o ARK[D\S/LP -DmaN g

Ownership Transfer for Non-Federate Object and Time Management
in Developing an HLA Compliant Logistics Model

~ Zhian Li, Charles M. Macal, and Michael R. Nevins
Decision and Information Sciences Division
Artificial Intelligence Section
Argonne National Laboratory
9700 South Cass Avenue
Building 900
Argonne, IL 60439
(630) 252-3388, (630) 252-3767, (630) 252-6091

li@dis.anl.gov, macal@dis.anl.gov, nevins@dis.anl.gov

Keywords:
logistics, port, cargo, non-federate object, object ownership transfer, simulation synchronization

ABSTRACT: A seaport simulation model, PORTSIM, has been developed for the Department of Defense (DOD)
at Argonne National Laboratory. PORTSIM simulates the detailed processes of cargo loading and unloading in a
seaport and provides throughput capability, resource utilization, and other important information on the
bottlenecks in a seaport operation, which are crucial data in determining troop and equipment deployment
capability. There are two key problems to solve in developing the HLA-compliant PORTSIM model. The first is
the cargo object ownership transfer problem. In PORTSIM, cargo items, e.g. vehicles, containers, and pallets,
are objects having asset attributes. Cargo comes fo a seaport for loading or unloading. The ownership of a
cargo object transfers from its carrier to the port and then from the port to a new carrier. Each owner of the
cargo object is responsible for publishing and updating the attributes of the cargo object when it has the
ownership. This creates a unique situation in developing the PORTSIM federate object model, that is, the
ownership of the object instead of the attributes needs to be changed in handling the cargo object in the PORTSIM
Jederate. The ownership management service provided by the current RTI does not directly address this issue. The
second is the time management issue. PORTSIM is an event-driven simulation that models seaport operations
over time. To make PORTSIM HLA compliant, time management must be addressed to allow for synchronization
with other simulation models. This paper attempts to address these two issues and methodologies developed Jor
solving these two problems.

therefore be HLA compliant so that they are readily
available for joint warfighting simulation
integrationf1].

1. Introduction

Model interoperability and reusability have become
compelling issues in recent years, as more and more
sophisticated simulation models are being developed

A seaport simulation model, PORTSIM][2], has been
developed for DOD at Argonne National Laboratory.

for all disciplines of science and engineering. It is
especially important to the simulation models
developed for the Department of Defense (DOD),
because various simulation models often need to be
integrated together to form a joint simulation
exercise. The High Level Architecture (HLA)
provides a common interface architecture and
implementation standard to the development of
interoperable and reusable simulation models. To
assure interoperability, HLA compliance is in order
for all models developed for DOD. Logistics
problems are important components of military
operations and exercises. Logistics models should

PORTSIM simulates the detailed processes of cargo
loading and unloading in a seaport and provides port
throughput capability, resource utilization, and other
important information on the bottlenecks in a seaport
operation. These are crucial data in determining
troop and equipment deployment capability and
should be of interest to federate(s) in federation
simulation involving troop and equipment
deployment and mobility analysis and, therefore, be
published by the PORTSIM federate.

A key problem to solve in developing an HLA-
compliant PORTSIM model is the cargo object
ownership transfer issue. In PORTSIM, cargoes,

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disciosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

e.g. vehicles, containers, and pallets, are objects with
asset attributes. Cargo comes to a port for
processing and then leaves perhaps with new
attribute values and on new carriers. The port
federate must take over the ownership of the cargo
objects when the cargo arrives, change the attributes
if necessary, publish and update the cargo objects
and their attributes, and release the ownership when
the cargo leaves. This creates a unique situation in
developing the HLA federate object model, that is,
the ownership of the object instead of the attributes
needs to be changed in handling the cargo object in
the PORTSIM federate so that the values of the
cargo object’s attributes can be updated by the new
owner. The ownership management service
provided by the current RTI does not directly address
this issue[3], [4). A technique for solving this
problem is in order.

