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Abstract

Transition from fossil-fueled to electrified vehicles depends on developing economical, reliable
batteries with high energy densities and long life. Safety, preventing premature or catastrophic
failure, is of paramount importance in battery design. The largest gaps in our technical
understanding of the safe operation of electrical energy storage devices involve the fundamental
mechanisms, energetics, and inefficiencies of complex processes that occur during battery
operation that can lead to thermal runaway: charge transfer, charge carrier and ion transport, both
in the bulk and at various interfaces, and morphological and phase transitions associated with Li-
ion transport between cathode and anode. We have developed a suite of modeling tools to
consider phenomena related to battery safety, thermal management, and the onset of thermal
runaway in transportation-based secondary Li-ion batteries, rooted in a first-principles
description of the governing atomistic processes at the electrode-electrolyte interface,
propagating chemical information through multiple scales to a continuum-scale description of
thermal transport and failure capable of addressing a variety of operational and thermal
excursion conditions. These tools enable the identification of potential safety and stability issues
of new battery designs prior to experimental realization.
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1 INTRODUCTION

Vehicle electrification is widely seen as a method to reduce US dependence on foreign oil as
well as carbon emissions related to transportation. Li-ion batteries, in particular, are playing an
increasingly important role in the electrification process because of the energy density they allow
compared to other battery chemistries. However, Li-ion batteries have also been associated with
safety issues; driven to high enough temperatures, Li-ion batteries can undergo “thermal abuse”,
generating large amounts of heat and often catching fire. The Sandia Battery Abuse Testing
Laboratory (BATLab) has played an important role in assessing the risks and understanding the
processes that lead to thermal abuse in a variety of battery chemistries, among them Li-ion.

The fact that an automobile component can catch fire and release energy is itself nothing new.
Gasoline itself is flammable and can catch fire. However, we understand the safety margins
associated with gasoline engines. For example, if the ambient temperature is 25° warmer, we
don’t associate that with an increased risk of automobile gasoline fires. In contrast, we don’t
understand the analogous effects of temperature on battery chemistries. Furthermore, the internal
combustion energetics are more-or-less converged, whereas we anticipate that battery chemistry
will change substantially over the next 5-10 years in attempts to obtain increased capacity, lower
cost, lower weight, and other modifications to make batteries more practical for transportation.
We would like to be able to make similar assessments of safety margins for all Li-ion
chemistries, those that exist as well as those that have only been conceived. Moreover, when the
BATLab produces evidence that a battery has undergone thermal abuse, a mechanistic
understanding of why the battery has failed is often much harder to obtain. It is because of these
needs that we sought to develop a predictive simulation capability to understand battery abuse.

Cathode

Arrows indicate
electron flow in
discharge

Figure 1. Schematic of a cylindrical battery cell, showing the arrangement of the anode,
cathode, and separator elements in the spiral coil.
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Figure 1 shows a schematic drawing of a Li-ion cylindrical cell: shown is the anode or negative
electrode, a separator and electrolyte region, and a cathode or positive electrode. When the
battery is fully charged, the Li-ions reside in the anode. As the battery discharges, the ions move
through the electrolyte from the anode to the cathode; the electrons, which can’t pass through the
insulating electrolyte region, pass through an external wire. Because the Li-ions are energetically
more stable in the cathode materials than the anode materials, one can extract work from the
electrons in the external circuit as they accompany the Li-ions to preserve charge balance during
the discharge process. Not shown between the anode and the electrolyte regions is the solid
electrolyte interphase (SEI) layer, a thin (50 nm) passivating layer that forms from decomposed
electrolyte molecules during the initial charging cycles of the battery, and prevents lithiated
anode material from reacting with additional electrolyte molecules. A passivating layer also
forms on the cathode, but it is smaller and less critical to the battery’s performance and
degradation, and we will not consider the cathode SEI layer in this report.

¥
_— Electrons that counterbalance
b L L the Li* charge reside in the
Charging Li* Lt L* graphite pi-system after
- charging.
Li* Lt Lt GINg
Li* Lt Lt

Graphite sheets
N N

Figure 2: Schematic of Li intercalation into graphite during battery charging.

O\ IO\ /O‘. /O\ ,O O\ /O\ -’O‘\ /O\ /O

O,MRO,M\O,M\O,M\O D h O,—M\O/M\OzM\O/M\O
'scharge Lt Lt Lt Lt

Ot \O/ \.O.r \Of '\O Oz \O.- \.0/ \O/ \.O

Figure 3: Schematic of Li intercalation into a metal-oxide material during battery
discharge. The electrons that accompany the Li* ions reduce the oxidation
state of the metal atom after discharge.

In a typical transportation battery, the anode consists of one of a number of forms of graphitic
carbon materials, which intercalate Li* between the graphite sheets. The cathode consists of a
number of different metal oxides (LiCoO,, LiMn,0O4) or metal phosphate (LiFePO,4), among
other compounds. FIG X1a shows Li* ions intercalated in graphite or a metal oxide.
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CHs
EC PC DMC MEC

Figure 4: Commonly used Li-ion battery electrolyte materials, including ethylene
carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), and
methyl ethyl carbonate (MEC).

The electrolyte is a mixture of organic carbonate compounds (Figure 4), which have high Li*
conductivities, typically a 50:50 mixture of ethylene carbonate (EC) and dimethyl carbonate
(DMC). EC is chosen because it forms stable SEI layers, and DMC is chosen because it keeps
the EC/DMC mixture liquid at relevant operating temperatures. The compound PFg is typically
used as a negatively-charged counterion to balance the positive charge introduced as Li" is
transported through the electrolyte.
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Figure 5: Thermal ramp data (left, from Ref (Doughty 2005)) and DSC data (right, from
Ref (Abraham, Roth et al. 2006)) for thermal abuse of Li-ion Batteries.

Figure 5 shows one type of data collected by the BATLab, in this case thermal ramp data on the
left (Doughty 2005), and differential scanning calorimetry (DSC) on the right (Abraham, Roth et
al. 2006). The thermal ramp experiment consists of putting a battery cell in a temperature-
controlled cell, heating it to different temperatures, and monitoring the heat production rate. In
examining the ARC data, one sees several different regimes. Below 150 C (“stage 1”) the battery
produces no additional heat. Between 150 and 190 C (“stage 2”) the additional ambient
temperature enables chemical reactions in the battery that begin to produce heat, and the battery
responds roughly linearly to the ambient temperature. Above 190 C (“stage 3”), the battery is in
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full thermal runaway, and the rate of heat release is much more than linear; it is in this latter
stage that the battery often produces enough heat to catch fire.

The DSC data provides additional resolution. In a DSC experiment, the battery cell is opened,
and part of the anode electrode, with some of the electrolyte, is put in one compartment, and part
of the cathode, again with some electrolyte, is put in another compartment. The apparatus is
again held at different temperatures, but this time the amount of heat flow required to keep each
compartment at a constant temperature is measured. In this way, separate information from the
anode and the cathode thermal decomposition may be collected. Examining the DSC data in FIG
X2 shows that at 125 C the anode is already showing a thermal response to the accelerated
temperature, even though the ramp data doesn’t show a cell-level response at this temperature.
At around 150 C the cathode also begins showing a response, and both compartments are
showing large heat fluxes by 200 C.
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Figure 6: Heat release from different cathode materials, taken from Ref (Roth 2008).

The picture that arises from the above calorimetry data is one in which at lower temperatures the
SEI passivation layer either starts to break down, exposing the electrolyte to lithiated carbon. The
exothermic reactions that form the SEI layer itself are again possible, and form more SEI type
product, generating heat in the process. At low total reaction rates, this heat can be dissipated
(stage 1 in Figure 5). Beyond this point, however, the battery heats enough to accelerate the
heating process (stage 2 in Figure 5). When the heat reaches a sufficient point, phase changes are
possible in the cathode that change the cathode stoichiometry, for example, one that takes
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LiMO, — LiMO + O (1.1.1)

The resulting oxygen species can cross the cell and further decompose the anode SEI layer.
When the anode SEI decomposition reactions and the cathode phase change reactions are both
occurring and reinforcing each other, thermal runaway (stage 3, Figure 5) can occur.

The role of cathode oxygen release is reinforced by the data shown in Figure 6, which shows a
normalized rate coefficient for heat release from the cathode at various temperatures. The
original CoO; layered compound, as well as more recent improvements (the Gen2 and Gen3
materials, which are also layered compounds, but with different metals substituted for some of
the Co) all show steady improvement, but still substantial heat release. Newer materials, such as
the Mn,O, spinel material and the FePO, olivine material, are negligible on the scale of the
figure, and yet still remain a risk for thermal abuse and runaway.

It is also worth noting that, despite the elevated safety risk provided by these chemistries, the
layered compounds are still in wide use in the battery industry, due to their lower cost, greater
lifetime, and superior charging rates. Many issues determine whether a particular battery
chemistry will succeed in the marketplace, safety being only one of them.

~10 nm ~2 nm

Electrolyte
Anode

~COrganicSE|

Figure 7: Hypotethical structure of the SEI layer.

Figure 7 shows a hypothetical structure of the SEI layer. The exact structure has been hard to
characterize, since the interphase is amorphous, polycrystalline, and at least partially soluble in
the EC solution. What is known is that the SEI is composed broadly of two different types of
precipitates: a denser layer made up of inorganic precipitates such as Li,COs, LiF, and Li,0O, and
a more porous layer made up of organic precipitates such as alkyl carbonates and dicarbonates.
The composition of the inorganic layer is thought to be largely composed of Li,COg3, and the
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structure of the organic layer is thought to be largely composed of lithium ethylene dicarbonate
(LiCO3C,H4CO3LiI) (Zhuang, Xu et al. 2005).

The SEI forms when lithiated carbon in the anode reacts with the electrolyte. The accepted
formation mechanism is due to Aurbach (Aurbach, Gofer et al. 1992; Aurbach, Einely et al.
1994), and consists of singly reduced species forming the organic/semicarbonate SEI layer

EC + Li* + & — CH,CH,COsLi (1.1.2)

2 CH,CH,COsLi — LiCOsC,H4COsLI + CoH4 (1.1.3)
and doubly reduced species forming the inorganic layer

EC + 2Li" + 2" — Li,CO3 + CyHy. (1.1.4)

The thicknesses of the different SEI layers remain something of a mystery. The inorganic layer is
thought to be ~2 nm thick, and can be seen as an electron-transfer-limited passivation layer;
because the inorganic materials will be insulating, electrons flow from the anode surface and
form more inorganic layer until a sufficient insulating thickness is formed to prevent further
electron flow. The organic layer is thought to range from 10-50 nm, and it is hard to understand
the formation of such a thick insulating layer being formed by direct electron transfer from the
surface.

