

**A NEUTRONIC FEASIBILITY STUDY FOR LEU CONVERSION
OF THE HIGH FLUX BEAM REACTOR (HFBR)***

R. B. Pond, N. A. Hanan and J. E. Matos
Argonne National Laboratory
Argonne, Illinois 60439-4841 USA

SEP 1 1997
OCT 1 1997
NOV 1 1997
DEC 1 1997

To be Presented at the 1997 International Meeting
on Reduced Enrichment for Research and Test Reactors

October 5 - 10, 1997
Jackson Hole, Wyoming USA

The submitted manuscript has been authored by
a contractor of the U. S. Government under
contract No. W-31-109-ENG-38. Accordingly,
the U. S. Government retains a nonexclusive,
royalty-free license to publish or reproduce the
published form of this contribution, or allow
others to do so, for U. S. Government purposes.

*Work supported by the U. S. Department of Energy
Office of Nonproliferation and National Security
under Contract No. W-31-109-ENG-38

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

A NEUTRONIC FEASIBILITY STUDY FOR LEU CONVERSION OF THE HIGH FLUX BEAM REACTOR (HFBR)

R. B. Pond, N. A. Hanan and J. E. Matos
Argonne National Laboratory
Argonne, IL

ABSTRACT

A neutronic feasibility study for converting the High Flux Beam Reactor at Brookhaven National Laboratory from HEU to LEU fuel was performed at Argonne National Laboratory. The purpose of this study is to determine what LEU fuel density would be needed to provide fuel lifetime and neutron flux performance similar to the current HEU fuel.

The results indicate that it is not possible to convert the HFBR to LEU fuel with the current reactor core configuration. To use LEU fuel, either the core needs to be reconfigured to increase the neutron thermalization or a new LEU reactor design needs to be considered. This paper presents results of reactor calculations for a reference 28-assembly HEU-fuel core configuration and for an alternative 18-assembly LEU-fuel core configuration with increased neutron thermalization. Neutronic studies show that similar in-core and ex-core neutron fluxes, and fuel cycle length can be achieved using high-density LEU fuel with about 6.1 gU/cm^3 in an altered reactor core configuration. However, hydraulic and safety analyses of the altered HFBR core configuration needs to be performed in order to establish the feasibility of this concept.

INTRODUCTION

A neutronic feasibility study was conducted for potential conversion of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory from the use of HEU fuel to the use of LEU (< 20% enriched) fuel. This study is focused on determining the LEU core configuration, fuel assembly, and uranium density necessary to maintain similar neutron flux and fuel cycle performance as the current HEU core configuration and fuel.

HFBR DESCRIPTION

Fuel Assembly And Reactor Core

A cross section of the HFBR is shown in Fig. 1. The reactor has 16 control rods located on the periphery; 8 main rods above the core and 8 auxiliary rods below the core can be adjusted to uncover the horizontal beam tubes located on or near the core midplane. Several vertical

Comparison With RHF And DR3 Reactors

Figure 2 is a plot of the neutron spectra in the HEU-fuel core of three heavy-water reactors: the DR3 reactor at the Risoe National Laboratory in Denmark, the High Flux Reactor (RHF) at Grenoble France, and the HFBR. In comparison, the HFBR has the hardest spectrum, the DR3 reactor has the softest spectrum¹, and the RHF spectrum¹ is in between. The DR3 reactor has widely spaced DIDO-type fuel assemblies with a pitch of 15 cm and a well thermalized neutron spectrum; the RHF has an involute-type fuel assembly with an inside diameter of 26 cm; and the HFBR has closely packed MTR-type fuel assemblies with a pitch of 7.7 cm and a relatively hard neutron spectrum. The difference in the core configuration of these three D₂O moderated reactors leads to different HEU-core spectra.