The second important problem to be solved is the
time management issue. PORTSIM is an event-
driven simulation that models seaport operations
over time. It operates on an internal simulation
clock. Reports on information such as port cargo
processing queues, resource utilization rates, number
of facilities available/busy, number of berths
available, and the overall port throughput capability,
are generated on a fixed time schedule according to
the internal simulation clock. Because the current
version of PORTSIM does not accept external time
coordination, in making PORTSIM HLA compliant,
the time management issue must be addressed to
allow for synchronization with other simulation
models.

This paper attempts to address these two issues and
the methodologies developed for solving these two
problems. Section 2 describes the fundamentals of
the seaport simulation model, PORTSIM, and the
HLA-compliant PORTSIM federate to be developed.
Section 3 details the technical approaches to the
solutions of the non-federate object ownership
transfer and the time management issues for the
PORTSIM federate.

2. PORTSIM Federate

Seaports are critical nodes in the transportation’
networks linking the United States and final
destinations around the globe. Ideally, a complete
military equipment deployment analysis should
include all relevant network nodes and links. To

perform this analysis, simulation models for all of
these different nodes and networks must be
integrated. To achieve this goal, all of the models
involved have to be interoperable. HLA provides a
common implementation standard for the
development of interoperable models. Making
PORTSIM HLA compliant is an effort toward this
goal.

2.1 PORTSIM

PORTSIM is a discrete-event time-stepped
simulation model for seaport military equipment
deployment throughput capability analysis.
PORTSIM simulates the detailed seaport
embarkation and debarkation operations to provide
critical information on port resource utilization,
bottlenecks, cargo queues, as well as the detailed
cargo queue status. PORTSIM takes two types of
transportation inputs; land transportation inputs and
waterway transportation inputs. The land inputs are
prepared by a military equipment characteristics
database query and transportation asset requirement
system TARGET (Transportability Analysis Reports
Generator), with a detailed break down of

~ transportation wunit and transportation asset

requirements. The waterway input is provided by
the JFAST ship database system[5] or possibly
another source. The waterway input includes ship
name, fleet designation, ship class, containers, and
breakbulk capacities, etc., sufficient for identifying
the profile of the arriving ship. Finally, the port
infrastructure data for PORTSIM is furnished by the
MTIMCTEA (Military Traffic Management
Command Transportation Enginecring Agency)
database[6].

The embarkation and debarkation processes in a
seaport operate in different operational procedures.
The embarkation operation processes a cargo item in
four steps: reception, staging, ship berthing, and
loading. The debarkation process on the other hand
operates in four different steps, i.e., ship berthing,
unloading, staging, and clearance. The cargo types
that PORTSIM can process are: (1) vehicles, (2)
containers, and (3) palletized cargoes. Each cargo
type is processed differently in the port according to
the transportation asset it arrives with as well as the
type of operation, i.e., embarkation or debarkation.
A cargo item with a railroad transportation asset, for
example, will go to the interchange yard first,
whereas the entry point for cargo with a highway
transportation asset is the port gate. For
debarkation, a ship must dock on a berth first in

order for a cargo item to be unloaded. PORTSIM
differentiates the embarkation and debarkation
processes along with the cargo types to ensure the

accuracy of the simulations. Figure 1 depicts the
operational flow of the port convoyed-vehicle-
embarkation process as simulated in PORTSIM.

Vehicle Arrival

Proceed Through Gate

Y
[Transit to Open Staging 1

OpenStage Parking

Open Staging Inspection

e
Discharge and Transit to Berth
(when Ship Calls Forward)

‘ L Call Forward Queue
| Load At RORO Load At
Berth Container Berth

Figure 1. Operational Flow of the Seaport Convoyed Vehicle Embarkation Process
Simulated in PORTSIM

PORTSIM is an event-driven simulation model. The
entire simulation process follows an event list. The
event list is generated dynamically based on an event
hierarchy. An event time is assigned to each event
in this list when the event is generated. The cargo
arrival event time sequence is generated using a
user-selected stochastic distribution over a given
time interval. The currently available selections are
exponential, beta, gamma, normal, triangular, and
uniform distributions. An internal simulation clock
is used to control the time advancement of the
simulation. The simulation clock starts when the
simulation commences. A simulation event is

triggered when the simulation clock time reaches the
event schedule time. The entire simulation process is
carried out by internal control. No dynamic outside
input is currently accepted or required.

