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RESEARCH OBJECTIVES

The overriding objective for this project is to develop an efficient and accurate method for
capturing strong discontinuities and fine smooth flow structures of disparate length scales with
unstructured grids, and demonstrate its potentials for problems relevant to DOE. More

specifically, we plan to achieve the following objectives:

1. Extend the SV method to three dimensions, and develop a fourth-order accurate SV scheme
for tetrahedral grids. Optimize the SV partition by minimizing a form of the Lebesgue
constant. Verify the order of accuracy using the scalar conservation laws with an analytical

solution;

2. Extend the SV method to Navier-Stokes equations for the simulation of viscous flow
problems. Two promising approaches to compute the viscous fluxes will be tested and

analyzed;

3. Parallelize the 3D viscous SV flow solver using domain decomposition and message passing.
Optimize the cache performance of the flow solver by designing data structures minimizing

data access times;

4. Demonstrate the SV method with a wide range of flow problems including both

discontinuities and complex smooth structures.

The objectives remain the same as those outlines in the original proposal. We anticipate no

technical obstacles in meeting these objectives.



1. MAJOR ACCOMPLISHMENTS

All the main objectives in this project have been achieved. More specifically, we accomplished
the following:

1. Successfully extended the spectral volume method to three dimensions for simplex elements.
In addition, we found that the SV method and the SD method are identical in 1D. In order to
boost efficiency, a quadrature-free version was developed, which allows the SV method to
be implemented for 3D problems much more efficiently that the traditional approach.
However, the SV method was still found to be more expensive than several recent method
such as the SD method.

2. Successfully extended the SV method to the Navier-Stokes equations. Following ideas in the
discontinuous Galerkin (DG) community, several robust techniques have been developed,
and are shown to perform satisfactorily.

3. The SV solve has been implemented for parallel computers using domain-decomposition
and MPI, and demonstrated excellent scalability because of the compact nature of the SV
method.

4. Solution based mesh adaptation has been implemented to further boost the efficiency of the
SV method in handling problems with both discontinuities and complex smooth features.

In this report, we elaborate on the solution-based mesh adaptation.

2. Review of the Quadrature-Free Spectral Volume Method

Consider the multidimensional conservation law

R, HQ _ 9@, Q) _, (2.1a)
ot OX oy oz ’

on domain 2 x [0,T] and €2 — R*=with the initial condition

Q(x,Y,2,0) = Qy(x,y,2), (2.1b)
and appropriate boundary conditions on 02. In (2.1), x,y, and z are the Cartesian coordinates and
(x,y,2)e Q,t € [0,T] denotes time, Q is the vector of conserved variables, and f, g and h are the
fluxes in the x, y and z directions, respectively. Domain Q is discretized into |1 nonoverlapping

triangular (2D), or tetrahedral (3D) cells. In the SV method, the simplex grid cells are called



SVs, denoted S;, which are further partitioned into CVs, denoted C;;, which depend on the degree
of the polynomial reconstruction. Examples of partitions supporting linear, quadratic and cubic

reconstructions are shown in Figure 1.

Volume-averaged conserved variables on the CVs are then used to reconstruct a high-order
polynomial inside the SV. To represent the solution as a polynomial of degree m, we need N
pieces of independent information, or degrees of freedom (DOFs). Where N is calculated as

follows:

N (m+1)(m+d2l)-"(m+d), (2.2)

where d is the spatial dimension of the problem. The DOFs in the SV method are the volume-
averaged conserved variables at the N CVs. Define the CV-averaged conserved variable for C;

as

Q’j:LJQdV, i=1,...N, i=L,...,l, (2.3)

i,j Cij
where V;; is the volume of C;;. Given the CV-averaged conserved variables for all CVs in §;, a
polynomial pi(x,y,z) € P™ (the space of polynomials of at most degree m) can be reconstructed
such that it is a (m+1)™ order accurate approximation to Q(x,y,z) inside S;.
p(x y,2)=Q(x,y, z)+O(hm*1), (x,y.2)eS,, i=l,...,l, (2.4)
where h is the maximum edge length of all the CVs. This reconstruction can be solved

analytically by satisfying the following conditions:

