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Abstract 
 
We describe a new algorithm, meraculous, for whole genome assembly of deep 
paired-end short reads, and apply it to the assembly of a dataset of paired 75-bp 
Illumina reads derived from the 15.4 megabase genome of the haploid yeast 
Pichia stipitis.  More than 95% of the genome is recovered, with no errors; half 
the assembled sequence is in contigs longer than 101 kilobases and in scaffolds 
longer than 269 kilobases. Incorporating fosmid ends recovers entire 
chromosomes. Meraculous relies on an efficient and conservative traversal of the 
subgraph of the k-mer (deBruijn) graph of oligonucleotides with unique high 
quality extensions in the dataset, avoiding an explicit error correction step as 
used in other short-read assemblers.  A novel memory-efficient hashing scheme 
is introduced.  The resulting contigs are ordered and oriented using paired reads 
separated by ~280 bp or ~3.2 kbp, and many gaps between contigs can be closed 
using paired-end placements.    Practical issues with the dataset are described, 
and prospects for assembling larger genomes are discussed. 
 
Introduction  
 
Massively parallel sequencing methods introduced over the past few years 
provide cost-effective, highly redundant sampling of genomes (reviewed in [1]).  
Pyrosequencing reads are approaching conventional dideoxy capillary sequences 
in their read length, providing a direct substitute for Sanger sequences [2].  While 
sequencing by synthesis produces substantially shorter reads, it has lower cost 
per base and higher throughput [3].  Such data has proven useful for re-
sequencing variant genomes [4,5,6], since short reads can be readily aligned to a 
reference, and the error rates are low enough that variation can be detected by 
consistent discrepancy of the aligned short reads versus the reference.  The 
usefulness of such short-read datasets for de novo genome assembly has been the 
subject of increasing excitement (reviewed in [7] [8]), including recent 
assemblies of mammalian genomes. [9,10,11,12] 
 
Critical to the assembly of short (<100 bp) reads is the use of paired-end 
sequencing protocols, which were first introduced in the early 1990s for use with 
Sanger sequencing [13,14,15].  The importance of using a range of paired-end 



linkages to organize non-repetitive contigs into scaffolds by linking over 
repetitive regions was presciently emphasized by Weber and Myers [16] in the 
context of human whole genome shotgun sequencing.  This approach became the 
dominant paradigm for genome sequencing in the last decade.  Pairing also 
allows the assembly of localized regions that are repetitive on the scale of the 
entire genome, since reads that derive from a particular localized copy of a repeat 
can often be inferred by the placement of their mate-pair reads in flanking unique 
sequences.  With short reads the advantages of paired-end approaches are 
accentuated [17], and this strategy figures prominently in recently developed 
short-read assemblers (reviewed in ref. [18]) including EULER-SR [19], Velvet 
[20,21], ALLPATHS [22,23], ABySS [9] and SOAPdenovo [11].  These assemblers 
all take advantage of the deBruijn graph representation of the assembly problem 
[24], in which reads are decomposed into overlapping words of length k ("k-
mers"), where k is a fraction of the read length.   
 
Here we present a new assembler, called meraculous, that  relies on an efficient 
and conservative traversal of a subgraph of the k-mer (deBruijn) graph of 
oligonucleotides with unique high quality extensions in the dataset.  Unlike other 
short-read assemblers, meraculous avoids an explicit error correction step, 
instead relying on base quality scores.   Meraculous also incorporates a novel low-
memory hash structure to access the deBruijn graph, allowing a small memory 
footprint compared with other short-read assemblers.  To test meraculous we 
also report here a deep Illumina dataset for a yeast genome. 
 
Pichia stipitis CBS 6054 is a predominantly haploid yeast that efficiently 
produces ethanol from xylose and other polysaccharides [25].  The P. stipitis 
genome (N=8; GC=41.1%)  was previously sequenced and finished using Sanger 
methods [26], and has been used to assess the abilities of different next 
generation sequencing methods to detect variation [6].   As a test set for 
meraculous, we report a dataset of three lanes of 75 bp paired-end shotgun for P. 
stipitis produced using Illumina sequencing-by-synthesis methods, with both 
short-range (~280 bp) and medium-range (~3.2 kbp) pairing data.  These data 
provide a nominal 425-fold redundant sampling of the 15.4 million base pair 
(Mbp) genome.   The meraculous assembly reconstructs 95% of the Pichia 
genome in long contigs and scaffolds without any errors.  If we use the standard 
"N50" measure, half the genome is in contigs longer than 101 kbp and scaffolds 
longer than 269 kbp.  Adding a modest number of fosmid ends recovered entire 
chromosomes.  Many stages of the meraculous algorithm are parallelized, and to 
document their scalability we describe an assembly of simulated data for the 
~120 Mbp Arabidopsis thaliana genome, and show that for mammalian genomes 
the limiting memory structure requires less than 10 Gb of RAM.  
 
The meraculous software, Pichia shotgun sequence and assembly is available for 
download at ftp://ftp.jgi-psf.org/pub/JGI_data/meraculous/.  
 
 



Materials and Methods 
 
Pichia shotgun sequencing.   We constructed short insert "fragment" paired-
end libraries, with an average insert size of ~300 bp, using “Paired-End DNA 
Sample Prep Kit V1,” Catalog # PE-102-1001, from Illumina (San Diego, CA).  We 
also constructed longer-range "mate pair" or "jumping" libraries, with an average 
insert size of ~3 kbp, using Illumina’s “Mate Pair Library Prep Kit”, Catalog #: 
 PE-112-1002 (Figure 1). Both the fragment and mate pair libraries were 
sequenced at read lengths of 75 bases from both ends (2 x 75) using the Illumina 
Genome Analyzer II following manufacture’s recommended protocols.  Genomic 
DNA came from the same sample that was used in the earlier Sanger sequencing 
project [26]. For the fragment library, two channels were sequenced, with 15.5 
and 15.7 million clusters reporting sequence.  For the jumping library, one 
channel was sequenced with 12.4 clusters reporting sequence. These reads yield a 
nominal 425x coverage of the P. stipitis genome.  
 
Pichia reference sequence.  The finished P. stipitis CBS 6054 genome 
sequence[26] is NCBI project number NZ_AAVQ01000000, and consists of 
sequences AAVQ01000001-AAVQ01000002. 
 
E. coli shotgun sequence and reference.  A publicly available paired 36 bp 
Illumina dataset for E. coli  K-12 MG1655 dataset was downloaded from the NCBI 
short read archive, project SRX000429.  The finished reference sequence for this 
strain [27]  is Genbank sequence gi|48994873|gb|U00096.2. 
 
Simulated Arabidopsis dataset.  A simulated 100x fragment paired-end 
dataset with realistic error profiles was produced using persimmonator (Bret 
Barnes, Illumina).   Insert sizes were normally distributed with mean 300 bp and 
standard deviation 30 bp. Dataset is available upon request. 
 
Assembly algorithm 
 
The algorithm is encoded in four modules encoded in Perl as described below. 

 
Selection of k-mer set.  The shotgun reads are initially processed as 
follows.  
1. Select an odd integer k such that (1) a substantial fraction of the sequence 

targeted for assembly is unique as k-mers, and (2) most reads have 
multiple overlapping error-free k-mers.   A k-mer is an oligonucleotide 
sequence of length k.   For Pichia we use k = 41.    

2. Count the number of occurrences (multiplicity) of each k-mer in the 
dataset.  This can be accomplished with a single pass through the read set, 
and for large datasets is readily parallelized by dividing k-mers into 4m 

bins based on their initial m nucleotides, counting k-mers in each bin 
independently.  In practice, 16-way parallelization is convenient (m=2).  



3. Choose a threshold multiplicity 

€ 

dmin  that separates k-mers that are likely to 
contain sequence errors (multiplicity < 

€ 

dmin ) from those that are likely to 
be error free and occur in the genome (multiplicity 

€ 

≥ dmin ).  Practically, this 
threshold should be selected at (or below) the first minimum in the 
multiplicity curve [28].  We describe below and in Supplemental Text S1 
alternate methods for setting 

€ 

dmin .  For Pichia we use 

€ 

dmin  = 10.   
4. Keep only k-mers of multiplicity 

€ 

≥ dmin  (the "k-mer set" below).  That is, 
for the construction of U-U-contigs (see below),   ignore k-mers of 
multiplicity less than

€ 

dmin  as arising either from sequencing errors or low 
coverage regions. (k-mers with multiplicity below

€ 

dmin can be recovered in 
the assembly if they are the unique closure of a gap, see below.)  

 
meraculous.pl implements the following algorithm, which produces a set of 
maximal linear sub-paths of the deBruijn graph.  

1. For each k-mer, count all single-base extensions (forward and backward) 
of high quality, that is, occurrences of the k-mer in reads such that the next 
or previous base has quality value greater than or equal to a threshold 
(

€ 

Qmin) that occur in the shotgun reads.  Based on analysis of available data, 
we use 

€ 

Qmin= 20, where Q is the quality value assigned to a nucleotide by 
the Illumina base-calling software.  Single base extensions to a base with Q 
> Qmin are referred to as "high quality extensions" below.  

2. Designate each end of a k-mer  as X, U, or F depending on whether that 
end has 0, 1, or 

€ 

≥ 2 distinct high quality extensions of multiplicity at least 

€ 

dmin .  k-mer ends designated "X" have no high quality extensions; this 
condition occurs at persistently unsequenceable or low depth positions.  k-
mer ends marked "U" have a unique high quality extension in the dataset.  
k-mer ends marked "F" represent a "fork" in the deBruijn graph that 
correspond to exits from a repetitive sequence into multiple alternate 
sequence contexts. (Polymorphisms in diploid genomes also lead to forks; 
such cases are not considered further here.)  

