperfections are unique to each system, 

there is a unique signature that can be used to train a classification model. As the capstan drives 

the wheel, these imperfections inject an impulse train through the interface, so that the input to 

the system can be treated as an impulse train approaching a white noise input. This input 

assumption allows the recorded acceleration to be modeled as an auto-regressive (AR) process 

[80]. Modeling the AR model parameters themselves as a multivariate Gaussian distribution, the 

Mahalanobis squared distance (MSD) can be used as a scalar metric to indicate the “distance” 

between a set of baseline or training data and a new dataset. The MSD is given as 

    T 1MSD   x μ Σ x μ , (6) 

where x  in this case is the array of AR model coefficients, and μ  and Σ  are the mean values 

and the covariance matrix of the training data set, respectively. 

For data collected with the WASP, the power spectral density averaged over 

approximately six weeks’ worth of data is shown in Figure 42. Dividing the total sequence into 
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1000-point sub-sequences, each sub-sequence was fit to an AR model of order 18, which was 

determined by inspection of the peaks visible in the PSD estimate. Assigning every second sub-

sequence for the first half of the total data sequence as training data, the training data mean and 

covariance matrices were computed, and the MSD metric was computed for each sub-sequence. 

These values are plotted versus sub-sequence number for data ranging from 10/12/2012 to 

11/23/2012 in Figure 43. The only observed deviation from the historical mean occurred on the 

night of 11/11/2012 (near sub-sequence number 300 in Figure 43), when the temperature in Los 

Alamos dropped to nearly -10° C, which was ~10° C colder than the temperatures experienced 

during the training data gathering. By incorporating some of the data collected at these 

temperatures into the training data set, the large excursion visible in Figure 43 can be removed, 

and with the inclusion of a wider range of operating conditions, future observed excursions will 

be more likely to indicate capstan failure. 

 

Figure 42: PSD for RAPTOR data from WASP 
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Figure 43: MSD metrics versus sub-sequence number, ranging from 10/12/2012 through 11/19/2012 

3.4.6. Wind Turbine Rotor Blade Flight Test 

Three WASPs were deployed on a wind turbine rotor blade flight test at the NIST 

facility described in Section 2.7. In this deployment, the WASPs monitored PZT patches that 

were embedded inside a CX-100 blade during its manufacture. Also available were data from 

the accelerometers and fiber optic strain gauges on three blades during the operation of the test. 

The deployment box for the WASPs, which was mounted to the wind turbine hub, is shown in 

Figure 44. This weatherproof box included circuitry for power conditioning, lightning 

protection, and communications. Preliminary data have been successfully retrieved from the 

sensor arrays embedded in the operational CX-100 blade, but a longer-term deployment of this 

system would be required in order to assess the ability of the WASP to provide information 

concerning damage accumulation in operational blades. 
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Figure 44: WASP deployment box for the Micon 63/13 wind turbine 

3.5. Summary and Acknowledgements 

This chapter has described the development and deployment of two embedded sensor 

nodes for structural health monitoring. The development of the Wireless Impedance Device v3 

(WID3) was presented, and its new functionality over previous WID versions was 

demonstrated. The WID3’s most basic capability involves measuring the coupled 

electromechanical impedance of a structure, capitalizing on the well-established impedance-

based structural health monitoring technique to monitor the condition of a structure. The low-

power sensor node’s capabilities were extended through improved networking capabilities, 
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increased data storage options, multiple powering options that allow for energy harvesting 

integration, and increased triggering options that allow for better control of sleep modes, 

reducing overall power consumption. The node’s capabilities were further extended through use 

of a wireless data acquisition (WiDAQ) module to be capable of collecting low-frequency time-

domain data from a variety of sensors. To demonstrate this capability, structural vibration data 

were collected for modal analysis, and the resulting measured natural frequencies and mode 

shapes were compared to those measured using a traditional data acquisition system. After 

successfully verifying the functionality of the WID3 in various laboratory settings, the WID3 

was field-tested on an actual structure of significant size and practical importance, 

demonstrating that the sensor node can efficiently monitor several mechanical response 

parameters suitable for rapid assessment of structural condition. 

The Wireless Active Sensing Platform (WASP), an embedded sensor node uniquely 

suited to multi-scale structural health monitoring (SHM) applications, was also developed. Its 

specific features have been described, especially its innovative ability to seamlessly switch 

between a traditional pitch-catch active sensing mode and impedance measurement mode, 

which is integral to sensor diagnostics methods for active-sensing SHM. The WASP was 

demonstrated in three key application areas. First, its ability to perform impedance 

measurements for piezoelectric sensor diagnostics was demonstrated in comparison to a 

conventional impedance analyzer. While the absolute estimates of impedance produced using 

the WASP were not identical to those produced by the impedance analyzer, the relative 

measurements demonstrated a more-than-sufficient ability to perform sensor diagnostics. 

Second, its ability to collect active-sensing data for incipient crack detection was demonstrated 

in comparison to a commercially available module for ultrasonic guided wave measurements. 

The WASP demonstrated a capability on par with the commercial system in detecting an 

incipient fatigue crack in a full-scale wind turbine blade. Third, its ability to collect low-
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frequency vibration measurements for model-based SHM was demonstrated using acceleration 

measurements collected from a telescope structure. These measurements will prove useful in an 

ongoing manner for in situ monitoring of the health of the telescope drive system. 

Portions of Section 3.3 have been published in [1] Smart Structures and Systems, S. G. 

Taylor, K. Farinholt, G. Park, M. Todd, and C. Farrar, 2010. The title of this paper is "Multi-

scale wireless sensor node for health monitoring of civil infrastructure and mechanical 

systems." The dissertation author was the primary investigator and author of this paper. 

Other portions of Section 3.3 have been published in [2] Measurement Science and 

Technology, S. G. Taylor, K. M. Farinholt, E. B. Flynn, E. Figueiredo, D. L. Mascarenas, E. A. 

Moro, G. Park, M. D. Todd, and C. R. Farrar, 2009. The title of this paper is "A mobile-agent-

based wireless sensing network for structural monitoring applications." The dissertation author 

was the primary investigator and author of this paper. 

Section 3.4 is currently being prepared in part for publication [5]. S. G. Taylor, E. Y. 

Raby, G. Park, K. M. Farinholt, and M. D. Todd, 2013. The title of this paper is "Active sensing 

platform: development and deployment." The dissertation author was the primary investigator 

and author of this paper. 
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Chapter 4  
Sensor Diagnostics for Active Sensing Systems 
 

4.1. Introduction 

This chapter presents an overview of sensor diagnostics for active sensing SHM 

systems employing piezoceramic transducers, as well as experimental results relating to sensor 

diagnostics from the CX-100 fatigue test described in Section 2.5. Of the 49 piezoceramic 

transducers employed, the 49 outlasted the expected life of the blade. Of the transducers that did 

fail in the course of the test, the sensor diagnostics methods presented here were effective in 

identifying them for replacement and/or data cleansing. Finally, while most sensor diagnostics 

studies [57, 81] have been performed in a controlled, static environment, some data in this study 

were collected as the rotor blade underwent cyclic loading. This loading condition motivated the 

implementation of an additional data normalization step for sensor diagnostics with 

piezoceramic transducers in operational environments. 

Active sensing denotes the use of transducers having both sensing and actuation 

capability deployed on a structure. The structure is excited using one or more transducers, and 

its response to that excitation is recorded using the same or other transducers. Piezoelectric 

materials are well-suited for use in active sensing systems, because their unique properties 
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enable them to serve both as actuators when excited with a voltage signal, and as sensors when 

deformed by a mechanical strain wave. The theory supporting the use of piezoelectric materials 

for active sensing was presented by Liang, et al. [82]. Although many materials exhibit a 

piezoelectric effect, including ceramics, composites, and polymers, the work in this dissertation 

is concerned with piezoceramic materials. Much of the theory supporting the use of 

piezoceramic materials for active sensing has been presented by Park, et al. [83-85] and Bhalla, 

et al. [86-88]. Impedance measurements as a method for structural health monitoring (SHM) 

were further developed by Park, et al. [55, 81, 89, 90], and techniques employing impedance 

measurements specifically for sensor diagnostics were also developed by Park, et al. [56, 57, 91, 

92]. While much of the experimental work applying the impedance method for structural health 

monitoring and sensor diagnostics has been implemented using a conventional network or 

impedance analyzer, such as the Agilent 4294A [93], several compact, low-power devices 

(some of which are listed in Section 3.2.2) have also been developed to collect impedance 

measurements for SHM and sensor diagnostics purposes [1, 59, 60]. 

Active sensing for SHM is a robust area of research with some very mature methods 

and applications [94-98]. However, SHM systems often operate in an unsupervised learning 

mode, which makes systems with failed sensors especially susceptible to false positives. Large 

excursions of test statistics from historical mean values could be caused either by structural 

damage or sensor failure. SHM systems in unsupervised learning modes rely on the assumption 

that the transducers employed are well-bonded and functioning properly. Although data 

normalization or instantaneous baseline techniques [56, 99] can be implemented to 

accommodate changing environmental conditions [99], damage to or loss of a transducer 

requires data cleansing and ultimately sensor replacement. Because physical inspection of 

sensors is likely no less costly than physical inspection of the structure, it is imperative that a 

sensor diagnostic capability be included as an integral part of any deployed SHM system. 
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4.2. Sensor Diagnostics Theory 

Sensor diagnostics for piezoelectric transducers utilizes impedance measurements to 

ascertain the health of the sensor and its bond condition. The impedance method relies on the 

electro-mechanical nature of piezoelectric transducers, in which the material’s electrical 

response is coupled with its mechanical response. When the material is bonded to a host 

structure, the electrical response becomes coupled with the structure’s mechanical response. 

One commonly used piezoelectric material in active sensing for SHM is lead zirconate titanate 

(PZT), a piezoceramic material usually fabricated as thin disc, or patch. A simplified diagram of 

the coupling between a PZT patch and its host structure is shown in Figure 45. For a PZT patch 

bonded to a host structure, the measured electrical impedance will be a function of both the 

patch impedance, aZ , and the structural impedance, sZ , in addition to the patch’s own electrical 

impedance. The primary assumptions in utilizing PZT patches for active sensing are: (1) that the 

patch operates in the 3xd  mode, such that strains in the planar x  direction induce voltages in 

the out-of-plane 3 direction and vice-versa; (2) that strains in the planar direction are 

independent of one another; and (3) that a single point at the center of the patch rigidly defines 

the connection between the patch and the structure [55, 86]. 

 

Figure 45: Electro-mechanical coupling diagram for a piezoceramic patch. 
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The complex electrical admittance of the bonded PZT patch, expressed through Ohm’s 

Law as the ratio of the current flowing through the patch to the applied voltage as a function of 

frequency, is a function of the total system structural impedance, given as [82] 

    
 

2
33 3

T Es
x xx

s a

I Z
Y i a d Y

V Z Z


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 

    
, (4.1) 

where i  is the imaginary unit,   is the frequency, a  is a geometric constant of the patch, 33
T  

is the complex dielectric constant at zero stress, 2
3xd  is the piezoelectric coupling constant in the 

in-plane ( x ) direction at zero stress, E
xxY  is the complex Young’s modulus of the patch with 

zero electric field, aZ  is the complex short-circuit mechanical patch impedance and sZ  is the 

complex structural impedance. All of these terms are complex functions of frequency. They can 

be written in terms of their real and imaginary components as 
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, (4.2) 

where  G   is the conductance,  B   is the susceptance,   is the dielectric loss factor,   is 

the mechanical loss factor, and x  and y  are real and imaginary components of mechanical 

impedance, respectively. Under the assumptions given above, Eq. (4.1) sets the groundwork for 

using PZT patches in impedance-based SHM as well as for sensor diagnostics. 

The basis of sensor diagnostics methods for PZT patches is to track their capacitive 

value, which manifests itself in the measured susceptance. For a completely free patch, 0sZ  , 

and the susceptance becomes 

   33
T

freeB a   . (4.3) 
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In the rigidly fixed state, s aZ Z , and the susceptance becomes 

    2
33 3

T E
fixed x xxB a d Y    . (4.4) 

Equations (4.3) and (4.4) provide the upper and lower bounds, respectively, on the slope of the 

measured susceptance for a PZT patch. Bonding defects as well as changes in the mechanical or 

electrical properties of the patch or its host structure can be identified using these 

measurements. Sensor diagnostics for PZT patches relies on the additional assumption that a , 

33
T , and E

xxY  are constant at low frequencies. Then Eqs. (4.3) and (4.4) describe the 

susceptance of a capacitor, where the entire term pre-multiplying   is constant, so that 

 B aK   , (4.5) 

where    2
33 3 33

T E T
x xxd Y K    , and aK  can be estimated as the slope of a straight-line fit 

of the measured susceptance. If the PZT patch becomes debonded, the capacitance will increase, 

with K  approaching 33
T . If the patch becomes broken, the then physically smaller patch will 

have a smaller geometric constant â a , and the capacitance will decrease. Because the patch 

is highly unlikely to increase the fixity of its bond condition [100], a decrease in the measured 

susceptance slope can almost always be attributed to sensor breakage. 