1 [p(xy, z)av =Q ;, J=L......N.
V',J' Cij

(2.5)
This polynomial pi(x,y,z) is the (m+1)" order approximation we are looking for as long as the
solution Q(x,y,z) is smooth in the region covered by S;. The reconstruction is expressed more

conveniently as

p(xy.z)= _ 1Lj(xiy’z)6i,j ’ (2.6)

]

=z

m

where Lj(x,y,z) € P

Vi [L(xy, z)dv =6, - (2.7)

are the shape functions which satisfy

I



Integrating (2.1) in C;j, we obtain

do. . . .
QI'J +ii.|.(|: ﬁhA=01 J=19--~:N1 I=1,...,1, (28)
dt V P r:lAr

L]

where F= (f,g,h), A represents the r" face of Cij, n is the outward unit normal vector of A, and
K is the number of faces in C;;. More details of this, including representative plots of the shape

functions can be found in Wang and Liu [29].

A nodal set, such as those shown in Figure 2, is selected from Hesthaven [16] and used to
support a degree m+1 polynomial reconstruction for the flux vector. The flux vector F can be
computed at any point (x, y, z) by the following

F(x¥,2) =Y M, (x y. 2)F, 29)

where Ns is the number of nodes in the nodal set, calculated from (2.2), F; is the flux vector

evaluated at node i, and M;j(x,y,z) are the shape functions defined by the nodal set which satisfy
Mn(xj,yj,zj)=5jn.

(2.10)

Some representative examples of the shape functions are shown in Harris et al [14]. The average

of (2.9) over a particular face is given by

N —

F=>M,F, (2.11)

o

1]
N

where M, are the face-averaged node-based shape functions for that face evaluated in the

standard element. This can be done either analytically using Mathematica [33] or the like, or

numerically using Gauss quadrature formulas.

The face integral in (2.8) is then given as

[(F-A)dA=AF, , 2.12)
A

where F_is the dot product of (2.11) with A. This expression is exact for internal faces. For

faces on SV boundaries, we use

J(F-ida= 2 [F, +Foo-a. Q-G ) (2.13)

AI’



where F, and F, . denote the face-averaged normal component of the flux vector due to the
SV to the left and right of the interface, respectively, and o is taken as the maximum absolute
eigenvalue as in the Rusanov flux [22], or the dissipation matrix as in the Roe flux [21], which is
evaluated at the face center. Q,and Q, are the face-averaged conserved variables due to the SV

to the right and left of the interface, respectively.



3. Adaptive hp-refinement

Local adaptive grid refinement is used to focus computational effort near discontinuities and fine
smooth features to reduce the overall computational effort in the entire domain. H-refinement
involves modification of cell sizes while p-refinement involves modification of polynomial
orders. We wish to utilize either or both on-the-fly as the flow develops. Both h- and p-
refinements are carried out using only local operations to maximize the efficiency and accuracy

of the procedure.
1. H-refinement

In this study, since we are only dealing with triangular SVs, the h-refinement can be performed
without introducing the so-called hanging nodes. Therefore, it is basically a matter of grid
regeneration, with no required modification of the solver itself. An efficient hierarchical edge-
based adaptation algorithm is employed, which allows the grid to be adapted any number of
levels from the base (coarsest) grid at any time. Let ¢ be an adaptation indicator for edge i, and
let emax be some norm of & accounting for all edges in the domain. If for any edge i, &>aéemax,
then edge i is split into two edges, otherwise edge i is maintained. Here >0 is a user specified
constant. The value a=1 provides sufficient adaptation in most cases, and is used in all cases
considered here, unless otherwise noted. The adaptation procedure begins with edges in the base
grid (root edges), and continues until the maximum number of adaptation levels is reached. The
adaptation indicator ¢; is always computed using the solution from the previously adapted (finest)
grid. When the above procedure completes, new SVs are added to the grid as a result of the split
edges. There are essentially four different situations that can occur when the grid is adapted, as

shown in Figure 3.

For each SV in the grid, the difference in adaptation level for that SV’s edges is allowed to be no
greater than one. This is done to prevent the creation of overly skewed cells, so that all grids are
comparable in quality to the base grid. When the creation of new SVs is complete, new cell-

averages are then computed using



N

Qi,j :kZJlM j,in,k ' (3.1)
where I\Wj,k are the node-based shape functions for node k averaged over CV j, and Qi are the

conserved variables evaluated at node k of SV i. If node k exists within a SV in the previously

adapted grid, then Q;x are obtained from (2.6) using CV-averaged solutions 6, ; from that SV.

