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NEURAL NETWORKS IN SEISMIC DISCRIMINATION

Farid U. Dowla
Lawrence Livermore National Laboratory
Livermore, California 94550

1. Abstract

Neural networks are powerful and elegant computational tools that can be
used in the analysis of geophysical signals. At Lawrence Livermore National
Laboratory, we have developed neural networks to solve problems in seismic
discrimination, event classification, and seismic and hydrodynamic yield
estimation. Other researchers have used neural networks for seismic phase
identification. We are currently developing neural networks to estimate depths
of seismic events using regional seismograms. In this paper different types of
network architecture and representation techniques are discussed. We address
the important problem of designing neural networks with good generalization
capabilities. Examples of neural networks for treaty verification applications
are also described.

2. Introduction

The computational paradigm of neural networks has several attractive
features for solving problems in monitoring a Comprehensive Test Ban Treaty. A
well-known strength of neural networks is its ability to incorporate
nonlinearities into the solution. Nonlinearity is common phenomena in the
geosciences. Two other essential features, adaptability and generalization, are
discussed below. :

2.1. ADAPTABILITY

With supervised learning, the neural network learns to solve problems by
example rather than by being programmed to follow a set of heuristics or
theoretical mechanisms. For many real-world problems, precise solutions do not
exist. In such cases, acquiring knowledge by example may be the only solution.
In other words, when it is not possible to describe the logic of a problem or to
predict behavior with analytical or numerical solutions to governing equations,
traditional predictive analysis is difficult. Neural network analysis, however,
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does not rely on prescribed relation, but rather seeks its own relation and thus
may have an advantage over traditional predictive analysis.

It may be helpful to think of a neural network as a nonparametric,
nonlinear, regression technique. In traditional regression techniques of
modeling, one must decide a priori on a model to which the data will be fitted.
The neural network approach is not as restrictive because the data will be
fitted with the best combination of nonlinear or linear functions as necessary,
without having to rigidly preselect the form of these functions.

2.2. GENERALIZATION

Generalization is the ability to abstract or to respond appropriately to
data different from those involved in the training of the network. In learning to
solve a problem, the network must encode the vital components of the problem
into the weights. One might think of the weights on which the mature network
has converged after “learning” the training examples as a distillation of the
problem to these major components. Not only is a well-trained neural network
skilled in generalizing the information held in these weights to new patterns-it---- -~ - -~
may be asked to judge, but the weights also form a storehouse of knowledge that
may be explored or mined for insights about the problem as a whole.

Given a finite number of examples, the simplest network, the one with the
fewest weights, which satisfies all input-output relations given by the training
set, might have the best generalization properties. With too many weights the
problem is similar to overfitting in regression analysis. This discussion is made
more quantitative by defining the examples-to-weight ratio (EWR). The more
examples with respect to the number of weights, the better the generalization
properties of the network. In typical geophysical applications, we find that a
rule of thumb for EWR is

EWR 2 10 (1

Because fewer units in a network mean fewer weights, the EWR is
maximized by minimizing the number of units in the network. It is important to
note that the number of units from the input layer to the next layer is often most
responsible for the large number of weights in a network. Hence, reducing the
number of input features can be an effective way of reducing the number of
weights. However, because small training-set learning is faster on a larger
network, it is easy to fall into the trap of using large networks. In summary, just
because a network has memorized a few examples perfectly does not mean that
the network will perform well on new data; it is essential to consider the EWR
discussed above.




3. Neural Network Models

There are numerous types of neural networks and they are discussed in many
texts [1, 2, 3]. Following are three networks that have been particularly useful
in seismic discrimination applications.

3.1. BACKPROPAGATION NETWORKS

We used backpropagation algorithms for seismic discrimination and yield
estimation. An example architecture of a backpropagation network for seismic
discrimination is shown in Figure 1. This network is a classic example of a
supervised learning network and applies a learning algorithm, such that the
network learns to associate the inputs with the corresponding outputs for all or
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Figurel. Architecture of the backpropagation neural network that used spectral
inputs to discriminate seismic events.




most of the examples in a training set. Backpropagation is really a learning
algorithm, and the network is a multilayered feedforward architecture. The
backpropagation algorithm uses a gradient descent method to systematically
modify the weights in the network so as to minimize the network output error.
Once the network can solve a problem with a very large set of examples, the
assumption is that the network can generalize from these examples to
previously unseen data or test data.