The reactions (1.1.2)-(1.1.4) are exothermic and produce substantial heat as they occur.
Normally a battery is made by putting layers of (delithiated) anode, separator, and (lithiated)
cathode materials together, adding electrolyte, and then connecting the electrodes to a voltage
supply to run through a preprogrammed “formation cycle”. In this process the battery is brought
slowly through the charging process so that a stable SEI layer can be formed and so that the heat
resulting from this formation can be properly dissipated. Once a stable insulating layer forms,
however, the electrons are prevented from passing through the SEI layer, and must instead pass
through the external circuit, where they can perform work. The Li* cations do diffuse through the
SEI layer, where they join with the electrons in the cathode. Were the SEI layer of a fully
charged battery to suddenly disappear, the exothermic reactions (1.1.2)-(1.1.4) would rapidly
occur, producing substantial heat and thermal runaway.

A very promising approach to modeling thermal abuse in transportation batteries comes from
Jeff Dahn and coworkers (Hatchard, MacNeil et al. 2001), who define a simple thermal model
for the battery containing heat production terms for the anode

P= HlAlx? eXp(ETETl) + HzAin eXp(;TET?) (1.15)

as well as for the cathode

17



P = HAexp(7£)o"(1- )" (1.1.6)

where the H, A, and E terms are thermodynamic parameters for the various heat production
reactions (e.g. egs (1.1.2)-(1.1.4)) at the anode and cathode, and where the x parameters are
related to the thickness of the SEI layer.
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Figure 8: Computational model for thermal abuse of Li-ion batteries (top), compared to
experimental results (bottom), from (Hatchard, MacNeil et al. 2001).

Figure 8 shows the excellent agreement these models give when fit to experiment. One of the
aims of our project is to develop computational tools that would allow equations of the form
(1.1.5) and (1.1.6) to be developed from first principles. The reason we suggest that different
functional forms may be required, and not simply different parameters to existing functional
forms, can be seen in Figure 9. Here we compare Dahn’s functional form with several different
activation barriers, and find poor agreement with experimental data (left). In contrast, using a
reaction-diffusion form (right) gives much better agreement.

18



Spiral Lump Model: 1st Order Reaction ARC Results for LiNi Aly 050, Cathode

0.800,15

400 -

= 300 *  Experiment

2004

Heat Rate (C/min)

Ea=120 kJ'mole 100

100 200 300 400 500 100 200 300 400
Temperature (C) Temperature (C)

Figure 9: Comparison of fits (left, red, purple, blue lines) using Dahn autocatalytic
functional form shows poor agreement with data (left, green points),
regardless of activation barrier; in contrast, using a more sophisticated
reaction-diffusion functional form (right, red lines) shows much better
agreement to data (right, green points).

Our aim in the current work is to understand the chemical mechanisms leading to the formation
and decomposition of the SEI layer, as this process has been inexorably linked to thermal abuse
and runaway. Modeling such processes is a considerable challenge: accurate modeling of the
reaction chemistry in equations (1.1.2)-(1.1.4) requires quantum methods such as density
functional theory that can provide sufficient accuracy at high computational cost, a cost that
precludes their applications to something even as large as the 50 nm thick SEI layer, much less
application to an entire battery cell. We therefore use a multiscale approach to modeling as
described below to provide the accuracy of techniques such as density functional theory (DFT) to
predict the rates and the thermodynamics of the elementary reactions, yet still be capable of
describing the evolution of the SEI microstructure as well as the overall battery cell performance.

19



20



2 MODELING RESEARCH AND DEVELOPMENT

2.1 Overview
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Figure 10: Hierarchy of multiscale modeling approaches used to understand and predict
battery safety.

Figure 10 describes the multiscale modeling approach used in the current project. We use single-
phase (i.e. gas phase or 3D periodic boundary conditions) DFT calculations to understand
structures and bulk thermodynamics of different materials. This type of calculation is described
in Section 2.2 below. These calculations provide input to an electrode interface capability that we
have developed as part of this project and that is described below; this capability describes an
electrode and the double-layer of the solvating electrolyte, to understand the impact of the
electrode structure and the applied voltage, if any, on reactions that occur at the electrode-
electrolyte interface. The electrode-electrolyte interfacial calculations are described in Section

2.3, below.

We use molecular dynamics (MD) techniques using classical force fields to predict Li* diffusion
through the various phases in the battery cell. These calculations may be validated against the
barriers and the structures predicted by the quantum capabilities, above, and provide diffusion
rate constants for the mesoscale and cell modeling components. This capability is described in
Section 2.4,

We use the chemical mechanisms developed using the DFT capabilities in Section 2.2 and 2.3
for EC decomposition to predict the growth of the SEI passivating layers using mesoscale
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modeling techniques, including kinetic Monte Carlo (KMC) and phase field methods. This
technique is described in Section 2.5.

Finally, we take the rates from the DFT capabilities, the diffusion constants from the MD
capabilities, the SEI microstructure and growth/decomposition rates from the mesoscale
capabilities and input this into a macrohomogeneous cell model that describes battery operation
under normal and abusive conditions. This capability is described in Section 2.6.

2.2 Single Phase Quantum DFT Mechanisms

We first consider the energetics of battery electrolyte decomposition leading to SEI formation,
computing reaction energetics of simple molecules, in the gas phase, or in dielectric continuum
regions representing the electrolyte solution. For this consideration, we use DFT calculations
(Kohn and SHAM 1965) using a hybrid B3LYP functional (Becke 1993) and a double-zeta plus
polarization basis set with diffuse functions included to treat anionic species. Because EC
decomposition in batteries occurs in the battery electrolyte solvent (roughly a 50:50 mixture of
EC and DMC), we also include the effect of the solvent on the energetics, using a Poisson-
Boltzmann solvation (Marten, Kim et al. 1996) dielectric with a dielectric constant of 40 (chosen
to match measurements (Sasaki, Hosoya et al. 1997) on a 50:50 EC/DMC mixture), and with a
solvent radius chosen to match that of EC. All calculations were performed using the Jaguar
guantum chemistry package (2009).

2.2.1 Bond Breaking Reactions

We first consider simple bond-breaking reactions. Given the components of a battery electrolyte,
we determine which bonds are the easiest to break, as these are the most likely to break when
exposed to the Li* and e coming from the anode when the SEI layer forms.
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Figure 11: Energies (kcal/mol) for breaking the indicated bonds in EC (left) and DMC
(right), computed using B3LYP/6-31G**++ (black) and MP2/6-31G**++ (red)
levels in the gas phase.

Figure 11 shows the energy (in kcal/mol) required to break various bonds in EC and DMC. The
numbers in black are for B3LYP/6-31G**++ calculations, the primary method we will use
throughout this section. As a validation of the method, we also present MP2/6-31G**++
calculations here for the same reactions.

In EC at the B3LYP level, the CH,»-O bond is the easiest bond to break, which agrees with most
other studies (Wang and Balbuena 2001; Wang and Balbuena 2002; Wang and Balbuena 2002;
Wang and Balbuena 2005; Bedrov, Smith et al. 2012) of EC decomposition. What is interesting
is that several other bond-breaking reactions are competitive with this reaction at the MP2 level,
including the CH,-CH, bond and the O-CO bond. In DMC, the CH3-O bond is the easiest to
break when computed using B3LYP; as with EC, when the MP2 method is use, other bonds
become competitive, including C-H dissociation.
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Figure 12: Energies (kcal/mol) for breaking the indicated bonds in EC (left) and DMC
(right), computed using B3LYP/6-31G**++ in a solvation dielectric
corresponding to a 50:50 EC/DMC mixture (blue).

Figure 12 reports bond breaking energies (kcal/mol) using the B3LYP/6-31G**++ method, in
the reaction field given by a Poisson-Boltzmann continuum dielectric whose dielectric constant
of 40 is chosen to correspond to a 50:50 mixture of EC/DMC (Sasaki, Hosoya et al. 1997), and
whose solvent radius is chosen to correspond to that of EC. Here the overall trend is similar to
that of the gas phase B3LYP calculations (as is generally expected for uncharged species): again,
the CH2-O bond breaks most readily in EC, and the CH3-O bond breaks most readily in DMC.

Figure 13 reports bond breaking energies (kcal/mol), again using B3LYP/6-31G**++, in the gas

phase (black) and solvated with the above reaction field that corresponds to EC/DMC (blue), but
for an EC anion. Here we see substantial differences over the analogous reactions for the neutral

molecule. In particular, the CH2-O bond breaking is now exothermic in both the gas-phase and in
solution, and the O-CO bond is close to energetically neutral in both gas-phase and in solution.
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Figure 13: Energies (kcal/mol) for breaking the indicated bonds in EC" computed using
B3LYP/6-31G**++ in the gas phase (black) and in a solvation dielectric
corresponding to a 50:50 EC/DMC mixture (blue).
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Figure 14: Energies (kcal/mol) for breaking the indicated bonds in ring-opened EC (left)
and ring-opened EC" (right) computed using B3LYP/6-31G**++ in the gas
phase (black) and in a solvation dielectric corresponding to a 50:50 EC/DMC
mixture (blue).

Finally, Figure 14 reports B3LYP bond breaking energies for ring-opened EC (ROEC), an EC
molecule with the CH,-O bond broken, using both gas phase (black) and solvated (blue)
methods, for the neutral (left) and anionic (right) species. Notable is the dominance of the O-CO,
bond breaking reactions in the gas phase, and the HC-OCO bond in solution.
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If we consider only the most likely bond breaking reactions determined above we can already
obtain a very simple (as well as oversimplified) picture of EC decomposition. The EC molecule
will most likely break the CH»-O bond, either before or after reduction, and will subsequently
break the HC-OCO; bond or the O-CO; bond. Such a decomposition pathway would lead to
C,H4, OC3H4, CO,, and CO5 fragments in various states of charge, all of which have been
observed experimentally (Roth 2008).

2.2.2 Mechanisms for SEI Formation

We now consider mechanisms for SEI formation. The accepted mechanism due to Aurbach
(Aurbach, Gofer et al. 1992; Aurbach, Einely et al. 1994) is listed as equations (E2)-(E4). To a
large extent, the results in the previous section corroborate such a mechanism: certainly equation
(E2) is the most likely first step, and something along the lines of (E4) is also a likely reaction
for subsequent reductions. However, reaction (E3) is somewhat suspect, as it requires two free-
radical species to collide and react with one another in solution, something that goes again
simple chemical kinetics, which would typically assume that highly reactive species such as free
radical are more likely to react with less reactive (and thus more stable and thus more likely to be
present) species rather than more reactive species. But what is present to react with other than
another ROEC molecule? The solution we propose is that the EC solvent itself is far more likely
to react with a stable EC molecule than with another reactive ROEC molecule.

We now consider the steps that lead to formation of organic and inorganic SEI layers. As above,
we compute energetics for isolated molecules in a dielectric that represents a mixture of
EC/DMC. For the purposes of these reactions, we assume that electrons can be added at zero
energetic cost. This overestimates the likelihood of reduction reactions somewhat.