Otherwise, if node k exists at the junction between two or more SVs in the previously adapted
grid, then Q;x are obtained from an average of (2.6) among all SVs which have the physical
location of node k in common. The above interpolation gives rise to an inherent loss of precision
associated with coarsening of the solution, which is an unavoidable consequence of the h-
refinement procedure. Two different methods for computing the adaptation indicator ¢; are given

below. The first, and simplest adaptation indicator is computed using

& :|AV/i|Aiu’ (3.2)
where Ay; is the difference of y between the two endpoints of edge i, A; is the area of edge i, and
u is a positive constant. Here y can be any flow variable (pressure, density, total velocity, etc.).
The employment of the positive exponent u has the effect of pushing the grid toward more
uniformity, and guarding against overadaptation near discontinuities. An alternative gradient-

based adaptation indicator is computed using

g = ‘A(Vw-T)JAM , (3.3

where A(V;y-r)i is the difference of the gradient of w between the two endpoints of edge i
projected in the direction tangent to edge i. In the tests we performed, we found that u=1/2 gave
reasonable results for most cases. We use this value of u in all cases, unless otherwise noted.

Also, emax IS taken to be the L, norm of ¢ over all edges, given by

1 Ne 2
E o =L2||8||= N—eégi , (3.4)

where Ne is the total number of edges in the grid. A comparison of results from the adaptation

indicators given by (3.2-3.3) is given in section 4.

2. P-refinement



P-refinement, or order refinement, allows for a distribution of SVs where the degree of the
polynomial reconstruction may vary from one SV to another. Unlike h-refinement, p-refinement
does require significant modification of the solver itself. Among other things, the terms N and N
in (2.6) and (2.9) are no longer constant, but depend on the level of p-refinement of the current
cell. In addition, computation of the face-averaged terms in (2.13) is not as straightforward as
before. For example, consider the case where a linear SV is adjacent to a quadratic SV, as shown
in Figure 4. Here, the face-averaged shape functions for CV faces on SV boundaries must be
computed in parts. For the corner CVs in the quadratic partition (right), the face-averaged shape
functions are computed as usual, but the face-averaged shape function for the side CV must be
computed in two parts to coincide with the intersection of that CV face with the face of the
adjacent CV in the linear SV. With the face-averaged shape functions computed in this manner,

the face-averaged terms in (2.13) can be readily computed.

Let the adaptation indicator &; for edge i be the same as is defined in (3.2), and enax IS again taken
to be the L, norm of ¢ over all edges. If for any edge i, &>pemax, then the degree of polynomial
reconstruction for the cells adjacent to edge i, is increased by 1. Similarly if &<pemax, then the
degree of polynomial reconstruction for the cells adjacent to edge i is decreased by 1, and if
Lemax<ei<yemax the polynomial degree is left unchanged. Here ,y>0 are user specified constants.
In the tests we performed, =1 and y=0.6 gave reasonable results. In the case considered here,

only one level of p-refinement is used for which B is taken to be 1.
3. Hp-refinement

For simplicity, simultaneous h- and p-refinements are carried out in a decoupled manner. H-
refinement is first performed to generate a new grid, and p-refinement is then performed to
increase or decrease the degree of the polynomial reconstruction for each SV in the new grid. As
new SVs are created as a consequence of h-refinement, the polynomial degree is set to minimum
(1 in this case), and may not be increased as a result of p-refinement. This is a safeguard to
ensure that the lowest possible degree polynomial is used near very high gradient regions. Such a

measure should minimize oscillations due to extreme flow phenomena such as shock waves. This



methodology for hp-refinement should be able to tackle a wide range of problems, resolving both
shock waves and fine smooth features simultaneously. This is in contrast to another recent
approach by Remacle et al. [20], where both h- and p-refinements are carried out in the same
regions. While this approach may work well for some situations, it could lead to large
oscillations for problems involving strong shock waves. This is due to the fact that there is no
mechanism in place to prevent the use of a high-order polynomial near a shock wave, other than

a limiting procedure.

