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Optimal Dynamic Detection of Explosives ( ot:>f":>- E.1. ) 

D.S. Moore' and H. Rabitz2 

'Shock and Detonation Physics Group, Los Alamos National Laboratory 
2Department of Chemistry, Princeton University 

Abstract 

The detection of explosives is a notoriously difficult problem, especially at stand-off, due to their 
(generally) low vapor pressure, environmental and matrix interferences, and packaging. We are 
exploring Optimal Dynamic Detection of Explosives (ODD-Ex), which exploits the best 
capabilities of recent advances in laser technology and recent discoveries in optimal shaping of 
laser pulses for control of molecular processes to significantly enhance the standoff detection of 
explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser 
pulses to simultaneously enhance sensitivity to explosives signatures while dramatically 
improving specificity, particularly against matrix materials and background interferences . These 
goals are being addressed by operating in an optimal non-linear fashion, typically with a single 
shaped laser pulse inherently containing within it coherently locked control and probe sub-pulses. 
Recent results will be presented . 
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- Background 

- ODD basics 

- Bandwidth broadening / vibronic control 

- Multiplex CARS / mixtures 

- Multiobjective optimization 

-Summary 

~A1amos 
NATlONAll.4.o .... rOIlY 

PRINCETON 
UNIVERSITY 

1 



NRC Review Existing and Potential Standoff 
Explosives Detection Techniques (2004) 

(b) 

t Ant of the • sniflers · quaJty as 
eleclrOricl"lOMl. 

I Trace Detection I 

GSI 
IZI Remote Detection Direction 

o R&D Direction 

"Using a new research 
technique called coherent 
control could further 
enhance molecular 
selectivity ... one could 
choose to selectively ionize 
or dissociate particular 
explosive molecules .. . " 
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DHS Workshop Transformational Breakthroughs - Physics 
Approaches (LLNL - 2005) 

Laser Spectroscopy Topic Area - Recommendations 

• Tailored desorption methods to increase vapor phase concentration 
and suppress substrate lift-off 
- "spatial and temporal laser pulse shaping" 

• Expand detected emission spectral range, especially for LIBS 
- LlBS is destructive of both the explosive molecule and the surface 

- Pulse shaping (quantum control) should allow use of much lower laser 
energies as well as lead to expanded emission spectral range 

• Non-linear optical methods 
- Pulse shaping can enhance molecular resonances allowing long distance 

stand-off detection (i.e. , force target molecules to spill out their signatures, or 
be strong emitters with a unique signature) 
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Application to Explosives Detection 

• We foresee a large 
number of applicable 
areas for ODD 
-Circled in red 

- One can imagine a 
large number of 
spectroscopies with 
vastly improved 
characteristics 
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Linear spectroscopy - unshaped pulses 

• Conventional steady-state 
or linear spectroscopy 
using unshaped pulses 
- Poor molecular 

discrimination 
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Quantum Optimal Dynamic Discrimination (ODD) 

• Concept: Optimally 
tailored laser pulses 
(photonic reagents) 
- Enables selective 

addressing of different 
species 
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Control of Quantum Systems 

• Customization of molecular Hamiltonian by optimally shaped field 

H(t) = Ho - IU.(t) 

• Optimally drive quantum system towards desired final state 

------- ---------. : 
I~i ) ~ -=><=:-/ I~f) 
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Discovery of Optimal Photonic Reagents 

• Fully automated high duty cycle closed-loop operation 

Signals 

"Probe" 
~ 

shaped 
800nm 

sample 

Electronics 

• High finesse control of system without a priori model of the physical sample 

~Alamos 
NATIONAL LAIOIIAJOIlY 

PRINCETON 
UNIVERSITY 

Creating Photonic Reagents on Demand 

• Start with raw, featureless, ultrafast laser pulse (30-100 fs) 

• Filter spectral amplitude and phase (SLM or AOM) 

• Fully automated computer generation ofphotonic reagents 
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Examples of Shaped Pulses 
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Increasing the Control Bandwidth 
Filamentation 

- Input spectrum (520 em-' ) 

---0 Filament spectrum (>2000 em-
1
) 

it:~l~, 
700 750 800 850 900 

Wavelength (nm) 

New Laser Technology 

.' 