Although in practice, the structural impedance is some time-invariant, complex function 

of frequency,      s s sZ x iy    , at low frequencies (below 30 kHz), it is assumed to be 

constant, permitting the implementation of sensor diagnostics using the capacitive 

approximation described above. The behaviors described here are well-established, and they 

have been demonstrated both in the laboratory and in the field [2, 56, 90, 101]. However, if the 

structural impedance changes dynamically as a result of operational loading, Eq. (4.1) must be 

expanded as 
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and that effect must be incorporated into the appropriate terms in Eq. (4.6) in order to properly 

assess the condition of the sensor. 

4.3. Experimental Results 

In the CX-100 rotor blade fatigue test experiment, the transducers were tracked using a 

time-based baseline approach, in which admittance measurements were collected throughout the 

course of the test, and the slope of the measured susceptance was plotted versus time. 

Excursions from the established baseline were identified visually, and such excursions would 

indicate either a broken or a debonding sensor, corresponding to the direction of the change in 

slope. Impedance measurements were collected using an Agilent 4294A impedance analyzer at 

roughly weekly intervals. Each measurement contained complex impedance data at 512 

frequency lines linearly spaced over a range from 1 kHz to 30 kHz. The HP4294A implements a 

“sine dwell” measurement approach, in which data are measured at each frequency line in 

succession, and there is a finite settling time dependent on the measurement frequency itself, 

that passes between recording data at each frequency line. Each measurement required several 

seconds to sweep through the frequency range, effectively invoking an assumption that the 

structure was time invariant during that time. 

4.3.1. Sensor Performance 

In the ideal case for a group of similarly situated sensors, their measured susceptance 

values would remain constant, and any deviations from the mean historical value would be 

tracked by all sensors, so that an instantaneous baseline method [56] could be implemented 
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either to preclude the need for retaining past baseline measurements, or, in light of a deviation 

from the historical mean, as a safeguard against concluding that all sensors in the set had failed. 

Sensor array 1 on the high-pressure side (HP-A1) provides a good example of a healthy sensor 

set with uniform excursions from its historical mean. The susceptance slopes for each patch in 

array HP-A1 are plotted versus test date in Figure 46. No sensors in this array failed during the 

course of the test. On 8/12/2011, as well as on 10/24/2011, there were noticeable deviations 

from the past values, but because all sensors in the array experienced these changes, it was 

much more likely that an external factor, such as temperature or loading effects, was driving the 

change, rather than that all the sensors had failed. 

 

Figure 46: Susceptance slope values versus test date for all patches in array HP-A1 

In the course of this fatigue test, a “softening” phenomenon was observed, in which a 

sensor that appeared well-bonded upon visual inspection would experience an increase in 

susceptance slope normally indicative of a debonded patch. In the cases where softening was 

observed, the sensors were located quite near the incipient crack, and it is likely that the local 

stiffness began to decline as the crack formed, causing a decrease in the structural impedance, 
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and a corresponding increase in the susceptance slope. Patch LP-A1-I3, which sat quite near the 

forming crack, is a good example of this phenomenon. The susceptance slopes for the patches in 

array LP-A1 are plotted versus test date in Figure 47. The susceptance slopes for Patch LP-A1-

IA and LP-A1-I0 through LP-A1–I2 track each other through the end of the test, while that for 

Patch LP-A1-I3 increases dramatically prior to the catastrophic failure of the blade, when the 

crack surfaced and simultaneously broke the patch. 

 

Figure 47: Susceptance slope values versus test date for several patches in array LP-A1 

As described in Section 2.5.2 and indicated in Figure 10, a total of 11 sensors failed 

during the test. Most of these sensors were located near the catastrophic crack, and their 

susceptance slopes are plotted versus test date in Figure 48 and Figure 49. The susceptance 

slopes for failed sensors in other locations are plotted in Figure 50. For many of these sensors, 

the failures are preceded by increases in susceptance slope, reflecting the softening boundary 

condition described above. This phenomenon points to an overlap between sensor diagnostics 

and structural damage detection; while the increased susceptance slopes might have been 

interpreted as indicating a debonded sensor, they were actually harbingers of incipient structural 
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damage. In this case, the development of structural damage may first have caused the 

susceptance slope to increase as its boundary condition softened, and then the increasing surface 

strain caused by the crack propagation fractured the patch itself. 

 

Figure 48: Susceptance slope values versus test date for patches at array location LP-I3 

 

Figure 49: Susceptance slope values versus test date for patches at array location LP-I4 
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Figure 50: Susceptance slope values versus test date for failed sensors at locations other than LP-I3 and 
LP-I4 

4.3.2. Data Cleansing 

Patch LP-A4-O3 exhibited a significant decrease in its susceptance slope for 

measurements taken on 10/18/2011. The drop in slope was visually observable in the plot 

shown in Figure 50. Because the drop was severe, and the other patches in that array exhibited 

no such drop, the patch was deemed broken and was replaced on 10/24/2011. The measured 

susceptance slope for the new patch was similar to that for the previous patch. After replacing 

the patch, a new set of baseline measurements were collected, both for sensor diagnostics and 

SHM purposes. As noted in Section 2.5.3, at this point in the fatigue test progression the rotor 

blade was already in an incipient damage state, and while the further change from incipient to 

catastrophic damage would be detectable using baselines collected with the new patch, it was 

not possible to use this sensor location to detect the incipient damage state. In analyzing the 

available data in an attempt to detect the incipient damage, or to assess the detection 

performance of various methods or sensor paths, data both from the broken patch and its 

replacement must be cleansed from the overall dataset. 
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Consider the Impulse Correlation Coefficient Complement (ICCC) test statistic, 

described in Section 5.2.3. This test statistic is plotted versus test date in Figure 51 for three 

patches in array LP-A4, including LP-A4-O3, which was determined on 10/18/2011 to have 

fractured. After fracturing, patch LP-A4-O3 exhibited a step change in the computed ICCC test 

statistic. Without available sensor diagnostics information, such a step change in a test statistic 

value might be interpreted as indicating a step change in the condition of the structure, 

warranting possibly costly action. In a detection performance assessment, this particular sensor 

path might be erroneously interpreted to have near perfect detection performance. However, 

because the sensor was identified as broken, data from that sensor could simply be excluded 

from the analysis. If this situation had arisen while the structure was still in operation and also 

still considered healthy, the patch could be replaced, and the new baseline data gathered after its 

installation would be useful for detecting future structural changes. 

 

Figure 51: ICCC test statistic versus test date for three patches in array LP-A4 
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4.3.3. Nonstationary Structural Impedance 

In the course of this study, some impedance measurements were collected while the 

rotor blade was undergoing cyclic loading, subjecting the surface on which the patches were 

mounted to a strain field that varied in time. This time-varying strain field directly resulted in a 

time-varying structural impedance. Because of the frequency-stepping method implemented 

with the HP4294A, the measured impedance appeared to be a nonlinear function of frequency, 

dependent on the ratio of the “admittance frequency lines per second” sampling rate to the 

“cycles per second” rate of the blade’s motion, resulting an “admittance frequency lines per 

cycle” frequency space. 

The “cycles per second” rate of the blade’s motion can be fairly simply established with 

kinematic measurements. Throughout the course of the fatigue test, strain data were collected at 

various locations on the surface of the rotor blade, and acceleration data were collected in the 

flapwise and edgewise directions at the rotor blade tip. These data were partly used for the 

feedback control system driving the excitation of the blade, and they were also saved as part of 

the record of the fatigue test. The common data collection practice was to retain only the data 

points corresponding to the maxima and minima of the displacement input, which effectively 

assumes that the input contained only a single fundamental frequency. However, some isolated 

strain and acceleration sequences were collected at a sampling rate of 120 Hz. Although the 

target excitation was a pure sinusoid at the rotor blade’s first resonance, an estimate of the 

power spectral density (PSD) for the input excitation revealed the presence of several 

harmonics, and, unfortunately, two aliased peaks. For a time-series dataset collected near the 

start of the test on 08/16/2011, the normalized power spectral density (PSD) estimates of the 

input excitation (recorded in inches) and the strain (recorded in percent microstrain) at a point 

1.35 m from the root on the blade’s high-pressure side are shown in Figure 52. The PSDs were 
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estimated from a 56200-point sequence at 120 Hz, using Welch’s method of averaged 

periodograms with a Hann window, 4096-point blocks and 50% overlap. Note the harmonics of 

the fundamental frequency, near 1.8 Hz, which are also reflected in the strain response. The 

other two peaks are most likely harmonics of the fundamental frequency above 60 Hz, which 

have been aliased back into the measured spectrum. There is a strong response at the 

fundamental frequency and its first harmonic, and also at the fourth harmonic, near 9 Hz. The 

stronger response at 9 Hz is likely the result of the harmonic excitation falling near the rotor 

blade’s second flapwise bending mode at 9.23 Hz. 

 

Figure 52: Displacement excitation (top) and strain response (bottom) PSD estimates 

An example of admittance measurement behavior under cyclic loading is shown for 

patch HP-A1-L3 in Figure 53. The raw susceptance data have been plotted versus measurement 

frequency for two separate sets of impedance measurements taken on 10/24/2011 and 

10/31/2011. The data collected on 10/24/2011 reflect the cyclic excitation with a fundamental 
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frequency of 1.793 Hz. The susceptance data are shown again in Figure 54 with the linear trend 

removed. Although there is some drift, note the flat, smooth nature of the measurement taken 

with the rotor blade in a quiescent state, compared to the harmonic oscillations in the 

measurement collected under cyclic loading. 

 

Figure 53: Measured susceptance for patch HP-A2-I1 with and without cyclic loading 

 

Figure 54: Susceptance curves for patch HP-A2-I1 with and without cyclic loading 
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For the impedance measurement method implemented in this test, the time lapse 

between collecting impedance data at each frequency line was not constant at very low 

frequencies. For the 512-point sequence with its linear trend removed, where each sample is 

related to impedance data collected at a particular frequency line, a PSD estimate was computed 

in normalized “cycles per frequency line” space. Computing several such estimates using a 

short-time 64th-order Yule-Walker estimator operating on 128-point blocks with 120 overlap 

points, a spectrogram image was generated, which is shown in Figure 55. The spectrogram 

image has been normalized so that the largest value is 0 dB, and lighter colors represent larger 

values. Assuming the UREX loading frequency was constant in time, it is apparent from Figure 

55 that over the course of the impedance measurement the time lapse between frequency lines 

decreased as the admittance measurement frequency increased, and then became constant for 

admittance measurement frequencies above 20 kHz. In this measurement region, the rotor blade 

would undergo one fatigue cycle in slightly more than the time required to collect 30 data 

points, so the apparent fatigue loading frequency, in the normalized admittance measurement 

frequency space (fatigue cycles per admittance frequency line), was about 1 cycle per 30 

frequency lines. For the region where the time lapse between admittance measurement 

frequency lines was constant, a PSD estimate was computed by taking the mean across the 

columns of the spectrogram. This PSD estimate is shown in Figure 56.  
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Figure 55: Susceptance spectrogram for nonstationary impedance measurement 

 

Figure 56: Susceptance power spectral density for nonstationary impedance measurement 

In order to account for the effect of this nonstationarity, its functional form must be 

incorporated into an expression for the susceptance, which is expressed in Eq. (4.6). Noting 

from [86] that changes in the local stiffness manifest in the imaginary part of the structural 

impedance, Eq. (4.6) can be rewritten with  coss sy Ay     , modeling this component 
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of structural impedance as a harmonic oscillation about a nonzero mean. Inserting this 

expression in to Eq. (4.6) gives an expression for the susceptance as 

  
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While Eq. (4.7) might be appropriate for use in determining the individual components of 

mechanical impedance for the patch and the structure under these loading conditions, it is not 

necessary simply to normalize the admittance measurement and remove the effect of the 

nonstationary behavior. Noting from Figure 53 that the measured susceptance is dominated by 

the linear capacitive behavior, the numerator in (4.7) can be approximated by a linear 

expression with arbitrary constants, so that 
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Noting also that the nonstationarity has been accounted for in the cosine term, the remaining 

parameters in the denominator can be combined in arbitrary constants 3 a sc x x   and 

4 a sc yy  , so that an empirical expression for the measured susceptance can be written as 
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where the nc  are constants relatable to the parameters in Eq. (4.2),   is the cyclic loading 

frequency in cycles per admittance measurement frequency line space, and   is an arbitrary, 

constant phase angle fixed by the timing between the cyclic loading and the start of the 

impedance measurement. Although the experimental PSD in Figure 56 does reveal the presence 
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of higher harmonics, the expression given in Eq. (4.9) would capture the first two dominant 

frequencies. 