4. Numerical Tests

In this section, the SV method with local adaptive hp-refinement is evaluated for the 2D Euler
equations. Several well known inviscid flow test cases are utilized to demonstrate the
effectiveness of local hp-refinement. In all cases involving shock waves, the TVD limiter
presented in Harris et al. [14] is employed to maintain a stable numerical scheme. In all cases
involving curved-wall boundaries, the approach of Krivodonova and Berger [18] is utilized to
maintain low computational cost. This approach was successfully implemented for the SV
method in Harris et al. [14]. All of the following cases employ the Rusanov [22] flux, and for
time integration we use either the 2" or 3 order Strong Stability-Preserving [12] (SSP) Runge-

Kutta scheme.

1. Subsonic and transonic flow over NACA 0012 airfoil

As a demonstration of the p-refinement technique, subsonic flow at Mach=0.4, and angle of
attack of 5° around a NACA 0012 airfoil is considered. The grid used for the NACA 0012 case is
semi-structured, as shown in Figure 5. The outer boundary is 20 chord lengths away from the
center of the airfoil. For this case, the SVs near the farfield are orders-of-magnitude larger than
the SVs near the airfoil surface. The adaptation indicator given in (3.2) is selected for this
problem, with the exponent u taken to be zero. The choice of exponent for this case was made
after many numerical experiments showed that a positive area weighting produced significant
adaptation near the farfield boundary, which is not necessary. Also, y in (3.2) is taken to be the

Mach number.



As a test of the p-refinement technique, a converged solution from a 2™ order simulation is
subjected to 1 level of p-refinement and run until convergence. This case will be subsequently
denoted as the 2-3 case. Thus, the resulting solution will contain some 2" order SVs and some
3" order SVs. Mach contours for this simulation, as well as uniform 2™ and 3" order simulations
for comparison, are shown in Figure 6. Figure 6d shows Mach contours for the 2-3 case and for a
uniform 3" order case for comparison. It is evident that Mach contours for the 2-3 case agree
reasonably well with the 3 order contours, and the large errors present near the airfoil in the 2™
order case are eliminated in the 2-3 case. The convergence history for this case is shown in
Figure 7a. It is apparent that the 2-3 case costs slightly more than the 2" order case in terms of
required time steps, but it costs much less than the 3™ order case. This is encouraging, as the 2-3
case agrees with the 3 order case extremely well at the airfoil surface (which is where a lift/drag
calculation would take place), for significantly less computational cost than that required for a
full 3 order simulation. Figure 7b clarifies which SVs are increased to 3™ order for the 2-3 case.
It is clear that the majority of SVs in the domain are still 2" order, and 3™ order SVs are only

used in regions of largest change in Mach number.

As a demonstration of the h-refinement technique, transonic flow at Mach=0.9, and angle of
attack of 1° around a NACA 0012 airfoil is considered. The base grid used for this simulation is
the same as that used for the above subsonic case. Here the adaptation indicator (3.2) is
computed based on density and total energy, and again the exponent u is taken to be zero to
avoid unnecessary refinement in the farfield. This case involves shock waves on both the upper
and lower surface of the airfoil, so the aforementioned TVD limiter is utilized to maintain
stability. For this case, the value 0=2.5 gave reasonable results, while lower values of « tended to
over-adapt in regions far away from the shock waves. A converged 2™ order solution is again
taken as the initial condition, and grid is then re-adapted 3 times and then frozen for the

remainder of the simulation.
Figures 8 and 10 show the computational grids and Mach contours, respectively, for 1-4 levels of

adaptive h-refinement. It is evident that without refinement, the shock waves are smeared over

several grid cells and the solution is of low quality. As the adaptation level is increased, the grid

10



density in the vicinity of both shock waves and expansions is increased markedly. This produces

a much higher quality solution with more precisely captured and finely resolved shock waves.

2. Mach 3 wind tunnel with a step

This problem was studied extensively by Woodward and Colella [34], and has been widely used
to assess the performance of shock-capturing methods. The 2D wind tunnel is 3 units long and 1
unit wide, with a step of 0.2 units high located at 0.6 units from the tunnel inlet. The initial
condition is a Mach 3 right-going uniform flow. Inviscid wall boundary conditions (reflective)
are used for tunnel wall boundaries, while inflow and outflow boundary conditions are used at
the inlet and exit of the wind tunnel. It is well known that the corner of the step is a singularity,
and often leads to a spurious Mach stem at the downstream bottom wall, and an erroneous
entropy layer at the bottom wall. In Woodward and Colella [34], various numerical treatments
were used to remedy these artifacts. In the present study, no special treatments were used for the

singularity to see how the singularity affects the numerical solutions.