2000 1500 1000 500 
Wavenumber I an"1 

- 2000 cm·1 bandwidth is comparable to 
vibrational fingerprint region 
Allows coherent Raman spectroscopies 

• and vibronic control of emission 
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Broadband Coherent Raman 

I Multiplex CARS in nitromethane I Pump SID'" Probe 
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Coherence created with 
first 2 pulses probed by 
3rd pulse induces 
emission of 4th pulse 

Pump + Stokes delay . Probe+CARS 
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Controlled Detection of Mixture Components 
I Selectivity through pulse shaping I 

CARS of mixture: toluene; acetone; nitromethane 
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Faster Optimization 
" - U-s-e-o-f -G-e-rc-h-b-e-rg---S-a-xt-o-n-A-'g-o-r-ith-m--' 

• GS is independent of target complexity, pulse ( ", 
I Start "I shaper resolution; no cost functions, weight '---_ .. ' _-,-_ _ ' 

factors or optimization parameters. __ .1 ___ _ 
• Only requires known target spectrum and the I' FFT Of..JI(W), , I 

raw laser spectrum , ' 

• Algorithm steps: FFT to"t,,--r 

- FFT of the laser pulse (spectrum), starting ~ ! 
with random phase -- 1----- '--~ 

Replace I(w) Replace I(t) 
- Replace amplitude with target spectrum, , with spectrum '~~ target ' 

retain phase -- ~I 
- IFFT back to spectral domain, replace FFT to "w" 

amplitude with laser spectrum, retain phase 
- Iterate until minimal changes r FFT to··"ro;; 

~ ___ ~~lm, 
l~~~, A 
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Gerchberg-Saxton Simulation 
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ODD-Ex with Gerchberg-Saxton Phase 
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Gerchberg-Saxton Improvements 
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• Noise reduction in target spectrum 
~ - Use peak fits instead of baseline 
~ removal to produce zeros , 

between peaks f 

llh II • Establish iteration end criteria 
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Use Electronic Resonances 
• Nitrotoluenes have resonances near 

266 nm and 200 nm 

• Excellent fit to Ti:sapphire harmonics 

- nitromethane 
- Z-nitrotoluene 
- 3~rotoIueM 
- 4-nitrotolLiene 
- Z,4-dinitrotokJenl 

ZOO 240 280 320 360 400 440 480 

Wavelength I nm 

• Measure multi-order REMPI spectrum 

• Obvious 3 and 4 photon resonances 
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Exploit these two multi photon resonances to generate interferences 
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Multiobjective Optimization Needed 
• Need to discriminate against intensity 

dependence - use fitness function : 
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• Use 60 nm bandwidth to cover both 3 
and 4 photon resonances for enhanced 
discrimination 

• Use MOTe algorithm: Derandomized 
Evolution Strategies (DES) with 
extractable covariance matrix 
information 

" 
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Is This Just an Intensity Effect? 

• Time ordering of colors in shaped pulse doesn 't matter for purely intensity 
dependent processes 

• Test effect of reversed color ordering in optimal pulse: 

18 ,. 
12 

0.5 0.. 
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Summary 

I
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" 0.1 0.8 

SHG S_ 
I.' 

I
- TlPulse I 
==eversaI 

20 

10 

1 
ToIaI lon 

I 
Expected result for SHG, but.. . I 

Total Ion depends on color ordering! 

• Optimal Dynamic Detection offers a viable path to significant improvements in 
selectivity and sensitivity 

• Photonic reagents are optimally tailored electromagnetic pulses that enable 
selective addressing of different species 

• Single pulse photonic reagent can be designed to create a tailored wavepacket in 
the analyte excited state and interrogate the system by a stimulated signal 
- The optimally controlled multispectral stimulated signal is sensitive to detailed sample 

vibronic structure and dynamics 

• Large bandwidth sources allow coherent Raman spectroscopies and vibronic 
control of emission 

• MuItiobjective optimization allows 
- Discrimination against unwanted nonlinear effects or other interferences 

- Balancing e.g., selectivity versus sensitivity 
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