3. Store k-mers with unique high quality extensions at both ends (i.e., those 
designated U-U in the previous step) in a hash where the "key" is the k-
mer and the "value" is a two-letter code [acgt][acgt] that indicates the 
unique bases that immediately precede and follow the k-mer in the read 
dataset.  This hash represents the "U-U graph," which is a subgraph of the 
full deBruijn graph.  Implementation of a novel hashing scheme is 
described in more detail below.   

4. Remove all linkages that are not reciprocal. That is, if the k-mer v is the 
unique high quality extension of u in one direction, then u must be the 
unique high quality extension of v in the opposite direction.  This step 
eliminates subpaths corresponding to residual errors (see Figure 2) that 
evade the minimum depth condition.  

5. Arbitrarily select k-mers to seed forward and reverse traversals of the U-U 
graph to produce an initial set of "contigs."  These U-U contigs have the 



property that each k-mer is represented only once in them.  The resulting 
contigs are independent of the selection of seed k-mers.  We retain only 
contigs longer than a specifiable minimum length (which is required to 
exceed 2k-1 bases); for the reported Pichia assembly, only contigs 

€ 

≥100 bp 
are considered.  

 
blastMap.pl aligns reads back to the assembly to identify read-pair 
information that may be used to link strings of contigs together into scaffolds.  

1. All reads are aligned to the contigs produced by meraculous using BLAST 
[29].  Aligners designed specifically for short reads could also be used; we 
initially opted for BLAST for simplicity.  Parameters for BLASTN were -b 
100 -v 100 -K 100 -e 1e-10 -U -F F -W k.  Notably the word size was chosen 
to be k, since by construction the U-U contigs contain each U-U k-mer 
exactly once.   

2. Alignments were parsed using a custom Perl script (blastView3.pl, 
Chapman, unpublished) that reports the highest-scoring HSP (high-
scoring segment pair) for all contigs to which a given read is aligned.  
Alignments of a minimal length (a parameter value 

€ 

≥ k) are retained.  For 
"jumping" libraries, alignment orientations are reversed to conform to 
standard paired end conventions (see Figure 1B), and alignments with 
less than 600 bp between the 5' end of the aligning read and a contig end 
are rejected to prevent inclusion of artifactual pairs which can comprise a 
significant fraction of these libraries (see Results).  

3. Read vs. contig alignments are categorized as full-length, gap-projecting 
(alignment ends at contig boundary), incomplete (less than 5 bp 
unaligned; not at contig boundary), or truncated (at least 5 bp not aligned; 
not at contig boundary) at each end and also categorized as "pointing out" 
(3' end within 1.2x insert size of a contig end), "pointing in" (5' end within 
1.2x insert size of a contig end), or "in the middle" (neither end within 1.2x 
insert size of a contig end) of the target (contig) sequence.   

4. Full length alignments in which both ends of a pair are placed within a 
common contig (and appropriately oriented) are used to estimate the 
insert size of the pair library.   

5. Alignments that project into a gap (at either 3' or 5' end) or are "pointing 
out" from a contig end are retained and categorized as anchored 
completely within a contig (neither end terminates at a contig boundary), 
pointing into a gap (3' end terminates at contig boundary), pointing out of 
a gap (5' end terminates at contig boundary), or "splinting" a gap (i.e., 
having two alignments to different contigs, each of which terminates at a 
contig boundary).  Pairs and singleton reads with these properties are 
reported for use by subsequent scaffolding and gap-closure steps 
(discussed below).  

 
oNo.pl uses paired reads and splinting singletons from blastMap to produce 



a scaffolding by "ordering and orienting" a set of contigs (or a previous 
scaffolding).  

1. The number of links between contig-end pairs are tabulated and the 
estimated gap size between contig ends calculated using a correction that 
accounts for the fact that pairs spanning a given gap must be longer than 
that gap size (see Results below).   

2. Pairs of contig ends that are unambiguously linked by pairing information 
are "locked" together.  In cases where two possible links are found, if the 
greater of the two estimated gap sizes is large enough to accomodate the 
smaller gap as well as its associated contig, the smaller gap is accepted.  In 
order for contigs to be "locked" together they must be mutually unique 
extensions of each other based on pairing (in analogy to the U-U k-mer 
relationship in the contig-building step).   

3. The graph of locked contig ends is traversed to produce scaffolds which 
terminate when no linking information is available or the linking 
information does not represent a consistent, mutually unique pairing 
relation.  A minimum number of links (paired or splinting)  is required to 
accept a contig end connection.  This threshold, 

€ 

pmin , is defined by 
observing the distribution of the number of links per gap and may be 
adjusted to produce more or less conservative scaffolding.  For Pichia, 

€ 

pmin= 6 was used.  
4. Gapped contig sequence and a report of the flanking k-mers ("virtual 

primer pairs") and the estimated size of each gap are generated and passed 
on to the next phase of the process, gap-resolution.  

 
merauder.pl closes gaps contained within scaffolds using reads that are 
projected to lie within the gap based on their mate reads.  

1. For each gap in the scaffolds, reads that project into the gap by direct 
alignment and unaligned reads whose mates' alignments suggest that they 
fall into the gap are collected as potential gap-fillers.  

2. Potential gap-filling reads are searched to identify those that contain both 
gap-flanking primer sequences and produce a closure within a given 
tolerance of the estimated gap size (the tolerance is  based on the pair-end 
separation uncertainty).  Such reads are said to "splint" across a gap.  Note 
that some gaps from oNo scaffolds may be negative, indicating that the 
flanking contigs overlap but that the overlap is either too short or 
repetitive (i.e., relevant k-mers are not in the U-U set).  If splinting reads 
are found, then the gap is filled (or negative gap joined) if there is a unique 
gap-resolving sequence found in all reads that contain both primers.  
(Note that an optional more aggressive gap-resolution may be obtained by 
using the most common gap-resolving sequence and eliminating the 
uniqueness requirement.)  

3. If "splinting" fails, merauder.pl attempts a k-mer walk starting from the 
forward primer using the meraculous algorithm above ("mini-



meraculous") .  The gap is closed if a unique path to the reverse primer is 
found that is within tolerance of the estimated gap size.  Should the gap 
fail to close due to an unresolved repeat within the gap-filling read subset, 
the k-mer size is iteratively increased by two until either the gap is 
successfully closed or the failure is due to a lack of extension data (i.e., 
only reaching an "X" in the graph terminates the process).   

4. Gap-resolved scaffolds are reported with gap closure sequences indicated 
by lower-case letters, as well as a report of the success/failure of each 
attempted gap resolution.  

Multiple insert sizes.  The oNo and merauder steps may be iterated if multiple 
insert sizes exist, using paired end sets of increasing insert size. 

Lightweight Hash.  To reduce the memory needed to store and randomly 
access the deBruijn graph, we designed and implemented a lightweight hash 
scheme that uses a recursive collision strategy with multiple hash functions to 
avoid explicitly storing the keys themselves.  In the typical use case, there is a 
fixed dictionary of keys and associated values.   
 
First, the hash must be "primed" as follows: (we assume there are hash functions 
h0...hn already defined). 

0. Initialize hash depth d to 0, write all keys to file Fd. 
1. For all keys in file Fd, evaluate the hash function hd and update a "primer 

object" Pd to keep track of which hash values occur multiple times at hash 
depth d (i.e. the keys collide under the hash function hd). 

2. Write all colliding keys to file Fd+1 ; increment hash depth d. 
3. Repeat steps 1,2 until the number of colliding keys is 0. 

All primers P0...Pd are then sent to the lightweight hash initializer to create a 
lightweight hash object.  Thereafter, each key-value pair is simply added to the 
hash object:  the hash checks the primer information to determine at which level 
of the recursion to store the value, while the key itself is discarded.  At this point, 
the hash is ready to be queried.  Note that the client must never attempt to look 
up a key that was not used in the priming step, as the hash cannot verify the 
identity of the key associated within a given value after priming. 
 
Using the lightweight hash in meraculous.  In the contig generation stage, 
a lightweight hash object stores all relevant k-mers and allows contigs to be 
formed by walking from random "seed" starting points.  Preprocessing is done to 
ensure that both U-U mers and terminating k-mers connected to those k-mers 
are stored in the hash.  The terminating k-mers are needed because lightweight 
hashes do not support queries on non-existent keys.   The lightweight hash is first 
"primed" by exposing it to each k-mer.   Next, the k-mers are loaded, along with 
their extension codes, as key-value pairs. 
 
Implementation.  The algorithm was implemented in a combination of C and 



Perl and uses SWIG to wrap the lightweight hash data structure.  All benchmarks 
were run on 32-core AMD Opterons running at 1.8 GHz with 512 GB RAM and 
the "Linux AMD64-K8-SMP" operating system.   At times, where noted, 
parallelized steps were also run on commodity clusters managed by Sun Grid 
Engine.  

 
Results 
 
Algorithm overview.  Our algorithm follows the broad outline first described 
in detail for the Celera assembler [30] (see also the TIGR assembler [31]). First, 
we assemble contigs that do not span any repeat boundaries and therefore are 
either unique sequence or multi-copy sequences within recently diverged 
repeats.  Next, we link these contigs into scaffolds, using paired-end links to jump 
over unassembled repetitive regions, leaving gaps whose size and flanking 
sequences are known.  Finally, we fill intra-scaffold gaps ("captured" gaps, or 
"sequence-mapped" gaps) using reads whose mate pairs constrain them to lie 
within the gap.  
 