Both 2" and 3" order simulations are carried out, using various levels of h-refinement. Figure 10
shows a comparison of results using the adaptation indicators (3.2-3.3) for a 3" order simulation
with 1 level of refinement. It is apparent that the results are very similar, while (3.3) is more
expensive to compute than (3.2). In addition, as the number of adaptation levels is further
increased, (3.3) becomes extremely sensitive, and as a result, further adaptation becomes
increasingly non-isotropic. For this reason, and because it is significantly less expensive to
compute while producing desirable results, we use the adaptation indicator (3.2) which is
computed based on density, and the area weighting exponent u=1/2. The value of « is taken to be
1. The Figures 11-12 show grids and density contours obtained for a 2" order simulation with 0-
3 levels of h-refinement. All plots show 30 even contours of density between 0.09 and 4.53. It is
clear that as the adaptation level is increased, the grid becomes exceedingly dense in the vicinity
of the shock wave, near the corner of the step, and downstream of the triple point. Also as the
adaptation level is increased, the shock is captured more accurately with less smearing, and the
spurious Mach stem downstream of the step is reduced in size to the extent that it is barely
discernible. Figures 13-14 show similar results for a 3" order simulation. In both 2" and 3"

order cases, the spurious Mach stem is completely eliminated for 2 or more levels of h-

11



refinement, and when compared to global refinement, even only 1 level of h-refinement produces
a much better solution with far fewer degrees of freedom than that on a grid that has been

globally refined 1 level.

3. Rayleigh-Taylor instability problem

The Rayleigh-Taylor instability (RTI) problem involves a cold fluid overlying a warm fluid. Two
inviscid fluids are initially taken to be in hydrostatic equilibrium in an isolated chamber, as
shown in Figure 15a. The chamber is 1 unit high, and 0.25 units wide. The upper half of the
chamber contains a fluid of density two, while the lower half of the chamber contains a fluid of
unit density. The initial pressure field is chosen to ensure hydrostatic equilibrium, and an initial

perturbation of the velocity field triggers the instability.

The flow is governed by the Euler equations with the addition of source terms in the y-

momentum and energy equations which correspond to unit gravity in the downward direction.

The initial data is summarized in Table I, where M=0.1, =6, y=1.4, ¢ =M,/y/2, and
&, =—¢,7/116. A perturbation is selected which gives rise to a single mode instability, and

inviscid wall boundary conditions are used for the chamber walls. While there are no shock
waves in this problem, there is a contact discontinuity between the two fluids. Here the
adaptation indicator (3.2) is computed based on density, and the values of u and « are taken to be

1/2 and 1, respectively.

Figure 16 shows 1%, 2" 3 and 4™ order results for this case on both symmetric and asymmetric
grids with no adaptation. In all plots, 30 even contours of density between 0.84 and 2.4 are
presented. In addition, Roe flux is used for all RTI cases. From Figure 16, it is evident that as the
polynomial order is increased on a uniform grid, the solution contours are over-dissipated by the
limiter. Thus, if a local min/max-based limiter is used for this problem, adaptive h-refinement is
essential if high-order accuracy is sought. For comparison, Figure 17 shows 2™ and 3" order
results using uniformly refined grids. Results and grids for this case obtained using adaptive h-
refinement are shown in Figures 18-20. Both symmetric and asymmetric base grids are employed
for this simulation. It is immediately apparent that the behavior of the RTI problem is heavily

dependent on the grid used. Namely, if the initial grid is symmetric, the solution tends to stay

12



symmetric (until numerical round-off eventually leads to asymmetries), otherwise the solution is
completely asymmetric. In all cases, the typical mushroom-cap behavior is observed, with
increasingly complicated flow structure downstream as the number of adaptation levels is
increased. Comparing Figures 17-19, it is clear that local adaptive h-refinement is far more
effective than global refinement at resolving the flow features for this problem. In fact, a much
more highly resolved solution is obtained using local h-refinement with far fewer degrees-of-

freedom than is necessary for a global refinement strategy to produce similar results.

