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THE CHALLENGE: AN ENABLING CAPABILITY
= High-Definition Optical Velocimetry

Hundred(s) of high-fidelity velocity vs. time measurements

GEMINI program optical velocimetry imaging system developed for many-
point optical velocimetry applications



T ——, S - BSbRu
THE CHALLENGE: DEVELOPMENT OF MULTIPLEXED
PHOTONIC DOPPLER VELOCIMETRY (MPDYV)

= Capability. Enable future stockpile 7/

stewardship experimental efforts that

require large data channel counts (~100) /
by leveraging existing diagnostic \

techniques and commercial technologies
to expand and enhance optical N L
velocimetry capabilities. in \

= Physics. Determine whether frequency multiplexing and heterodyne
techniques could expand upon Photonic Doppler Velocimetry (PDV)
measurements of surface velocity.

= Economy. Develop economical methods to record high-fidelity optical
velocimetry data via frequency and time division multiplexing coupled
with commercially available telecom technologies.

= QOperations and Logistics. Develop an ‘experimenter friendly’ diagnostic
capability: portable, robust, minimal ‘care and feeding,” and operable
within a laser-safe environment
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HISTORICAL CONTEXT: A‘FEW’ DATA CHANNELS

= Limited number of measurements, locations strategically selected

= 2-D performance approximate—interpolation and extrapolation, assumed
symmetries, and corroborating diagnostics, e.g., high-speed photography

Optical

velocimetry is

fundamental

to shock

physics

research!

- Material
physics

= ‘Integrated’
experiments

High-speed photography of experiment with 10 channels of
Fabry-Perot velocimetry
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High-Fidelity Data at a High Cost
* Expensive

e Extensive ‘Care and Feeding’
e Extensive Expertise Required

36-Point VISAR System Trailer
Developed 1970s—1990s

Complexity and cost %1
limited our capacity s LN T

15-channel Fabry-Perot at NTS U1la (circa 2003)
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HISTORICAL CONTEXT: PDV DEVELOPMENT

= |mproved diagnostic capability, opened door to increased channel count
and portable diagnostic

= Limitations: requires high-bandwidth ($$S$S) digitizers, high-power lasers,
unable to discern direction-of-travel

PDV

e Measures heterodyne beat
frequency directly onto high-
bandwidth digitizer

e Leverages telecom components

e Portable and user friendly

 Improved cost effectiveness

e Channel count: 1 probe per
digitizer channel

e Channel counts: 4 to 8 (typical)
to 20 (large effort)

4-channel Gen 1 portable PDV
(circa 2004, LLNL)
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VELOCIMETRY: BACKGROUND PHYSICS

= QOptical velocimetry is a prime diagnostic for shock physics,
pulsed power and hypervelocity experiments

— Measure the Doppler shift of laser light reflected off of a
moving target surface

Doppler Shift Incident Optical Frequency v

Av/v=-2v(t)/c

Reflected Optical Frequency v + Av
Is Doppler Shifted

Frequency shifts are small v(t)
h
Example velocity

Surface v(t) =1 km/s =» Av/v =7 ppm

» Use interferometry to measure these small frequency shifts
1) Michelson = VISAR, Initial Development 1970s
2) Fabry-Perot =» Fabry-Perot, Developed 1980-1990s
3) Heterodyne =2 PDV, Initial Development ~2003
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HOW PDV WORKS

Fringe analysis , v(m/s) = 775/P(ns)
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SDRD Proposal Leveraged

= PDV

= Available frequency space
= Available digitizer memory

= Heterodyne techniques
and telecom products
to frequency and time
multiplex

Technical Risks
= Telecom products
= Telecom DWDM techniques

= Heterodyne technique
effect on data fidelity

=  Experiment vs. model
= The unknown

Microseconds
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MPDV Prototype 32-Probe System with selectable 1x, 2x, 4x, 8x or 16x multiplexing
(circa August 2011)



HOW MPDV WORKS: NOTIONAL ARCHITECTURE

Use Telecom Components and Dense Wavelength Division Multiplexing (DWDM)

Laser, ITU29 — Laser launch to target Probe 1-1
Laser, ITU31 —— > —— Probe 1-2
Laser, ITU33 1 Probe 1-3
Laser, ITU35 Return light from target Probe 1.4