26



0 \ e o) o C
i \241 225
A o N, 636

H,C o o S 4
\
D \e \\\ H,L/\OJ\O
\\ \\
\ o \\
\
5 s Small?
\-142.6 ===,
N— »
N 5
SN
H,C™ 0 o NN
5 NN
E o \\\\\‘198.0
CH
HZC¢ 2 O;\O/\/OTO'
G F

(o}

Figure 15: Reactions leading to the formation of organic SEI compounds, primarily EDC.
B3LYP/6-31G**++ energies in kcal/mol computed using a dielectric
representing a 50:50 EC/DMC mixture.

Figure 15 shows formation of EDC from EC. We find that the most energetically favorable
reaction is adding a single electron to EC (structure A), forming the anionic EC" species
(structure B). With a very slight barrier (1.6 kcal/mol, to structure C), the EC” molecule can ring
open to form CH,CH,OCO;, a species that we shall hereafter refer to as ring-opened EC
(ROEC, structure D). We have investigated several reactions from this point in the reaction
scheme; the most likely of these turns out to be a second reduction of the ROEC" species,
forming a dianionic species, structure E. This species, it is found, can add to the native EC
solvent with a low (as of yet undetermined) barrier, to form EDC dianion, structure F, and
ethylene gas, structure G. Because the Aurbach mechanism represents the reaction of two radical
species, we believe this reaction should occur extremely rapidly, essentially without a barrier, to
couple two of the D structures to the F+G species; however, for kinetic reasons referred to above,
we do not believe this reaction is likely to happen to a great extent in solution.
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Figure 16: Reactions leading to the formation of inorganic SEI compounds, primarily
Li2CO3. B3LYP/6-31G**++ energies in kcal/mol computed using a dielectric
representing a 50:50 EC/DMC mixture.

Figure 16 details several additional schemes that can occur to form the inorganic Li,CO3
compound. We can reduce the EDC compound, structure F, which can then either dissociate a
carbonate (COs’ structure H) group that will precipitate with Li* in the cell, forming ROEC"
structure D. This species can either participate in the reactions to form the organic SEI species in
Figure SEI1, or can again be reduced and dissociate a second carbonate group, structure H again,
forming more ethylene. The sequence of these reactions can either occur reduction-dissociation-
reduction-dissociation, or reduction-reduction-dissociation-dissociation, as shown in the figure.

Given the fact that the inorganic species are energetically downhill from the organic species,
why do we see the organic species form at all? This discussion amounts to speculation on our
part, but one explanation is that the organic species are kinetically favored, and form first and
fastest. It is known experimentally that the organic layer is more porous and can allow electron
transfer. In contrast, the inorganic layer should be a typical insulating oxide layer that will not
allow electron transfer. When the subsequent reactions occur to form inorganic species from the
organic species, this can only occur until a sufficiently thick layer forms to fully insulate the
surface and shut off electron transfer. We assume that this should take 2-10 nm, in agreement
with experimental observation.

These processes suggest the reaction scheme, this time including the Li* species,
EC + Li* < LIiEC"
LIEC" + e — LiEC
2 LIEC — LiEDC + C,H, (g)
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LIEC + e — LiCO3 + C,H,4 (9)
LiCO3 + LIEC — Li,CO3 + EC
LiCOs + LIiEC” —s LiEDC
We have used this reaction scheme in the subsequent sections to model SEI growth processes.

2.3 Electrode-Electrolyte Interfacial Modeling

2.3.1 Modeling an Electrochemical System

Figure 17: Conceptual model of a lithium-ion battery

Figure 17 depicts an idealization of a lithium-ion battery system, which serves as a conceptual
model from which to design an approach to simulate the crucial chemistry of interest at the
electrode-electrolyte interface.

A solid anode and solid cathode are separated by a liquid electrolyte. As a function of charging
(or discharging), with an applied potential, a Li ion is removed from one electrode, migrates
through the electrolyte, and inserts into the other electrode, while the electron, is forced to travel
through the conductive circuit, the electrolyte not being conductive. It is the chemistry at the
interface, and particularly the insertion of the Li ion from the electrolyte into the electrode (or
vice versa), highlighted in the red squares in the Figure, that needs to be quantified with
modeling. Complicating this picture, with an applied potential, there is build up of charge at the
electrode surface, and electrolyte responds to screen that surface charge with solvated ions,
forming a double layer. The distribution of charges affects the local chemistry, and a predictive
model must take this into account. Further complicating this simple picture is the formation of a
solid-electrolyte-interphase at the interface. It is the detailed interplay of the state of charging of
the overall systems, the consequent distribution of charge at and near the electrode-electrolyte
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interface, and the energetics of the individual chemical processes—insertion or removal of Li
ion, formation of SEI phases, decomposition of electrolyte at the interface, etc.—that govern the
performance of a battery chemistry and the breakdown of that chemistry in thermal abuse.

To model chemical reaction processes between the electrode and electrolyte with sufficient
fidelity, a quantum chemical approach is needed, but quantum chemistry can only model systems
with a few hundred atoms effectively, and not the full conceptual model. That model must
faithfully represent the boundary conditions of the full system, and also include the statistical and
dynamical properties of the electrolyte in an adequate thermodynamical treatment, formal
challenges that have not been fully overcome. In this section we describe the development of an
approach to develop an integrated method to compute interfacial chemistry.

To simplify the immediate task, we will focus on a particular cathode material, lithium
manganese oxide, as the cathode is less prone to formation of SEI layers than the anode and this
spinel is considered a good and interesting cathode material. This next section discusses the
quantum calculations for the bulk crystal substrate. The correct treatment of the electrostatic
boundary conditions in the supercell approximation, in systems with net charge and electric
fields, is the subject of the following section. Next, within conventional DFT calculations, a slab
model is used to simulate the surface, and also the interface, and we describe the limitations of
that model and review approaches that been used to simulate the interface. A statistical approach
to model the electrolyte describing the distribution of charge within the electrolyte, a fluids
density functional theory, is then described. And finally, our approach, which coordinates the
quantum DFT treatment of the solid and the interface with the fluids-DFT description of the
electrolyte, communicating the correct electrostatic boundary conditions back and forth, is
described.

2.3.2 Bulk DFT simulations of materials — lithium manganese oxides

Manganese oxides are of particular interest for use as cathode materials in lithium based battery
chemistries. The spinel structures readily and reversibly take up and discharge lithium, starting
with Lig(Mn204) “Li0” through Li;(Mn204) “Lil1” to Li,(Mn,QO4) “Li2” composition, without
large changes in structure (one characteristic desired for a viable electrode material). The
potential for high energy density and cyclability make the spinel a good candidate for a cathode
material. The relatively simple structure, in addition to its relevance to current cathode
development, make this a good choice for an example problem to illustrate methods for the
treatment of electrolyte-electrode interfaces.

A necessary prerequisite for developing a surface model of the spinel for the interface DFT
calculations, is characterization of the bulk properties of the material. To avoid computational
artifacts, the treatment of the surface must be consistent with the treatment of the bulk substrate
(Magyar, Mattsson et al. 2011). The Li0 compound is cubic, but as lithium atoms are
intercalated, the compound lowers its symmetry, to orthorhombic for the Li2 compound. The
structure of the lithiated manganese spinels has been the object of first-principles density
functional theory calculations (Mishra and Ceder 1999; Grechnev, Ahuja et al. 2002; Fang and
de Wijs 2006), and these studies have characterized some of the complexity in the structures
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when transitioning from LiO to Li2, and Mishra and Ceder (Mishra and Ceder 1999), in particlar,
demonstrate the important of spin-polarization and magnetic effects in obtaining a good
consistent picture of the different lithiated spinels, and further point out that a generalized
gradient approximation (GGA), such as implemented in the Perdew/Burke/Ernzerhof (PBE)
functional (Perdew, Burke et al. 1996) is needed to get a good description of the bulk properties;
a local density approximation (LDA) functional (Ceperley and Alder 1980 ; Perdew and Zunger
1981 ) does not.

Examination of the nominal oxidation states of the atoms in the manganese oxides immediately
illustrates the origin of the Jahn-Teller instability and the importance of magnetic effects. As
shown in the following Figure 18.

LiO: Mn% I I I
Lil: Mn3>* IJ I I

Li2: Mn3* I l I I Low-spin FM
OR I
l I I High-spin FM
Figure 18: lllustration of the local level structure on the Mn atom in the Li 1,2Mn,O4
compound.

The crystal field in the cubic spinel splits the five d-states on Mn into two sets of states: a triply-
denegerate tq and a pair of higher eq states. In the Li0 compound, the three valence electrons on
the Mn fill each of the lower states with one electron, and by Hund’s rule, these will couple into
a high-spin state. This state is non-degenerate, and keeps a cubic structure. Upon lithiation, the
extra electron either falls into the lower states, reducing the net magnetism or, with large enough
exchange coupling, can stabilize an electron in the state with an increased net spin. In either
case, a degeneracy in the state occupations (ambiguity concerning which one of the degenerate
state to put the extra electron into) leads to a structural instability and slight distortion to an
orthorhombic state. Here, we restrict our attention to just the cubic structure; the distortions,
being driven by non-bonding d-electrons, are modest, and, for the purpose of demonstrating the
new methods for modeling boundary conditions at the surface, can be ignored.

Departing from earlier example (Fang and de Wijs 2006), we use the rhombohedral (fcc)

primitive unit cell, LixMn4Og, rather than the larger, conventional cubic units cells composed of
eight formula units. The calculations are equivalent for crystal calculations, and the smaller
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primitive cells leads to faster calculations. We use the SeqQuest code (Schultz 2012) to perform
the DFT calculations to optimize the crystal structure. Carefully converged pseudopotentials
(PP) and optimized contracted-Gaussian basis set were used for all atoms, taken from the
SeqQuest library. Following earlier examples (Mishra and Ceder 1999; Grechnev, Ahuja et al.
2002; Fang and de Wijs 2006), we use the PBE flavor of GGA in the calculations. We
performed optimization of the crystal structure, both atomic positions (the oxygen parameter up)
and cell shape. With the location of Mn in the Periodic Table, the semicore 3p° electrons on the
Mn atom can affect the valence chemistry, and we tested the adequacy of the PP to determine
whether their effects can be adequately embodied through a non-linear core correction to the PP
(Louie, Froyen et al. 1982), designated “p0”, or if the shell of six semicore p-electrons must be
included explicitly in (more expensive) calculations, denoted “p6”. The structural calculations
were done for both non-magnetic (NM) and ferromagnetic (FM) spin states. The Li2 structural
optimizations were done for the low-spin (2 electrons/Mn: FM(2)) and high-spin (4
electrons/Mn:FM(4)) ferromagnetic states. The results of these calculations are in the following
table.