4. Reflection of Mach 3 shock wave from 2 offset circular cylinders

This problem involves a right-moving Mach 3 shock wave impacting two offset circular
cylinders. The domain is 1 unit high and 1 unit wide, with two 0.15 radius cylinders located at
(0.4, 0.25) and (0.5, 0.75), respectively. The shock wave is initially located at x=0.2, and the
solution is carried out until time=0.16. Here the adaptation indicator (3.2) is computed based on

density, and the values of u and « are taken to be 1/2 and 1, respectively.

The base grid for this case, and results for 2", 3" and 4" order simulations with no adaptation
are shown in Figure 21. It is evident that the 3" order simulation has more effective resolution of
the shock waves than the 2" order simulation, however, the 4™ order simulation is not more
resolved than the 3" order simulation. This is likely because limiters bases on a local maximum
principle are often over dissipative, and can effectively reduce a high-order simulation to low-

order.

Figures 22-23 show 2™ and 3" order results and grids for this simulation subjected to various
levels of h-adaptation. In all plots, 30 even contours of density between 0.3 and 18.0 are
presented. It is apparent that as the adaptation level is increased, the resolution of the shock
waves increases markedly. This is true for the region where the shock reflects off of the cylinder,
as well as for the region where the shocks intersect. From Figure 23, it is clear that the 3" order
simulation gives better resolution of the shocks, and more accuracy in smooth regions than the

2" order case.
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5. Conclusions

The high-order quadrature-free spectral volume method has been successfully extended for use
with local adaptive hp-refinement. A hierarchical edge-based adaptation algorithm was
employed for high efficiency. The p-refinement methodology was effectively utilized for the
case of subsonic flow over a NACA 0012 airfoil, and the h-refinement technique was also
employed with success for transonic flow over a NACA 0012 airfoil. In addition, the h-
refinement technique was also demonstrated for supersonic flow in a wind tunnel with a forward-
facing step, reflection of a moving shock wave off of 2 offset circular cylinders, and the
Rayleigh-Taylor instability problem. It was demonstrated that adaptive h-refinement is far more
effective than global refinement at resolving important flow features, and a much more highly
resolved solution can often be obtained using adaptive h-refinement with far fewer degrees-of-
freedom than is necessary for a global refinement strategy to produce similar results. The
extension of the adaptive quadrature-free SV method for use with implicit solvers for the Euler
and Navier-Stokes equations will be the subject of future research.
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Figure 1. Partitions of a triangular SV supporting linear, quadratic and cubic data

reconstructions, shown in (a), (b) and (c), respectively.
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Figure 2. Nodal sets in a triangular SV supporting quadratic, cubic and quartic data

AN

(@) (b) (©) (d)

reconstructions for the flux vector, shown in (a), (b) and (c), respectively.

Figure 3. Four situations that can occur when a SV is refined; (a) No edges are split so the SV is
unchanged; (b) Two new SVs are generated due to one split edge; (c) Three new SVs are
generated due to two split edges; (d) Four new SVs are generated due to three split edges.

Figure 4. Two adjacent SVs with p-refinement levels differing by one. The left SV contains a

linear partition, and the right SV contains a quadratic partition.
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Figure 5. Base grid for subsonic and transonic flow over NACA 0012 airfoil (48x16x2 triangles).

(b)

(c) (d)

Figure 6. Contours of Mach number for subsonic flow over a NACA 0012 airfoil; (a) 2" order
(4,608 DOFs); (b) 3 order (9,216 DOFs); (c) 1 level of p-adaptation starting from the converged

2" order solution shown in (a) (6,519 DOFs); (d) The 1 level case shown with the 3 order case
to illustrate differences.
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Figure 7. Results for subsonic flow over NACA 0012 airfoil (a) Convergence history (The red
circles are for a uniform 3™ order case, while the blue line shows the convergence of the 2"
order solution, the p-adaptation step, and the convergence of the resulting ‘“2-3” case) (b)
Schematic showing the status of p-refinement after refining from a converged 2™ order solution.

Black regions represent 3™ order SVs, while gray regions represent 2" order SVs.