3.2. SELF-ORGANIZING NETWORKS

Figure 2 depicts a self-organizing neural network (SONN) system that was
used for seismic event classification. (When the number of classes is just two we
use the term discrimination; otherwise we use the term classification.) In many
problems it is useful to have a system that forms its own classification of the
data from the training examples. In these types of problems, unsupervised
learning networks are applicable. Unlike a backpropagation learning network,
where the training examples must be explicitly specified at the output, an
unsupervised SONN {4] clusters the data into groups that have common
features. Hence, the SONN is often called a feature-mapping network.

Although the SONN can be viewed as a clustering algorithm, the
clustering it forms is quite special. The network not only groups the input
patterns into different clusters; it also organizes the clusters in a one- or multi-
dimensional space according to similarity of the cluster centroids themselves.
The motivation of the method is drawn from the knowledge that the brain
utilizes spatial mappings; that is, different sensory and cognitive tasks are
localized in different regions of the brain, and these regions have a definite
- topological order [4]. A supervised version of the SONN is the learning vector
quantization (LVQ) network. This network can be used in discrimination
problems. '
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Neural Net

.o, .
(RS 2

Figure2. The self-organizing neural network system that was used to classify seven
different types of events using binary spectrogram as input patterns.




3.3. RADIAL BASIS FUNCTION NETWORKS

We are developing radial basis networks to attack the depth estimation
problem. Radial basis function (RBF) networks for the 2-D space are discussed
here. The generalization of the algorithm to higher dimensions is straight-
forward. The basic step is to define a function of the form

N ;- 2 . —_ 2
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Using the training set, the radial basis method solves the equations
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where the 2-D function f(x,y) isknownat (x,,y,) and the objective is to
determine the weights lj, the cluster centers (x;,¥;), and the cluster widths
O, while minimizing an error function. In matrix notation, equation (3) can be
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Note that the basis functions defined in equation (3) are radially
symmetric distance functions, hence the name radial basis function. Other basis
functions can also be used. The radial basis function defined in equation (6) is
particularly attractive because the matrix @ can be shown to be positive,
definite [5], and therefore invertible. The weights of the radial basis network
are obtained by inverting a set of linear equations once the width of the basis
functions defined by the parameters G; have been estimated. Note, however,

that the network is still nonlinear. Since the dimensions of the matrix ® are
proportional to the number of training examples, the matrix can become very
large in many problems. Hence, a clustering algorithm is usually employed
first, and these cluster centers are then used in evaluating equation (4).




4, Signal Representation

An appropriate representation of the data to the network is often the key
to a successful design of an network. Three invaluable preprocessing techniques,
Fourier and wavelet signal decomposition and projection methods in reducing
the dimensions of the input, are briefly discussed next.

4.1. DECOMPOSITION

4.1.1. Fourier Representation

The transient nature of the frequency-dependent seismogram makes the
spectrogram a powerful representation of the signal. We have found the time-
frequency distribution to be a very useful in seismic event classification. In
particular, the high-resolution maximum entropy spectrogram computed by
segmenting the seismogram into small segments of overlapping time-series
brings out features that helps the network to discriminate seismic events.

4.1.2. Wavelet Representation '
The use of the recently popularized wavelet transform defined by

R
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where h(?) is the analysis wavelet, might prove to be particularly useful in
seismic phase identification and depth estimation problems. The use of this
representation is discussed in section 4, and an example of decomposition of a
seismogram by wavelet transform is shown in Figure 3.

4.2. PROJECTION

Just as the decomposition techniques discussed above help in
bringing out the vital features, the use of signal projection operation is
important in reducing the representation to just these vital features. Often
transformation of a signal might result in an increase in the dimensions of the
input. This in turn results in a large number of weights. As stated earlier, an
increase in the number of weights in the network is undesirable. Hence the use
of projection operations such as the method of principal components or Hough
transforms can used to reduce the input features.
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Figure3. The wavelet decomposition of a seismogram into different scales. The top waveform
is the recorded signal and the bottom waveforms are increasingly longer scale
representations of the original data.

5. Application to Treaty Verification Problems

We have explored the use of neural networks on a'variety of problems
, related to treaty verification. In this section we summarize these applications.