An example implementing the normalization model of Eq. (4.9) is shown in Figure 57 

for patch HP-A2-I1, where plotted together are the measured data taken with the rotor blade 

undergoing cyclic loading, the fitted and normalized curves for that data, and measured data 

taken with the rotor blade in a static condition. This plot demonstrates the ability to normalize 

susceptance measurements in the presence of a dynamic strain field so that the measurements 

can still be compared among different tests, reducing the likelihood that incorrect conclusions 

concerning the sensor condition would be drawn based on susceptance slope values artificially 

inflated by host structure dynamics. Figure 58 shows the corresponding locations of the 

measured susceptance slope and the normalized slope relative to a histogram of the sample 

population of slopes for all the healthy sensors in the fatigue test. The sample mean was 

2.90x10-8 Siemens/Hz and the standard deviation was 7.38x10-10 Siemens/Hz. The measured 

susceptance slope is just over two standard deviations above the mean at 3.06x10-8 Siemens/Hz 

while the normalized susceptance slope is well within the expected range of slopes, at 2.99x10-8 

Siemens/Hz. 
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Figure 57: Dynamic and static experimental data shown with fitted dynamic data and normalized curve 

 

Figure 58: Histogram and Normal fitted curve for all healthy sensor susceptance slopes; vertical lines 
indicate measured and normalized slopes for data collected from sensor HP-A2-I1 on 10/24/2011 
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In some cases involving cyclic structural loading, partially fractured patches exhibited a 

crack-breathing phenomenon, in which the susceptance slope value oscillated between a 

“healthy” level and a “broken” level. Patch LP-A3-I3 was clearly observed on 10/24/2011 to be 

fractured, and the change in its slope can be seen in Figure 48. Its raw susceptance 

measurements are plotted in Figure 59 for data collected on 10/18/2011, when the patch was 

still healthy, and on 10/24/2011, when the patch had fractured. Although this patch would still 

be identified as broken using the slope fitted to the bilinear curve that was measured, this 

measurement provides a clear indication of the effect that cyclic loading has on the patches and 

their measured impedance. 

 

Figure 59: Example of bilinear behavior with breathing crack 

4.4. Summary and Acknowledgements 

This chapter has presented an overview of impedance-based sensor diagnostics for 

piezoceramic transducers used in active sensing applications for SHM. A case study was 

presented in which 49 transducers were used to monitor the health of a wind turbine rotor blade 
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subjected to fatigue loading until failure. The transducers proved effective in their longevity and 

ability to perform within the SHM system until after the blade began to fail. For those sensors 

that did fail, the sensor diagnostics procedures implemented were effective in identifying them. 

In some cases where the susceptance slope increased, which would ordinarily indicate a 

debonded sensor, the fiberglass material to which the transducer was affixed seems to have 

softened. In this case, the increased susceptance slope would be an indication of incipient 

structural damage, rather than sensor failure. Furthermore, data taken under dynamic loading, 

which is often necessary for in situ operation of an SHM system, exhibited a clearly 

measureable impact on the susceptance values. An empirical model was proposed as a tool to 

normalize these measurements in order to enable comparison among measurements taken in 

other loading conditions. 

Chapter 4, in part, has been recommended for publication in [6] Smart Materials and 

Structures, S. G. Taylor, G. Park, K. M. Farinholt, and M. D. Todd, 2012. The title of this paper 

is "Diagnostics for piezoelectric transducers under cyclic loads deployed for structural health 

monitoring applications." The dissertation author was the primary investigator and author of this 

paper. 
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Chapter 5  
SHM with Active Sensing Systems 
 

5.1. Introduction 

A variety of data acquisition and analysis methods have been applied to the problem of 

fatiguing wind turbine rotor blades, and the CX-100 rotor blade has been a specimen of 

particular popularity [7, 15, 20, 102-108]. The experiment considered in this example was the 

CX-100 rotor blade fatigue test described in Section 2.5. Focusing on a comparison between 

ultrasonic guided wave (UGW) measurements and diffuse wave field measurements (DWF), 

data from sensor arrays LP-A1, LP-A2, and LP-A4 are presented; these sensor arrays are 

described in detail in 2.5.2 and summarized in Table 2. This study showed that UGW data at 

relatively high frequencies for fiberglass structures, at 200 kHz and above, provided excellent 

detection performance for sensor arrays along the rotor blade’s carbon fiber spar cap, taking 

advantage of its architecture to implement a very low-density array capable of detecting 

incipient damage. However, diffuse wave data using excitation signals limited to 40 kHz 

displayed the greatest overall sensitivity to the incipient crack formation, with damage 

localization capability enabled by heightened sensitivity for sensor paths near the crack. In all 
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cases, energy methods outperform correlation methods, confirming previous results indicating 

that an energy detector is often the optimal detector for guided wave applications [94, 109]. 

5.2. Background for Active-sensing SHM 

5.2.1. Ultrasonic Guided Wave Processing 

In SHM applications for ultrasonic guided waves (UGWs), a short-time, narrow-band 

wave packet ix  is used to excite the structure, and the measured response iy , usually at another 

location, contains the structure’s multipath response to that excitation. The subscript i  refers to 

the thi  measurement over a particular SHM campaign, and the signals are shown in bold face to 

indicate that they are discrete signals (i.e.,  xi i kx , where k  is the signal array index).  If the 

underlying structure changes, the properties of the propagation paths for a given wave packet 

will also change, resulting in a change in the measured response. In practice, each measured 

response is match-filtered with the excitation signal, producing the filtered response iy . This 

process increases the apparent signal-to-noise ratio, but also suppresses any nonlinear 

frequency-shifting effects that may be inherent to the structure. For each filtered signal iy , a 

residual ir  is computed using an optimal baseline subtraction method [99], taking the difference 

between the filtered waveform iy  and the baseline filtered waveform jy  that minimizes the 

residual’s norm. The subscript j  refers to the particular past measurement in the SHM 

campaign that minimizes the thi  residual. 

If the structure remains unchanged, and the baseline data sufficiently span the 

structure’s environmental operating space, the residual will be noise, albeit generally not 

normally distributed, with an expectation of zero. If the structure has changed, that change 
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would manifest itself as a deterministic signal embedded in the noise, detectable as a 

measureable increase in the residual energy. Because relative phase information is often 

impossible to determine using the sparse arrays typically implemented in UGWSHM 

applications, a residual envelope iv  can be computed, with no significant loss of information, as 

the amplitude of the analytic signal of the residual ir  [110]. For use in normalization, the 

baseline signal envelope jw  is similarly computed from each filtered baseline signal jy . Any 

of these signals could be used to compute various test statistics for detection purposes. 

5.2.2. Diffuse Wave Field Processing 

In diffuse wave field (DWF) measurements, a broadband signal is used to excite the 

structure for a long time relative to the wave’s travel time from the actuator to the sensor. Each 

measurement pair is then a particular representation of the DWF. The measured signals are 

colored noise, with the specific coloration being a function of the underlying structural 

properties of the DWF. Unless identical excitation sequences are used for subsequent tests, any 

two measurements would be largely uncorrelated because of the complex, random nature of the 

DWF. Therefore, traditional baseline subtraction as implemented for guided waves would not 

produce meaningful results due to unacceptable signal-to-noise ratios. 

In order to implement similar test statistics as for UGW signals, the “local” impulse 

response iψ  was first estimated for each DWF measurement iy . Rather than match-filtering the 

response signal with the excitation, the frequency response function (FRF) was estimated for 

each input-output pair  ,i ix y , and the time-domain impulse response function (IRF) was 

estimated from that FRF by taking its symmetric inverse Fast Fourier Transform (iFFT). In a 

true diffuse field, this IRF will be an estimate of the pulse-echo response for the measurement 

transducer [111]. Although these measurements can be obtained directly, estimating them in the 
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manner presented here permits the use of less sophisticated data acquisition hardware, and also 

allows the structure to be excited with more energy for each measurement, effectively collecting 

more information in a single record. 

Each estimated impulse response iψ  can be processed in the same manner as for UGW 

signals to obtain a corresponding impulse residual iρ , a residual impulse envelope signal iυ , 

and an appropriate baseline impulse envelope signal jω . These signals can then be used in the 

same manner as the UGW signals to compute test statistics for detection purposes. Although the 

impulse residual signal is not narrow-band as UGW signals are, its expectation in the absence of 

structural changes is still zero, and changes in the underlying structure are detectable using test 

statistics computed with these signals. 

5.2.3. Test Statistics 

A variety of test statistics can be computed using the processed waveforms described 

above. There are two classes of test statistics commonly applied in structural health monitoring, 

and here, the simplest version of each is implemented. The first class of test statistic aims to 

detect the presence of a signal in noise, under the assumption that its presence would be 

indicative of structural change. The simplest of these is an energy detector, cast in [110] as the 

energy in a residual signal normalized by the energy in a baseline signal, and listed in Table 10 

as the normalized residual energy (NRE) test statistic. The analogous test statistic using the 

IRFs estimated from the DWF data is listed as the normalized impulse residual energy (NIRE) 

test statistic. Other energy-based detectors not utilized here include the normalized maximum 

residual, used by Croxford, et al. [99], and the normalized maximum amplitude, used by 

Michaels, et al. [96]. The second class aims to detect the degree to which a measurement is 

unlike previous measurements. To that end, the correlation coefficient complement (CCC) is 
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utilized, which ranges from 0 to 1 with values increasing for signals that are less correlated with 

previous ones. The analogous test statistic using the IRFs estimated from the DWF data is listed 

as the impulse correlation coefficient complement (ICCC). Computing the correlation 

coefficient requires the signal mean   and the standard deviation  ; subscripts on these 

quantities in Table 10 indicate the signal from which they were calculated. 

Table 10: Test Statistics implemented for CX-100 fatigue crack detection 

5.2.4. Receiver Operating Characteristic Curves 

In detection theory [110], a basic problem formulation is one in which a signal may or 

may not be present in noise, and a hypothesis test is applied to determine the presence or 

absence of the signal. A test statistic derived from a measured signal, usually a scalar, is 

formulated such that a positive detection results when the test statistic exceeds a given 

threshold, disproving the null hypothesis that the signal is absent. If the distribution of the test 

statistic is known, the performance of the detector can be evaluated analytically by computing, 
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over a range of threshold values, the probability that the test statistic will exceed the threshold 

when the signal is present (a true positive) and when the signal is not present (a false positive). 

The true positive rate is plotted versus the false positive rate in a receiver operating 

characteristic (ROC) curve. The area under the curve (AUC) is an indicator of a given detector’s 

performance, where a value of 1 would indicate perfect detection, a value of 0.5 would be 

equivalent to a random guess, and a value of 0 would imply that all the decisions were wrong. If 

the distribution of the test statistic is not known, ROC curves can still be produced in a data-

driven manner from experimental results. As long as the truth of the signal’s presence or 

absence is known, the true positive rate and the false positive rate can be computed for each 

case (signal present or absent) over the range of threshold values as the ratio of the number of 

tests for which the test statistic exceeds the threshold to the total number of tests in each 

respective case. The approach utilized in this dissertation is to produce a scalar test statistic for 

each dataset, from which data-driven ROC curves are generated for each sensor path in order to 

evaluate the performance of each hardware and test statistic combination. 

5.3. Experimental Results 

5.3.1. Representative Signals 

Example filtered signals from two different test dates, along with their respective 

baseline and residual signals, are shown in Figure 60 for UGW data collected with an excitation 

signal at 200 kHz. In computing the test statistics for the UGW data, only the first arrival was 

used, so the plots include only the first 0.15 milliseconds (ms) of the time record, which was 

captured at 10 MHz. In the healthy case, with data collected on 09/02/2011, the new waveform 

is similar its corresponding baseline, resulting in a residual signal relatively close to zero. For 
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the post-incipient damage case, with data collected on 10/24/2011, the new waveform actually 

has a larger amplitude than its corresponding baseline. Although this result is not consistent 

with the notion that the presence of a crack would attenuate the signal, it does support the theory 

that the spar cap acted as a waveguide for the 200 kHz excitation; as the growing crack caused 

spar cap to become more free, there may have been less attenuation of the UGW signals. 

However this difference is still detectable as an increase in the energy of the residual waveform. 

 

Figure 60: Sample signals for UGS measurements: healthy (left) and damaged (right) 

Example signals are shown for DWF data using the same dates for the new waveforms 

in Figure 61. The frequency response function (FRF) was estimated for each sensor path using 

the H1 autocorrelation estimate, which is the ratio of the cross power spectrum of the output and 

input with the auto power spectrum of the input. The power spectra were computed using 

Welch’s method of averaged Periodograms with a Hamming window, 1024 FFT points, and 

50% overlap. The time-domain impulse response function (IRF) was estimated from that FRF 
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by computing its symmetric inverse Fast Fourier Transform (iFFT). The originally measured 

signals had 16384 points sampled at 96 kHz, for a duration of 170.67 ms. Because the FRFs 

used to estimate the IRF signals were computed with 1024-point overlapping blocks, the IRF 

estimates represent a duration of 10.67 ms. In order to capture the IRF dynamics, only the first 

2.67 ms were retained (analogous to retaining only the first arrival for UGW data). Sample 

signals of the IRFs and residuals are shown in Figure 61 for a healthy and post-incipient damage 

case. In the healthy case, with data collected on 09/02/2011, the IRF is similar its corresponding 

baseline, resulting in a residual signal close to zero. For the post-incipient damage case, with 

data collected on 10/24/2011, the IRF is attenuated compared to its baseline, which is consistent 

with the physically intuitive notion that the presence of a crack would cause elastic wave 

attenuation. This difference is detectable as an increase in the energy of the residual waveform. 