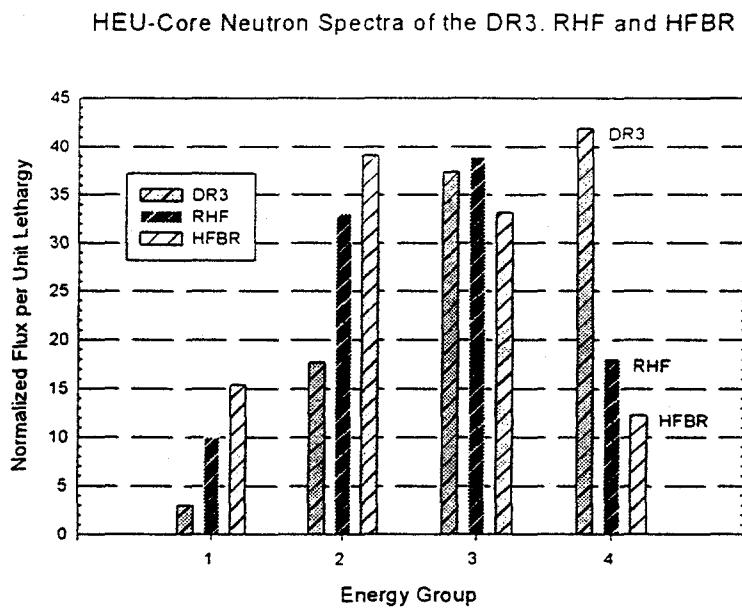


Figure 2. Comparison of DR3, RHF and HFBR Core Spectra.

LEU FUEL CONVERSION FEASIBILITY STUDY

Attempts to directly substitute LEU fuel for HEU fuel in the current 28-assembly core configuration indicate that this procedure is not possible for the HFBR because increasing the ²³⁵U and ²³⁸U content of the fuel assemblies hardens the neutron spectrum and reduces the core excess reactivity available for burnup. For LEU fuel densities as high as 19 gU/cm³, fuel cycle lengths of only a few days can be achieved in comparison with the HEU fuel cycle length of 22 days. It is necessary to increase the neutron thermalization in the core in order to utilize LEU fuel in the HFBR.

Several design changes were attempted to determine which type of change was most effective in increasing the neutron thermalization. For example, the number of fuel plates in each fuel assembly was reduced and the coolant channel was increased, the D₂O coolant was replaced with H₂O, and the fuel assembly pitch was increased. Little excess reactivity was gained by increasing the coolant-to-fuel ratio within a fuel assembly. Replacing the coolant or increasing the

impurity) pool approximately 212 cm square by 129 cm high. The energy group structure is shown in Table 1

Table 1. HFBR Energy Group Structure
(Group - Lower Energy)

1 - 0.821 MeV	2 - 0.183	3 - 5.53 keV	4 - 148.728 eV
5 - 4.00	6 - 0.625	7 - 0.140	8 - 1.0×10^{-5}

Calculations were also performed using the MCNP Monte Carlo code⁴. The results of these calculations for all-fresh HEU and LEU fuel assembly configurations are shown in Table 2. The reactivity difference between the DIF3D and MCNP eigenvalues is $\leq 0.5\% \Delta k/k^2$.

Table 2. DIF3D and MCNP Eigenvalue Comparison

Assemblies - Fuel	DIF3D	MCNP	$\Delta k/k^2, \%$
28 - HEU 351 g ²³⁵ U 1.10 gU/cm ³ , 0.579 mm meat	1.23996	1.24145 ± 0.00033	+0.097
18 - LEU 450 g ²³⁵ U 4.54 gU/cm ³ , 0.760 mm meat	1.19794	1.20363 ± 0.00034	+0.395
18 - LEU 600 g ²³⁵ U 6.06 gU/cm ³ , 0.760 mm meat	1.20941	1.21726 ± 0.00032	+0.533

In the reactor calculations, the MTR-type LEU fuel assemblies have 20 fuel plates and a fuel meat thickness of 0.760 mm compared to the HEU fuel assembly with 18 fuel plates and 0.579-mm thick meat. With the same Al clad thickness (0.345 mm), the D₂O coolant channel thickness in the LEU fuel assemblies is 2.459 mm compared with 2.438 mm in the HEU fuel assembly.