5.1. SEISMIC DISCRIMINATION

A neural network that performed quite well in distinguishing natural
earthquakes from underground nuclear explosions is depicted in Figure 1. Ina
study conducted at four different stations, we used 83 western U.S. earthquakes
and 87 Nevada Test Site explosions. The distance-corrected spectra of the Pn,
Pg, and Lg phases were used as inputs. Details of the preprocessing and network
properties of the network are summarized in [6). For this data set, the rate of




TABLE 1. Performance of the neural network in discrimination between earthquakes (Q) and

underground nuclear explosions (X).

Number of Comrect Misidentification (%)  Undecided *
events (Q/X) identification (%)
(%)

Elko 80779 975171975 0.0/25 25700 o
Kanab 86/83 96.5 / 96.4 0.0/12 3.5/24
Landers 86/94 93.0/95.7 3.5721 35722
Mina 761795 93.4/93.7 53742 13721
Four-Station ) 79183 100. /976 0.0/24 0.0/00

Network

correct recognition for untrained data is over 93% for both earthquakes and
explosions at any single station. Using a majority voting scheme on the four
stations, the rate of correct recognition is about 97%. These results are
summarized in Table 1.

We have recently developed a neural network for discrimination using
SONN and LVQ methods on spectrograms. Others [7] have also developed
networks for discrimination. Due to space limitations these methods are not
discussed here; instead, the use of SONN on spectrograms forevent -~ - - - = o
interpretation is described.

5.2. SEISMIC EVENT CLASSIFICATION

Given the detection of a seismogram, we compute a time-frequency
representation, the spectrogram, that describes the energy in the signal segment
as a function of time and frequency. The mechanics of the computation of a
spectrogram is quite straight-forward. Suppose we need to compute the
spectrogram of a 200-s segment of seismic data. (If the data are sampled at 40
Hz, such a segment would consist of 8000 points). The computation of the
spectrogram consists of breaking the segment into many sub-windows, called
analysis windows, each with a length of 3 s, for example. The Fourier transform

- magnitude spectrum of the analysis windows is then computed. Adjacent

analysis windows are usually overlapped by 67%, or 2 s in this example. Hence,
there will be 300 analysis windows in the time domain for the 200-s segment
seismogram. If we use a fast Fourier transform (FFT) of size 256, the number of
nonredundant frequency points in the spectrum is 128. Therefore, the
spectrogram can be viewed as a matrix with dimensions 128 x 300, the rows
representing frequency and the columns representing time.

We also developed a variation of this technique by computing what we
refer to as the “binary spectrogram.” The computation of the binary
spectrogram consists of a thresholding operation in which the spectrogram
values are made either 0 or 1 after comparing each value of the spectrogram to
a threshold level obtained from the histogram of the signal and noise




TABLE 2: Performace of self-organizing neural network in event classification for seven types of
events by class versus type of event (estimated probability).

4 Event Car Noise Local Regional Teleseism
classification
Class1 0 (0.00) 1(0.13) 5 (0.03) 2 (0.25) 0 {0.00)

. Class 2 4 (1.0 0 (0.00) 0 (0.00) 0.{0.00) 0 (0.00)
Class3 - 1(0.14) 4 (0.57) 2 (0.25) 0 (0.00) 0 (0.00)
Class 4 0 (0.00) - 0 (0.00) 1 (0.33) 1 (0.33) 1(0.33)
Class 5 0 (0.00) 0 (0.00) 0 (0.00) 2(0.29) 5 (0.71)
Class 6 0 (0.00) 0 (0.00) 0 (0.00) 5(0.71) 2 (0.29)
Class 7 4 (0.57) 1(0.14) 1 (0.14) 0 (9.00) 1 (0.14)

characteristics of the data. The noise characteristic is measured on the data
just before the arrival of the signal. The binary spectrogram helps in bringing
out certain features more prominently and is a useful feature extraction step in
this problem.

The training set for the SONN in one study [8] used 43 events. The events
were labeled by a seismic analyst as automobiles (9), noise (6), local seismic (9),
regional seismic (10), and teleseismic (9).-Table 2 shows how these analyst-
classified events are distributed throughout the seven clusters formed by the
Kohonen model. Various numbers of clusters were tested; the cluster grouping
results were best with seven clusters.