 

Figure 61: Sample signals for IRF estimates using DWF data: healthy (left) and damaged (right) 
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5.3.2. Incipient Crack Detection 

5.3.2.1. Overview 

The aim of this chapter is to compare the relative crack detection performance for 

different data collection and analysis methods. In order to assess detector performance, receiver 

operating characteristic (ROC) curves should be produced from experimental results, but this 

method requires that the truth of the structure’s state to be known. In the case of incipient 

damage, the truth was unknown; so the desire is to determine from the experimental data both 

when the crack became detectable as well as the relative detection performance of the various 

approaches. A definition of truth (in terms of the detectability of the crack) is proposed as the 

one that maximizes the average detection performance over all methods considered. In many 

detection or classification applications, this problem might be intractable because of the large 

number of possible definitions of truth; however, because the data are perfectly separable in 

time (that is, the rotor blade was healthy until a certain date and damaged for all dates 

thereafter), the number of possible classification assignments is reduced to a number of 

demarcation time points no greater than the total number of datasets. Furthermore, under a 

binary classification assumption, one of these dates necessarily provides the true classification 

assignment. Then, the true demarcation date can be estimated as that which maximizes ROC 

performance, defined as the AUC for the associated ROC curve. 

5.3.2.2. Approach 

Each measurement time point was taken in turn as the “true” demarcation point. In each 

case, all measurements collected up to and including that point were taken to have come from 

the rotor blade in the pristine state, and all measurements collected after that point were taken to 

have come from the rotor blade in the damaged state. For each demarcation time point, the ROC 
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curves were computed for all sensor paths and transmission frequencies. As an example, the 

histograms for the NRE test statistic are shown for sensor path 3 at 50 kHz excitation in Figure 

62 (left). The distribution shown has contributions from two overlapping distributions, and the 

selection of the demarcation point defines to which distribution each instance of the test statistic 

belongs. Choosing a demarcation date roughly as the halfway point in terms of UGW data 

collected, corresponding to 10/07/2011, results in histograms for the two distribution as shown 

in Figure 62 (right), where each distribution has been normalized to represent total unity area. 

Having selected the demarcation date, an ROC curve can be constructed as described above. 

Although the actual curve is not shown, for this example, the AUC is 0.9262. This process is 

applied for all sensor paths at each excitation frequency over all possible demarcation dates. 

The resulting AUC values can be plotted versus demarcation date to enable the selection of the 

demarcation date yielding the greatest detection performance. This data is then the most likely 

date on which the incipient structural damage appeared. 

 

Figure 62: Histograms for the UGW test statistic with 50 kHz excitation along sensor path 3: all test 
statistic instances (left); test statistics divided according to a demarcation date of 10/07/2011 (right) 
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5.3.2.3. Results 

The AUC values are plotted versus demarcation date for path 1 in Figure 63. The flat 

results for both paths 1 and 3 are indicative of a steady change in the test statistic over the 

period for which the AUC plot is flat. This would be visible in the raw test statistic plot, and 

would suggest the use of an external sensor pair along the spar cap as a gauge of damage 

progression. The AUC values are plotted versus demarcation date for path 2 in Figure 64. The 

performance drops off steadily with increasing frequency, and the peak location generally 

increases in time with increasing frequency. The performance drop is a reflection of the 

significant signal attenuation for path 2, and the increasing demarcation date indicates that for 

poorer signal quality, the damage had to become more severe in order to be detected. The AUC 

values are plotted versus demarcation date for path 3 in Figure 65. With the exception of the 50 

kHz data, the results are similar to those for path 1. However, note also that for 75 kHz and 100 

kHz, the flat portion begins on 10/04 and extends through 10/24, indicating an even longer 

period of change detectable along path 3 at low frequencies. The AUC values are plotted versus 

demarcation date for path 4 in Figure 66. Path 4 was quite near the crack, and this is reflected in 

the stronger concavity of the AUC curves. Also, as the excitation frequency increased, the date 

at which the incipient crack became detectable moved back: the incipient crack was detectable 

earlier with path 4 at higher frequencies than for most path/frequency pairs. Path 4 also 

exhibited a strong second peak in early November, when the crack surfaced. The AUC values 

are plotted versus demarcation date for path 5 in Figure 67. Path 5 displayed similar degrading 

performance with increasing frequency as path 2; with the peak shifting slightly forward until 

after 200 kHz, where the sharp peak indicates a step-change behavior in the test statistic. At 

higher frequencies with path 5, the only notable peaks occur in November. 
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Figure 63: UGW NRE Performance versus demarcation date for path 1 at various frequencies 

 

Figure 64: UGW NRE Performance versus demarcation date for path 2 at various frequencies 

 

Figure 65: UGW NRE Performance versus demarcation date for path 3 at various frequencies 



104 
 

 
 

 

Figure 66: UGW NRE Performance versus demarcation date for path 4 at various frequencies 

 

Figure 67: UGW NRE Performance versus demarcation date for path 5 at various frequencies 

These results indicate that there are specific strengths and weaknesses of given paths 

and excitation frequencies, but a direct comparison of their performance requires a consistent 

definition of incipient damage, which in this case is the demarcation date used to generate the 

ROC curves used to compare performance. To that end, the prominent performance curve peaks 

from 50 path/frequency pairs plotted above were extracted and used to generate a histogram to 

show the distribution of demarcation dates. Because the physical rotor blade exhibited two 

distinct changes in time, first with the appearance of the incipient damage, and second with the 

surfacing of the catastrophic crack, two peaks were extracted from each AUC versus date curve. 
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The histogram is shown in Figure 68. It exhibits a strongly bimodal distribution, with one peak 

near 10/21/2011, and another near 11/08/2011. Choosing the date as 10/21/2011 would 

correspond to assessing performance in incipient crack detection, while choosing the date as 

11/08/2011 would correspond to assessing performance in catastrophic crack detection. While it 

may not be useful to apply this type of SHM system to catastrophic crack detection, it is useful 

to note which methods are better performers in the different areas. 

 

Figure 68: Histogram of most likely demarcation dates 

5.3.3. Detector Performance Assessment 

This section presents a detailed performance comparison between UGW and DWF data 

using the test statistics listed in Table 11. The results presented build on the arguments from the 

previous section, assigning 10/21/2011 as the “true” demarcation date. For each dataset, the data 

were divided into ‘healthy’ and ‘damaged’ groups, and histograms and ROC curves were 

generated for each hardware, test statistic, and sensor path combination described in Section 
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2.5.2. The histograms were normalized so that they represent discrete probability density 

functions (PDFs) with total probability of unity. While the shape of an ROC curve is 

informative in assessing the detection performance of a given test statistic, the AUC is a useful 

metric to describe the test statistic’s basic detection performance in the hypothesis test. The 

AUC values for each test statistic are tabulated in Table 11. Along with the individual AUC 

values, three average values of interest are also tabulated: the overall average, A(all); the 

average between the two paths that lay nearest the fatigue crack, A(crack); and the average 

between the two paths that lay along the carbon fiber spar cap A(spar). The histograms and 

ROC curves corresponding to each AUC value included in Table 11 are plotted in subsequent 

figures. 

Table 11: AUC values for dataset and test statistic pairs 

  Inner Array Configuration 
Outer Array Configuration 

Diffuse Waves (LP-A4) 
  Guided Waves (LP-A2) Diffuse Waves 

(LP-A1)   50 kHz 200 kHz 

Path NRE CCC NRE CCC NIRE ICCC Path NIRE ICCC 

1 0.98 0.97 1.00 0.99 0.94 0.79 1 0.80 0.80 

2 0.98 0.97 0.75 0.76 0.95 0.94 2 0.86 0.84 

3 0.90 0.90 1.00 1.00 0.98 0.95 3 0.95 0.95 

4 0.97 0.98 0.89 0.86 0.99 0.91 4 0.81 0.81 

5 1.00 0.99 0.83 0.82 0.91 0.74 5 0.91 0.87 

              6 0.88 0.89 

A (all) 0.97 0.96 0.89 0.88 0.95 0.86 A (all) 0.85 0.84 

A (crack) 0.94 0.94 0.94 0.93 0.98 0.93 A (crack) 0.86 0.84 

A(spar) 0.94 0.93 1.00 0.99 0.96 0.87 A(spar) 0.80 0.81 

          

5.3.3.1. Ultrasonic Guided Waves 

The histograms for the NRE test statistic using 50 kHz guided waves are shown in 

Figure 69, with the corresponding ROC curves shown in Figure 71 (left). The shaded area in the 
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ROC plots indicates the random guess line; any curves that fall within that area would have an 

AUC of less than 0.5 and perform worse than a random binary guess. The data provide good 

classification performance, with an A(all) of 0.97. Curiously, path 5 had the greatest 

performance, but this path was far from the crack and did not lie along the spar cap. The 

histograms for the CCC test statistic using 50 kHz guided waves are shown in Figure 70, with 

the corresponding ROC curves shown in Figure 71 (right). The results for the CCC are nearly 

identical to those for the NRE, but with a slight performance drop. 

 

Figure 69: Test statistics for NRE using guided wave data at 50 kHz 
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Figure 70: Test statistics for CCC using guided wave data at 50 kHz 

 

Figure 71: ROC curves for 50 kHz guided wave data at 50 kHz: NRE (left); CCC (right) 

The histograms for the NRE test statistic using 200 kHz guided waves are shown in 

Figure 72, with the corresponding ROC curves shown in Figure 74 (left). The overall 

classification performance was worse than for the 50 kHz data, with an A(all) of 0.89. This low 
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average AUC was largely brought down by the poor performance of path 2, which lay entirely 

off of the spar cap and away from the crack. The best performance for 200 kHz guided waves 

was with paths 1 and 3, which lay along the spar cap, and produced an A(spar) of 0.996. The 

carbon fiber spar cap likely acted as a wave guide for the 200 kHz excitation, enabling the 

communication of changes in the underlying structure along its length. The histograms for the 

CCC test statistic using 200 kHz guided waves are shown in Figure 73, with the corresponding 

ROC curves shown in Figure 74 (right). The results for the CCC test statistic were substantially 

similar to those for the NRE, but with a slight drop in performance. 

 

Figure 72: Test statistics for NRE using guided wave data at 200 kHz 
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Figure 73: Test statistics for CCC using guided wave data at 200 kHz 

 

Figure 74: ROC curves for guided wave data at 200 kHz: NRE (left); CCC (right) 

5.3.3.2. Diffuse Wave Field Measurements 

The histograms for the NIRE test statistic using DWF data from the LP-A1 “inner 

array” are shown in Figure 75, with the corresponding ROC curves in Figure 77 (left). The data 
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for all paths represent good classification performance, with an average AUC, A(all), of 0.95. 

The method also showed excellent sensitivity in terms of performance near the crack location, 

with an A(crack) of 0.98. The histograms for the ICCC test statistic using the inner DWF sensor 

array data are shown in Figure 76, with the corresponding ROC curves in Figure 77 (right). The 

ICCC classification performance was poor by comparison, with an A(all) of 0.86, and the 

heightened sensitivity to the crack location was eroded, with A(crack) of only 0.93, compared to 

0.98 for the NIRE using the same data. 

 

Figure 75: Test statistics for NIRE using DWF data from the inner sensor array 
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Figure 76: Test statistics for ICCC using DWF data from the inner sensor array 

 

Figure 77: ROC curves for DWF data from the inner sensor array: NIRE (left); ICCC (right) 

The histograms for the NIRE test statistic using the outer DWF sensor array data are 

shown in Figure 78, with the corresponding ROC curves shown in Figure 80 (left). 

Unfortunately, the data for path 3 were tainted, because the sensor for that path was discovered 



113 
 

 
 

to be broken on 10/18/11. Although it was replaced, the sensor fractured at approximately the 

same time as the incipient structural damage appeared, so the new baseline data would not have 

been useful for detecting the change due to incipient crack development. Excluding path 3, the 

other paths provide poor classification performance, with an A(all) of 0.85. Furthermore, with 

this larger array, there was negligible sensitivity for paths that crossed or were in the vicinity of 

the crack; with an average A(crack) of 0.86. The histograms for the ICCC test statistic using the 

outer DWF sensor array data are shown in Figure 79, with the corresponding ROC curves 

shown in Figure 80 (right). The results for the ICCC are similar to those for the NIRE, again 

with a slight drop in performance. 