Instead of computing read-read overlaps, we use the deBruijn representation of 
sequencing reads in terms of (overlapping) words of length k ("k-mers") [24].    
The word size k plays a role analogous to the minimum confidently detectable 
read-read overlap in alignment-based assembly [32], and is generally an 
empirical parameter.  Larger k provides more specificity, but fewer k-mers per 
read, reducing the effective depth [20].   For each k-mer in a read, we can define 
its "single-base extension" in the forward direction as the k-mer that results by 
sliding the word forward by a single base.  The first k-1 bp of this extension are 
the same as the last k-1 bp of the original word. 
 
For a random sequence of length G, it is sufficient to use 

€ 

k ~ log4 (2G) +3, but in 
practice the repetitive structure of a genome can require longer k-mers.  While 
this repetitive structure is typically not known a priori, analysis of related known 
genomes can suggest reasonable values of k.  One way to assess this is to identify 
runs of single-base k-mer extensions that are unambiguous in the genome.  That 
is, for each k-mer in a run there is only a single k-mer in the genome that 
overlaps it by k-1 bp.  Such unambiguously extendable runs of k-mers are related 
to contigs, as discussed below, and we seek k large enough that a substantial 
fraction of the genome is contained in such runs.  For P. stipitis  we choose k = 41 
to recover ~95% of the genome in uniquely extendable k-mer runs longer than 
500 bp.  For more complex genomes like Drosophila melanogaster, k = 41 
recovers ~86% of the genome in such regions, while for the rice genome, with its 
long-terminal-repeat retrotransposons, k = 41 recovers only 59% of the genome 
in such regions.  These runs of overlapping unique k-mers are a useful starting 
point for assembly, and can be improved using paired-end constraints as 
described below. 
 



The meraculous algorithm first constructs an initial set of high confidence contig 
sequences by decomposing reads into overlapping k-mers, and identifying 
maximal paths in the space of all k-mers such that (1) every k-mer in a path 
occurs at least 

€ 

dmin times in the dataset, (2) consecutive k-mers are each other's 
unique "high-quality" single-base extension in the read set.  The k-mer b is a high 
quality extension of a if there are at least 

€ 

dmin instances in the reads where b 
follows a (that is, the last k-1 bp of a are the same as the first k-1 bp of b), and the 
newly added nucleotide at the end of b has quality at least 

€ 

Qmin .  Extensions must 
be unique to be considered in these paths; k-mers that have multiple high quality 
extensions are candidates for the boundaries of repeats and are not included.  
 
We mark each k-mer end with U if it has a unique high quality extension, F if it 
has more than one (is a "fork"), and X if it has no high quality extension.  We then 
isolate the subgraph of the deBruijn graph for which all k-mers are designated 
"U-U".  By omitting forked k-mers, the tangled full deBruijn graph is simplified 
into a set of linear chains, which are easily traversed. The two parameters 

€ 

dmin and 

€ 

Qmin  are selected empirically, as described below.  Note that we make no explicit 
error correction; regions of reads containing errors are excluded from 
participating in U-U paths based on k-mer depth and sequence quality. 
 
Given a set of U-U contigs, we next map reads back to these contigs by 
alignment.  For simplicity we use BLAST, but other algorithms better suited to 
short-reads can be substituted, as long as alignments of reads to multiple contig 
locations are reported (see below).  Since a k-mer that occurs in the U-U graph 
occurs only once in the U-U contigs, we require at least a k-bp exact match to 
seed the alignment of reads back to the U-U contigs, and allow mapped reads to 
project off the ends of contigs.  Using alignment to map reads relieves us of the 
need to track read placements through the initial traversal of the U-U subgraph, 
simplifying the implementation.  Once paired-end reads are placed, uncontested 
pair-linkages between contigs are used to form scaffolds.  
 
Short gaps between successive contigs can then be filled in by applying the U-U 
procedure to the small subset of reads that are inferred to lie in a gap based on 
the placement of their paired end sequence.  As with Sanger reads, this gap-filling 
process is dramatically simplified relative to the full assembly problem, since only 
a small region is assembled for each gap.  Gap filling is readily parallelized, and 
can be iterated using progressively longer pairs. 

A novel lightweight hash for the deBruijn graph.  It is common to store 
and access a deBruijn graph using a hash, which is a data structure that enables 
rapid lookup of a "value" associated with each "key."  To efficiently store and 
access the U-U deBruijn graph, we use a hash in which the "key" is a U-U k-mer, 
and the "value" is the (unique) high quality nucleotide that follows the key in the 
read dataset.   In a conventional hash, a hash function h(key) is used to map each 
key into a position within a linear array of length H.  The hash function is 
approximately uniformly distributed between 1 and H.  Since multiple keys can 



hash to the same value, the data structure and methods must allow for such 
"collisions," at additional cost in speed and memory.  In a typical hash 
implementation, the possibility of collisions for a general and possibly changing 
set of keys require that keys themselves also be stored in the array.   
 
Since the number of distinct keys is comparable to the genome size G, the 
memory that would naively be required to store the hash is ~2G*(k+1) bits, with 
most of the memory cost associated with storing the key.  (The factor of two 
arises from allocating two bits per nucleotide.)  For example, for a human 
genome G ~ 3x109; for k = 75, storing this hash would require 450 Gb.   Unlike 
many applications of hashes, however, most of this memory is required to store 
the keys; the value associated with each key is only a single nucleotide (two bits).  
Working with such a hash requires either large memory systems [11] or 
distributed memory parallelization schemes [9].   
 
To dramatically reduce the memory requirement for meraculous, we developed a 
novel perfect static hashing scheme that can be applied whenever the complete 
set of keys is known initially and does not change during the use of the hash, as is 
the case with the U-U deBruijn graph for a given shotgun dataset.  In contrast, 
general dynamic hashing schemes typically retain the flexibility to add new (key, 
value) combinations at any time.  Our hashing scheme is "perfect" in the sense 
that the average lookup time does not depend on the genome size.  For a genome 
of size G, our hash requires only ~e*G bytes of memory, independent of the 
choice of k, where e=2.71828… is base of natural logarithms.  The U-U hash for a 
human genome then requires only ~8 Gb, a ~60-fold memory savings relative to 
a standard hash and well within the range of many desktop systems. 
 
Our perfect hash h(u) is constructed using a preprocessing step that iteratively 
identifies and progressively eliminates collisions for all U-U k-mers (Methods).   
Let hi(u) be a series of independent hash functions defined on k-mers.  Each hash 
function hi(u) returns an integer between 1 and Hi that is assumed to be 
uniformly distributed over that range.  Then a perfect hash h(u) can be defined 

iteratively as follows.  First, compute h1(u) for all U-U k-mers, and record all 

collisions.  Applying the Poisson distribution, H1*exp(-G1/H1) k-mers do not 
collide.  For such k-mers, we assign a hash "level" of 1, and define the perfect 

hash by h(u) = h1(u).  The G2 = G1-H_1*exp(-G1/H1) k-mers that collide at level 1 

are then hashed at the second level using an independent hash function h2(u) 

with a reduced range H2.   Those that do not collide are assigned h(u) = H1 + 

h2(u); those that do collide are passed to the third level.  This process is iterated 
until there are no more collisions.   
 
The result is a "perfect" hash h(u) that, by construction, has no collisions.  Since 
each of the input U-U k-mers is uniquely mapped by this function, we do not 
need to store the "key" k-mer with each entry, and need only store the "value," 
which is just a single nucleotide.    This results in a memory savings of order 1/k.   



 

The total memory usage is Htot = H1 + H2 + H3 +… If for each iteration we use a 

hash size Hi proportional to the number of elements Gi to be hashed, i.e., Hi = 

λGi, then it is straightforward to show that the optimal λ = 1, and the total 

memory usage is Htot = e*G1.  In practice we do not allow Hi to drop below some 

cutoff Hmin ~ 1,000, to avoid excessive iteration.  Although the maximum 
number of iterations (levels) needed to avoid collisions is order log(G), the 
average number of iterations needed is e in the Poisson approximation.  

 
Pichia sequencing summary, accuracy, and coverage.    As a test dataset 
for assembling small eukaryotic genomes, we produced 87.3 million paired 75-bp 
reads for P. stipitis CBS 6054 using the Illumina GA II sequencer.  Two libraries 
were sequenced, a ~300 bp insert standard library (two lanes on a GAII 
Instrument) and a ~3 kbp mate-pair ("jumping") library (one GAII lane), as 
described in Materials and Methods.  The two short-insert paired-end lanes had a 
somewhat higher cluster density than the mate-pair library (15.5 and 15.7 million 
clusters reporting sequence vs. 12.4 million).  These reads yielded data that totals 
6.55 Gbp, or nominal 425x redundant coverage of the 15.4 Mbp P. stipitis 
genome.  
 
The per-base error rate relevant to k-mer assembly can be estimated by 
measuring the probability that a k-mer that starts at position i in a read (and ends 
at i+k-1) is observed in the genome.  For the Pichia dataset, we find that the 
matching probability against the reference genome is higher for forward reads of 
a pair than for reverse reads.  For these three lanes, the matching probability of 
the first 41-mer ranges from 80.9%-87.8% for forward reads, and 70.5%-77.4% 
for reverse reads.  Similarly, the matching probability for the last 41-mer 
(beginning at i=35 for our 75 bp reads) ranges from 72.7%-77.1% for forward 
reads and 54.2%-71.1% for reverse reads.   
 
Overall, the matching probability for all 41-mers is 74.2%, so that ~3/4 of all 41-
mers are error-free.  If we crudely assume that errors are uniformly distributed 
across reads (and neglect the effect of contamination, which also reduces the 
matching probability) then this corresponds to a per-base error rate of 1- 
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0.74241 = 0.7%.  In the absence of a reference genome as we have for Pichia, we 
find that Illumina quality scores provide a useful surrogate for the accuracy of 
base calls, so that the probability that a k-mer is correct is well-approximated by 

€ 

[1−10−Q j /10

j=1

i+k−1
∏ ], where 

€ 

Qj is the Phred [33] quality score at position j (data not 

shown). 
 