PORTSIM is an object-oriented simulation system.
All cargo items, ships, and port infrastructure
resources are modeled as individual objects. The
cargo items processed in a typical scenario can
number over 10,000 pieces of equipment. This
allows PORTSIM to perform a comprehensive
analysis on all critical military seaport operations
with reliable results.

2.2 PORTSIM federate and non-federate object

An HLA federate is a simulation model implemented
in HLA compliant format. It consists of four
essential components: federate object classes, class
attributes, interaction classes, and interaction
parameters. The federate objects are instances of
object classes defined in the Federation Execution
Data (FED) file. These objects are used by a federate
to present itself to other federates in a federation.

The attributes are aspects that define an object class.
The interaction classes and interaction parameters of
a federate are used to define the cause and reaction
relationship between federates. To make PORTSIM
HLA compliant is to develop a PORTSIM federate
that can facilitate communication between
PORTSIM and other simulation models through the
RTI.

The essential functions of a federate are to: (1)
perform model simulation, (2) publish to the RTI,
and in turn to other federate(s) in a federation, the
data it wishes to provide to other relevant model(s)
in form of object and attributes, (3) get data from
other federate(s) by subscribing to object(s) and
attribute(s) other federate(s) publish, (4) initiate and
receive interaction(s) if there are any, and (4)
coordinate with other federates, if necessary,
through time mapagement services that the RTI
provides.

For the PORTSIM federate, the objects to be
published are the port object and the cargo item
objects. The port object represents the port that
PORTSIM simulates. The attributes of the port
object are the parameters, such as port resource
utilization rates and port queues, that define the port
status. Because there are many different types of
cargo items that need to be loaded and unloaded,
defining object classes for each type would make the
FED file very complex. To simplify the FED file
and our discussion, we indiscriminately use the
cargo object to represent all cargo items, while using
cargo object attributes to differentiate one cargo type
from another. With this highly abstracted class, the
number of object classes that need to be defined in
the FED file is reduced to two. The term cargo
object is hereafter used to refer to all types of cargo
items in our discussion. Because the current version
of PORTSIM does not accept dynamic input, no
interaction class needs to be defined in the
PORTSIM federate.

Of the two objects defined for the PORTSIM
federate, the port object is a regular federate object
that is owned and published by the federate. The
object can be managed using object management
services that are provided by the RTI. The cargo

object, however, has to be handled differently. In the’

embarkation process, cargo items come to the port
with various transportation assets. The port (1)
unloads the cargo items, (2) changes cargo’s
dimensions, such as length, height, weight, and/or
contents, if necessary, and (3) loads the cargo items

onto a ship(s). In the debarkation process, the port
(1) unloads the cargo items from a ship, (2) changes
cargo’s dimensions if necessary, and (3) then loads
the cargo items onto a new carrier(s). Finally, the
cargo items leave the port for new destinations. In
either case, the ownership of the cargo items change
during these processes. The attributes of a cargo
object can also be changed by any of its owners. To
simulate this process in military equipment
deployment and a military mobility analysis
simulation federation(s), it is clear that the
ownership of the cargo object must also be able to be
changed between the participating federates. The
receiving federate, upon the reception of the object,
must create a local copy of the cargo object it
receives and resume responsibilities of publishing
and updating the object and its attributes. The old
owner must delete the local copy of the cargo object
and the copy it published to the RTI when the object
is transferred to a new owner.

From the above analysis, one may find that the
ownership of the cargo object transfers from one
federate to another. This factor signifies that the
cargo object in the port federate is not a regular
federate object because the ownership of a regular
object never changes in a federation. To distinguish
this object from the true cargo object in PORTSIM
model as well as regular federate objects in the RTI,
the term non-federate object is used here to refer to
objects, such as the cargo object, that has to be
published but can not be permanently owned by a
unique federate.