 

Figure 78: Test statistics for NIRE using DWF data from the outer sensor array 
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Figure 79: Test statistics for ICCC using DWF data from the outer sensor array 

 

Figure 80: ROC curves for DWF data from the outer sensor array: NIRE (left); ICCC (right) 
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5.4. Summary and Acknowledgements 

The goal of this work presented in this chapter was to identify an approach to achieve 

better performance in fatigue crack detection for composite structures with fiberglass shells, 

especially wind turbine rotor blades. Extensive data were collected using different acquisition 

systems and analyzed using different signal processing approaches and test statistics in order to 

compare incipient crack detection performance. In the acquisition hardware domain, ultrasonic 

guided waves were compared with diffuse wave field measurement methods; in the detector 

domain, energy methods were compared with correlation methods. 

The guided wave data at 200 kHz produced comparable detection performance for both 

the energy and the correlation methods. At this frequency, detection performance was best 

along the spar cap, indicating that for this structure, an extremely low-density array (as little as 

one actuator/sensor pair) might be sufficient to detect incipient cracks that cross the spar cap. 

While the 50 kHz guided wave data provided good detection performance, the better performing 

paths lay neither near the crack nor along the spar cap. The diffuse wave data displayed the 

greatest overall sensitivity using the smaller inner array with the energy-based test statistic, with 

even heightened sensitivity for sensor paths near the crack. This heightened sensitivity is likely 

the result of the IRF estimate used for the DWF data being an estimate of the pulse-echo 

response for the measurement transducer, which could be expected to be more sensitive to 

structural changes in its vicinity. Similar to the 50 kHz UGW data, the diffuse wave data with 

excitation signal content only up to 40 kHz did not seem affected by the presence or absence of 

the spar cap along a given sensor path. The larger outer array performed generally poorly 

compared to the more compact inner array, possibly owing to wave attenuation over the 

required travel distance in the fiberglass structure. 
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In all cases, the energy-based detector outperformed the correlation-based detector, and 

in some cases, applying the correlation-based detector resulted in serious drops in performance 

otherwise available with the same data. Furthermore, for this structure, broadband excitation, 

even at low frequencies compared to traditional guided wave applications, produces detection 

results more sensitive to damage location, while the higher frequency excitation relies on the 

structure’s architecture (i.e. the carbon-fiber spar cap) to detect underlying structural changes. 

Although this reliance may increase overall sensitivity, it does so at the expense of localization. 

This trade-off, suggesting the importance of differentiating detection from localization 

objectives when designing a detector, has been observed previously [94]. 

Portions of Chapter 5 have been accepted in part by [7] Structural Health Monitoring, 

S. G. Taylor, G. Park, K. M. Farinholt, and M. D. Todd, 2012. The title of this paper is "Fatigue 

crack detection performance comparison in a composite wind turbine rotor blade." The 

dissertation author was the primary investigator and author of this paper. 

Other portions of Chapter 5 are intended in part for submission to [8] Journal of 

Intelligent Material Systems and Structures, S. G. Taylor, K. M. Farinholt, G. Park, C. R. 

Farrar, M. D. Todd, and J.-R. Lee, 2013. The title of this paper is "Incipient crack detection in 

composite wind turbine blades." The dissertation author was the primary investigator and author 

of this paper. 
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Chapter 6  
State and Loads Estimation 
 

6.1. Introduction 

In a multi-scale sensing system for SHM, state and loads estimates provide the ability to 

evaluate operational structural performance. While active sensing systems and damage 

detection methods can provide information concerning the condition of the structure, effective 

structural prognostics require a structural model that will respond in the same way as the 

structure to current and future loads. A multi-scale SHM system combines these approaches to 

incorporate the effects of detected structural changes into a physics-based model, and then 

couples that model with physical measurements to estimate how the structure responds to its 

environment in its current state. Because parameters related to common performance 

requirements such as deflections or reaction loads are not easily directly measureable, state 

estimation methods must be employed to enable the utilization of easily measureable kinematic 

quantities, such as acceleration, for structural performance assessment. 

Techniques to obtain state and loads estimates have been the subject of active research 

for the past several decades, and there is a huge body of literature that addresses this topic. This 

section presents a list, which is by no means exhaustive, of representative works in the area of 
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state and loads estimation. One of the more popular approaches to state estimation is the 

Kalman filter [113], which minimizes the error covariance given estimates of system input and 

measurement noise variances. However, many other approaches have been proposed for such 

estimation given measurements and a model of a structure. Moraal and Grizzle [114] presented 

observer designs for discrete-time, nonlinear systems, including a discussion of the Newton 

method and its relationship to the extended Kalman filter. Bartlett [115] applied a regression 

technique to estimate forces in a helicopter rotor hub using operational acceleration 

measurements and a model of the relationship among accelerations at multiple locations on the 

airframe. Doyle [116] proposed a method to reconstruct an impact force on a bilateral beam 

using a wave guide model. Liu, et al. [117] applied a Kalman filter to the problem of 

simultaneous displacement and input force estimation for a cantilever plate with a known input 

location. Citing the ineffectiveness of linear, steady-state tools for shaft torque estimation, 

Goedtel et al. [118] abandoned physical modeling and trained an artificial neural network to 

approximate key nonlinear relationships in induction motor performance. 

Wind turbine flexible members have been a recent application of state and loads 

estimation. For a class systems with linear state matrices and nonlinear, state-dependent inputs, 

Ha et al. [119] proposed a method for simultaneous state and input estimation, which Fritzen et 

al. [120] applied to estimation of state and loads on a laboratory-scale model of a tripod-

supported wind turbine tower. White, et al. [35, 36] proposed a power expansion method to 

estimate wind turbine rotor blade operational deflection using a tip-mounted triaxial 

accelerometer and accounting for the rotation between the tip of the blade and the assumed 

direction of centripetal acceleration. Hernandez, et al. [62] developed a modal-based iterative 

method analogous to Rayleigh’s method for use with distributed embedded sensing and 

computing to estimate the wind load input to a wind turbine tower. 
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This chapter develops and implements a Kalman-based observer for state estimation 

using NLBeam, a finite element code recently developed at LANL. NLBeam is a research code 

implementing a geometrically nonlinear, generalized Timoshenko beam theory. Geometrically 

exact beam methods have developed primarily from the work of Reissner [121, 122], and have 

been notably extended by Simo and Vu Quoc [123] and Jelenic and Crisfield [124, 125]. 

Recently, versions of this theory have been applied to model helicopter rotor blades [126] and 

wind turbine blades [127-129]. The theory supports geometric nonlinearities by maintaining a 

fixed inertial reference frame related through an orthogonal transformation to an initial beam 

configuration reference frame. The initial beam configuration displacement field is directed 

along the centroid line of the beam, and the deformed configuration reference frame is related to 

the fixed inertial frame and the initial beam configuration reference frame through cascading 

orthogonal transformations. Because no small angle assumptions are used in these 

transformations, the representation of the deformed beam is geometrically nonlinear. This 

theory is generally applicable to slender, composite, beam-like structures, and it is well-suited to 

modeling the CX-100 blade described in earlier chapters [129]. Coupling the model-based state 

estimation approach presented here with techniques for uncertainty propagation would produce 

PDFs of state estimates that could be fed into probabilistic decision models. 

6.2. Observer For State Estimation 

6.2.1. Overview 

State observers for physical systems, usually referred to as “plants,” are ordinarily 

employed to enable the implementation of full state feedback control, measurements from the 

plant and a reference model to estimate, or “observe” the state of the plant. A basic review of 
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state-space control and state observers can be found in [130]. The state is defined here as the 

position and velocity at a set of discrete DOFs. In these cases, the ideal control signal would be 

calculated given the state of the plant, but the state is often not measureable or is otherwise 

inaccessible. State observers are implemented to recover an estimate of the system state using a 

reference model and available measurements. Some observers (e.g. the Kalman filter) can be 

considered optimal in certain ways for linear systems given certain assumptions required by the 

method. Observers can also be approached as a pole-placement problem [131], in which the 

designer must balance performance with rejection of noise or other disturbances in choosing the 

placement of the closed-loop observer system poles. 

State observers are most commonly developed for implementation on systems in a 

state-space representation. A linear, time-invariant (LTI) system can be expressed in state space 

as 

 
     
     

x t x t u t

y t x t u t

 

 

A B

C D


, (6.1) 

where A  is the system state matrix,  x t  is the time-varying state vector, B  is the input 

influence matrix,  u t  is the time-varying system input vector, C  is the output influence 

matrix,  y t  is the time-varying system output vector, and D  is the feed forward matrix. 

Boldface indicates matrix quantities, underlines indicate vector quantities, and the overdot 

represents differentiation with respect to time. Henceforth, the time-dependency of the state, 

input and output vectors will be assumed in the notation. Consider a state observer with a 

reference model being identical to the plant, having observer gain eK . The system representing 

the error is then 

     ˆ ˆex x x x   A K C , (6.2) 
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where the hats indicate quantities relating to the reference model. The dynamics of the error 

vector are determined by the poles of the error state matrix  eA K C . If the error state matrix 

is stable, the error will tend to zero regardless of the system initial conditions, but the speed of 

the observer response may not be fast enough for effective control. If the pair  ,A C  is 

observable, then eK  can be chosen to arbitrarily place the poles of the error state matrix and 

ensure that the state estimate will be a reasonably real-time estimate of the true state [130]. If 

the plant is exactly represented by the reference model, and when there is white noise with 

known variance present in the input and/or the output signals, the Kalman filter provides an 

estimate of the state that minimizes the covariance of the state estimation error, balancing 

between reliance on the measurement and the prediction. However, the reference model is 

inevitably an inexact representation of the plant; consider a reference model 

 
 ˆ ˆ ˆ

ˆ ˆ ˆ

x x u

y x u

 
 

A B

C D


, (6.3) 

where   A A A  and   B B B . In this formulation, it is still assumed that the output 

influence and feed forward matrices are known and identical for both the plant and the reference 

models. Then the corresponding error system is 

       ˆ ˆ ˆex x x x x u       A K C A B . (6.4) 

Note that any claims of optimality or stability that could be made for the choice of eK  in Eq. 

(6.2) are jeopardized by the disturbance terms A  and B  in Eq. (6.4). For a linear plant, the 

observer design would become a pole-placement problem, with the pole locations chosen to 

balance maintaining stability and with achieving desired performance. For a nonlinear plant, the 

disturbance terms effectively become functions of time, and some form of adaptive observer is 

required. 
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6.2.2. Newton Raphson Observer Derivation 

Here, an observer is presented that is intended to provide state estimates for nonlinear 

systems. This observer adjusts the force input to a reference model using the system Jacobian to 

eliminate the measureable model output error in an iterative Newton-Raphson scheme by 

finding the root of an error expression in terms of the input force correction. Rather than 

updating the state estimate directly, this implementation permits the model to filter the observer 

correction through its own force input structure. However, the efficacy of this observer is still 

predicated on an assumption that the reference model is “close enough” to the system being 

observed that, in driving the output error to zero, the state estimate error will also be driven 

toward zero. For nonlinear systems, which are in general not fully observable, there is no 

guarantee that eliminating the output error will eliminate the state estimation error. 

A block diagram for a discrete system with a force correction observer is shown in 

Figure 81, in which the Z-1 blocks refer to a discrete integration step. The plant has an input nu  

combined with an unmeasured disturbance nw , an inaccessible state nx , and an output 
n

y  

combined with measurement noise nv . The reference model has an accessible state ˆnx  and an 

output ˆ
n

y . The subscript n  corresponds to the thn  time point in a temporally discretized 

representation. Assuming full state measurements (i.e. C I  and D 0 ), and neglecting nu , 

the state vectors nx  and ˆnx  can be written as functions of the system input nu  so that error 

signal is  

    ˆn n ne x u x u  . (6.5) 
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For nonzero A  and B , ne  will be nonzero in general. An updating scheme is proposed 

whereby the input nu  to the reference model is modified as ˆn n nu u u   with the goal of 

driving an updated error signal to zero; this updated error is given by 

    ˆ ˆ ˆn n ne x u x u  . (6.6) 

The goal of driving the updated error to zero is equivalent to finding the root of the right hand 

side (RHS) of Eq. (6.6), thereby identifying an input perturbation nu  that eliminates the 

output error. Expanding the reference model state in the vicinity of the actual input nu  with a 

Taylor series allows Eq. (6.6) to be written as 

      ˆ
ˆ ˆ H.O.T.n

n n n n

x u
e x u x u u

u

  
      

. (6.7) 

Neglecting higher-order terms (H.O.T.), setting ˆ 0ne  , and substituting Eq. (6.5) into (6.7)

yields an expression for nu  as 

 
 ˆ n

n n

x u
e u

u

 
   

. (6.8) 

Consider the application of this result to an LTI reference model for the observer. The discrete-

time model can be expressed in state-space as 

 
 

1 11ˆ ˆ

ˆ ˆ

n nn n n

n nn

x x u

y x u

  
 

A B

C D
, (6.9) 

where the subscripts 1n   on the reference model state matrix A  and the reference model input 

influence matrix B  indicates that the matrices have been implemented in a discrete formulation 

according to some time integration scheme. For an LTI system, the matrices will be constant for 

all n ; for a nonlinear system, the subscripts indicate the operating point about which the 

matrices would be linearized. Given this representation, the result in Eq. (6.8) takes the form 
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   1 11

ˆ
ˆn nn n n n

x
e x u u

u
 

 
    

A B , (6.10) 

so that the force correction is simply 

  1

1nn nu e


    B . (6.11) 

Equation (6.11) is an exact root in nu  for Eq. (6.8) for a linear plant and linear reference 

model with full state measurements. For system outputs other than full state measurements (i.e. 