Counting both strands, the Pichia nuclear genome contains 29,746,832 distinct 
41-mers (i.e., 41-bp words).  29,746,314 (99.998%) of these occur at least once in 
the Illumina shotgun data set.  The mitochondrial genome contains 60,344 



distinct 41-mers and all occur at least once in the data set.  (68 distinct k-mers 
occur in both the nuclear and mitochondrial genome, and all occur in the 
dataset).   
 
Due to sequencing errors, the Pichia shotgun data set contains 1,211,630,294 
distinct 41-mers, ~40-fold more than found in the genome.  Most of the errors 
are single occurrences of a k-mer in the dataset, and are due to isolated base-
calling errors. In particular,  1,042,166,572 (86%) of observed 41-mers occur only 
once in the data set, of which only 96 (9.2 x 10-6%) are true genomic mers.  The 
size of the 41-mer set used in an assembly can therefore be dramatically reduced 
with minimal impact by discarding k-mers that occur only once in the dataset, 
since the vast majority of these are erroneous.   The remaining ~140 million 
erroneous 41-mers found in the dataset but not in the genome are recurrent 
sequence errors in the same sequence context (which may or may not occur in 
multiple locations in the genome).   
 
Depth statistic.  A common statistic for a sequencing project of N reads with 
average read length R is the raw depth of coverage d = NR/G = total number of 
nucleotides sequenced divided by genome size [32].  Assuming no errors, the 
number of times  that a k-mer covers a given nucleotide in the genome 
is

€ 

deff = d[1− (k −1) /R], since each read of length R only contains R-k+1 k-mers 

(see, e.g., [20]).  This reduction in effective depth is equivalent to the 

€ 

θ  
parameter introduced by Lander and Waterman in the analysis of restriction 
maps [32], with k-1 corresponding to the minimum detectable overlap between 
reads in the deBruijn formulation of assembly.  Since k is comparable to the read 
length R for many short-read assembly applications, this factor can be 
substantial.  Thus while for our Pichia dataset the raw depth is d = 425x, for k = 
41 the finite read length correction reduces 

€ 

deff  to ~ 200x.  A similarly large factor 

arises from sequencing errors; as we have seen, ~3/4 of observed 41-mers in 
Pichia are error-free.  Since ~75% of the k-mers contained in the reads map 
perfectly to the genome, the effective depth of true k-mers is ~150x, consistent 
with the mean multiplicity of 145x (modal value 130x, see Figure 3A). (The 
mitochondrial genome is at 2,900x in true 41-mer coverage.)   
 
Paired-end separation, chimerism, and mate-pair artifacts.  To assess 
insert size distributions and chimerism rates independent of the assembly, we 
aligned reads from one lane of short insert pairs and one jumping library lane to 
the finished reference genome using BLAST (see Materials and Methods).    The 
single highest scoring HSP (high-scoring segment pair [29]) was retained for 
each read. (In cases where multiple equally high scoring HSPs exist a best hit was 
chosen at random, so the chimerism rate inferred from this result should be 
considered an upper bound.)  For the short insert lane, 11,472,868 read pairs had 
both ends aligned to the genome, so that ~73% of reported clusters provide a 
successful read pair.   The aligned pairs from each lane therefore represent ~200x 
physical ("clone") coverage of the genome.  150,085 pairs (1.3%) had best hits on 
differing chromosomes and 27,045 pairs (0.2%) align to the same chromosome 
but on the same strand.  The remaining appropriately-oriented pairs have a tight, 



nearly symmetrical insert size distribution with mean and standard deviation of 
279 ± 7 bp (see Figure 1A).  174,044 of these pairs (1.5%) have ends separated by 
a distance more than three standard deviations above or below this mean value.  
We estimate from this an upper bound of 3% chimeric pairs in this library. 
 
For the ~3 kbp jumping library, 10,380,635 read pairs had both ends aligned to 
the genome, so that 84% of reported clusters provide a successful read pair.  Of 
the aligned read pairs, 3.7% had ends hitting different chromosomes, and 0.8% 
hit on the same chromosome but the same strand.   The remaining oppositely 
oriented read pairs have a bimodal distribution of separations  Approximately 
2/3 of all read pairs are directed away from each other and ~3.2 kbp apart, as 
expected.  Most of the remaining aligned, oppositely directed read pairs are 
directed towards each other and separated by less than 500 bp.  This second 
group of pairs ("innies") represents an artifact of mate pair library construction, 
in which the sequenced fragment is derived from a portion of the circularized 
DNA that does not contain the junction region (see Figure 1B).   
 
The orientation and separation of these artifactual pairs makes them easy to 
exclude in the scaffolding step (Materials and Methods).  The distribution of the 
innie separations is not normally distributed, and contains at least three 
components: a broad peak at ~100 bp, and two somewhat narrower peaks at 
~300 bp and ~400 bp.  Excluding the "innies", the mean and standard deviation 
of the end-separation for the jumping library is 3,273 ± 196 bp, although the 
distribution is somewhat skewed, with mode ~3,215 bp and half maximum range 
~3,045-3,525 bp (Figure 1C).  Since a negligible fraction of the "innie" artifact is 
due to chimerism (which would be unlikely to yield paired reads within 500 bp 
and with a specified orientation), we can estimate the chimerism rate of mate 
pairs as less than ~7%.  The mate pairs provide a staggering ~1,450x spanning 
coverage of the genome. 
 
Multiplicity distribution, error rates, and local properties of the 
deBruijn graph.  The multiplicity of a k-mer is the number of times it occurs in 
the dataset [24,28].  The multiplicity distribution n(d) is then the number of k-
mers that occur exactly d times in the dataset.  If sampling is random, and in the 
absence of errors, then n(d) is Poisson distributed with mean 
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deff .   As noted 

previously [28], in practice n(d) has a sharp peak near d=0  and another broad 
peak somewhat below 

€ 

deff .  The peak near zero corresponds to k-mers that arise 
from relatively rare sequencing errors; the peak near 

€ 

deff  corresponds to k-mers 

that occur in the genome and are present in many reads.  A simple way to 
distinguish erroneous k-mers from true k-mers is to separate them based on a 
depth cutoff 

€ 

dmin , retaining only k-mers with at least this multiplicity.  

The number of U-U contigs of the deBruijn graph depends on the choice of 

€ 

dmin  
(which in our formulation determines the nodes and edges of the graph).  For 
high values of 

€ 

dmin , U-U contigs are likely to terminate at positions marked X, 
indicating that the terminal k-mer of the contig has no single base extensions that 



occur in the dataset more than 

€ 

dmin  times.   In contrast, for low values of 

€ 

dmin , 
many U-U contigs will terminate at F (forked) positions where the terminal k-
mer of the contig has two (or more) possible single base extensions, each with at 
least 

€ 

dminoccurrences in the dataset.  Ideally, we would choose 

€ 

dmin  to produce the 
fewest U-U contigs.  We show next that the number of contigs as a function of 

€ 

dmin can be expressed simply in terms of k-mer-local properties of the deBruijn 
graph.  This allows us to identify an appropriate choice for 

€ 

dmin  prior to the 
time/memory-intensive U-U contig formation step. 
 
 

The number of k-mers with at least d occurrences is given by

€ 

M +(d) = n(x)
x= d

∞

∑ , 

and similarly the number of k-mers with fewer than d occurrences in the dataset 

is 
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M−(d) = n(x)
x=1

d−1
∑ .  The total number of k-mers is simply 
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M = n(x)
x=1

∞

∑ = M +(d) +M−(d) . We note that 

€ 

M +(d)  is also the number of k-mers  

in the graph when 

€ 

dmin= d, and similarly 

€ 

M−(d) is the number of k-mers excluded 
from the graph when 

€ 

dmin= d . 
 
Let 

€ 

n1(d) and 

€ 

n2(d) be the number of k-mers with precisely d high quality 
extensions to their most frequent next k-mer, and their second most frequent 

next k-mer, respectively.  Then 
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Xmer(d) = n1(x)x=1

d−1
∑   is the number of k-mers that 

are X-terminated when 

€ 

dmin  = d, and 

€ 

X(d) = Xmer (d) −M
−(d) is the number of k-

mers  in the graph that are X-terminated when 

€ 

dmin  = d.  Similarly, 
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F(d) = n2(x)x= d

∞

∑  is the number of k-mers in the graph that are F-terminated 

when 
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dmin  = d.   So finally, the total number of contigs when 
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dmin  = d can be 
written as )()()( dFdXdC += , which is readily calculated from histograms that 
are produced by meraculous.   
 
Results for Pichia with k=41 are shown in Figure 3B. Evidently, the "X"s 
dominate the "F"s because of the large number of k-mers that arise from low 
frequency error.  Minimizing C(d) would lead us to choose 
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dmin  ~ 30.  In practice, 
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dmin  ~10 yields a much better assembly, which is near the "knee" in the F(d) 
curve.  While there are more total "contigs" at this point, the great majority of 
them are small contigs of size ~2k -1 with a central erroneous base.  These small 
contigs are disconnected from the rest of the graph, and are discarded in the 
output of meraculous due to a minimum contig size cutoff ~2k.  Distinguishing 
between these small erroneous fragments and true contigs requires more than 
nearest-neighbor information on the graph.   In practice, however, we find 
empirically that the best results occur for dmin just above the rise in F(d).   
 