Table 1: Results of DFT structural calculations for lithium manganese spinels, ao in A (Uo).

Current DFT results Other DFT results
Compound p0 | p6 Mishra’99 | Grechnev’02 |  Fang’06
Li0 Experiment: 8.04 A (0.389)
NM 7.974 (.389) | 8.031(.389) - 8.02 -
FM(3) 8.099 (.389) | 8.164 (.389) 8.18 (.390) 8.16 8.148 (.389)
Lil Experiment: 8.23 A (0.3875)
NM 8.038 (.380) | 8.041 (.380) - 7.99 -
FM(2.5) 8.130 (.387) | 8.178(.387) 8.12 (.386) 8.13 8.156 (.3879)
Li2 Experiment: n/a (orthorhombic)
NM 8.003 (.379) | 8.048 (.379) - - -
FM(2) 8.083 (.381) | 8.131(.281) - - -
FM(4) 8.388 (.382) | 8.437(.382) 8.38 (.381) - -

(@) The Grechnev results did not perform a relaxation of the internal coordinates, the oxygen
position, determined by the positional parameter up, was set to the experimental value.

The current results seem to indicate that the explicit treatment of the semicore 6p electrons does
not affect the structure strongly. The predicted lattice parameter is slightly larger, but the
positional parameters do not change, and the difference between the results of the two PP is of
the same size or smaller as the error in the use of DFT, i.e., between either of the PP calculations
and experiment. This is convenient, as use of the more p0 PP is computationally cheaper, and
will facilitate calculations for larger surface models.

The inclusion of magnetism has more prominent importance, confirming the observation made
by Mishra and Ceder (Mishra and Ceder 1999). As expected, there are significant energy
lowerings with magnetization, and the exchange-mediated repulsions increase the lattice
parameter significantly, the greater the spin per Mn, the greater the increase in the lattice
parameter. The relatively modest increases for the spin-3e(or 2.5e) forms of about ~0.1 A jumps
to almost 0.4 A for the difference between the NM and high-spin 4-electron FM(4) state of Li2.
Moreover, the non-magnetic forms are all metallic, to obtain a gap consistent with an insulating
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material, it is necessary to include magnetism. Another consequence of this distinction is that
calculations for the NM forms exhibited much greater difficulty in achieving electronic self-
consistency and cell optimization. For expedience, to illustrate the implementation of the double-
layer boundary conditions, the later surface calculations will use the simplest GGA
approximation without spin. Ultimately, for predictive computational description of chemical
properties at the surface, the affects of magnetism, and possible calculations beyond even the
spin-polarized GGA might be desired.

The calculated structures are in general agreement with previous DFT results and experiment
(Mishra and Ceder 1999; Grechnev, Ahuja et al. 2002; Fang and de Wijs 2006), particularly for
LiO and Lil. The calculation of Li2 merits greater attention. The high-spin FM(4) results match
well the results of Mishra and Ceder (Mishra and Ceder 1999), but the low-spin FM(2) form, not
considered in that earlier work, are very competitive in energy to the FM(4), and the “true” form
preferred Mn*? is quite likely beyond the accuracy of standard local DFT methods like those
used here.

2.3.3 Electrostatic boundary conditions in periodic DFT calculations

Periodic boundary conditions are a mainstay of electronic structure methods for solid state (hon-
molecular systems). Crystalline materials are naturally treated with density functional theory
codes, a unit cell, typically the primitive cell is treated explicitly within DFT, and the Bloch’s
theorem is used to incorporate the infinite lattice through infinite periodic replicas of the unit cell
through translation symmetry. To treat non-periodic systems, a supercell approximation is used,
as illustrated in Figure 19, where the local, reduced dimension feature—be it a localized defect in
a solid or a molecule, or a solid-vacuum interface—is treated as a large crystal.

________________________
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Figure 19: The supercell approximation.
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For a molecule or a localized defect in a bulk crystal, as shown in Figure 19(a), the finite system
is transformed into a periodically replication crystal. With sufficient buffering between the
localized species, either vacuum for molecules or bulk crystal atoms for bulk defects, the direct
interactions between the species decreases. In practice, this buffering is quite effective, giving
the isolated limits to desired accuracies for relatively small supercells. However, this is only true
for species that have no long-range interactions, and this condition is violated if considering a
system with a net charge, as illustrated in Figure 19(b). The periodic array of positive charges
leads to a divergent electrostatic potential, with infinite energies. The long-range 1/r potential of
the Coulomb interaction is long-range, and the potential of the central cell of interest is corrupted
by the long-range 1/r potentials from the infinite periodic replicas of the charge. Obtaining the
correct local potential, without these corrupting tails, and recovering a usable and meaningful
energy expression requires careful avoidance of these infinities.

In any reduced dimension system with long-range charge (or dipole) potentials, reconstructing
the correct boundary conditions for electrostatic is necessary for predictive simulations. Ad hoc
solutions, such as using a flat background charge or “jellium” to neutralize the charge in a
supercell, allowed calculations to be performed, but while these eliminate the problematic
infinity, they do not correct the shape of the corrupted electrostatic potential and quantitative
calculations are confounded by the lack of a useful reference potential to relate energies of
supercells containing different net charge.

The local moment countercharge (LMCC) method (Schultz 1999; Schultz 2000) created an
approach to handle non-periodic systems with problematic charge (and dipole moments) within a
supercell approximation, using a hybrid-dimensional solution to the Poisson equation to separate
the solution of the problematic, non-periodic part of the electrostatics potential from the non-
problematic periodic part. The Poisson equation to solve for the Coulomb potential is linear in
the charge (electron) density—the potential from a sum of two densities is exactly equal to the
sum of the potentials due to the charge densities taken separately. The LMCC approach takes
advantage of this linearity of electrostatic potential by separating the total charge density pio(r)
in the unit cell into two components, a localized model charge density pim(r) that has the entire
charge and, in principle, other problematic local multipole moments (particularly a dipole) and a
remainder density p’(r):

prot(r) = p’(r) + pim(r). (2.3.1)

With judicious design of the local moment charge density and its location, the problematic
moments that have potential tails that extend beyond the boundary of the cell are reomoved from
the potential for the remainder periodic density p’(r), and the potential for the local moment
density pim(r) is solved analytically with the non-periodic boundary conditions appropriate to the
dimensionality of the physical system being simulated. For zero-dimensional systems
(ionization potentials or electron affinities in molecules, or point defects in bulk systems), sums
of simple Gaussian charge densities were particularly useful to construct pim(r)—being highly
localized, having fast and convenient analytical solutions for their Coulomb potentials, and
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leaving a remainder density p’(r) with favorable Fourier-transform properties for the periodic
part of the Poisson solve. To handle a point dipole moment simply required the sum of two
Gaussians, with opposite signs. A simple generalization of the LMCC approach, using a pair of
one-dimensional planes to treat the slab surface dipole remove the inter-slab fields and enables
esolution of the Poisson Equation with the correct boundary conditions appropriate to an isolated
slab (Schultz 1999), within a the same framework as for an isolated molecule. Effectiveness of
the LMCC method to isolate long-range Coulomb tails is demonstrated by insensitivity of the
results to changes in the supercell size in non-periodic directions, and the LMCC solutions show
no variation once the atomic densities attenuate into vacuum, as a practical matter, about 5 A
from any atom.

These LMCC-based solutions introduce discontinuities in the electrostatic potential at the edge
of the supercell. For a molecule or slab in vacuum, these discontinuities occur in a vacuum
region were there is no density and are inconsequential. For bulk materials, e.g., a defect in
semiconductors or, as later, solid-liquid interfaces, additional care must be taken to avoid these
discontinuities. For defects, a finite defect supecell model based on the LMCC (Schultz 2006;
Schultz and von Lilienfeld 2009) enables quantitative calculations of systems with net charge,
illustrating the flexibility of the LMCC approach to solving the Poisson Equation for non-
periodic problems within a periodic supercell approximation. Calculations for defect charge
transition energy levels in silicon (Schultz 2006), and GaAs (Schultz and von Lilienfeld 2009)
indicate that an accuracy of 0.1-0.2 eV is achievable. For the purpose of modeling chemistry at
an electrode-electrolyte interface, combining the artifice of a slab geometry and added
complexity of a bulk (fluid) environment to model the interface, we generalize the LMCC
approach yet further.
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2.3.4 Modeling bulk surfaces and solid-liquid interfaces with charge with supercells

(d)

ETG

Figure 20: Slab supercell model for a vacuum surface, and electrode-electrolyte interface

Figure 20 depicts the process of the creating a computational model for a surface system, and the
electrostatic issues that arise.

Figure 20 (a)-(c) illustrate the steps to construct a slab supercell computational model of a solid
surface to vacuum, and (d)-(f) illustrate the more complex chemical challenges of an electro
chemical system. To model a surface, a slab model, a periodically repeated thin film of bulk
material and vacuum is typically used, and design of this supercell approximation is fraught with
delicate construction issues (Magyar, Mattsson et al. 2011). A DFT model excises a small region
around a chemical process (in red). The semi-infinite model of (b) is not cast in form usable by
computational codes, and a finite slab is periodically replicated normal to the surface with
intervening vacuum. If there is a surface dipole (normal to the surface), either for the clean
surface or investigation of chemical adsorption), that dipole generates a long range electric field
that communicates spurious electrostatic fields between the replicas of the slab.

The most common approach to fix the error introduced by the artificial dipole field is to place a
counter-dipole in the middle of the vacuum region, at the cell (Neugenbauer and Scheffler 1993;
Bengtsson 1999). A slab LMCC (Schultz 1999) also accomplishes the goal of eliminating the
replica dipoles, but with a approach that proves more versatile for other applications (such as
molecular multipole moments).

An applied external electric field, a very simplified abstraction of the Coulomb effects from a
double layer at the surface of an electrochemical system, can be readily incorporated into a
vacuum-slab model through the addition of a sawtooth potential (Neugenbauer and Scheffler
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1993; Feibelman 2001). SeqQuest has applied external electric fields among its features, but for
modeling electrochemical interfaces this approach is insufficient. First, this approach is only
viable with a vacuum gap between slabs, due to the discontinuous potential at the boundary;
second, it neglects the effects of the solvent on the charged species at the surface; and, finally,
the bulk surface (and therefore the slab supercell model that expresses it) has a net charge in
general. The counterbalancing charge is in the distribution of ions in the solvent that make up
the other part of the double layer, and it is this Helmholtz gap that is responsible for the electric
field at the interface. The overall physical system, incorporating the full double layer is neutral,
but the volume contained within the DFT computational supercell will possess a net charge, from
the surface. As with bulk defects, a periodic system with net charge leads to divergent (infinite)
Coulomb potentials, with the attendant challenges those infinities involve.