C I  and D 0 ), Eq. (6.8) must be expressed in terms of the system output as 

   1 11ˆn nn n n ne x u u
u

 

        
C A B , (6.12) 

so that the force correction becomes 

  1

1nn nu e


    CB . (6.13) 
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Figure 81: Block diagram of a general observer for a discrete system 

For nonlinear models, Eq. (6.8) is not exact, but only provides the Newton-Raphson 

step for successive iterative corrections to the perturbed input; multiple iterations would be 

required to drive the updated error to zero at the conclusion of every time step. Defining (for 

brevity)  n nx x u  and  , ,ˆ ˆ ˆn k n kx x u , and then expressing the updated error at the thk  and the 

 1
th

k   iterations of the observer for the thn  time step as , ,ˆ ˆ n k n n ke x x   and 

, 1 , 1 ˆ ˆn k n n ke x x   , respectively, enables an expression for the change in error over the  1
th

k   

iteration as 

 
   , 1 , , 1 ,

, , 1

ˆ ˆ ˆ ˆ

ˆ ˆ

n k n k n n k n n k

n k n k

e e x x x x

x x

 



   




. (6.14) 
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Similar to the procedure followed for the linear case, the model output is expressed as a first-

order Taylor series approximation at the thn  time step in the vicinity of the thk  estimate for the 

updated input force, as 

 ,
, 1 , ,

ˆ
ˆ ˆ ˆn k

n k n k n k

x
x x u

u


  


, (6.15) 

where , 1 , ,ˆ ˆ ˆn k n k n ku u u    . Substituting this approximation of the model state into the error 

expression of Eq. (6.14) yields 

 

,
, 1 , , , ,

,
,

ˆ
ˆ ˆ ˆ ˆ ˆ

ˆ
ˆ

n k
n k n k n k n k n k

n k
n k

x
e e x x u

u

x
u

u



 
   

 




  










. (6.16) 

Setting , 1ˆ 0n ke    and solving Eq. (6.16) for û , the Newton-Raphson correction to the 

perturbed input array is 

 ,
,

1

,

ˆ
ˆ ˆn k

n k n k

x
u e

u


 

  





 
, (6.17) 

which, for a single iteration, is equivalent to the expression in Eq. (6.8). 

For the case of a general, nonlinear reference model, consider a finite element 

discretization of the equations of motion (EOM), for which the spatially discrete form can be 

expressed as 

 ( , , ) 0R x x x   , (6.18) 

and they are satisfied through a nonlinear solution scheme at every time step to within some 

tolerance. This is the solution approach adopted in the NLBeam code. The discrete finite 

element equations of motion expressed in Eq. (6.18) as an array of nodal residuals can be 

expressed in a temporally discrete fashion by taking into account the discrete time integration 
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scheme relating velocity and acceleration to changes in displacement over a time step and the 

velocity and acceleration at the previous time step. With this formulation, Eq. (6.18) becomes 

    1 1 1; , 0,n n n n nR x x x x     , (6.19) 

where the nodal residual vector  nR  is conveniently decomposed into contributions from internal 

stresses ( 
int

nR ), inertial forces ( 
dyn

nR ), and external forces ( 
ext

nR ) as 

       
1 1 1; , , 0

ext int d

n n n

n

n

y

n n nR x x x x R R R      . (6.20) 

In this representation, internal stresses are expressed as a resultant vector with units of force, 

and the external force corresponds to the model inputs (i.e. 
ext

R u ), so the equations of motion 

are satisfied when 

  int dyn

n nnu R R  . (6.21) 

Differentiating Eq. (6.21) with respect to x̂  simply gives 

 
 

, ,

ˆ ˆ ˆ

int dyn

n k n kn
R Ru

x x x

                     
. (6.22) 

The partial derivatives on the RHS of Eq. (6.22) are computed and used by NLBeam to solve the 

nonlinear equations of motion at every time step. They are the tangent stiffness and inertial 

matrices, respectively, where 


,

,

, ˆ
ˆ

int
n k

n k

Rint
n k x

x


K  and 


,

,

, ˆ
ˆ

dyn
n k

n k

Rdyn
n k x

x


K . Adopting this notation, and 

substituting Eq. (6.22) into Eq. (6.17), and noting that 
1ˆ

ˆ
x u
u x

 
 
       , the thk  correction to the 

input perturbation at the thn  time step is 

 
 ,

,

,, ,

,

ˆ ˆ

ˆ

int dyn
n k n kn k n k

nk kn

u e

e

  K K


, (6.23) 
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where int dyn K K  is the combined sum of the tangent stiffness and inertial matrices, 

dubbed the “full Jacobian,” which is the form in which these matrices are made available in 

NLBeam. Equation (6.23) provides the update force for displacement measurements. If only a 

subset of the DOFs is measured, then only the corresponding columns of the full Jacobian 

would be used in computing the force correction. However, acceleration measurements are 

much more easily obtained experimentally than displacement measurements, so the observer 

should be adapted for acceleration outputs. Expressing the measured error vector in terms of the 

translational accelerations at the thk  and the  1
th

k   iterations, 

 
   

, 1 , , , 1ˆ ˆ ˆ ˆ
t t

n k n k n k n ke e x x     . (6.24) 

The superscript  t  indicates that only translational DOFs are utilized in computing the error 

vector. Following the same procedure as for the displacement measurement case, 
 

, 1ˆ
t

n kx 
  can be 

expressed as a first-order Taylor series expanded about ˆnu . Simplifying and setting , 1ˆ 0n ke    

Eq. (6.24) becomes 

 
 

 ,
, , ,

ˆ
ˆ ˆ

t

n k
n k n k n k

x
e u u

u

   
 
 


. (6.25) 

Solving Eq. (6.25) for ,ˆ n ku  requires inverting the expression in the parentheses; by the chain 

rule, 

 
   

 

 
, , ,

,

ˆ ˆ ˆ

ˆ

t t t
n k n k n k

t
n k

x x x

u ux

  


 

 
. (6.26) 

From the Newmark time integration scheme implemented in NLBeam, 2

ˆ 1
ˆ
x
x t


 
 I


 (where   is a 

parameter of the integration scheme). Then, following the arguments preceding Eq. (6.23), the 

solution to Eq. (6.25) is 
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      
 

2
, ,

,

,

2
,

,ˆ

ˆ

ˆ
t tint dyn

n kn k

t
n k

n k n k

n k

eu t

et





  

 

K K


, (6.27) 

where the superscript  t  indicates that only the columns of the full Jacobian corresponding to 

translational DOFs are employed in computing the force correction. If only a subset of 

accelerations is measured, then the columns of the full Jacobian would be limited to that subset. 

6.2.3. Relationship Between the N-R Observer and the Kalman Filter 

Consider the well-known Kalman filter, written in predictor-corrector form for state-

space systems as 

 

 

 

 
 

1 11

T

1 11 1

1T T

ˆ ˆ1.   

2.   

3.   

ˆ ˆ ˆ4.   

5.   

n nn n n

n nn n n

n n n n

n n nn n

n n n

x x u

x x y x


 


  

 

 



 

 

   

  

 

A B

P A P A Q

L P C CP C R

L C

P I L C P

, (6.28) 

where the superscript “  ” indicates a predicted, or “uncorrected” quantity, 
T  E n nn w w   Q  is 

the covariance of the input disturbance nw , and 
T  E n nn v v   R  is the covariance of the 

measurement noise nv . Consider the case in which there is no noise on the measurement 

channels, and there is Gaussian, IID noise on the measurement channels, so that n R 0  and 

 T

1 1n nw n   BQ B , where w  is the input disturbance standard deviation. Then, in the first step, 

with 0 P 0  for assumed zero initial conditions, steps 3 and 4 of Eq. (6.28) give 

    T T
T T 1

1 1 1 1ˆ ( )n n n nn nw wx e  
     B B C CB B C , (6.29) 
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where ˆ ˆ ˆn n nx x x    and ˆ= n nn
e y xC , as in Eq. (6.5). Then, noting from Eq. (6.9) that, for 

fixed 1ˆnx  , 
1ˆ nn nx u  B . Then Eq. (6.29) can be rewritten as 

 

   
     
 

1T T
T T

1 1 1

T T 1

1 1 1

1

1

n n nn nw w

n n n n

n n

u e

e

e

 


  

 

  





 





B C CB B C

CB CB CB

CB

, (6.30) 

which is identically the result in Eq. (6.13), so it is apparent that the N-R observer reduces to the 

Kalman filter under the assumption that there is no noise on the measurement channels. 

Although in some applications, such as the operational monitoring of wind turbine rotor blades 

in mind here, the noise on the measurement channels may be small in comparison to 

unmeasured input disturbances, the measurement noise will not be negligible. That noise will 

have the potential to produce accumulating error, which the N-R observer should be 

implemented with a mechanism to avoid. 

The Kalman filter process given in Eq. (6.28) minimizes the covariance of the observer 

error given white noise on the input and output channels, but without knowledge of the 

noise/disturbance variances, and given that the unmeasured input is generally not white noise, 

the values w  and v  simply become parameters in the observer implementation. Beginning 

with the first line Eq. (6.30), but admitting an a Gaussian, IID measurement error with variance 

v , the force correction can be written as 

      1T T
T

1 1 1n n n nw wu e 


    CB CB B C R . (6.31) 

Functionally equating   1

1n


CB  from the linear case to n  from the NLBeam implementation, 

the update rule for a Kalman-like N-R observer becomes 

   11 2
nw wn n vn eu   

    I  . (6.32) 
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Rather than explicitly computing the inverse of the full Jacobian at each time step, nu  can be 

obtained as the solution to the linear system 

 2
nn

v
nn

w

u e



 
 

 
 I  . (6.33) 

The RHS of Eq. (6.33) is the one-step equivalent of the RHS of Eq. (6.23), and if the 

measurement noise is assumed to be zero, Eq. (6.33) collapses to (6.23) for 1k  . In the case of 

acceleration measurements, the force correction would be computed from 

  2( ) 2 ( )t tv
nnn n

w

t eu





 
 

 
  I  . (6.34) 

As the parameter v  increases, corresponding to an assumed increase in the measurement noise, 

the term premultiplying nu  increases, so the force correction necessarily decreases for 

constant error ne . As such, the ratio v w   and the number of iterations become tuning 

parameters that define the extent to which the observer output conforms to the available 

measurements. 

6.3. Numerical Examples 

6.3.1. NLBeam Plant with LTI SDOF Reference Model 

The N-R observer was implemented with numerical simulation “measurements” using 

the formulation given in Eqs. (6.33) and (6.34). In the first example, measurements from a 

simulated NLBeam plant were used with an LTI SDOF model of the beam. The SDOF 

representation of the beam was modeled as a spring and a mass, with the natural frequency 

adjusted to equal that of the first mode of the NLBeam plant model. For the NLBeam plant 

modeled as described in Section 2.6.1, the input was a sinusoidal base displacement at 3.9673 
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Hz. This frequency was originally chosen because it is the nearest bin-centered sinusoid to 4 Hz 

for a sampling frequency of 1250 Hz and a record length of 8192 points. For small amplitude 

base excitation, the numerical model’s first resonance was at 3.745 Hz, and the excitation 

frequency was chosen to be sufficiently close to the beam’s first resonance that large amplitude 

motion could be obtained without inducing an unstable response. Because the excitation and 

resonant frequencies were within two bins of each other, the bin-centeredness of the excitation 

was intended to ease the frequency-domain separation of the excitation from the first resonance 

of the beam. This selection would aid in the exploration of the “beating” phenomenon that also 

results from the proximity of the excitation frequency to a resonant frequency of the plant. For 

these numerical studies, the excitation consisted of 8192 points of the above-mentioned sinusoid 

(from 0 to 6.5528 seconds), followed by nothing for the remainder of an 8-second record. The 

beam was allowed to free-decay following the end of the excitation period, so that damping 

differences between the plant and the reference models could be seen more clearly, and so that 

the observers’ performance in the absence of excitation could be observed. 