2.3 Non-federate object ownership transfer and
time management problems in developing the
PORTSIM federate

To develop a comprehensive PORTSIM federate, in
practice, is not trivial. A complete analysis of the
interactions between potential federates must be
made so that the objects and their attributes to be
published and subscribed can be determined.
Because the development process of the PORTSIM
federate involves many complicated issues, a detailed
discussion on the design of the PORTSIM federate is
out of the scope of this paper. This paper will
address only the non-federate object ownership
transfer issue and the time management problem
encountered in developing the PORTSIM federate.

As discussed earlier in section 2.2 of this paper, the
cargo object is a non-federate object with attributes
such as the cargo length, width, height, and weight.

A cargo item comes to a seaport for loading or
unloading. The ownership of the cargo object
instead of the attributes in the federation needs to be
changed during this process. In the HLA Run-Time
Infrastructure (RTI), however, only the attribute
ownership transfer service is provided. The object
ownership management issue is mnot directly
addressed. There is no service provided to the object
ownership management. A solution must be found.

The other important issue to be resolved in
developing a2 PORTSIM federate is the time
management issue. Because the current version of
PORTSIM is a stand alone model, it does not accept
dynamic cargo input or allow for external time
coordination. Only an internal clock is used to track
the time of the port operation. A port status and
resource utilization report is generated at each hour
of this internal clock. To make PORTSIM able to
coordinate with other potential federates without
major modification, a method must be developed so
that the PORTSIM federate can update objects and
attributes at the right time with the right data.

3. Methodologies

Solutions have been found for both the object
ownership management problem and the time
management problem encountered in developing the
PORTSIM federate. The methodology developed for
the object ownership management issue is to convert
the ownership transfer problem into an interaction
problem., The time management problem is solved
by mapping federate time to federation time.

3.1 Non-federate object ownership management
for the cargo object

The non-federate object ownership management
problem ‘encountered in developing the PORTSIM
federate can be solved by converting the direct
ownership transfer problem into a federate object
interaction problem. To achieve this goal, first we
create an extra interaction class, send_cargo_object,
that is auxiliary to the PORTSIM federate. The
initiator of the interaction is the federate who intends
to give up the ownership of a cargo object. The
receiver is the federate which has to take over the
ownership of the incoming cargo object. The
parameters of the send_cargo_object interaction class
are the cargo name, cargo type, the cargo dimension
attribute values, and the RTI object ID of the
receiving federate. When a cargo object leaves a

federate, the federate initiates a send_cargo_object
interaction to the receiving federate. The receiver
then creates a local copy of the cargo object with the
name and attribute values provided through the
interaction parameters. The receiving federate then
publishes and updates the object and its attributes to
the RTL. At this time, there are two duplicate copies
of the cargo object. The federate which has given
up the ownership of the cargo object must now delete
the local object it holds and the copy it published to
the RTI. The ownership of the cargo object is thus
transferred from one federate to another. The non-
federate object, the cargo object, ownership
management is hence effectively converted to an
interaction problem.

In fact, this approach depicts exactly the actual cargo
loading and unloading processes in a port. A cargo
item comes to the port with its initial carrier, the
owner federate of the cargo object. The port unloads
it from the carrier. The port now owns the cargo.
After some operations, the cargo item is then loaded,
probably with new attribute values, to a new carrier
and moved to a new destination, i.e., a new federate.
There is no such object in the port anymore. The
port federate releases the ownership of the cargo
object. The loading/unloading operation is complete.
Although the cargo has to be loaded by some port
assets (crane, material handling equipment),
collectively, the port can still be considered as the
one that obtains and releases the ownership of a
cargo object and so the owner can be the PORTSIM
federate. The steps and RTI services used in
implementing this method are summarized as the
follows.