Scaffolding using paired-ends.  Rather than tracking the position of reads 
through the de Bruijn graph, reads were mapped to the U-U contig set by 
alignment; for simplicity, BLAST was used, but other aligners designed for short 



reads could be used instead.  As noted above, the k-mer uniqueness of the initial 
U-U contigs means that read-contig alignments with exact k-mer matches are 
necessarily unique placements of that k-mer.  Gap filling (described below) 
removes this property of the contigs, since the sequences between U-U contigs 
need not be unique.  We represent gap-filled sequence by lower case letters, 
which both (1) indicates the derivation of the sequence as outside of the U-U 
subgraph, and (2) allows us to run BLAST in a mode that prohibits seeding 
matches in gap-filled sequence.   Reads can be (1) placed entirely within a contig, 
(2) project into a gap, or (3) "splint" across two contigs if the read aligned 
consistently to the ends of two different contigs.    The splinting configuration 
allows a gap to be closed directly.  
 
Paired-end sequences from sheared and size-selected ~279-bp fragments were 
used to create an initial scaffolding.  The pair-ends have a  tight, nearly 
symmetrical insert size distribution (standard deviation 7 bp, see Figure 1A), 
and provided ~400x spanning clone depth, with negligible chimerism.  Typical 
contig-contig links involve several hundred pairs (mean = 310); scaffolds were 
produced using uncontested linkages from pmin or more read pairs, where pmin = 
6. For the ~3.2 kbp jumping library, the mean number of paired-end links 
between contigs is 809, with the weakest uncontested link is spanned by 37 
pairs.  (This can be substantially less than the overall depth for long gaps, since 
only pairs with separations from the high end of the distribution can span long 
gaps, see below.) 
 
Insert size estimation accounting for bias.  The sizes of captured gaps can 
be estimated from spanning pairs given a known distribution of separations 
between paired end sequences. Accurate estimates, however, must correct for the 
bias introduced by the fact that the pairs that span a given gap of size g must be 
longer than g+2R, where R is the read length.  Since the probability that a given 
read pair of separation 
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lc  spans a gap is proportional to the size of the spanning 
region (the unsequenced portion of the genome between the two end-reads, 

€ 

lc − 2R), the mean separation of pairs spanning a gap of size g can be written as 
 

            

€ 

lc (g) =
l(l − 2R − g)Pc (l)dlg+2R

∞

∫
(l − 2R − g)Pc (l)dlg+2R

∞

∫
                                      (eq. 1) 

 
 
where 
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Pc (l)  is the distribution of end separations in the library.  If we model 

€ 

Pc (l)by a normal distribution with mean

€ 

Lc  and standard deviation

€ 

σ c , then 
analytic estimates can be made in the small and large gap limits.  In the small gap 
limit 

€ 

g→ 0, 
 

        

€ 

lc (g) ≈ Lc 1+
(σ /Lc )

2

1− 2R /Lc

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  ,                                  (eq. 2) 



 
while in the large gap limit 
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g→ Lc − 2R   

 

        

€ 

lc ≈ Lc 1+
π
2
σ
Lc

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ .                                                    (eq. 3) 

 
The true gap size is then the self-consistent solution to 
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g = g0 + lc (g) − Lc                                                      (eq. 4) 
 
where 

€ 

g0 is the naive gap size (assuming the mean of the spanning pairs is the 
overall mean 

€ 

Lc).  This equation can be solved iteratively.  In practice, it is 
initially tabulated for each possible gap size. 
 
Closure of  gaps.  The estimated gap sizes that result from scaffolding the U-U 
contigs are shown in Figure 4, plotted vs. the true gap size.  (The true gap size is 
known from the Pichia genome, and is shown to demonstrate accuracy of the gap 
size estimates; this information is not used in the assembly.)   "Negative" gaps 
arise when adjacent U-U contigs cannot be joined in the U-U graph, but are 
inferred to overlap based on paired-end constraints.  This situation can arise due 
to short repetitive sequences (typically tandem short microsatellite repeats) 
whose associated k-mers are not in the U-U set, which prevents a U-U path from 
linking the contigs.  Nevertheless, reads can sometimes be anchored by uniquely 
occurring k-mers in the two flanking contigs.  Such "splints" are only allowed if 
their mate pair read is placed nearby with the appropriate orientation.   95% of 
estimated negative gaps  (938 out of 985) were closed, as were 36% of positive 
gaps (183 out of 515), resulting in an approximately four-fold increase in contig 
N50 size after gap resolution.  
 
For each gap that is not spanned by splinting reads, we collect the reads that are 
projected to lie within the gap based on the location of their pair.  Even if the gap 
contains a repetitive sequence, this modest collection of reads often has a simple 
assembly, since there is no interference from reads that lie in other similar copies 
of the repeat.  To close such gaps, we attempt a meraculous assembly of the reads 
projected to the gap.  Since in some cases short localized repeats are still present, 
if no path across the gap is found that agrees with the gap estimate, k is 
incremented by 2 and another attempt is made.  This iterative procedure either 
terminates when a gap-filling path is found, or all paths connecting the flanking 
sequences terminate by X, indicating lack of unique continuous sequence.  Using 
both splints and iterative meraculous assemblies, 75% of gaps between U-U 
contigs are closed.  97% of the gap-filling sequences are within 4 bp of the 
estimated gap size, and 58% are within 1 bp.  Gap filling sequences are reported 
in lower case, since they do not have the uniqueness property of U-U contigs.  
Though there are no such errors in the Pichia assembly, we have observed rare 



errors occuring in gap-filled sequence due to the collapse of short tandem 
repeats.   
 
Pairing from a jumping library.  A single "jumping" library was produced by 
shearing genomic DNA to ~3 kbp, circularizing it, and shearing the circles again 
to produce short ~250 bp fragments that were then sequenced at both ends.  
Nearly 70% of the paired-ends produced in this manner are oriented away from 
each other and separated by ~3.2 kb on the genome, as expected. The 
distribution of insert sizes is slightly skewed (Figure 1C).  The remaining ~30% 
of the pairs were directed towards each other and separated by less than ~250 bp, 
a configuration that results from sequencing fragments that do not include the 
junction of the ~3 kbp circles (Figure 1B).   These aberrant pairs can be 
excluded by requiring that only end-sequences that lie > 500 bp from the end of a 
contig are used (Figure 1C).  This in turn limits the order and orientation from 
jumping libraries to be done on contigs longer than this length scale. 
 
Using fosmid-ends for chromosome-scale scaffolding.   We performed a 
long-range scaffolding using paired-end Sanger sequences from ~9,200 fosmid 
clones generated previously [26] (insert size ~36 ± 3.2 kbp; 21.5x clone 
coverage).  When the assembly is bolstered by this modest amount of additional 
long-range linking information, 90% of the genome is spanned by 12 scaffolds, all 
longer than 344 kbp.  Since the Pichia genome is comprised of 8 chromosomes 
ranging from 980 kbp to 3.5 Mbp, the fosmid-end-scaffolded assembly therefore 
recovers chromosome-scale sequences. 
 
Accuracy of Pichia assembly.  The meraculous assembly reconstructs 95% of 
the Pichia genome in long contigs and scaffolds.  The contig N50 is 101 kbp, and 
the scaffold N50 is 269 kbp.  (The contig N50 is the length such that half of the 
assembly is in contigs longer than that length; scaffold N50 is similarly defined.) 
When compared with the finished reference sequence, we observed no local 
sequence errors or global misjoins.  More precisely, seven single nucleotide 
discrepancies were noted, but all seven loci had unanimous support for the 
meraculous consensus among the Illumina reads, and no support for the finished 
reference.  These seven discrepancies represent errors in the reference sequence 
and not genotypic differences between the original and current projects, since the 
genomic DNA was from the same source.  The total assembled contigs spanned 
14,703,442 bp, and covered 14,763,519 bp of the reference genome, with ~124 
kbp of identically duplicated sequences in the reference genome that are 
assembled only once.  Only 4.2% of the reference sequence was unaligned to the 
assembly.  20% of these missing bases occurred within the first or last 2% of 
chromosomes, and are telomeric sequences.  Half of the missing bases are in 38 
long stretches of more than 5 kbp, and 13 stretches longer than 10 kb account for 
about a third of the missing bases.  These regions represent chromosomal regions 
that are typically annotated as transposable elements or repetitive genes, 
including the rDNA locus (See Supplemental Table S1).    
 
Assembly with a reduced dataset.  The Pichia dataset described here 



includes two lanes of short ~280 bp pairs, and 1 lane of medium ~3 kbp pairs, 
providing a total of ~150x sequence coverage based on the distribution 41-mer 
multiplicities.  Assembly quality decreased only marginally when we reassembled 
with only a single lane of short pairs (contig N50 90 kbp; scaffold N50 254 kbp; 
total assembled length unchanged).  With half a lane of each paired-end type 
(~1/3 of total starting data, or ~50x true 41-mer coverage), the typical contig size 
was halved (N50 = 41 kbp) but the N50 scaffold length decreased only slightly  
(250 kbp); again the total assembled length was unchanged.  When only 20% of a 
lane of each paired-end type was included (~13% of the starting data, or ~10x 
depth based on 41-mer count), however, the contig N50 and total assembled 
lengths decreased substantially.     
 
Implementation.  Most steps of the meraculous assembly pipeline are 
parallelized to take advantage of commodity clusters, by partitioning reads or k-
mers among processors.  Additional parallelization is possible since gap filling 
can be done independently for each gap; in practice, this step is fast compared 
with other steps.  The two steps that are not parallelized are (1) the construction 
of the U-U subgraph, which requires the entire k-mer hash to be held in memory, 
and (2) the scaffolding step (which is not memory intensive).   