Using the NLBeam plant and an SDOF reference model permits a direct comparison of 

the N-R observer with the linear Kalman filter. In the case of the N-R observer, the performance 

is a function of the ratio v w  , while for the Kalman filter, the performance is a function of  

v  and w  separately. For the sake of comparison, the input disturbance parameter was fixed at 

31 10w    and the ratio v w   was varied. The observer results are shown for the 0v w    

case in Figure 82. In this case, the Kalman filter and the N-R observer are identical. In Figure 

82a, the acceleration outputs are plotted together for the plant model, the reference model, the 

Kalman filter output, and the N-R observer output. In Figure 82b, the tip displacement is plotted 

for the same models. These plots show that, on the scale presented, the outputs of both 

observers overlay the plant output exactly. Note that there are transient events at 0 and 6.5528 
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seconds. These transient events are a result of the numerical damping implemented in the 

Newmark time integration scheme, and they occur following the abrupt changes in the 

simulated loading that correspond to the start and end of the excitation. In Figure 82c, the 

displacement error envelopes are plotted in order to present more clearly the observers’ state 

estimation performance. Each envelope is obtained as the magnitude of the error analytic signal, 

computed using the Hilbert transform. This presentation is chosen over the raw error signal so 

that several error signal envelopes can be plotted together without confusion. With the SDOF 

model tuned to the first resonance of the NLBeam model, the prediction error is on the order of 

1 cm, or about 50% of the maximum true displacement. The prediction error coincidentally 

drops close to zero at the “neck” of the “beat” near 4.3 seconds. The Kalman filter and the 

Newton-Raphson observer errors are identical, with a mean error of 0.22 mm, and a peak error 

of 1.42 cm when tracking the transient event at 6.5528 seconds. 
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Figure 82: Observer results for NLBeam plant and SDOF reference model, with 31 10w    and 

0v w    
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The maximum and mean errors with both the Kalman filter and the N-R observer are 

plotted for 31 10w    in Figure 83 versus v w   ranging over several orders of magnitude. 

The Kalman filter has a simple error structure, with the maximum equal to that for the 

0v w    case, a minimum near the 1v w    case, and as the measurement error grows, the 

Kalman filter output approaches the pure prediction output. The N-R observer error behavior is 

more complex, although it does have the same behavior as the Kalman filter at extreme values 

of v w  . The multiple peaks are a result of the non-optimal algorithm’s poor tracking of the 

transient effects from the Newmark integration scheme, but there is a minimum error for the N-

R observer on the same order as that for the Kalman filter; this result demonstrates that the N-R 

observer performance is dependent on the parameter v w  , and that better results can be 

obtained by its proper selection. 

 

Figure 83: Maximum and mean displacement error versus v w   for 31 10w    
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The observer results for the 41 10v w     case, near the minimum error case for the 

N-R observer, are shown in Figure 84. The transient spike for the Kalman filter is somewhat 

diminished, at 1 cm, and the spike for the N-R observer has dropped to 2.6mm. The observer 

results for 1v w    case, near the minimum error case for the Kalman filter, are shown in 

Figure 85. The transient spike for the Kalman filter is greatly diminished, at 1.4mm, while the 

N-R observer output simply tracks the prediction. This result is expected, noting from Figure 83 

that the N-R observer error has leveled out by the 1v w    case. The observer results for the 

31 10v w     case are shown in Figure 86. This noise level is almost unrealistically large, 

forcing both observers to rely heavily on the prediction. In this case, the N-R observer error 

simply tracks that for the prediction, while the Kalman filter error tends toward the same level, 

although it is still able to slowly reduce the prediction error in the absence of any external 

excitation. 



137 
 

 
 

 

Figure 84: Observer results for NLBeam plant and SDOF reference model, with 31 10w    and 
41 10v w     
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Figure 85: Observer results for NLBeam plant and SDOF reference model, with 31 10w    and 

1v w    

0 1 2 3 4 5 6 7 8
−15

−10

−5

0

5

10

15

A
cc

el
er

at
io

n 
(m

/s
2 )

(a) Tip Acceleration

 

 

Plant

Reference

Kalman

Newton

0 1 2 3 4 5 6 7 8
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

D
is

pl
ac

em
en

t (
m

)

(b) Tip Displacement

 

 

Plant

Reference

Kalman

Newton

0 1 2 3 4 5 6 7 8
0

0.005

0.01

0.015

0.02

Time (s)

D
is

pl
ac

em
en

t (
m

)

(c) Error Envelopes

 

 

Reference

Kalman

Newton



139 
 

 
 

 

Figure 86: Observer results for NLBeam plant and SDOF reference model, with 31 10w    and 
31 10v w     

0 1 2 3 4 5 6 7 8
−15

−10

−5

0

5

10

15

A
cc

el
er

at
io

n 
(m

/s
2 )

(a) Tip Acceleration

 

 

Plant

Reference

Kalman

Newton

0 1 2 3 4 5 6 7 8
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

D
is

pl
ac

em
en

t (
m

)

(b) Tip Displacement

 

 

Plant

Reference

Kalman

Newton

0 1 2 3 4 5 6 7 8
0

0.005

0.01

0.015

0.02

Time (s)

D
is

pl
ac

em
en

t (
m

)

(c) Error Envelopes

 

 

Reference

Kalman

Newton



140 
 

 
 

6.3.2. NLBeam Plant with NLBeam Reference Model 

The NLBeam reference model was a perturbed version of the plant model described 

above. The perturbation was introduced by reducing the number of elements from 10 to 2 and 

decreasing the numerical damping in the simulation by choosing 0.25  , so that, from Eq. 

(2.3), 0.390625   and 0.75  . The observer results for two cases are plotted in Figure 87. 

The first case was a verification step for the nonlinear implementation of the Newton-Raphson 

observer in which a full-field displacement measurement (including translations and rotations) 

was utilized to compute the force correction using Eq. (6.23) at each iteration. Because the 

reference model had only five nodes and the plant model had 21 nodes, the measurements were 

a subset of the available outputs from the plant model, corresponding to the DOFs of the 

reference model. This case is referred to as “N-R All-Disp” in Figure 87. In the second case, 

referred to as “N-R Tip Acc,” only the tip acceleration in the x-direction was utilized, and the 

force correction at each iteration was computed using Eq. (6.27). For the full-field measurement 

verification case, four iterations of the Newton-Raphson update step were used at each time 

step, while for the tip acceleration measurement case, eight iterations were used. Although a 

better practice would be to define a convergence criterion to determine the number of iterations 

required, these iteration counts were determined to be sufficient for the examples considered. 

The N-R observer results for the NLBeam reference model are shown in Figure 87. In 

Figure 87a-b, the output tip acceleration and observed tip displacement are plotted for the plant 

model, the reference model, the NR All Disp case, and the NR X-Tip Acc case. The prediction 

error envelopes for the five reference model nodes are plotted in in Figure 87c. The error for 

Node 1 was zero, because that node was driven by the same displacement boundary condition 

for the plant and the reference models. The errors at the other nodes were on the order of 0.5 

cm, compared to the ~2 cm displacement at the tip of the beam. The error envelopes at each 
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node for the NR All-Disp case are shown in Figure 87d; the errors in this case were on the order 

of the machine precision. This result is expected, because using all measurements, Eq. (6.23) is 

the unique solution to Eq. (6.16) that drives the error signal toward zero at each iteration. The 

error envelopes at each node for the NR Tip-Acc case are shown in Figure 87e. With the 

exception of Node 1, which was identical for the plant and the reference model, the observer 

errors are well above machine precision. The error signals are about two orders of magnitude 

below the reference model prediction errors, with an overall observer error of less than 1%. The 

transient events at the start and the end of the excitation signal are still present as was for the 

SDOF reference model, but their impact on the maximum error is significantly diminished in 

comparison to the SDOF reference model. 
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Figure 87: Newton-Raphson observer results for NLBeam plant and NLBeam reference model 
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6.4. Experimental Example 

The N-R observer was implemented using experimental data from the plant described in 

Section 2.6.3, applying Eq. (6.34) to the 10-element version of the NLBeam model used for the 

plant in the previous example. The base on which the beam was mounted was excited using a 

broken shaker, which made input estimation somewhat challenging. Rather than prescribing an 

input, the reference model was left unexcited, and the N-R observer applied the necessary force 

to drive the model toward the measured acceleration response. The acceleration measurements 

in the X-direction at the tip and the base, high-pass filtered to remove any DC measurement 

error, were provided to the N-R observer. The X-direction acceleration at the midpoint of the 

beam was retained for validation purposes. Results are presented for two values of the v w   

parameters: 0, which assumes no measurement noise, and 0.1. In each case, 8 iterations of the 

N-R observer were implemented, which was sufficient for the observer to converge. 

For 0v w   , the acceleration values are plotted in Figure 88 for approximately the 

first second a 30-second record, and the corresponding acceleration error over the full record is 

plotted in Figure 90. For 0.1v w   , the acceleration values are plotted in Figure 89 for 

approximately the first second a 30-second record, and the corresponding acceleration error 

over the full record is plotted in Figure 91. Note that, for the 0.1v w    case, the observed 

acceleration does not perfectly track the measurement for the tip or the base, for which data 

were provided to the observer, although their error levels are lower than that for the midpoint. 

Furthermore, the observed acceleration error at the midpoint is noticeably greater for the 

0.1v w    case, with an RMS error of 1.1 m/s2, than for the 0v w    case, with an RMS 

error of 0.60 m/s2. 
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Figure 88: Measured acceleration (solid black) with observer estimates (dashed orange) for 0v w    

 

Figure 89: Measured acceleration (solid black) with observer estimates (dashed orange) for 0.1v w    
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Figure 90: Acceleration observer error for 0v w    

 

Figure 91: Acceleration observer error for 0.1v w    
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The observed displacements in the X-direction at three points on the beam (tip, 

midpoint, and base) are plotted together for the 0v w    case in Figure 92. Although the 

observed midpoint acceleration error was lower for the 0v w    case, the observed 

displacements demonstrate a peculiar tendency to drift apart. This is actually a result of over-

conforming to noise in the acceleration measurements, and ultimately causes unrealistic 

estimates of strain. The observed displacements at the three points are plotted together for the 

0.1v w    case in Figure 93. The displacement observations are not centered on zero, but 

instead “drift” in unison. Although the experiment did not drift, because the large shaker that 

excited it was fixed, the base to which the beam was mounted was free to move in the X-

direction on low-friction linear rails. As a result, the reference model was not constrained in the 

X-direction. However, because the drift in the 0.1v w    case is effectively quasi-static rigid 

body motion, it does not affect estimates of strains or bending curvature. In order to make a 

direct comparison to the measured displacement, the observed displacement can be high-pass 

filtered to remove the rigid body motion. This high-pass filtered signal is shown in Figure 94.  

The observed displacements for the 0.1v w    case are plotted along with the 

displacements measured with the high-speed camera in Figure 95. As noted in Section 2.6.3, the 

camera resolution was 1.9 mm per pixel, so the displacement measurements are highly 

quantized. The displacement observations closely align with what can be gleaned from the 

camera measurements; however, note the spectral richness of the observation compared to the 

highly quantized measurement. It is possible that the estimate is able to provide a fuller and 

more accurate measure of the displacement than the camera; however, because the higher-

frequency motion is below the quantization level of the camera, it would only be possible to 

validate the displacement measurements below a very low frequency level. 
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Figure 92: Displacement observations for 0v w    

 

Figure 93: Displacement observations for 0.1v w    
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Figure 94: AC-filtered displacement observations for 0.1v w    

 

Figure 95: Measured displacement (black) with observer estimates (orange) for 0.1v w    
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curvature estimates for the 0.1v w    case are plotted in Figure 97. The strain estimates for 

the 0.1v w    case appear stable, and the values are reasonable (e.g. a linear static calculation 

of axial strain in the root element due to the weight of the beam above it gives 72.9 10 , which 

is within 10% of the mean axial strain indicated in Figure 96). However, the observed strain and 

curvature values cannot be validated because no such measurements are available from the 

experiment. 

 

Figure 96: Observed strains and curvature for the root element with 0v w    
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Figure 97: Observed strains and curvature for the root element with 0.1v w    
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numerical ability of the observer to generate a state estimate given acceleration measurements at 

a subset of nodes. 

The relationship between the proposed Newton-Raphson observer and the linear 

Kalman filter was derived, and they were shown to be identical for an assumed zero 

measurement noise case. A modified version of the Newton-Raphson observer was developed 

to accommodate the presence of measurement noise. Applications of this modified version to 

experimental data from a vertically cantilevered beam showed that, while the assumed zero-

noise case produced unstable estimates due to accumulating error, the modified, Kalman-like 

Newton-Raphson observer produced stable predictions of strain and bending curvature using 

measured acceleration, with displacement observations that corresponded well to displacement 

measurements collected using a high-speed, low-resolution camera. 

Portions of Chapter 6 have been submitted in part to [9] IMAC XXXI: A Conference and 

Exposition on Structural Dynamics, S. G. Taylor, D. J. Luscher, and M. D. Todd, 2013. The 

title of this paper is "State estimate of wind turbine blades using geometrically exact beam 

theory." The dissertation author was the primary investigator and author of this paper. 

Other portions of Chapter 6 are currently being prepared for publication [10]. S. G. 

Taylor, D. J. Luscher, and M. D. Todd, 2013. The title of this paper is "Nonlinear state observer 

for structural monitoring of wind turbine rotor blades." The dissertation author was the primary 

investigator and author of this paper. 
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Chapter 7  
Conclusions and Proposals for Future Work 
 

7.1. Overview 

This dissertation has contributed in key areas among the underpinnings of an 

overarching probabilistic decision framework for structural health monitoring. The contribution 

areas are: (1) embedded sensor development and deployment; (2) sensor diagnostics for active-

sensing methods; (3) an assessment of incipient damage detection performance for large-scale 

composite structures; and (4) the development and application of a state observer, demonstrated 

in the specific case of a geometrically nonlinear beam model. 