(@) (b)

(© : (d)
Figure 8. Grids for 2" order solution of transonic flow over NACA 0012 airfoil with adaptive h-
refinement; (a) 1 level (3,349 triangles); (b) 2 levels (9,337 triangles); (c) 3 levels (30,498
triangles); (d) 4 levels (92,551 triangles); A converged 2" order solution on the base grid is used
as the initial condition for all cases. The grid is re-adapted 3 times (once every 100 time steps for

the first 300 time steps), and then frozen for the remainder of the simulation.
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Figure 9. Mach contours for 2" order solution of transonic flow over NACA 0012 airfoil with

(c) 3 levels

(b) 2 levels (28,011 DOFs)

(@) 1 level (10,047 DOFs)

(d) 4 levels (277,653 DOFs)
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Figure 12. Density contours for 2" order SV scheme under adaptive h-refinement at time=4.0;

(a) Base grid (26,238 DOFs); (b) 1 level (44,295 DOFs); (c) 2 levels (66,312 DOFs); (d) 3 levels

(107,538 DOFs); Refined from base grid every 100 time steps.
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Figure 13. Grids for 3" order SV scheme under adaptive h-refinement at time

(14,988 triangles)
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(b)

(©)
Figure 14. Density contours for 3" order SV scheme under adaptive h-refinement at time=4.0;

(a) Base grid (52,476 DOFs); (b) 1 level (89,928 DOFs);(c) 2 levels (136,062 DOFs); Refined
23

from base grid every 100 time steps.



(@) (b) (©)

Figure 15. Problem domain and grids for RTI problem; (a) domain; (b) symmetric grid (10x38x2
triangles); (c) asymmetric grid (10x38x2 triangles).
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(b)

Figure 16. 1%, 2" 3™ and 4™ order density contours (left-to-right, 760, 2,280, 4,560, and 7,600
DOFs) for RTI problem at time=1.8 with no adaptation; (a) symmetric grid; (b) asymmetric grid.

©) (b) °
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(c) (d)

Figure 17. Grid, 2" and 3™ order density contours (left-to-right) for RTI problem at time=1.9
with no adaptation; (a) symmetric grid (20x76x2 triangles); (b) symmetric grid (40x152x2
triangles); (c) asymmetric grid (20x76x2 triangles); (d) asymmetric grid (40x152x2 triangles).

(a)
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(b)

Figure 18. Results for RTI problem at time=1.9 on symmetric grids; (a) grids obtained using 1-4
levels of adaptation (left-to-right, 1,810, 4,960, 14,079, and 38,281 triangles); (b) 2™ order
density contours obtained using 1-4 levels of adaptation (left-to-right, 5,430, 14,880, 42,237, and
114,843 DOFs); Refined from base grid every 10 time steps.

(a)
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(b)

Figure 19. Results for RTI problem at time=1.9 on asymmetric grids; (a) grids obtained using 1-4
levels of adaptation (left-to-right, 1,834, 5,226, 14,391, and 36,185 triangles); (b) 2™ order
density contours obtained using 1-4 levels of adaptation (left-to-right, 5,502, 15,678, 43,173, and
108,555 DOFs); Refined from base grid every 10 time steps.

(a) (b)
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© (@)

Figure 20. 3 order results for RTI problem at time=1.9 obtained using 1-3 levels of adaptation;
(a) symmetric grids (left-to-right, 1,770, 4,788, and 13,513 triangles); (b) asymmetric grids (left-
to-right, 1,891, 5,254, and 13,698 triangles); (c) density contours for symmetric grids (left-to-
right, 10,620, 28,728, and 81,078 DOFs); (d) density contours for asymmetric grids (left-to-right,
11,346, 31,524, and 82,188 DOFs); Refined from base grid every 10 time steps.
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(©)

(d)

Figure 21. Results for 2 cylinder Mach reflection case at time=0.16 with no adaptation; (a) base
grid (3,740 triangles); (b) 2" order density contours (11,220 DOFs); (c) 3™ order density

contours (22,440 DOFs); (d) 4™ order density contours (37,400 DOFs).
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Figure 22. 2" order grid and density contours for 2 cylinder Mach reflection case at time=0.16;
(@) 1 level (22,566 DOFs, 7,522 triangles); (b) 2 levels (39,144 DOFs, 13,048 triangles); (c) 3
levels (71,427 DOFs, 23,809 triangles); (d) 4 levels (134,484 DOFs, 44,828 triangles); Refined

from base grid every 100 time steps.
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Figure 23. 3" order grid and density contours for 2 cylinder Mach reflection case at time=0.16;