1. Create interaction parameter pair;

2. Assign the cargo object ID and attribute
values to the interaction parameters;

3. Send the send_cargo_object interaction to the
receiving federate using the RTI service:

RTIAmbassador::sendInteraction(...);
4, RTI calls the federate ambassador method:
FederateAmbassador::receiveInteraction(...)
to

s Create a local copy of the cargo object with
given attributes;

¢ Publish the cargo. object using
RTIambassador::PublishObjectClass(...);

5. Call RTIambassador::deleteObject(...);
6. Call Federate::deleteObject(...);
7. Call FederateAmbassador::removeObj(...).

It is important to point out that the FED_RELIABLE
message transportation mechanism must be used in
using this technique. This is to guarantee that the
receiving federate will get this interaction and then
create and publish the newly received cargo object.
Otherwise, the interaction message may be lost and
so would the cargo object.

A concern that may be raised is the timing of the
removal of the cargo object from the RTI. Because
the sending and receiving federates may be running
on different machines across a computer network,
there can be some time delay in getting the
interaction message from the initiator to the receiver.
Thus, the sender federate may have removed the
cargo object from the RTI before the receiving
federate receives the interaction. The RTI may
temporarily lose tracking of the cargo object. This
problem is in fact not as important as it appears to
be. This is because the attribute values of a cargo
object should not be available to other federates
during the simulation of loading and wunloading
processes. For non-real-time applications of

PORTSIM, it is therefore not critical whether the
RTI temporarily loses tracking of a cargo object or
not during an ownership transition period. This
can, however, be a problem for a real-time
applications, in which every movement of an object
has to be traced. Solutions to this problem will be
considered in our future work as this need develops.

3.2 Time coordinated update of the port and
cargo objects

The time management problem encountered in the
development of the PORTSIM federate can be
alleviated by adding an auxiliary port object attribute
buffer array to the federate while leaving the
simulation logical flow intact. The PORTSIM
federate uses this auxiliary array to store the port
status report data while running on its internal
simulation clock. When the PORTSIM federate
joins a federation, the simulation starts and so does
the internal simulation clock. The port attribute data,
i.e. the simulation output, are generated at specific
points on the time axis of the simulation clock. A
time stamp based on the simulation clock is attached
to each attribute data. Assuming that the PORTSIM
federate joined the federation at time Tf of the
federation time and a series of port attribute data are
generated at simulation times to, t1, t2, ..., to, the
time stamps represented in terms of the federation
time can be calculated as:

To = Te+to;
Tl = Tf+tl;
T2 = Tf+t2;
'Tn = Tf+tn;

Where To, Ti, T2, ... and Tn are the time stamps
attached to the port attribute update data in term of
federation time. Thus, when the PORTSIM federate
receives an attribute update request for a specific
federation time, it can convert the federation time to
the simulation time, retrieve the requested data from
the auxiliary array, and respond to the request. In
this way, a quasi-time coordination scheme is
obtained. Figure 2. illustrates the relationship
between the federate clock and the federation time
axis.

] - » - - - s« 8 8 85 ® @ - >
PORTSIM Simulation to
Clock
- e e e -
Federation Time T! Te
0
>

RTI Time Tr

Figure 2. The Relationship Between RTI Time, Federation Time,
and PORTSIM Simulation Clock

In Figure 2, t, Ty, and T denote the RTI time axis,
the RTT time at which the federation starts, and the
zero point of the federation time in the federation
time axis, respectively.

It must be pointed out that this method is based on a
fundamental assumption that the PORTSIM federate
is capable of finishing analysis for a time step and
putting the resuits into the buffer port history file
before a request of port attribute update for this time
interval is made by other federate(s). Therefore, the
minimal lookahead value, which is the minimum
time for PORTSIM to finish the analysis for the
requested update, has to be determined and
considered in developing a federation.

4. Conclusions

Two important problems were encountered in
developing the HLA federate for the seaport military
equipment deployment operation simulation model
PORTSIM. The first is an otfject ownership transfer
problem for the non-federate cargo object. The
second is a time management issue for the federate-
models, such as PORTSIM, that are not coordinated
through an external or federation clock.