Fuel Cycle Calculations

The fuel cycle calculations for the HFBR were made using the REBUS code⁵. For these calculations, the end of equilibrium fuel cycle (EOEC) eigenvalue was first calculated using the HEU fuel assembly shuffling pattern and a 22-day fuel cycle length at a reactor power of 40 MW. The 28-assembly HEU fuel shuffling pattern (see Fig. 3) consists of seven series (A - G) in which four fuel assemblies (1 - 4) are shuffled. For example, the A series moves fuel assembly A1 to A2, A2 to A3, A3 to A4, discharges spent fuel from A4, and introduces fresh fuel into A1. The B, C, D, E, F and G series are similar.

For LEU fuel, the equilibrium fuel cycle length necessary to match the same HEU fuel EOEC eigenvalue (1.06031) was calculated as a function of the uranium density in the fuel meat. The 18-assembly LEU fuel shuffling pattern is shown in Table 3.

Table 5 HFBR Power Densities – 40 MW Reactor Power

Assemblies – Fuel	Peak-to-Avg. Power Density ^a	Average Power Density Ratio ^b	Peak Power Density, kW/cm ³
28 – HEU 351 g ²³⁵ U	1.49	1.47	1.42
18 – LEU 450 g ²³⁵ U	1.72	1.18	1.74
18 – LEU 600 g ²³⁵ U	1.85	1.22	1.94

^a Ratio of the peak power density (P_p) to the average power density (\bar{P}_p) in the peak power density assembly.

^b Ratio of the average power density in the peak power density assembly (\bar{P}_p) to the average power density in the core (\bar{P}_c).

Reactor Fluxes

A comparison of some midplane reactor fluxes with the HEU and LEU fuels is shown in Table 6. Overall, the HEU- and LEU-fuel reactor fluxes are similar except for the central thermal flux. Because of the increased neutron moderation in the LEU-fuel cores, the thermal fluxes are larger at the center of the core compared to the HEU-fuel core. The LEU-fuel peak thermal flux in the D₂O reflector (located on an ~ 45° diagonal (see Fig. 3) and at an ~ 35 cm radius from the axial centerline) is reduced 5 - 12% relative to the HEU-fuel flux. The reflector fast flux at this same location is very similar for all three fuels. These comparisons are for all-fresh fuel core configurations calculated with DIF3D; similar fluxes were calculated with MCNP. The calculated EOEC fluxes are also in good agreement with these all-fresh fuel fluxes.

Table 6. HFBR Fluxes – 40 MW Reactor Power

Assemblies – Fuel	Fast-1 ^a /Fast-2 ^b Central Flux, 10 ¹⁴ n/cm ² -s	Thermal ^c Central Flux, 10 ¹⁴ n/cm ² -s	Fast-1 ^a /Fast-2 ^b Reflector Flux, 10 ¹³ n/cm ² -s	Peak Thermal ^c Reflector Flux, 10 ¹⁴ n/cm ² -s
28 – HEU 351 g ²³⁵ U	1.7/3.2	2.2	1.1/2.0	9.5
18 – LEU 450 g ²³⁵ U	1.6/2.9	3.4	1.1/2.0	9.0
18 – LEU 600 g ²³⁵ U	1.6/2.9	2.8	1.1/2.0	8.4

^a Normalized, group 1 (> 0.821 MeV) fast flux – $\Phi_1 \times k_{\text{eff}}$.

^b Normalized, groups 1-2 (> 0.183 MeV) fast flux – $\Phi_{1,2} \times k_{\text{eff}}$.

^c Normalized, groups 7-8 (< 0.625 eV) thermal flux – $\Phi_{7,8} \times k_{\text{eff}}$.

The calculated 9.5×10^{14} n/cm²-s peak thermal reflector flux in the HEU-fuel core configuration compares to a measured⁶ flux of 7.0×10^{14} n/cm²-s for a calculated-to-experiment (C/E) ratio of 1.4. (Note: the measured datum is for a thermal flux < 0.78 eV and is normalized from 60 MW to 40 MW). The larger calculated thermal flux may be due to not modeling the beam tubes, the control rods and/or the control rod movement during reactor operation. Supplemental DIF3D and MCNP calculations with control rods, indicate a trend to reduce the calculated peak thermal reflector flux. The relative difference between the HEU- and LEU-fuel fluxes is not, however, expected to change significantly.

