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Optimal Dynamic Detection of Explosives (ODD—E‘)
D.S. Moore' and H. Rabitz?

'Shock and Detonation Physics Group, Los Alamos National Laboratory
*Department of Chemistry, Princeton University

Abstract

The detection of explosives is a notoriously difficult problem, especially at stand-off, due to their
(generally) low vapor pressure, environmental and matrix interferences, and packaging. We are
exploring Optimal Dynamic Detection of Explosives (ODD-EXx), which exploits the best
capabilities of recent advances in laser technology and recent discoveries in optimal shaping of
laser pulses for control of molecular processes to significantly enhance the standoff detection of
explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser
pulses to simultaneously enhance sensitivity to explosives signatures while dramatically
improving specificity, particularly against matrix materials and background interferences. These
goals are being addressed by operating in an optimal non-linear fashion, typically with a single
shaped laser pulse inherently containing within it coherently locked control and probe sub-pulses.
Recent results will be presented.
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Participants and Outline

* Princeton:
— Herschel Rabitz; Jon Roslund
* Los Alamos:
—David Moore; Shawn McGrane; Jason Scharff; Margo Greenfield,
Robert Chalmers
Qutline
—Background
—ODD basics
— Bandwidth broadening / vibronic control
—Multiplex CARS / mixtures
—Multiobjective optimization

—Summary
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NRC Review Existing and Potential Standoff
Explosives Detection Techniques (2004)
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DHS Workshop Transformational Breakthroughs - Physics
Approaches (LLNL - 2005)

Laser Spectroscopy Topic Area - Recommendations
» Tailored desorption methods to increase vapor phase concentration
and suppress substrate lift-off
—“spatial and temporal laser pulse shaping”
* Expand detected emission spectral range, especially for LIBS
—LIBS is destructive of both the explosive molecule and the surface

— Pulse shaping (quantum control) should allow use of much lower laser
energies as well as lead to expanded emission spectral range

* Non-linear optical methods
Pulse shaping can enhance molecular resonances allowing long distance
stand-off detection (i.e., force target molecules to spill out their signatures, or

be strong emitters with a unique signature)
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Application to Explosives Detection v

Contact
Swipe In Place Vaporization 1
|
Colorimetry

|_Sampling |
Colorimetry Strobe

» We foresee a large
number of applicable
areas for ODD

| Stand Off

—Circled in red e e
—One can imagine a {TLC.GCLO) [hcouaic_|
| M3 Selective oplica
arge number of e
spectroscopies with [ Becrochemical |
|f mcel

vastly improved
characteristics

» Los Alamos

MATIONAL LARORATORY

A8y

Linear spectroscopy - unshaped pulses

» Conventional steady-state
or linear spectroscopy
using unshaped pulses

— Poor molecular
discrimination
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Quantum Optimal Dynamic Discrimination (ODD)

» Concept: Optimally
tailored laser pulses
(photonic reagents)

— Enables selective
addressing of different
species
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Control of Quantum Systems

» Customization of molecular Hamiltonian by optimally shaped field

H(t) = Ho — pe(t) |

* Optimally drive quantum system towards desired final state
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Discovery of Optimal Photonic Reagents

+ Fully automated high duty cycle closed-loop operation

Signals | ;
—i Electronics

Laser

detector

sample
« High finesse control of system without a priori model of the physical sample
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Creating Photonic Reagents on Demand
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+ Start with raw, featureless, ultrafast laser pulse (30-100 f5s)
+ Filter spectral amplitude and phase (SLM or AOM)
¢ Fully automated computer generation of photonic reagents
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Examples of Shaped Pulses
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Increasing the Control Bandwidth
Filamentation New Laser Technology
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Broadband Coherent Raman
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Controlled Detection of Mixture Components

Selectivity through pulse shaping

|

CARS of mixture: toluene; acetone; nitromethane
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Faster Optimization

‘ Use of Gerchberg-Saxton Algorithm \

» GS is independent of target complexity, pulse
shaper resolution; no cost functions, weight
factors or optimization parameters.

» Only requires known target spectrum and the
raw laser spectrum

*» Algorithm steps:

- FFT of the laser pulse (spectrum), starting
with random phase

- Replace amplitude with target spectrum,
retain phase
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- IFFT back to spectral domain, replace FFT to “”
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ODD-Ex with Gerchberg-Saxton Phase
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Gerchberg-Saxton Improvements

» Noise reduction in target spectrum

- Use peak fits instead of baseline
removal to produce zeros
between peaks

« Establish iteration end criteria
- Look for minimal change - define
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Use Electronic Resonances

+ Nitrotoluenes have resonances near + Measure multi-order REMPI spectrum
266 nm and 200 nm

» Excellent fit to Ti:sapphire harmonics

+ Obvious 3 and 4 photon resonances
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Exploit these two multiphoton resonances to generate interferences
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Multiobjective Optimization Needed

* Need to discriminate against intensity » Use 60 nm bandwidth to cover both 3
dependence - use fitness function: and 4 photon resonances for enhanced
discrimination
f = "71_‘”‘ » Use MOTC algorithm: Derandomized
SHG* Evolution Strategies (DES) with

extractable covariance matrix
information
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Is This Just an Intensity Effect?

» Time ordering of colors in shaped pulse doesn’t matter for purely intensity
dependent processes

* Test effect of reversed color ordering in optimal pulse:
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Summary

* Optimal Dynamic Detection offers a viable path to significant improvements in
selectivity and sensitivity

+ Photonic reagents are optimally tailored electromagnetic pulses that enable
selective addressing of different species

= Single pulse photonic reagent can be designed to create a tailored wavepacket in
the analyte excited state and interrogate the system by a stimulated signal

— The optimally controlled multispectral stimulated signal is sensitive to detailed sample
vibronic structure and dynamics

» Large bandwidth sources allow coherent Raman spectroscopies and vibronic
control of emission

* Multiobjective optimization allows
— Discrimination against unwanted nonlinear effects or other interferences
— Balancing e.g., selectivity versus sensitivity
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