 
Benchmarking against other short-read assemblers.  To benchmark 
meraculous against other short-read assemblers, we assembled a publicly 
available E. coli K-12 MG1655 dataset of 10.4 million pairs of 36-bp reads, with 
insert size 215 ± 11 bp.  A finished reference sequence for this 4.64 Mbp genome 
is available [27].  The short-read dataset represents a nominal ~160x shotgun 
coverage (total sequence/genome size), although the distribution of 21-mer 
frequencies peaks at 65, due to both short read length (see 
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deff above) and errors.   

Assemblies of this dataset are reported in refs. [9] (for ABySS [9], EULER-SR 
[19], SSAKE [34], and Edena [35]), [23] (for AllPaths2 [23], as well as Velvet [20] 
and EULER [19]) and [11] (for SOAPdenovo).   Assemblies vary depending on 
parametrization and other details.  With parameters k=21, 
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dmin= 9, and pmin= 5, 
meraculous assembled 97.8% of the 4.64 Mbp genome into contigs ranging from 
200 bp to 175 kbp, with half the assembly in 36 (26) contigs (scaffolds) longer 
than 40.7 (56.6) kbp.  (Our assembly includes 26 contigs that are redundant on 
the genome, which represent perfect repeats spanning 51 kbp of the genome.)  
While the meraculous contigs and scaffolds are comparable in size to those 
produced by other assemblers on this data [9,11,23] no assembly errors were 
made (see Table 1).  The number of errors reported for other assemblers on this 
dataset range from 1 for AllPaths2 to 36 for SSAKE. Four apparent discrepancies 
between the meraculous assembly and the reference (one insertion, one deletion, 
and two substitutions) were identified.  In all four of these cases, Illumina reads 
unanimously support the meraculous sequence over the Genbank reference, 
suggesting either an error in the reference or a slight difference in genotype 
between the Sanger project and the Illumina sequence (see also ref. [23]). 
 
We also identified three locations in the finished reference sequence (~257,905, 



~1,298,720, and 1,871,060) that were discrepant in a manner consistent with the 
insertion of an IS1 transposase in the meraculous assembly relative to the 
reference.   These have not been noted previously in other Illumina assemblies of 
this dataset.  The situation is shown schematically in Figure 5.  At these 
locations, the meraculous assembly is confirmed by all available Illumina data, 
which does not match the reference sequence.  We suggest that these loci are 
either incorrectly finished regions (which seems unlikely given the special care 
used in [27], who were focusing on intraspecies variation)  or, more intriguingly, 
recent insertions of IS1 in the lineage separating the E. coli K-12 MG1655 
genotype used by [27] from the sample used in Illumina library construction. 

Comparison of meraculous Pichia assembly with other short-read 
assemblers.  We applied several previously published short-read assemblers to 
the Pichia dataset, with results summarized in Tables 2, 3.  Details of the 
assembly protocols and resource utilization of the assemblers used in this 
comparison are included in Supplemental Text S2. Compared with the other 
assemblers tested, meraculous has the fewest errors (none in the genome, vs. 
~1/10 kb for the others), and comparable completeness (~95%), contig, and 
scaffold N50.  (Although ABySS has substantially more total assembly than 
meraculous and the other assemblers that were tested, a large fraction of the 
additional ABySS sequence is redundantly assembled, which explains why the 
unique coverage is less than that of the others (last column of Table 3).)    
 
Simulated assembly and scaling for larger genomes.  To assess the 
feasibility of using meraculous to assemble larger genomes, we performed two 
experiments with simulated data for the ~119 Mbp genome of A. thaliana, which 
is ~8-fold larger than the P. stipitis genome. First, we assembled an idealized 41-
mer dataset (all 41-mers present in the TAIR8 A. thaliana reference).  35,208 
contigs longer than 200 bp were produced, totalling 105,782,921 bp (89% of the 
118,960,067 bp in the finished A. thaliana reference sequence).  The N50 was 
13.1 kb, and no errors were made.  Of the 35,208 gaps between these contigs, 
15,591 (44%) are negative, corresponding to short repetitive sequences that 
should be closed using splinting reads.  Another 5,902 gaps (17%) are between 0 
and 100 bp, readily captured and closed by short-insert pairs as described here 
for Pichia.  These results suggest that ~50-60% of gaps could be closed with 
short-insert pairs, reaching a contig N50 of ~25-30 kbp.  Only 1,302 gaps are 
longer than 2 kbp, further suggesting that scaffolding with medium insert pairs as 
described for Pichia would produce typical scaffolds of ~100 kbp.  
 
We also simulated a 100x nominal depth coverage sampling of A. thaliana with 
realistic error profiles (Methods), with 79,456,596 75-bp read pairs with end-
separation normally distributed with mean and standard deviation 300±30 bp.  
The initial contigs (prior to gap closing) closely matched expectation based on the 
idealized 41-mer dataset described above (total length 105.4 Mbp; 36,854 contigs 
ranging in size from 200 to 102,310 bp; half the assembly in 2,375 contigs of at 
least 11,621 bp).  With gap closing, we obtained 17,609 contigs ranging in size 
from 200 to 180,022 bp, with half the assembly in 1,066 contigs of at least 26,949 



bp, again as expected.  Scaffolding with these 300 bp pairs was modest, with half 
the assembly in 679 scaffolds longer 42,556 bp, consistent with estimates based 
on the idealized data set.  This assembly contains eight localized sequence errors 
and one non-local scaffolding error relative to the reference sequence. 

To demonstrate the memory scaling of our algorithm for larger genomes, we 
determined the U-U contigs for the human genome, based on a shred of the 2.8 
Gbp reference sequence into its constituent 75-mers.  The U-U contigs longer 
than 150 bp accounted for 98% of the reference genome, with N50 contig length 
of 8.7 kbp.  No scaffolding or gap closing step was attempted in this 
demonstration.  As expected, only 8.8 Gb of memory was required to represent 
the U-U deBruijn sub-graph using our lightweight hash scheme.   

 

Discussion 
  
Using meraculous, a new short-read assembler, we have shown that high quality, 
near-complete de novo assemblies of small fungal genomes can be produced 
using deep short-read paired-end datasets.   Half the genome assembly is 
contained in contigs of at least 101 kbp (N50 contig), and in scaffolds of at least 
269 kbp (N50 scaffold).  Adding a modest number of fosmid-ends allows 
recovery of entire chromosomes.  Approximately 4.2% of the genome (650 kbp 
out of 15.4 Mbp) is not captured in the assembly, representing repetitive 
sequences, notably including telomeric sequences, long retrotransposons, and 
high copy tandemly-arrayed elements.  Comparing the assembly consensus to the 
previously finished and validated reference sequence, we find no errors across the 
entire assembly.   
 
Our algorithm incorporates elements used in other long- and short-read paired-
end assemblers, in a new combination and with new parallel implementations 
and heuristics based on our analysis of the Pichia dataset.  The deBruijn graph, 
first applied to shotgun sequence assembly nearly a decade ago by Pevzner et al. 
[24] (following previous introduction in sequencing by hybridization [36]; see 
also [37,38]), is the basis for all of the current generation of short-read 
assemblers [18].  In our approach, however, we do not construct the full de Bruijn 
graph defined by the reads.  Instead, we limit ourselves to the "U-U" subgraph 
that includes only likely k-mers from the genome that possess unique, reciprocal, 
high quality extensions at each end.  In this way we remove most error-
containing k-mers and produce a graph that consists of a collection of simple 
unbranched paths.  These paths are closely related to the "unitigs" of the Celera 
Assembler [30] and the "unipaths" of ALLPATHS [22] in that they represent 
genomic regions whose assembly into contigs is uncontested based on read-read 
alignments or their equivalent in the deBruijn formulation.  A related approach is 
taken in SOAPdenovo [11]. The U-U subgraph can be readily produced with a 



memory footprint that scales linearly with the genome size, a characteristic of de 
Bruijn graph based methods.     

Overall, memory usage in Meraculous depends not only on the size of the U-U 
subgraph, but also on the parallelization parameters used in the stages that 
preprocess the U-U subgraph.   By dividing the k-mer sample space into disparate 
chunks, peak RAM usage and running time can be adjusted to user requirements.    
For instance, on our 32-core test machine, one can optimize for speed by allowing 
all k-mer sample chunks to be processed simultaneously:  in this case, the Pichia 
assembly runs in 3 hours 37 minutes with a peak RAM footprint of 153Gb.  By 
varying the number of simultaneously-processed chunks processed on a per-
stage basis, one can optimize for RAM use:  the Pichia assembly then runs in 12 
hours 28 minutes but with a peak RAM footprint of 7.72Gb.    In general, given P 
chunks preprocessed simultaneously out of C total chunks of the k-mer space of 
M mers and genome size G, the peak RAM R is characterized by R = O(P * M / C) 
+ 3.7 * G.   In other words, meraculous can be made to fit (at the expense of 
increased runtime) into an arbitrarily small RAM footprint down to the limit of 
the U-U subgraph hash itself which, in practice, requires ~3.7 bytes per base in 
the genome to store. 

Our implementation avoids explicit error correction [24 ,28], a feature of most 
other short-read deBruijn assemblers [9,11,19,20,22], in favor of a brute force 
approach that is made possible by the quality and quantity of current Illumina 
data.  Error correction takes advantage of the preponderance of accurate 
sequence to identify outliers (e.g., error-containing k-mers that occur only a few 
times in the dataset when the typical true k-mer from that genomic region occurs 
dozens or hundreds of times).  Assuming that such k-mers contain errors, the 
error-correction approach seeks the minimal sequence change to convert these 
outlying k-mers into sequences found more often in the data [24].   While this 
approach is clearly feasible in uniquely assemblable regions of strong coverage, it 
is also not necessary there, since the correct assembly will often be evident 
anyway due to overwhelming depth of accurate sequence.  From this perspective, 
it is sufficient to simply ignore the erroneous k-mer, as we do here. Our algorithm 
identifies these outliers (using a combined quality and depth filter) and 
disregards them in a robust way that does not degrade the assembly but allows 
the algorithms and their implementation to be simplified and streamlined.   