CONCLUSIONS

Conversion of the HFBR from HEU fuel to LEU fuel is not possible without a reconfiguration of the current 28-assembly reactor core. Because of the closely packed fuel assemblies and the D₂O coolant, the HEU core has a relatively hard neutron spectrum which becomes much harder when LEU fuel is directly substituted for HEU fuel. This spectral hardening results in a loss of reactivity in the LEU core and an unacceptable fuel cycle length with uranium densities up to that of uranium metal (19 gU/cm³). The core needs to be reconfigured to increase the neutron thermalization if LEU fuel is to be used. Within the constraints of the existing reactor hardware, removing fuel assemblies from the core could be an option to increase core-neutron thermalization if the hydraulics are satisfactory and if the reactor can be operated safely. An LEU core with 18 fuel assemblies arranged in an annular-shape would be an optimum configuration.

Relative to a 22-day fuel cycle at 40 MW for the current HEU fuel assembly with 351 g²³⁵U, fuel cycle lengths of 15 and 22 days are estimated for LEU fuel assemblies with 450 g²³⁵U (4.5 gU/cm³) and 600 g²³⁵U (6.1 gU/cm³), respectively. An LEU core with a 15-day cycle length is about the longest cycle length that can be achieved using currently qualified silicide fuel with a uranium density of about 4.8 g/cm³. This cycle length however, is not likely to be acceptable for LEU conversion. An LEU fuel with a uranium density of about 6.1 g/cm³ is needed in order to match the 22-day cycle length of the HEU core. If the options discussed above are not feasible, particularly in relation to the core hydraulics and safety, a new LEU reactor design may be necessary.

With high-density LEU fuels, the fast fluxes in the central irradiation and beam tube locations of the HFBR are nearly the same as with the current HEU fuel. The thermal fluxes however, are about 10% smaller in the D₂O reflector and about 50% larger in the central irradiation locations. Cadmium filters can be used in the central irradiation thimbles to reduce the thermal flux without significantly affecting the fast flux.

REFERENCES

1. S. C. Mo and J. E. Matos, "Conversion Feasibility Studies For The Grenoble High Flux Reactor," Proceedings of the 12th International Meeting Reduced Enrichment for Research and Test Reactors, Berlin, September 10 - 14, 1989.
2. K. L. Derstine, "DIF3D: A Code To Solve One-, Two-, And Three-Dimensional Finite-Difference Diffusion Theory Problems," ANL-82-64, Argonne National Laboratory, Argonne, IL (April 1984).
3. J. R. Deen, W. L. Woodruff and C. I. Costescu, "WIMS-D4M User Manual (Rev. 0)," ANL/RERTR/TM-23, Argonne National Laboratory, Argonne, IL (July 1995).
4. J. F. Briesmeister, Ed., "MCNPTM – A General Monte Carlo N-Particle Transport Code," Version 4A, LA-12625-M, Los Alamos National Laboratory, Los Alamos, NM (November 1993).
5. B. J. Toppel, "A User's Guide For The REBUS-3 Fuel Cycle Analysis Capability," ANL-83-2, Argonne National Laboratory, Argonne, IL (March 1983).
6. J. M. Hendrie, "Final Safety Analysis Report On The Brookhaven High Flux Beam Research Reactor," BNL-7661, Vol. 1 of 2, Fig. 4.18, Brookhaven National Laboratory, Upton, NY (April 1964). See also: S. Shapiro, D. C. Rorer and H. Kuper, Eds., "HFBR Handbook," BNL-24182 (Revised), Page 4, Brookhaven National Laboratory, Upton, NY (August 1983).
7. N. E. Holden, et. al., "Updated Flux Information For Neutron Scattering And Irradiation Facilities At The BNL High Flux Beam Reactor," International Conference on Nuclear Data for Science and Technology, Trieste, Italy, May 19 - 24, 1997.