(@) 1 level (45,756 DOFs, 7,626 triangles); (b) 2 levels (78,978 DOFs, 13,163 triangles); (c) 3
levels (143,580 DOFs, 23,930 triangles); Refined from base grid every 100 time steps.
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Table |
Initial conditions for RTI1 problem. The geometric center of the chamber is taken to be the origin

of the coordinate system.

Parameter upper part lower part
p 2 1
u &,sin(8mx)cos[z(y+1/2)]sin" [x(y+1/2)] same as upper part
v -6y€0S(87x)sin‘[z(y+1/2)] same as upper part
P 2-2y 2-y
PERSONNEL SUPPORTED

Three graduate students have been supported by this grant, one partially. They are: Rob Harris
for the development of quadrature free method, Hong Yang for the extensions to 3D, and Ravi
Kannan for the development of an implicit method. Because of the low expenditure in Year 1 (I
was not able to find qualified students), we are still catching up in expenditure, and the students
are making satisfactory progresses in their research.

In addition, we have established an international collaboration with Tohoku University in Japan.
A PhD student, Mr. Takanori Haga, visited ISU between September and November 2006 with
his own support to work with my group on jointly developing the SV method. The Tohoku group
has been implementing the 3D SV method for the 3D Euler and Navier-Stokes equations on one
of the fastest supercomputers in the world, the Earth Simulator, which was the No. 1 computer in
the world for several years before several DOE machines surpassed it in speed. The collaboration
proved very fruitful for both groups and also leverages the current grant to make faster progress.
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The following journal papers have been published, and DOE’s support has been gratefully
acknowledged. Other publications are planned.

1. Y. Liu, M. Vinokur, and Z.J. Wang, " Spectral (Finite) Volume Method for Conservation
Laws on Unstructured Grids V: Extension to Three-Dimensional Systems,"” Journal of
Computational Physics Vol. 212, pp. 454-472 (2006).

2. Y. Sun, Z.J. Wang and Y. Liu, “Spectral (Finite) Volume Method for Conservation Laws
on Unstructured Grids VI: Extension to Viscous Flow,” Journal of Computational Physic
Vol. 215, No. 1, pp. 41-58 (2006).

3. Z.J.Wang, Y. Liu, G. May and A. Jameson, “Spectral Difference Method for
Unstructured Grids II: Extension to the Euler Equations,” Journal of Scientific
Computing, in press.

4. Y.Sun, Z.J. Wang and Y. Liu, “High-Order Multidomain Spectral Difference Method for
the Navier-Stokes Equations on Unstructured Hexahedral Grids”, Communications in
Computational Physics, in press.

The following conference papers have been presented or accepted:

1. R.Harris, Z.J. Wang and Y. Liu, “Efficient Implementation of High-Order Spectral Volume Method
for Multidimensional Conservation Laws on Unstructured Grids”, accepted by the 45™ AIAA
Aerospace Sciences Meeting and Exhibits, 2007.

2. Y.Sun, Z.J. Wang and Y. Liu, “Efficient Implicit LU-SGS Scheme for High-Order Spectral
Difference Method on Unstructured Hexahedral Grids™, accepted by the 45™ AIAA Aerospace
Sciences Meeting and Exhibits, 2007.

3. H. Yang, R. Harris, Z.J. Wang and Y. Liu, “Efficient Quadrature-Free 3d High-Order Spectral
Volume Method On Unstructured Grids,” accepted by 18" AIAA CFD Conference, Miami, June
2007.

The PI’s recent work on high order methods has gained attention in the international CFD
community. For example, a recent review paper in Progress in Aerospace Sciences highlighted
the SV method:

John A. Ekaterinaris, “High-order accurate, low numerical diffusion methods for aerodynamics,”
Vol. 41 No. 3-4, 2005.

In addition, the Pl was invited to serve as the Associate Editors of the AIAA Journal and the

International Journal of Aerospace Engineering. We are very grateful for DOE’s support of the
present research.
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