Embedded sensor nodes tailored to the unique requirements of SHM were developed, 

with focus on robust communication and multi-scale sensing capability. Two embedded sensing 

platforms for SHM were developed. The WID3 is a low-power device designed for embedded 

sensor networking and impedance-based SHM. The WASP is a platform with greater power 

requirements, but one that is uniquely suited for SHM deployment, with integrated 

measurement capabilities for capturing relatively low-frequency structural kinematic quantities 

and implementing ultrasonic active sensing methods, as well as seamless support for 

impedance-based sensor diagnostics. This system was demonstrated in a long-term fatigue test 
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of a 9-m wind turbine rotor blade, and also deployed on a 20-m rotor diameter wind turbine. 

The fatigue test permitted a detailed assessment of piezoelectric sensor performance in terms of 

failure modes, longevity, and the utility of sensor diagnostics methods. Piezoelectric transducer 

behavior under cyclic loading as it relates to sensor diagnostics was explored, and novel data 

normalization steps necessary for consistent sensor evaluation were proposed. This fatigue test 

also provided the backdrop for the performance assessment of various active sensing-based 

hardware and data analysis approaches in their ability to detect crack formation in its incipient 

state in the composite rotor blade structure. Finally, a state observer for application with 

nonlinear finite element models was developed and validated in a bench-top experiment using a 

geometrically nonlinear beam model. This observer formulation would provide the ability to 

map easily measureable kinematic quantities, such as acceleration, to less accessible quantities, 

such as deflections and reaction loads, which are directly relatable to structural performance 

requirements. 

7.2. Embedded Sensing 

In the area of embedded sensing, two sensor nodes were developed for SHM 

applications. The development of the Wireless Impedance Device v3 (WID3) was presented, 

and its new functionality over previous WID versions was detailed. The WID3’s most basic 

capability involves measuring the coupled electromechanical impedance of a structure, 

capitalizing on the well-established impedance-based structural health monitoring technique to 

monitor the condition of a structure. The low-power sensor node’s capabilities were extended 

through improved networking capabilities, increased data storage options, multiple powering 

options that allow for energy harvesting integration, and increased triggering options that allow 

for better control of sleep modes, reducing overall power consumption. The node’s capabilities 
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were further extended through use of a wireless data acquisition (WiDAQ) module to be 

capable of collecting low-frequency time-domain data from a variety of sensors. To 

demonstrate this capability, structural vibration data were collected for modal analysis, and the 

resulting measured natural frequencies and mode shapes were compared to those measured 

using a traditional data acquisition system. After successfully verifying the functionality of the 

WID3 in various laboratory settings, the WID3 was field-tested on the Alamosa Canyon Bridge, 

a structure of significant size and representative of practical importance, demonstrating that the 

sensor node can efficiently monitor several mechanical response parameters suitable for rapid 

assessment of structural condition. 

The Wireless Active Sensing Platform (WASP), an embedded sensor node uniquely 

suited to multi-scale structural health monitoring (SHM) applications, was also developed. Its 

specific features were detailed, especially its innovative ability to seamlessly switch between a 

traditional pitch-catch active sensing mode and impedance measurement mode, which is 

integral to sensor diagnostics methods for active-sensing SHM. The WASP was demonstrated 

in three key application areas. First, its ability to perform impedance measurements for 

piezoelectric sensor diagnostics was demonstrated in comparison to a conventional impedance 

analyzer. While the absolute estimates of impedance produced using the WASP were not 

identical to those produced by the impedance analyzer, the relative measurements demonstrated 

a more-than-sufficient ability to perform sensor diagnostics. Second, its ability to collect active-

sensing data for incipient crack detection was demonstrated in comparison to a commercially 

available module for ultrasonic guided wave measurements. The WASP demonstrated a 

capability on par with the commercial system in detecting incipient crack development in a full-

scale wind turbine rotor blade fatigue test. Third, its ability to collect low-frequency vibration 

measurements for model-based SHM was demonstrated using acceleration measurements 

collected from a telescope drive system. 
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Among the WASP’s notable shortcomings and opportunities for further development 

are: (1) its output signal amplification chain for active sensing; (2) its ability to be remotely 

reprogrammed or updated; and (3) its bulky size. A major shortcoming of the WASP was its 

output signal chain’s ability to sufficiently excite the thick fiberglass of the CX-100 rotor blade. 

Although the current amplifier utilized in the WASP dramatically increased its power output 

capability beyond, say, the AD5933 utilized in the WID, and it would be capable of 

implementing guided wave methods for SHM in a metallic plate-like structure, the signal 

attenuation in the fiberglass was severe, and external amplification was required. Future 

versions of the WASP should significantly increase the output signal power capability. This 

would require not only more powerful amplification circuitry, but also careful consideration of 

the signal isolation required to prevent cross-talk across the switches that enable any of the 

channels to be inputs or outputs; feeding a powerful signal back into the ADC, even with 60 dB 

attenuation (the cross-talk specification for the ADG1419 switches used), would corrupt 

measurements. The WASP would benefit greatly in deployed applications from an ability to be 

remotely reprogrammed. In its current implementation, changes to the WASP’s behavior, web 

interface, available excitation waveforms, or even its IP address require a firmware flash 

operation. Obviously, if the WASP were embedded in a spinning wind turbine rotor blade, 

accessing the device to physically re-flash its firmware would be difficult, although upgrades 

and improvements could be being developed constantly. As such, future versions should 

incorporate an over-the-air type reprogramming capability. Finally, the WASP’s large size may 

be an impediment to its deployment. The WASP’s major innovations, including its signal chains 

and switching circuitry, are on PCBs designed to interface with a commercially available 

development board for the ARM processor that controls the system. Future versions of the 

WASP should incorporate the processor, communications, power delivery, storage, and the like 

in a dedicated, compact base board, rather than relying on the bulky prototype platform. 
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7.3. Sensor Diagnostics 

In the area of sensor diagnostics, a detailed overview of impedance-based sensor 

diagnostics for piezoceramic transducers used in active sensing applications for SHM was 

presented. A case study from a long-term, large-scale test was presented in which 49 

transducers were used to monitor the health of a wind turbine rotor blade subjected to fatigue 

loading until failure. The transducers proved effective in their longevity and ability to perform 

within the SHM system until the blade itself began to fail. For those sensors that did fail, the 

sensor diagnostics procedures implemented were effective in identifying them. Some peculiar 

behaviors were observed, which might not have been present in a smaller-scale or bench-top 

test. In some cases where the susceptance slope increased, which would ordinarily indicate a 

debonded sensor, the fiberglass material to which the transducer was affixed seems to have 

softened. In this case, an increased susceptance slope would be an indication of incipient 

structural damage, rather than sensor failure. Furthermore, data taken under dynamic loading, 

which is often necessary for in situ operation of an SHM system, exhibited a clearly 

measureable impact on the susceptance values. It was observed that the low-frequency behavior 

of the host structure had a significant impact on the measurements obtained using this high-

frequency technique, which previously had been thought to be immune to low-frequency 

interference. A normalization method was proposed for data collected from a structure under 

operational conditions that induce time-varying strain fields at the transducer locations, and its 

utility as a normalization step to enable comparison among measurements taken in multiple 

loading conditions was demonstrated. 

These peculiar behaviors should be explored in more detail and with intentional 

experiments aimed at characterizing them. In the case of the softening effect, smaller coupons 

of fiberglass material should be instrumented and purposefully loaded to weaken the material, 
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and the corresponding effect on PZT patches bonded to the material surface should be 

measured. In this type of smaller-scale experimental campaign, the effect of the material 

softening could be distinguished from simple patch debonding. In the case of the nonstationary 

impedance measurements, a thorough examination of the effects of low-frequency vibration on 

impedance measurements should be undertaken. It is clear that, with the constant excitation at 

the rotor blade’s fundamental frequency, and with the “sine sweep” measurement method 

implemented by the impedance analyzer, that there was an effect on the measurement that 

would impact the decision process in determining the health of the sensor. This effect should be 

explored for other measurement methods, such as a broadband excitation, and for other 

nonstationary structural behaviors, such as turbulent distributed loading in the case of the wind 

turbine blade. 

7.4. Incipient Damage Detection Performance 

The goal of this portion of the dissertation was to identify an approach to achieve better 

performance in incipient crack detection for the CX-100 rotor blade under cyclic loading. The 

CX-100 is a representative composite wind turbine rotor blade structure, having a balsa wood 

frame and a fiberglass shell. Extensive data were collected using different acquisition systems 

and analyzed using different signal processing approaches and test statistics in order to compare 

incipient crack detection performance. In the acquisition hardware domain, ultrasonic guided 

waves were compared with diffuse wave field measurement methods; in the detector domain, 

energy methods were compared with correlation methods. 

The guided wave data at 200 kHz produced good detection results for both test 

statistics. At this frequency, detection performance was best along the rotor blade’s spar cap, 

indicating that for this structure, an extremely low-density array (as little as one actuator/sensor 
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pair) might be sufficient to detect incipient cracks that cross the spar cap. While the 50 kHz 

guided wave data provided good detection performance, the better performing paths lay neither 

near the crack nor along the spar cap. The diffuse wave data demonstrated a lack of sensitivity 

over long transmission distances, with lower sensitivity for the larger outer array than the 

smaller inner array. The high-frequency, narrow-band excitation showed increased sensitivity 

based on the rotor blade’s structure, rather than the crack location, while the lower-frequency, 

broadband excitation produced detection results more sensitive to the damage location. This 

trade-off suggests the importance of differentiating detection from localization objectives when 

designing a detector. 

The lessons learned in this fatigue test should be applied to a real-world situation, in 

which natural loads are permitted to excite a structure and slowly degrade and damage it over 

time. Alternatively, a compromise experimental campaign could be constructed in which a 

blade seeded with certain types of damage would be put in operation and monitored while it 

moved through an accelerated life cycle. This sort of SHM system deployment would require a 

long-term commitment and a next-generation embedded sensing system with the remote 

interface capabilities described above. 

7.5. State Observer 

A state observer based on a Newton-Raphson iterative force correction scheme was 

introduced and demonstrated for both linear and nonlinear numerical examples, as well as on a 

bench-top experiment with inherently noisy, real-world data. The observer was implemented 

using a geometrically nonlinear beam code, NLBeam, developed for modeling of wind turbine 

blades, and it is designed to take advantage of the availability of the full system Jacobian 

matrices at each time step from the nonlinear solver. The form of the Newton-Raphson observer 
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was verified numerically using synthesized full-field displacement measurement data from a 

simulated plant model and a perturbed version of the same model as the observer reference 

model. The Newton-Raphson observer was further tested using a single acceleration time 

history to infer displacement time histories at the reference model nodes, demonstrating the 

ability to generate a state estimate given acceleration measurements at a subset of DOFs. The 

relationship between the proposed Newton-Raphson observer and the linear Kalman filter was 

derived, and they were shown to be identical in the case with of zero measurement noise. A 

modified version of the Newton-Raphson observer was developed to accommodate the presence 

of measurement noise. Applications of this modified version to experimental data from a 

vertically cantilevered beam showed that, while the assumed zero-noise case produced unstable 

estimates due to accumulating error, the modified, Kalman-like Newton-Raphson observer 

produced stable predictions of strain and bending curvature using measured acceleration, with 

displacement observations that corresponded well to displacement measurements collected 

using a high-speed, low-resolution camera.  

There are significant improvements and further developments that should take place in 

the implementation of this observer. A future experiment could be devised with three key 

improvements: (1) constrain the base on which the beam was cantilevered using a stiff spring in 

order to eliminate drift in both the experimental setup and the numerical models; (2) use a 

higher resolution camera in order to validate higher-frequency displacement behavior, which 

tend to have smaller motion; and (3) collect surface strain data on the beam as a secondary 

means of validating the model output with the observer implementation. This third step would 

validate the model and observer combination for estimating the in-service reaction forces, 

which are important in evaluating overall wind turbine structural performance. Furthermore, 

although the development and bench-top demonstration of the state observer designed for 

application with the nonlinear beam code is a necessary step in obtaining state estimates for 
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structural performance prediction, the application must be extended to the large, flexible, 

composite structures for which the code was developed. In parallel with the work presented in 

this dissertation, others have developed models of the CX-100 blade in NLBeam, but these 

models have not been validated against any operational data. Some such data exists from the 

WASP’s flight deployment at the LIST facility. A natural progression of these works would be 

to apply the observer to the CX-100 blade model using measured, in-flight acceleration data, 

and verify it against strain data collected using the fiber Bragg grating array. Finally, the 

observer output should be tested in a numerical analysis-of-variance campaign to determine the 

sensitivity of the model and the observer implementation to noise on various inputs, and to 

enable to production of state estimates in the form of probability density functions for 

implementation with risk-based probabilistic decision models.  
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