A uniform background density—*“jellium”—~has been used to cancel the net charge placed onto
the slab in the supercell and allow a DFT calculation to go forward (Lozovoi, Alavi et al. 2001;
Filhol and Neurock 2006), but the suffers the same issues of jellium in bulk defect systems or
molecules: the artificial flat density overlaps the slab density, corrupting the resulting
electrostatic potential. An improved method for cancelling the slab charge adds a planar
countercharge at the cell boundary between slab replicas, as a one-dimensional Gaussian (Fu and
Ho 1989; Bohnen and Kolb 1998; Lozovoi and Alavi 2003). The problem, shared with the
jellium approach, that the energy is sensitive to (artificial) periodic separation between the slab
replicas was solved (Lozovoi and Alavi 2003), but these approaches continued to have
inappropriate periodic boundary conditions—the countercharge acted from both sides of the slab.

An important innovation involved using a Green’s function approach to use a (implicitly
solvated) charge layer outside one surface of the slab to balance the surface charge (Otani and
Sugino 2006). This enables obtaining a self-consistent electrostatic potential of the slab
supercell, with a non-periodic solution that incorporates the effects of a double layer on one side
of the slab (i.e., a discontinuity in potential at the cell boundary, corresponding to the dipole
potential shift). The method has the versatility to incorporate either vacuum or a solvent interface
on the slab surface, and defined a mathematical model consistent with the electrochemical
system and enabled practical DFT calculations of surface structure with fields.

The approach we develop, described in greater detail later, has virtue of similarly incorporating
the electrostatic effects of the double layer on a surface, using a generalization of the same
LMCC framework used routinely to model slab surface calculations with dipole moments, while
carefully segregating a more accurate treatment of the fluid from the internal aspects of the DFT
code. This modular treatment enables an accurate description of the DFT region with the correct
electrostatics, naturally incorporating the electrostatic potentials from a more general charge
distribution, and, in principle, more accurate description of the fluids, with the potential for
greater accuracy and for greater versatility in representing the solid-solvent interface.

The solvent interface poses additional challenges. Explicit inclusion of counterions in the DFT
supercell, e.g., including explicit protons in a layer or water molecules on a slab surface
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(Skulason 2007), neglects the statistical (thermodynamic) behavior in the solvent, and is limited
to very short double layer lengths. Instead, modeling the solvent as a structureless dielectric in a
Poisson-Boltzmann approach caused “solvated” charge to accumulate right at the surface, this
unphysical screening did not take into account the granularity of the solvent particles, a failing
remedied using a modified Poisson-Boltzmann (MPB) approach that incorporated the finite size
of the solvated ions into the charge distribution in the solvent at the interface (Borukhov,
Andelman et al. 1997), and adopted in subsequent studies of solid-solvent interfaces, including
the Green’s function approach of Otani and Sugino, and perhaps brought to its culmination in
work that combined the DFT and MPB through a “smooth and flexible dielectric model
function” (Jinnouchi and Anderson 2008). It had the additional advantage of being implemented
in a local orbital code, that avoids problems stemming from Kohn-Sham electrons overlapping
the numerically problematic discontinuities that arise at the supercell boundary, i.e., the non-
periodic boundary condition appropriate to a non-periodic double layer potential.

A yet more sophisticated technique to couple the quantum DFT and fluids DFT in a “joint-DFT”
approach has recently been presented (Letchworth-Weaver and Arias 2012) within which some
of the more ad hoc assumptions of earlier, simple approaches are shown to be reasonable
simplifications of a more rigorous underlying theory. Ultimately, a coupling of a quantum DFT
calculation with appropriately imposed boundary conditions derived from an accurate description
of the solvent and its ions in a fluids density functional in a couple approach is needed to achieve
quantitative, defensible predictions of chemistry at surfaces. A high-fidelity description of the
solvent that carefully incorporates solvent particle distrbution in a fluids density functional (fl-
DFT) is the subject of the next section.

2.3.5 Fluids-DFT Overview

As has been described above, predictive models of chemical reactions at the electrode-electrolyte
interface require a reasonable model of the charge distribution in the electrolyte. The most
commonly used model of the electrical double layer is the Gouy-Chapman-Stern (GCS) model,
also called the Poisson-Boltzmann (PB) model (or approximation) (Bard and Faulkner 2001;
Henderson and Boda 2009). More modern theories that include additional physics typically
result in significant improvements over the PB model. Here we describe one of these theories,
classical or fluids density functional theory (f-DFT) (Wu 2006), and discuss why f-DFT is a
superior approach to traditional PB models of the double layer.

The PB or GCS model is an extremely simple model that gives analytic results for an electrolyte
near a smooth planar surface. In the PB model, the electrolyte consists of point charges in a

continuum dielectric background with dielectric constant & The ions are assumed to be
distributed according to their Boltzmann weight in the electrostatic potential ¢:

p,(x) = exp(—ﬁzieq)(x)) . X>dil2 (2.3.2)
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where pi(x) is the density of ions of species i a distance x from the electrode, = 1/kgT where T
is the temperature and kg is Boltzmann’s constant, z; is the valence of species i, and e is the
electron charge. This distribution is assumed to hold for all distances further than di/2 from the
electrode surface, where d; is the diameter of ion i. The diffuse layer consists of this layer of
ions. At distances less than half the ion diameter, x < di/2, the densities pi(x)=0, which is termed
the inner (or Stern) layer. The PB model consists of solving Eq. (2.3.2) along with Poisson’s
equation for the electrostatic potential,

vig= ¥ L (2.3.3)

~ g€,

We have written Poisson’s equation in Sl units, where & is the permittivity of free space.

The PB model gives relatively reasonable results for the ion distributions near an electrode with
constant surface charge, for 1:1 electrolytes in aqueous solution at low concentrations and for not
too high surface charges. When these various conditions are not met, the PB method gives results
which deviate considerably from, for example, direct molecular simulations (either molecular
dynamics (MD) or Monte Carlo (MC) simulations) (Henderson and Boda 2009). The method is
inaccurate for nonaqueous solvents, low temperatures, high concentrations, asymmetric
electrolytes or multivalent ions, etc. These shortcomings are due to the extremely simple nature
of the model. The ions are treated as point charges as opposed to objects with excluded volume,
and all correlations are ignored. As we will see below, correlations due to excluded volume and
to the charges are important for capturing many phenomona associated with the double layer.

A number of methods can be used to improve upon the PB (GCS) theory. For a given model of
an electrolyte, molecular simulations are the gold standard in terms of accuracy, but often a
theoretical approach is needed. This is because simulations can be too slow for large or
complicated systems, and also cannot handle small concentrations of a given species. Here we
give a brief overview of our approach, f-DFT.

Classical density functional theories are based on minimization of a free energy functional of the
fluid densities. They are related to quantum DFTs (g-DFT) in that both theories rely on the same
variational principle. q-DFTs are based on an energy functional of the electron density, while f-
DFTs are based on a free energy functional of the densities of the molecular species in a fluid
that obeys classical statistical mechanics. f-DFTs are typically developed in the grand canonical
ensemble, and the grand free energy is minimized.

39



0
O
® _ ®

\\\\\\\

Figure 21: Sketch of the SPM model near a hard surface, showing cations (red), anions
(green), and neutral solvent (blue).

To describe a given fluid system with f-DFT, one needs both a model of the fluid and an
expression for the grand free energy functional. The fluid models are typically coarse-grained,
i.e. they usually do not include full atomic detail, although this is possible for very simple
systems. Here we describe a common model for electrolytes in f-DFT, namely the “semi-
primitive” model (SPM), as sketched in Figure 21. In this model, the ions are treated as charged
hard spheres. The solvent is a neutral hard sphere, with all species interacting in a background
continuum dielectric constant €. The hard spheres in general have different diameters. It is also
possible to include attractive interactions among the different molecular species using a mean-
field perturbation theory, but we do not discuss attractive interactions here.

The grand free energy of the system is
palp, (1)]=pF[p, ()]+ Zfare, (Vvr(r)-n,] @24

where F is the Helmholtz free energy, V. (r)is an external potential due to, for example,

surfaces bounding the fluid, and 1, is the chemical potential of species o. The terms included in
the Helmholtz free energy are based on the model system. In the SPM, we have

F [pa(r)] = Fia[pa(r)] + Fus [pa(r)] + FC [pa(r)] + Feorr [pa(r)] (2.3.5)

where the terms on the right hand side are the intrinsic Helmholtz free energies for the ideal gas,
hard sphere interactions, mean-field Coulombic interactions, and charge correlations. The ideal
gas term is simply

=2 / drpa (r) (In pa(r) — 1) (2.3.6)
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and accounts for translational entropy. DFTs for hard spheres are very accurate; in general we
use the “White Bear” version of the fundamental measure theory for the hard sphere interactions,
(Roth, Evans et al. 2002) which has the general form

8Fhlpale)] = [ dr Blna() (237)
where the free energy density @ is a function of a set of weighted densities:
na(0) = Y [ de'pu (s (- v')

The explicit form of ® used here is based on the Mansoori-Carnahan-Starling-Leland bulk
equation of state for multi-component hard sphere mixtures,(Mansoori, Carnahan et al. 1971)
and can be found in the original reference along with the weight functions w (Roth, Evans et al.
2002).

The free energy due to Coulomb interactions includes the mean-field part

Felp(r)] = / drpe(r)(r) (238)

2
where p. is the total charge density of fluid species in the system and ¢ is the electrostatic
potential, which satisfies Poisson’s equation (Eq. 2.3.3) along with appropriate boundary
conditions on ¢. The contribution to F due to charge correlations is not known exactly. An
approximate form is

8ol = =5 3 [ v [ar'pupswdeaplle—xl)  (239)
af

where Ac is related to the direct correlation function of the bulk fluid, and is found from integral
equation theory using the MSA approximation. The f-DFT proceeds by minimizing the grand
potential free energy with respect to the fluid densities:

e, (r)]_,

épairi

This leads to a set of nonlinear integral equations to solve for p(r).

These integral equations are implemented in our fluids DFT code, Tramonto (see
http://software.sandia.gov/Tramonto), which has been developed at Sandia. The equations are
solved in real space on a Cartesian grid, in three dimensions. The real-space implementation
allows the surface geometry to be arbitrary. Poisson’s equation is solved using a finite-element
approach. Boundary conditions can include either surfaces at constant charge or at constant
electrostatic potential. Details of the numerical implementation of f-DFT have recently been
published elsewhere (Heroux, Salinger et al. 2007; Frink, Frischknecht et al. 2012).
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As part of this LDRD project, we made several additions to Tramonto. First we corrected the
evaluation of the electrostatic free energy in Tramonto. The calculation was verified by
comparison with the expected results in the PB limit. Additionally, we checked that the code
satisfies the appropriate sum rules (Henderson 1992). These are exact relations derived from
statistical mechanics, and provide a check on the accuracy of our numerical solution of the DFT
calculations. The results of these verifications are summarized in Appendix A. The general form
of Eq. (2.3.9), which is applicable to hard spheres of arbitrary sizes, was implemented in
Tramonto as in the work of Oleksy and Hansen (Oleksy and Hansen 2006). Additionally, we
implemented a slightly improved version of the hard sphere functional, Eq. (2.3.7), in order to
compare results with those of Oleksy and Hansen.