Using mate-pair information, scaffolds of nominally single copy sequences can be 
constructed.  Gaps captured within these scaffolds (comprising repeats) can then 
be back-filled using  paired-ends, as first described in [16] and robustly 
implemented for large-scale assembly in the Celera Assembler [30]. This "gap-
filling" step allows residual errors to be corrected through the construction of 
consensus sequences.  Thus by combining the efficient deBruijn approach for 
determining an initial set of contigs, with a read-based approach using mate-
pairs to link across and fill in gaps between the initial contigs, meraculous can 
produce accurate assemblies of short-read datasets.    



A limitation of the current meraculous algorithm is that it assumes data from a 
haploid genome.  In a diploid sample, heterozygous single nucleotide variations 
generate forks in the deBruijn graph, and our algorithm's reliance on the linear 
U-U component of the graph as a starting point for making contigs must be 
augmented to allow for bubbles in the graph that arise from such heterozygous 
regions. 
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Figure Legends 

Figure 1. Paired ends.  A. Fragment pair end separation distribution.  
Pairs are separated by 279 ± 7 bp. B. Mate-pairs are produced by 
circularizing a genomic segment (vertical line indicates junction).  End-
sequences from sheared fragments that contain the junction (1) represent reads 
that point outward at the ends of the original segment.  End-sequences from 
sheared fragments that do not contain the junction (2) are inwardly directed and 
adjacent on the original segment. C. Mate-pair end separation 
distribution.  Two-thirds of all pairs are found to be divergently oriented and 
separated by 3.2 ± 0.2 kb.  An artifactual population of convergently oriented 
pairs separated by less than 500 bp is apparent, representing fragments of type 
(2) shown above in panel B. 

Figure 2.  Example of a 7-mer graph.  The node a is X-terminated to the 
left.  The non-reciprocal linkage between nodes b and c is removed because the 
terminal base (lower case "a" in the sequence) of node c is low quality.  Node e is 
F-terminated to the right.  The resultant U-U contig is the union of nodes b and 
d: CTGCTGCT . 

Figure 3.  k-mer frequency and extension characteristics in Pichia.    
A. 41-mer frequency distributions.  The overall 41-mer distribution (green) 
is decomposed into genomic (red) and non-genomic (yellow) contributions. At 
fewer than ~30 occurrences non-genomic (error-induced) 41-mers dominate.  
The modal frequency is ~135.  B.  Graph features as functions of dmin.  The 
total number of nodes (blue), total number of X-terminated nodes (red), and total 



number of F-terminated (yellow) nodes in the 41-mer graph are calculated as 
functions of the assembly parameter dmin.  We find the optimal assembly to occur 
at dmin = 10. 

Figure 4.  Estimated gap sizes vs. actual contig separation in the 
Pichia genome.  75% of the initial inter-contig gaps are resolved during gap 
closing.  97% of gaps are found to be within 4 bp of their estimated size, and 58% 
within 1 bp. 

Figure 5.  Differences between E. coli meraculous and reference 
sequence  identify transposon insertion.  Bottom line shows portion of the 
Genbank reference genome for E. coli str. K-12 substr. MG1655 produced by 
Sanger sequencing and directed finishing strain [27].  Top shows alignment of the 
de novo meraculus contigs to reference sequence.  Solid lines agree perfectly.  
Angled dashed lines represent unaligned meraculous contig-ends that 
correspond to the beginning and end of a transposable element.  All short-read 
data supports the meraculous sequence, indicating either insertion of the 
transposon in the Illumina-sequenced lineage, or an error in the MG1655 
reference. 

 

Supporting Information Legends 

Supplemental Table S1.  Summary of unassembled genome sequences. 
This table lists the locations, sizes, and annotations of 38 regions of the Pichia 
genome larger than 5kb which contain 62% of the sequence missing from the 
meraculous assembly.  

Supplemental Text S1.   Optimal Choice of  

€ 

dmin .  This note presents a 
formal calculation of the contig-number minimizing choice of the assembly 
parameter dmin. 

Supplemental Text S2: Timing and memory comparisons with other 
assemblers.  This note details the protocols and computational resources we 
used to perform assemblies of Pichia with alternative available assembler 
software. 
 

 

 



Table 1: Comparison of assembles of E. coli K12 MG1655 benchmark dataset.   

Assembler Assembly 
as reported 
in 

Contig 
N50 

(kbp) 

Scaffold 
N50 

(kbp) 

Coverage Errors reported 

Allpaths2 Allpaths2 337 2,680 99.3% Base accuracy Q67; 
no misassemblies 

Soapdenovo Soapdenovo 89 105 NR 5 incorrect contigs 
Velvet Allpaths2 62 298 97.7 Base accuracy Q34; 

6.9% of 10 kb 
regions 
missassembled 

Velvet ABySS 54 NR 98.8 9 incorrect contigs 
(mean size 33 kbp) 

Euler-SR ABySS 57 NR 99.8 26 incorrect contigs 
(mean size 52 kbp) 

Euler Allpaths2 19 19 94.6 Base accuracy Q30; 
7.0% of 10 kb 
regions 
misassembled 

Meraculous This report 41 57 97.8% No errors* 
Edena ABySS 16 NR 99.1% 6 incorrect contigs 

(mean size 13 kbp) 
ABySS ABySS 45 NR 99.4% 13 incorrect contigs 

(mean size 33 kbp) 
SSAKE ABySS 11 NR 99.99% 38 incorrect contigs 

(mean size 6 kbp) 
 

In ref. [9] analysis of ABySS, Velvet, Euler-SR, SSAKE, and Edena, only contigs of 
at least 100 bp were considered and genome coverage was based on full length, 
partial, and broken alignments with at least 95% identity to reference.  Contigs 
with broken alignments, or that aligned with less than 95% identity, were 
considered incorrect.  In the ref. [23] analysis of Allpaths2, Velvet, and Euler, 
only contigs of at least 1 kbp were considered.  Genome coverage computed as the 
fraction of 100-mers in the reference sequence that are present in the assembly, 
allowing for multiple occurrences in the assembly.  Base quality reported as total 
number of discrepancies to reference, computed over ~10 kb assembly segments 
that contain fewer than 1% such discrepancies.  Misassemblies were reported as 
the total fraction of bases in ~10 kb segments containing  at least 1% error.  In the 
ref. [11] summary of Soap denovo assembly, contigs >100 bp were reported. 

NR: not reported. 

*  Four localized discrepancies were noted between our meraculous assembly and 
the E. coli K12 MG1655 reference sequence. As described in the text, further 



examination showed that all four discrepancies were in fact errors in the 
reference (or mutations in the lineages separating the MG1655 reference sample 
from the short read dataset sample).  Analysis of errors reported for other 
assemblers have not been analysed. 



Table 2: Comparison of P. Stipitis assembly scaffold characteristics (including 
scaffolds of size at least 2kbp).   

Assembler No. 
Scaffolds 

Total 
Size 

(Mbp) 

Scaffold N50 
(no. / kbp) 

Total gap 
bases (kbp; %) 

Scaffolding 
errors 

ABySS 111 15.48 20 / 263 7.3 (0.05%) 0 

Meraculous 118 14.79 18 / 269 81.7 (0.55%) 0 

SOAPdenovo 88 14.74 14 / 348 156 (1.06%) 0 

Velvet 157 14.82 24 / 202 136 (0.92%) 78 

 
To assess accuracy of the assemblies, contigs were aligned to the reference 
genome using BLAST.  Scaffolding errors include non-colinear arrangements of 
contigs within scaffolds with respect to the reference sequence. 
 
Table 3: Comparison of P. Stipitis assembly contig characteristics (including 
contigs of at least 100bp).  

 

Assembler No. 
Contigs 

Total 
Size 

(Mbp) 

Contig N50 
(no. / kbp) 

Contig 
error rate  

Reference 
coverage 

Unique 
coverage 

ABySS 132 15.48 21 / 263 1/29kbp 97.8% 92.2% 

Meraculous 489 14.70 44 / 101 <1/15000kbp 95.8% 95.8% 

SOAPdenovo 561 14.58 64 / 65 1/6.4kbp 95.2% 95.1% 

Velvet 572 14.69 87 / 53 1/15kbp 96.5% 95.4% 

  

Contig error rate is measured for only the single best-aligning BLAST HSP per 
contig.  Reference coverage is based on the total number of bases spanned by at 
least one HSP; unique coverage is based on the total number of reference bases 
spanned by exactly one HSP. 













Supplemental Text S1.   Optimal Choice of  

€ 

dmin .   

Instead of an error correction step as performed in other short-read assemblers, 
we simplify the deBruijn graph by discarding k-mers that occur fewer than 

€ 

dmin times in the dataset.  Since the error rate is small, and the depth of coverage 
so high, this has only a small effect on our ability to assemble.  If  

€ 

dmin is chosen 
too small, however, many contigs will end at forks (i.e., k-mer ends marked F) for 
which one or more branches are due to errors.  Conversely, if 

€ 

dmin is chosen too 
large, contigs will end at regions of low coverage (i.e., k-mer ends marked X).  
With some simple assumptions, we can derive an optimal choice of 

€ 

dmin that 
minimizes the number of contigs.   
 