From the performance of the system on a limited number (43) of events, we
conclude that the system is able to perform quite well with the fuzzy or soft
event interpretation scheme for the different classes of events. However, to
make the system even more portable and reliable, we need to develop the
system using data from different regions of the world and integrate the
knowledge base of those geologies into our system.

5.3. YIELD ESTIMATION

5.3.1. Seismic and Geophysical Parameters

The goal in the design of neural networks for yield estimation is to
optimally combine different measurements to produce a better estimate.
Because the output of the backpropagation network is usually the nonlinear
sigmoid function, the network was modified such that the output neuron has a
linear transfer function [9].

A number of factors can complicate the seismic yield estimation procedure
and introduce uncertainties in yield estimates. For example, focusing and
defocusing and pP interference effects add scatter to the time-domain
magnitude measurements. Additionally, significant systematic variations in
magnitude can be observed for explosions of a given yield in different media.




For a specific test site, these systematic effects can be partially attributed to
coupling variations that are a function of the near-source geology. One of the
geophysical parameters having the largest effects on seismic amplitudes is the
gas-filled porosity, which is defined as the percentage of the material volume
that is taken up by gas-filled voids. During expansion of the explosion shock
wave, appreciable amounts of energy are absorbed during the crushing of gas-
filled voids, causing a reduction in seismic amplitudes. Aside from the yield of
the explosions, other factors affecting seismic amplitudes are the rock type,
material strength, and depth of burial. The shape of the radiated seismic
spectra from explosions is also known to be a function of emplacement conditions
and yield. Examples of backpropagation networks with spectral and
geophysical parameters as inputs are shown in Figure 4. Note that all these
measurements are rather noisy. For these reasons seismic methods are less
accurate than hydrodynamic methods in yield estimation. We discuss the
hydrodynamic yield estimation neural network in detail in the next section.

5.3.2. Hydrodynamic Method with CORRTEX Data

Hydrodynamic theory allows us to use the speed of a shock wavefront to
determine the yield of an explosion. On the basis of this theory, we developed
a neural network to estimate yield of underground explosions from the shock
wave radius-versus-time (RVT) data, as measured by continuous reflectometry
for radius-versus-time experiments (CORRTEX). The proposed method replaces
the subjective elements of conventional algorithms and produces significantly
improved yield estimates. The network was trained with real hydrodynamic
data, and its performance on unseen test events was studied. A backpropagation
network was employed; using an architecture of 10 input units, a hidden layer
with 11 hidden units, and 1 output unit (Figure 5). The network was trained

Mb (Pn)
Amplitude (p-to-p)
Corner frequency
Gas-filled porosity
Depth to water table

- Yield

Depth of burial
Standing water level

Figure 4. A backpropagation network was used to combine both seismic
and geophysical parameters to obtain improved yield estimates.
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Figure 5. The architecture of the neural network that was used in the hydrodynamic
yield estimation problem. The network consisted of ten inout units, a hidden
layer with eleven units, and a single output units. The output represents
the scaling factor error.

with thousands of input-output measurement vectors, the feasible input set,
derived from the RVT data from only four other training or standard events
(selected on the basis of the given RVT data from the unknown event). The
feasible input vectors were propagated through the trained network, and the
network output was used to select the optimum yield estimate. Elements of the
input vector were center-of-energy (COE) offsets, shock-front radii, and time
onset and interval of analysis for both the standard and the unknown events.
The performance of the system is impressive. For 24 tuff events, at the 95%
confidence interval level, the F value was only 1.17, compared with 1.35 for an
existing expert system measuring the same events. The study is described in [10].




5.4. SEISMIC PHASE IDENTIFICATION AND DEPTH ESTIMATION

Identifying the regional seismic phases and estimating depths of a seismic

source are two of the most challenging and important tasks in seismic
discrimination. Preliminary studies [11, 12] report that neural networks might
be useful in solving these problems. We are developing networks for depth
estimation from real seismograms. Although our results are preliminary, we are
having modest success in depth estimation using wavelet decomposition
followed by a radial basis network.

6. Summary

Neural networks are useful tools in solving many different types of

problems. However, the choice of the correct network and appropriate
preprocessing is often the key to developing a powerful network. Another
important element of the design process is a large training set, both for training
and for testing.
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