In order to illustrate the differences between the f-DFT and PB predictions for the structure of
the double layer, here we consider a simple 0.1M agueous NaCl solution near a planar charged
surface. The dimensionless surface charge is o+ = 0.043 (see Appendix A), and since water is the
solvent we take T = 298 K and € = 78.5. In the f-DFT calculations, the species diameters are 1.9
A for Na+, 3.62 A for Cl-, and 2.8 A for water. We use the highest level of theory available in
the f-DFT, namely we include the electrostatic correlations from Eq. (2.3.9) and use the
improved hard sphere functional. Figure 18 shows the density profiles for the three species in the
case of the SPM model from f-DFT, and the two charged species in the PB model. The densities
have been normalized by their bulk values py. In both models, the negative Cl- ions adsorb to the
positively charged surface while the Na+ ions are depleted near the surface, thus giving the
expected double layer. The ion profiles decay to their bulk values over a relatively long distance.
This is a case where the PB model is reasonably accurate, especially at large distances from the
surface, but we see significant differences near the surface due to the atomistic nature of the
SPM model. In particular, the presence of the explicit solvent and the finite sizes of the ions
leads to oscillations in the density profiles near the surface, out to a distance of about 12 A. The
realistic sizes of the ions in the f-DFT also give a more accurate model of the Stern layer (which
we have left out in the PB calculations here). Finally, the contact densities and excess
adsorptions of the ions on the surface are considerably different in the two theories; in the f-DFT
the contact density for the Cl- ions is 145.7 py,, whereas it is only 24.4 py, in the PB calculation.
This is another reflection of the implicit solvent in the PB theory, which is inherently a theory for
dilute solutions, as compared to the explicit solvent at a liquid-like density in the f-DFT. We note
that the f-DFT calculations here reproduce those of Figure 22 in Oleksy and Hansen (Oleksy and
Hansen 2006).
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Figure 22  Density profiles as a function of distance from a postiviely charged surface
calculated using the SPM model in c-DFT (left) and using the Poisson-
Boltzmann model (right), for the same set of model parameters.

An excellent review of theory and simulation of the electrical double layer can be found in
Henderson and Boda (Henderson and Boda 2009). They show computer simulation results as
compared to PB theory and f-DFT for a “restricted primitive model” in which the ions are
charged hard spheres in a background dielectric. They show that the PB theory fails to follow the
simulation results in various limits, while the f-DFT is in nearly quantitative agreement with the
simulations. Thus, f-DFT is an attractive route to determining the structure of the double layer at
a nearly atomistic level.

Ultimately, determining reactions rates at the electrode surface will require calculating the
density profiles and free energy for an electrolyte adjacent to a realistic, 3D electrode surface
with atomic resolution. Here we show one simple 3D calculation as a proof of principle. We
consider an SPM electrolyte between two flat surfaces in the yz-plane at constant potential. One
of the surfaces also has an adsorbed, positively charged spherical atom emerging from the
surface. We employed reflective boundary conditions in the y and z-directions. Figure 19 shows
a 2D slice of the charge density of the negative ions in this system. The negative ions adsorb on
the flat surfaces and on the spherical ion, but we see the density is once again nonmonotonic and
shows interesting spatial heterogeneity around the adsorbed atom. These kinds of details will be
important in determining accurate rates for surface reactions in electrolytes, and can be obtained
from f-DFT.
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Figure 23: Two-dimensional projection of a f-DFT calculation of the charge density of
negative ions between two flat surfaces at constant potential, with a positively
charged spherical atom on the left.
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2.3.6 A model for the electrode-electrolyte interface
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Figure 24: Conceptual model for a DFT description of the double layer

In this section we assemble the conceptual basis for the computational model we have developed
for simulations of chemistry at solid-electrolyte interfaces in the presence of a double layer, and
describe its implementation and verification. The process of decomposing a simulation of a
semi-infinited solvated, charge surface with a double layer into a useful supercell DFT
calculation informed by an implicit description of the solvent with a high-fidelity resolution of
the particle distribution is presented in Figure 24.

The desired simulation is of a charge surface with a semi-infinite solvent layer that contains a
distribution of charge ions that exactly cancels the charge on the surface, the double layer. This
conceptual representation is illustrated in (b). The DFT slab supercell, in general cannot contain
enough the solvent within its volume to cancel their charge, and also cannot generate the
statistics necessary to reproduce the thermodynamics within the solvent. Moreover, depending
on the ionic strength of the solvent, the extent of the double layer, the Helmholtz gap, can
become much wider than is practical to include a DFT supercell. A fluids-DFT model is ideal
for modeling the free energy of fluid with solvated ions, but cannot compute the reaction
chemistry within the slab. The conceptual model couples a DFT supercell slab with a fluids-
DFT model of the solvent in combined solution of the overall problem. The fluids-DFT takes a
surface charge density in the slab, determined by the quantum DFT, and uses this surface charge
as a boundary condition to predict the distribution of ions within the solvent and its free energy.
In turn, the DFT supercell does a Kohn-Sham calculation on the electrons within the supercell,
but that supercell has a net charge. The net charge must be excised for a periodic solve of the
Poisson Equation to be viable, and the full double layer potential applied to the electrons within
the volume of the supercell (including the net charge) in order to obtain a valid energy
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expression. Following the LMCC strategy, a local moment analysis identifies the position of the
surface plane, and specifies construction of the local moment charge pim(r), such that the
remainder electron density in the cell p’(r) has no net charge, and no surface dipole, as depicted
in (c). Conversely, a second local moment analysis performed on the ion charge density in the
solvent determines the position of a second charge plane in the solvent, of equal and opposite
charge to the surface charge, and with a long range electrostatic potential equivalent to the full
distribution of charge within the solvent. Combining these two densities, the double-layer
contribution to the surface electrostatic potential is reduced to the potential generated by pimcc(r),
as depicted in (e). A numerically convenient means to represent these charge planes is as one-
dimensional Gaussians. Adding Oimec(r), the potential generated by pimcc(r), to the potential of
the neutralized supercell ¢’(r), compute using a periodic solution to the Poisson Eqaution for
p’(r)=puwt(r)-pim(r), to obtain a total electrostatic potential ¢wi(r)=9¢’(r)-Gimec(r) results in a
mathematically faithful representation of the double layer potential and energy.

The reduction of the double-layer contribution to the electrostatic potential to this simple LMCC
form is particularly convenient. The form of this model density pimc:(r) —two planar densities—
is exactly the same form used in the LMCC solution of the potential for a neutral slab with a
surface dipole (Schultz 1999). The solution of the Poisson Equation to obtain the corresponding
potential, ¢imcc(r), takes the same analytic form, and the necessary code to compute this potential
existed and had been comprehensively verified. Adapting the code used to compute boundary
conditions for a neutral slab dipole, for use in implementing the double layer boundary condition,
required adaptations in two aspects. First, the local moment density pim(r) in the double layer
code removes only one pole (surface charge) of the dipole, to excise the net charge from the
system, while the potential calculation needed to incorporate the other pole of the LMCC dipole,
implicit in the solvent region. Second, that solvent countercharge, in principle, could be either
inside the volume of the supercell, or outside, or sit astride the cell boundary, depending upon
the nature of solvent (ionic strength) and the width of the supercell. Computation of the
countercharge potential within the supercell might require consideration of countercharge density
that lies outside the supercell, requiring assumptions (and associated error-checking) concerning
the locality of densities within this Poisson solver code to be modified. However, the most
complicated, and therefore risky, coding of the double layer potential could leverage not only the
theoretical machinery, but also much of the pre-existing code, easing implementation and
verification.

In this one-dimensional form, the electrostatic potential from a LMCC treatment of the double-
layer boundary condition is functionally equivalent to the Green’s function approach described
above (Otani and Sugino 2006). The advantage of modularity in the current approach, separating
the slab code (SegQuest) and solvent code (Tramonto), is minor in the 1D example, as the
information passed between the two scales can be reduced to the location of a 1D solvent
countercharge potential, but will become much more prominent once the surface of interest
develops corrugation and roughness where a 2D or 3D representation of atoms and charges
become important.

The current slab-solvent coupling passes only 1D information, but the generalization for the

potential and density exchange in 2D and 3D between SeqQuest and Tramonto is a
straightforward extension of the 1D approach. Details of extending to use 2D and 3D data are
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not trivial, but both codes, independently, can describe complex interface topologies, and
manipulate potentials and densities on regular grids that are easily inter-communicated. In
SeqQuest, the code implementing the (1D) double layer electrostatic boundary conditions is
completed and tested, a facility to export internal slab densities and electrostatic potentials to an
external code (e.g. to Tramonto) and import double layer structure (e.g from Tramonto)
implemented, and released in production version SeqQuest 2.63.

2.3.7 Method and code verification, and application to a double layer system
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Figure 25: Test system for double layer boundary conditions in DFT supercell

Testing of the double layer implementation in SeqQuest was performed using an artificial
system, oxygen adsorbed on the close-packed (111) surface of Al, both as a neutral system, and
as negatively charged. This example is relatively simple, and versatile in its exploration of
different aspects of the implementation. The model and its salient aspects are depicted in Figure
25.

The model we use is a 7-layer slab of fcc aluminum, with closed-packed (111) surfaces. The
lattice constant is set to computed LDA lattice constant, 3.970 A, and the Al atoms are held fixed
to the bulk positions, i.e., are not allowed to relax at the surface. This is selected for expedience,
the choice of functional is inconsequential to the assessment of the double layer code, as is the
relaxation of the Al atoms in the surface. Pseudopotentials and basis set are taken from the
SeqQuest atomic library. We use a 1x1 supercell, so that each supercell has one Al atom per
layer, and one oxygen atom in the adsorbed case.

With adsorption of neutral oxygen, added in the fcc hollow site where the next layer of Al atoms
would have been in the continued crystal, the slab develops a dipole, as the oxygen pulls
electrons from the surface. Correct treatment as an isolated slab confirms the efficacy of the
LMCC slab dipole code, before proceeding on to the generalization to a double layer boundary
condition; this being demonstrated by an insensitivity in the results to variation of the width of
the supercell in non-periodic directions.
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To assess the double layer code, we now add an electron to the slab, nominally creating O™
adsorbed at the surface. A solvent countercharge plane is placed 13 A above the top layer of Al
atoms. The surface charge is much larger than is reasonable for any real electrochemical system,
and the solvent countercharge deeper into the solvent than would be typical for a Helmholtz
layer in an electrolyte, but these choices allow crucial aspects of the implementation to be
rigorously tested. With the very high fields in this model, the 48umeric are severely tested. The
wide range between the surface and the countercharge plane allow a potential energy surface to
be explored in different regimes, moving the (red) layer of oxygen atoms in and out to fully
adsorbed to full desorbed (pink) positions. Just as for the neutral case, if the double layer
implementation is correct, the results should be insensitive to whether the countercharge plane
resides inside (the vacuum part) of the supercell, astride the boundary, or entirely outside the
supercell. This is tested by varying the size of the supercell (demarcated in green in the Figure),
in our case from 15 to 25 to 35 layer spacings, that place the supercell boundary 10.3 A, 21.8 A,
and 33.3 A above the top Al atom layer. The position of the countercharge layer is imposed here
to define the test, but in the coupled DFT codes, this position would be determined by the fluids
DFT code and communicated to the slab DFT code.