Let the number of k-mers of frequency x be denoted by n(x).  We assume that 
n(x) can be decomposed into the sum of two contributions, the true genomic k-
mers of frequency x, t(x), and the erroneous (false) k-mers of this frequency,  
f(x).  Thus n(x) = t(x)+f(x).   We may then define the following integrals 
(assuming that the functions of the discrete variable x are smooth):  

 

T = total number of true k-mers = 

€ 

t(x)dx
0

∞

∫                            (eq. S1) 

 

F = total number of erroneous k-mers = 

€ 

f (x)dx
0

∞

∫                  (eq. S2)  

 
For a given choice of 

€ 

dmin , the number of contig ends (i.e., twice the number of 
contigs) that are produced will be the sum of two contributions:  those contigs 

€ 

CT  
that are prematurely truncated at true k-mers whose frequency is less than

€ 

dmin  
(contigs ending with X), and those contigs 

€ 

CF  that are prematurely truncated at 
erroneous k-mers whose frequency is greater than

€ 

dmin (contigs ending with F).  In 
our simple model, these values are approximated by the integrals: 

 

€ 

CT (d)= t(x)dx
0

d
∫                                                   (eq. S3) 

€ 

CF (d)= f (x)dx
d

∞

∫ = F − f (x)dx
0

d
∫                                    (eq. S4)  

 
To minimize the number of contigs, we minimize the sum of these contributions 

€ 

C(d) = CT (d) +CF (d) , which can be rewritten using Eqs. S3 and S4 as  
 

   

€ 

C(d)= F + [t(x) − f (x)]dx
0

d
∫                                              (eq. S5)  



 
which is extremal with respect to 

€ 

d  when the integrand vanishes.   The optimal 
choice of 

€ 

dmin  is therefore the frequency

€ 

d*  at which the number of false k-mers 

€ 

f * = f (d*)  is equal to the number of true k-mers 

€ 

t* = t(d*) .  In practice, for a 
given observed mer-frequency distribution this value can be obtained by fitting 
the low-frequency k-mer distribution (e.g., to a power law) and the peak-
frequency distribution (e.g., to a Gaussian) independently and finding the 
intersection point of the two fits.  Due to the sharp crossing of true and false k-
mers that is typically observed, the common choice of the minimum of the k-mer 
frequency distribution [17] may be a simple and useful approximation, but is 
distinct from the condition derived here.  As discussed in the main text, in 
practice a lower choice of 

€ 

dmin is preferred since the calculation presented here 
includes short contigs of length 2k-1 centered on errors. 
 



Supplemental Text S2: Timing and memory comparisons with other 
assemblers for Pichia.   
 
For comparison with the meraculous assembly of Pichia, we used three other 
short read assemblers (SOAPdenovo, Abyss, Velvet).  We could not use the 
current AllPaths-LG since the data in hand did not meet the requirements of 
overlapping paired-end reads. For these analyses and comparisons with 
meraculous, we used a Quad-Core AMD Opteron(tm) 8376 HE, with 8 CPU per 
core running at 2.3 GHz, and 517 GB total RAM.  
 
SOAP De Novo (Version 1.3, Released Nov 23, 2009) 
  
All libraries were used in the contig building step, while short-insert libraries 
were ranked 1 during scaffolding, followed by long insert lib, ranked 2.  
 
The following steps were perfomed: 
 

Pregraph building: SOAPdenovo pregraph -p 32 -K 31 -d 9  
Contig building: SOAPdenovo contig -M 1 -D 1 -R no 
Map reads to contigs: SOAPdenovo map -p 32 
Scaffold building: SOAPdenovo scaff -G 50 -p 32 -L 100 

 
Total wall clock time used was 2,360 sec (0.7 hrs), and 20.8 GB main memory 
was required. 

 
ABySS (Version: 1.2.3) 
 
abyss-pe -j3 k=31 n=6  lib='lib1 lib2 lib3'  
 
Memory and Time Usage: 

 
Total wall clock time used was 21,729 sec (6.0 hrs), and 19.5 GB main memory 
was required. 
 
 
Velvet (Version: 1.0.13) 
 
To incorporate jumping libraries, reads were reverse complemented prior to use 
in Velvet.  These pairs were used with the longPaired option. Total wall clock time 
used was 16,598 sec (4.6 hrs) and 32.0 GB main memory was required. 
 
velveth 41 -longPaired ‘3kb long insert lib’ 
 
velvetg -exp_cov auto -ins_length 279 -ins_length_sd 50 -ins_length2 
279 -ins_length_sd 50 -ins_length_long 3260 -ins_length_long_sd 
450 -min_contig_lgth 100 -min_pair_count 6  
 



Supplemental Table S1.  Summary of unassembled genome sequences. 
62% of missing bases in the meraculous assembly of Pichia are contained in 38 
regions longer than 5 kb.  This table shows the locations, sizes, and annotations 
of these regions, which include telomeric DEAD-like helicases;   Zorro L1-like 
non-LTR retrotransposon; Ty5-like retrotransposon; tandem repetitive arrays; 
and a near-identical two-copy beta glucosidase.  

chrom 
ID  start-stop  length  annotation  

chr_1.1 1-8,155  8.2kb  DEAD-like helicase (telomeric)  
chr_1.1   8,776-16,860  8.1kb  DEAD-like helicase (telomeric)  
chr_4.1   1-8,723  8.7kb DEAD-like helicase (telomeric)  
chr_7.1  1-11,058  11.1kb  DEAD-like helicase (telomeric)  
chr_7.1  1,106,260-1,114,415  8.2kb  DEAD-like helicase (telomeric)  
chr_8.1  971,156-979,380  8.2kb  DEAD-like helicase (telomeric)  

chr_1.1   433,581-440,252  6.7kb  Polyprotein L1-like non-LTR retrotransposon 
Zorro [Candida]  

chr_1.1   1,660,593-1,668,237  7.6kb  Polyprotein L1-like non-LTR retrotransposon 
Zorro [Candida]  

chr_1.1   1,714,075-1,719,555  5.5kb  Polyprotein L1-like non-LTR retrotransposon 
Zorro [Candida]  

chr_1.1   1,780,129-1,786,989  6.9kb  Polyprotein L1-like non-LTR retrotransposon 
Zorro [Candida]  

chr_1.1  1,901,111-1,907,939  6.8kb  Polyprotein L1-like non-LTR retrotransposon 
Zorro [Candida]  

chr_2.1   931,139-940,161  9.0kb  Polyprotein L1-like non-LTR retrotransposon 
Zorro [Candida]  

chr_2.1    2,112,216-2,118,847  6.6kb  Polyprotein L1-like non-LTR retrotransposon 
Zorro [Candida]  

chr_2.1  2,592,668-2,597,804  5.1kb  Polyprotein L1-like non-LTR retrotransposon 
Zorro [Candida]  

chr_3.1  459,644-466,306  6.7kb  Polyprotein L1-like non-LTR retrotransposon 
Zorro [Candida]  

chr_3.1  602,522-609,330  6.8kb  Polyprotein L1-like non-LTR retrotransposon 
Zorro [Candida]  

chr_3.1  1,383,796-1,390,728  6.9kb  Polyprotein L1-like non-LTR retrotransposon 
Zorro [Candida]  

chr_3.1  1,704,841-1,722,550  17.7kb  rDNA operon + Polyprotein L1-like non-LTR 
retrotransposon Zorro [Candida]  



chr_4.1  274,100-286,614  12.5kb  
(2copy) 

Polyprotein L1-like non-LTR retrotransposon 
Zorro [Candida]  

chr_5.1   1,370,505-1,377,227  6.7kb  Polyprotein L1-like non-LTR retrotransposon 
Zorro [Candida]  

chr_1.2 84,789-114,565  29.8kb  Ty5-like Retrotransposon polyprotein 
[Candida]  

chr_2.1  1,669,998-1,704,019  34.0kb  Ty5-like Retrotransposon polyprotein 
[Candida]  

chr_3.1  1,419,264-1,442,092  22.8kb  Ty5-like Retrotransposon polyprotein 
[Candida]  

chr_3.1  1,442,651-1,452,230  9.6kb  Ty5-like Retrotransposon polyprotein 
[Candida]  

chr_4.1  1,032,738-1,062,620  29.9kb  Ty5-like Retrotransposon polyprotein 
[Candida]  

chr_5.1  646,479-666,746  20.3kb  Ty5-like Retrotransposon polyprotein 
[Candida]  

chr_6.1  891,281-915,737  24.5kb  Ty5-like Retrotransposon polyprotein 
[Candida]  

chr_7.1  254,910-276,429  21.5kb  Ty5-like Retrotransposon polyprotein 
[Candida]  

chr_7.1  276,988-296,948  20.0kb  Ty5-like Retrotransposon polyprotein 
[Candida]  

chr_8.1  285,849-326,849  41.0kb 
(2copy) 

Ty5-like Retrotransposon polyprotein 
[Candida]  

chr_1.2  1,302,321-1,309,486  7.2kb  147bp x 30 + 114bp x 13 tandem array  
chr_3.1   15,087-20,242  5.2kb  114bp x 12 + 147bp x 20 tandem array  
chr_2.1   307,130-313,583  6.5kb  108bp x 60 tandem array  
chr_6.1   1,689,039-1,694,489  5.5kb  135bp x 18 + 132bp x 19 tandem array  
chr_7.1  1,001,988-1,008,049  6.1kb  135bp x 20 tandem array  
chr_8.1   948,440-959,197  10.8kb  126bp x 70 + 141bp x 8 tandem array  
chr_4.1   1,775,707-1,782,934  7.2kb  beta-glucosidase (98-99% nt identical to below)  
chr_6.1   1,708,452-1,715,563  7.1kb  beta-glucosidase (98-99% nt identical to above)  

    
 
  

 
 