Signal Filter and Balance
Seed Lasers:

CW Power =10 mW
Linewidth = 15 kHz

To

> Photo-
Detector

ITU29 = 1554.13 nm (192900 GHz)
ITU31 = 1552.52 nm (193100 GHz)
ITU33 = 1550.92 nm (193300 GHz)

ITU35 = 1549.32 nm (193500 GHz) Vari_able . I;ower
A =200 GHz Optical .
Attenuators Monitors

Thin film—based Dense Wavelength
Division Multiplexers (DWDM)
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HOW MPDV WORKS: LASER SAFE OPS

Probe collection efficiency is typically 1 x 10~* and often 10~ to 107°

=>»Require either high laser power onto target (PDV)
or amplification of small signals (MPDV)

Laser, ITU29 —— Probe 1-1
Laser, ITU31 — —> Probe 1-2
Laser, ITU33 1 Probe 1-3
Laser, ITU35 —> Probe 1-4

Signal Filter and Balance

To

> Photo-
Detector

Il
4
4
4
4
4

Optical Pre-Amp, Gain = 200
Erbium-Doped Fiber Amplifier (EDFA)
... allows for laser-safe operations




HOW MPDV WORKS: OPTICAL HETERODYNE

Provides frequency shifting, i.e., makes use of frequency space

Laser, ITU29 — Probe 1-1
Laser, ITU31 — — Probe 1-2
Laser, ITU33 Probe 1-3
Laser, ITU35 —> Probe 1-4

Signal Filter and Balance

F/O Combiner

To
— @D

Temperature Tuned to
User Determined Beat
Frequency
For Time
Laser, ITU29 multiplexing, add
L ITU31 fiber delay here
aset, ‘Local Oscillators’

Laser, ITU33 S—®
Laser, ITU35
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HOW MPDV WORKS: PERFORMANCE
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HOW MPDV WORKS: TELECOM COMPONENTS

Commercially available and economical components

EDFA {
Optical Amplifier

Seed Laser ‘ sty P/N: DWDM204MC292111
‘ S/N: 09-12-0060
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MPDV DATA: 8x MULTIPLEXING
Cost Savings: PDV ~ S50K per probe vs. MPDV ~ S10K * per probe
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MPDV DATA ANALYSIS
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HIGH-DEFINITION VELOCIMETRY: MEASURING A‘POT LOAD’
OF DATA

= Less reliance on experimental symmetries and extrapolation

from a small number of measurements 64 target points (probes)

TIME : X (microseconds) FREQUENCY : Y (GHz) VELOCITY : (mis) POWER : Pixel Value (db) CONTRAST : -40 9 Data onto two d|g|t|ze rs

Spectrogram of 18792_MPDV4-1-002 Spectrogram of 18752_MPDV1-2-002 Spectrogram of 18792_MPDVA-3-002
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WHAT WE'VE LEARNED

» Photonic Technologies. We’ve evaluated and leveraged telecom components—
optical amplifiers, wavelength multiplexers, and seed lasers—to provide an
economical, compact and rugged approach to system architecture.

» Wavelength Division Multiplexing & Fourier Analysis. Fourier transform
data analysis is robust and capable of discriminating simultaneous data traces
recorded onto a single digitizer channel.

» Proof-of-Principle Demonstrated. Successfully fielded demonstration MPDV
system on shock driven experiments.

» Enabling capability. Ability for future ‘integrated’ experiments with 100(s) of
data channels.

» Improved measurement capabilities
v Increased velocity range. Optical down-shifting doubles max velocity range.

v Direction-of-travel. Discern red shift from blue shift, e.g., oscillation.
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Jig GEMINI Project
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PDV Probes
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COLLABORATIVE EFFORTS FOR STOCKPILE
STEWARDSHIP

Optical Dome Experiment
at LLNL S300
74 Data Channels of PDV & MPDV
NSTec/LLNL Collaborative Effort
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SDRD: ADDING VALUE TO PEOPLE, ENABLING AND
PROVIDING PROGRAMMATIC PAY-OFF

FY 2010 SDRD work on MPDV was continued
under diagnostic development programs and
eventually applied to optical dome (and other)
experimental programs at LANL and LLNL
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