With the high electronegativity of oxygen, it can stabilize a net negative charge at the surface (at
least using a local basis set), enabling a test of the new double layer code in the same slab model.
The charged oxygen adlayer has a bound state on the surface. This enables tests of the double
layer potential both in a chemical regime, as a species bound to the surface, and in the unbound
regime, dominated by the electric field inside the double layer that pulls the atom away from the
surface, the potential energy surface for adsorption being schematically illustrated in the orange
overlay in the Figure. This constitutes an unphysically large surface charge density created by
the dense layer of oxygen anions, but the large charge and strong fields allows testing of the
double layer code in numerically severe circumstances, building confidence in the method and its
implementation.

The neutral oxygen calculation finds an energy minimum 0.72 A above the plane of the top Al
atoms. Adding an electron to the system, the adsorbed O™ shifts negligibly from this position,
the bonding to the surface apparently not affected by the extra charge. This is a curious result;
how is the geometry of the atom not affected with the change in charge state? As part of its
workings, the double layer code computes the local moments of the net charge in the supercell,
and thereby the effective position of the electron charge layer in the supercell. For the adsorbed
species, the extra electron is centered in a layer 1.71 A above the oxygen, in what seems to be a
somewhat diffuse lone pair state pointed away from he surface and, unsurprisingly, along the
strong double layer electric field toward the solvent countercharge layer. As the oxygen departs
from the surface into the unbound (field-dominated) part of the potential surface, this electron
shrinks back to a plane only 0.93 A away from the oxygen atom, into a compact lone-pair-like
state. The diffuse adsorbed state suggests only tenuous attachment of the electron to the oxygen
in the slab, and almost certainly, in a plane wave basis method, this electron would be drawn into
the depth of the electrostatic well at the solvent counter charge at the cell edge rather than in the
plane (Feibelman 2001; Magyar, Mattsson et al. 2011). The use of the local orbital approach,
with no variational accessibility for this edge state, can avoid this artificial entrapment, a useful
advantage when attempting to manipulate external fields in a DFT supercell calculation.
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Both a force-relaxed and energy-minimization calculation produce the same minimum, to within
typical and small numerical errors, demonstrating the consistency of the force and energy
expressions within the double layer code. The consistency of force and energy curves was
further tested using finite differences farther out along the potential energy surface, with similar
numerical agreement. The force and energy code, independent calculations separately
implemented in the code, are consistent with each other, have the correct asymptotic behavior,
providing verification that the implementation is correct.

A final series of tests confirmed that the boundary condition constructed in the slab normal
direction correctly reproduce the aperiodic behavior of the double layer. Leaving all other part
of the calculation unchanged, the supercell calculation was repeated with three different widths
of the supercell, ranging from a width that left the solvent countercharge outside the supercell to
one that fully contained the full countercharge plane within the volume of the supercell (a
supercell 35 Al layer spacings—of which 7 layers ate aluminum—or 80.2 A wide). The slab
DFT double layer results are insensitive to this variation of the computational model, completing
the last verification test of the double layer boundary condition code.

Having verified the implementation of the double layer boundary condition in the slab DFT
code, we shift to a more realistic physical system of relevance to batteries, and demonstrate a
(trivial) coupling of the slab DFT code with a fluid model in Tramonto. For this example, we
will use a Mn,O, cubic spinel surface and examine the behavior of a electron capture at an
oxygen vacancy at the surface, a relatively simple yet physically interesting chemistry at a
candidate cathode surface.

We use the fully de-lithiated spinel, which is unambiguously cubic both in nature and in the
calculations, so as to avoid spurious surface interface reconstructions related to bulk phase
stability. To construct our slab model, we take a 1x1x1 conventional cubic unit cell with (001)
surfaces containing 60 atoms, 20 Mn and 40 O. The non-polar surfaces avoid surface dipoles that
complicate any analysis. Having the same stoichiometry as bulk avoids unintentional local
charging, and preserves the bulk oxidation states for all atoms in the slab model The calculations
used the PBE functional and the Mn PP with the semicore p-electrons in the core. To expedite
the calculations, a non-magnetic calculation was performed, and, furthermore, the k-sampling
was restricted to just the T'-point. The slab lattice parameter was set to the theoretical value in
this computational context, a;=7.92 A. The slab surpercell is 1x1 surface cell, and one cell thick,
and the supercell repeat vector places two layers of vacuum, i.e. 15.85 A, between the slabs for a
total width of 23.76 A.

This ideal cell model is then allowed to fully relax. In the top layer of the slab, there are 4 Mn
atoms and 8 O atoms, slightly rumpled, with 4 O atoms ~0.41 A above the planar Mn atoms, and
the other 4 O atoms only 0.24 A above the Mn plane.

These oxygen atoms, protruding slightly above the other atoms at the surface, are prime
candidates for vacancy sites, and, given that the spinel is strongly ionic, a vacant site is likely to
bind electrons, much like an F-center in alkali halides. In this ideal slab model, two of the
highest oxygen atoms were removed to leave two oxygen vacancies, and the this new defected
surface relaxed while kept at neutral net charge. The oxygen vacancies caused slight relaxations
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at the surface, the Mn atoms descending 0.09 A, and the oxygen atoms rising, the two top ones
by 0.07 A and the four lower ones by 0.10 A. This neutral surface structure was then used for all
the subsequent surface calculations of charged vacancies at the surface.

Two different charge states were considered, the first where two electrons were added to the
surface, one for each oxygen vacancy, the second where four electrons, two for each oxygen
vacancy, saturate the nominal valence left vacant by the missing oxygen atoms. To jumpstart the
slab DFT calculation, the countercharge plane was postulated to be 3 A beyond the assumed
solvent edge, i.e., a van der Waals radius above the top surface oxygen atoms. Taking the
oxygen radius to be 1.5 A, this plane was placed 4.5 A above the top oxygen atoms. As it later
emerges, the results are not strongly sensitive to modest variations in the solvent countercharge
position, a convenient outcome that makes self-consistency between the quantum slab DFT and
solvent fluid DFT easier to achieve—a small number of exchanges of potentials and densities is
needed to achieve a converged result.

Minimal modifications to Tramonto were needed for our initial coupled calculations. These can
be carried out in two ways. For the most general approach, Tramonto was modified to read in a
file with the electron charge density pe(z) of the electrode obtained from SeqQuest. The charge
density was then treated as a sum of point charges: d; = p«(z)Az where Az is the mesh spacing in
the SegQuest profile. The entire SeqQuest simulation box was placed inside the “wall” in
Tramonto, where the fluid densities are identically zero. A flat, neutral planar surface was placed
where the electron density becomes zero. The Tramonto calculation proceeded by including both
the electron density region from SeqQuest and the electrolyte region in the Poisson solve done
by Tramonto. This approach gives the electrostatic potential throughout the entire electrode-
electrolyte system. A simpler approach, which is all that is needed for structure determination
and an initial coupling of the codes, is to place the entire excess surface charge density
determined by the SeqQuest calculation on a smooth planar surface that bounds the electrolyte,
and calculate only the electrolyte response in Tramonto. We describe these calculations here.

We used the SPM model for the electrolyte in Tramonto, which we took to be a typical Li-ion
battery electrolyte of LiPFg in EC/DMC. We assumed the Li+ ions had a diameter of 2 A and the
PFe- ions had a diameter of 6.8 A, based approximately on the minima in the appropriate radial
distribution functions from our MD simulations of LiPFs in EC/DMC (see section 2.4). For
simplicity, we take the diameter of the solvent molecules to be the same as that of the PFg- ions.
The solvent is assumed to have a reduced density of pd® = 0.722 and a dielectric constant of
78.5. These parameters could of course be adjusted in future refinements of the model.

The structure of the current SeqQuest-Tramonto coupled calculation is very simplified for the 1D
modeling. SeqQuest computes charged surface calculation with double layer boundary
conditions, using an assumed value for the solvent countercharge plane (perhaps with an initial
guess provided by a preliminary Tramonto calculation for a continuum-model surface with the
indicated charge density). With the double layer boundary conditions, SeqQuest completes a
self-consistent calculation that obtains a charge density due to the redistribution of electrons in
the slab region. SeqQuest then outputs this density and potential into a file. Tramonto picks up
this information, in particular computing the location of the effective charge plane for the slab
density and its relation to the hard-wall surface plane used by Tramonto, to perform a fluids-DFT
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calculation to compute the response of the solvent to the surface boundary condition determined
by the slab DFT calculation, and in particular, computing the ion charge distribution in the
solvent. Figure 26 illustrates this hand-off, where on one side, the SeqQuest electron
redistribution is plotted as planar averages over the width of the slab supercell, and on the other
side, the ion densities in the solvent are plotted as planar averages as a function of the distance
from the surface, for a 1M LiPFg solution.
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Figure 26: Coupled slab DFT and fluids DFT calculations. Top, electronic density from SeqQuest.
Bottom, ion densities (relative to their bulk values) from Tramonto, for the electronic
surface charge density of 0.03/A? represented in the top figure. The moment of the
ion charge density is located 2.16A from the surface. The contact density of Li+ is
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The very fast wiggles in the SeqQuest plot simply indicate the positions of atoms in the slab, as
electrons within Mn,O, redistribute around atoms, and from Mn to O atoms to get to the ionic
oxidation states. The interesting part is the relative long deep valley on the right side of that plot,
which indicates the location of the surface charge. In the 2-electron negative charge, the centroid
of the negative charge is computed to be 0.36 A above the oxygen site left vacant. This
relatively modest shift, well within the van der Waals radius that separates the oxygen site from
the solvent region hard-wall, increases to 0.82 A for the 4-electron (2 electron per vacancy)
charged surface.