Solutions have been found for both of these
problems. First, a method is developed for solving

the cargo object ownership transfer problem, In this
method, the object ownership problem is converted
into an interaction problem. When a cargo leaves a
port, the port federate holding the cargo object
initiates a send_cargo_object interaction. The
attribute values are passed as interaction parameters
to the receiving federate. The receiving federate
instantiates and publishes a new local copy of the
object with the atiribute values received when it
receives the interaction. The original owner of the
cargo object then deletes both the local copy and the
copy it published to the RTI of the cargo object. The
cargo object ownership transfer problem is
effectively converted into an interaction problem.

The time management problem has also been solved
by mapping the PORTSIM internal simulation clock
to the federation clock. In this method, the port
attribute data, generated during the simulation, are
stamped with the internal clock and pushed to an
auxiliary array. A time mapping scheme is then
used to convert the simulation time stamp into the
federation time stamp. The PORTSIM simulation
can then update its attributes to the RTI with the
correct data. An important assumption made in this
method is that the PORTSIM federate is capable of
its finishing analysis for a time step and putting the
results into the buffer port history file before a
request for updating port attributes for this time

interval is made by other federate(s). There is,
however, no mechanism in this method to prevent
this from happening. The designer of the federate
must pay special attention to this matter.

S. Acknowledgment

This work is supported by the Military Traffic
Management Command Transportation Agency
(MTMCTEA) of the Department of Defense through
U.S. Department of Engery contract. Mr. Melvin J.
Sutton, Jr. from MTMCTEA has provided invaluable
guidance and help in the course of this work. The
authors would like to express their sincere
appreciation to MIMCTEA and to Mr. Sutton.

6. References

[1} M. J. Sutton, “Force Projection Modeling”,
Proceedings of the 1997 Fall Simulation
Interoperability = Workshop, Orlando, FL,
September, 1997

[2] M R. Nevins, C. M. Macal, J. Joines, “A
Discrete Event Simulation Model for Seaport
Operation”, Simulation Journal, Society for
Computer Simulation (Pending publication).

[3] Defense Modeling and Simulation
Office(DMSO), “High Level Architecture
Interface Specification Version 1.1”, February
12, 1997,

[4] Defense Modeling and Simulation
Office(DMSO), “High Level Architecture Run-
Time Infrastructure Programmer’s Guide
Version 1.17, May 15, 1997.

[5] Oak Ridge National Laboratory, “Joint Flow and
Analysis System for Transportation (JFAST)
User’s Guide Version 5.0, Oak Ridge, TN,
1993.

[6] Military Traffic Management Command

Transportation Engineering Agency
(MTMCTEA), Ports for National Defense,
MTMCTEA report SE 91-3d-31.

Author Biographies

ZHIAN LI is a rescarch software engineer at
Argonne National Laboratory. He has been working

on a broad spectrum of research areas. His main
research interests are computer simulation and
modeling, operation research, and Geographic
Information Systemn. He received his Ph.D. from The
Pennsylvania State University, M.S. from Institute of
Atomic Energy, and B.S. from TsingHua University
in nuclear engineering. He is currently working on
the development of HLA federates for the logistics
models developed at Argonne National Laboratory.

CHARLES M. MACAL directs the Artificial
Intelligence Applications Section and leads the
Logistics Modeling and Simulation Program at
Argonne National Laboratory. His research interests
include simulation modeling and architectures, and
agent-based modeling, He has a Ph.D. in operations
research from Northwestern and degrees from
Purdue. He is a registered professional engineer in
the state of Illinois and a member of INFORMS, the
American Association for Artificial Intelligence, the
Society for Computer Simulation, and Tau Beta Pi.

MICHAEL R. NEVINS is a software engineer in
the Decision and Information Sciences Division of
Argonne National Laboratory. He received a M.S. in -
Computer Science from Depaul University and a
B.S. degree in Computer Science from Elmhurst
College. He is the developer of the PORTSIM
model. His research interests include simulation
modeling and object-oriented software design and
development. He is a member of Phi Kappa Phi, Pi
Mu Epsilon, and the Society for Computer
Simulation.