On the solvent side, this surface charge causes the ions within the solvent to redistribute, causing
a buildup of positive ions and reduction of negative ions near the surface (with respect to the
bulk solvent limit), with an oscillatory structure near the surface, dictated by the finite ion size,
eventually dying off to the structureless bulk concentrations. The net charge in the solvent must
exactly cancel the surface charge, since the electrolyte cannot sustain a net field at equilibrium.
This ion charge distribution is communicated back to SeqQuest. In the 1D case, all that is
actually needed is the moment of the charge, the centroid of a positive charge plane. The slab
density does not extend sufficiently into the solvent region to make the detailed structure of the
ion distribution important to the electronic energy, and the position of a countercharge layer
position is sufficient to determine the electrostatic potential where there is appreciable electron
density. With the coupled calculation, Tramonto computes the global electrostatic potential and
free energy of the fluid, and SeqQuest computes the electronic energy of the explicit atoms in the
slabs subject to the boundary conditions provided by Tramonto. The 1D implementation of the
double layer code is complete, and awaits practical applications.

2.3.8 Future Development

B +
- o+ -
"+ o+

* =y L
R e
R +
- = +

Figure 27: The challenge of a three-dimensional interface
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For these, the detailed distribution of ions within the solvent will be crucial to describe the
electrostatic effects on localized reactions at the surface, and the structure of the surface and the
distribution of charge within the surface will have a profound effect on the response of the ions
in the electrolyte. SeqQuest is able to handle large surface structures, with very flexible input of
external boundary conditions, and Tramonto implements the best methods for describing the
fluid response in complicated interface topologies, where the granularity of the solvent will be of
particular importance. The ability of SeqQuest and Tramonto to accurately treat these regimes,
and effectively communicate their respective boundary conditions in a unified calculation will be
crucial to obtaining quantitative results for chemistry at realistic electrode-electrolyte interfaces.

Among the capabilites that would need to be completed to fully generalize this coupled tool from
model 1D to realistic 3D problems is to fully communicate 3D structures, potentials, and
densities. In the 1D simulations, the computational cost is almost entirely dominated by the slab
DFT, the 1D Tramonto calculation being trivial in comparison, making interchange between the
calculations trivial. A 3D Tramonto calculation becomes more expensive, comparable to the
SeqQuest calculation, becoming a massive parallel computation rather than a desktop problem.
The interchange between the codes will need to be handled dynamically, as both codes run in
parallel. Rather than a custom coupling between the codes, this would best be handled by an
integration framework. A modeling framework to couple sub-continuum codes lies outside the
scope of this LDRD, but would be useful to facilitate other coordinated simulations (e.g.,
SeqQuest-LAMMPS, Tramonto). The construction of a full free energy expression, driven by
Tramonto’s treatment of the thermodynamics of the solvent and incorporating the internal energy
of the explicit treament of the slab electron in a full 3D exchange should also be implemented
into separate tool, incorporated into a framework, in principle, enabling easy modular
replacement of the model of the substrate (with a different DFT tool such as VASP) or with
alternate treatments of the solvent (with a simplified Poisson-Boltzmann model, or explicit
classical particles in a molecular dynamics simulation).

The approach developed here only describes the electrostatic interactions between the solid and
the electrolyte, assuming the contact terms at the interface are negligible. While the electrostatic
effects certainly dominate, incorporating improved models that treat the contact between the
explicit atoms and electrons of the slab with the implicit particles in the solvent will be needed in
the future. Recent developments in joint-DFT may provide a means to achieve this end
(Letchworth-Weaver and Arias 2012). Another route, recently applied to biological systems,
treats the substrate with conventional Kohn-Sham (KS) DFT, and its interactions with the solvent
through an orbital-free DFT (OF-DFT) (Hodak, Lu et al. 2008). Ultimately, describing
electrochemistry will require dynamical simulations of chemical processes, and methods will be
needed to allow particles to be interchanged between the two environments as a dynamical
simulation evolves. The explicit KS-DFT —implicit OF-DFT treatment at the interface offers
intriguing avenues to explore.
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2.4 Mechanisms for Chemical Diffusion in Materials

2.4.1 Simulation of Bulk Diffusion of Li lons

In the multiscale modeling of abuse and failure of batteries, mass transport by chemical diffusion
contributes to important processes in battery operation and potentially in failure of the battery.
For lithium ion transport in secondary batteries, the efficiency and lifetime of the battery is
dependent on diffusional transport of lithium cations through the organic-based electrolyte and
separator. Perhaps less significant due to the presence of large chemical potentials and shorter
distances (microns compared to millimeters of electrolyte material), diffusion within anode and
cathode components can be a concern. However, for predictive models of battery performance
diffusion of lithium ions through the organic and inorganic SEI phases at the anode needs to be
accurately addressed. Decomposition of the electrolyte at the anode occurs over multiple charge
and discharge cycles and creates lithium carbonate and a variety of alkyl carbonate phases.

Intracrystalline or volume diffusion is often a controlling mechanism for the transport of ions in
oxide phases at relatively high temperatures (greater than 400 to 500°C). Diffusion can occur
through several defect mechanisms depending on the chemical species that is being transported
in response to a compositional gradient. Crystalline defects can occur as simple vacancies or as
interstitials.  Additionally, the coordinated motion of multiple atoms through various
configurations can result in diffusion (exchange mechanism). Figure 28 provides conceptual
models of various mechanisms for diffusion in crystalline materials. Vacancies can be generated
intrinsically by thermal effects where high temperatures create vacancy sites while maintaining
charge neutrality (cation and anion Schottky pair defects). Crystal surfaces or line defects
provide a sink for the rejected ions. Similarly, interstitial defects can be thermally created when
typically a small cation is displaced from a crystallographic site into an alternative lattice site
(Frankel defect); charge neutrality is implicitly maintained.
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Crystalline Extended Defects and Grain Boundaries
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Figure 28: Schematic representation of crystalline diffusion and the role of extended
defects and grain boundaries as they relate to diffusion mechanisms.
Modified from (Watson and Dohmen 2010).

In contrast to these intrinsic defect structures and mechanisms, extrinsic diffusion mechanisms
occur for materials that are impure or contain multivalent metal cations. The defect structure of
such a material is controlled by the oxygen fugacity in equilibrium with the crystal and which
also effects the relative concentration of the different valence states for a metal (for example,
Fe**/Fe?") and ultimately affects the diffusion mechanism. In other words, the defects are
considered chemical species that follow strict thermodynamic behavior where their existence and
concentrations are controlled by extensive variables.

Alternative extrinsic pathways for chemical diffusion in bulk materials include extended defects
and grain boundaries. Extended defects are crystal surfaces, line defects, subgrain boundaries
(including crystal twinning), fractures, cracks, and other related physical boundaries of the bulk
crystalline phase. Grain boundaries, which dominate ceramic materials and minerals, would be
associated with the SEI phases in the operational battery. Figure 28 also includes graphical
models of these additional diffusion pathways. These fast-diffusion pathways are typically
considered to be extrinsic processes due to the preexistence of such large-scale defects in the
material.
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The Arrhenius relation for chemical diffusion processes is typically used to evaluate the variation
in diffusion rate as a function of temperature; two versions of the Arrhenius expression are
provided:

D = D, exp (-Ea/RT) (2.4.1)

logD =log Dy -E,/2.3026 R (1/T) (2.4.2)

where D is the diffusion coefficient, D, is a pre-exponential factor, E, is the activation energy, R
is the gas constant, and T is absolute temperature. Figure 29 provides a representation of the
Arrhenius relation as described by Equation (2.4.2) for two different diffusion mechanisms. The
high-temperature (low 1/T values) example represents an intrinsic mechanism that includes two
contributing processes. The activation energy includes an enthalpy for the thermal formation of
defects (Ahy); the k factor represents the stoichiometry associated with the defect formation
reaction. The second term represents the migration enthalpy (Ahr,) for the diffusing species.
Migration enthalpy is equivalent to the energy barrier for the transition state as the diffusing
species moves from an occupied site to a vacant or interstitial site. The preexponential term D,,
or intercept for Equation (2.4.2) at infinite temperature (log D,), effectively incorporates the
entropic part of the free energy for diffusion and the jump frequency (Barr and Lydiard 1971).

An extrinsic diffusion mechanism is represented in Figure 29 by the low-temperature (high 1/T
values) example where the smaller slope of the Arrhenius line only incorporates the migration
enthalpy (Ahm,), which may be equivalent to the migration enthalpy associated with the intrinsic
diffusion mechanism. As noted earlier, extrinsic diffusion mechanisms involve defect structures
that are controlled by multivalent metal species. Both intrinsic and extrinsic mechanisms are
present at all temperatures (note dashed extensions of Arrhenius lines) but the controlling
mechanism becomes evident when the diffusional flux is significant to dominate for a particular
temperature range. Multiple diffusion mechanisms, and multiple Arrhenius relations, can exist
for some materials. In these cases, one would expect smaller and smaller activation energies for
the dominating mechanism as temperature decreases. Grain boundary diffusion mechanisms
would be such a case where activation energies are always less than those observed for
crystalline diffusion.
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Figure 29: Schematic representation of an Arrhenius plot showing the transition between
intrinsic diffusion processes at high temperature and the extrinsic region at
lower temperature where in the activation energy is lower and is equivalent to
the migration enthalpy.

For the SEI phases at the anode of a battery, grain boundary diffusion can be an effective
diffusion mechanism for the transport of lithium ions to and from the electrolyte at relatively low
operating temperatures. However, experimental diffusion data is unavailable to make this
determination. Certainly, crystalline diffusion (or diffusion through an amorphous-like SEI
phase) may occur at operational temperatures and during high-temperature excursions during
battery failure.
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Figure 30: Ethylene carbonate (EC), dimethyl carbonate (DMC), and hexafluorophosphate
(PF¢).

2.4.2 Analysis of molecular clusters in simulations of lithium ion battery electrolytes

Molecular dynamics (MD) was used to study the properties of lithium ion battery electrolytes
composed of non-aqueous solvent (ethylene carbonate (EC) and/or dimethyl carbonate (DMC))
with LiPF6 salt. Figure 30 shows the minimum energy (B3LYP/aug-cc-pvdz, vacuum) structures
of EC, DMC, and PF6-. MD simulations were performed for all combinations of three
temperatures (300, 350, and 400 K), three solvent compositions (pure EC, pure DMC, and 1:1
EC:DMC), and three LiPF6 concentrations (approximately 0.1, 0.3, and 1.0 M) —i.e. a total of 27
temperature/solvent/concentration combinations. The pressure for each simulation was set to 1.0
atm. A total of 1000 solvent molecules was used in each simulation. The number of LiPF6 pairs
in each simulation was 8, 24, or 75.

A simple “Class I” forcefield model was used to describe bonded and non-bonded interactions
between atoms

total Z K (r_r) + Z K (9 9) + 2 K(p'n[1+COS(n§D—’J/)]

bonds angles dihedrals

wSeaf3f - oz

i<j

(2.4.3)

The bonded interaction parameters K , K, and K are force constants; r is equilibrium bond
length; ©, is equilibrium bond angle; and nand vy are periodicity and phase angle, respectively,
for dlhedral interactions. Note that the summation over dihedral bonds includes both
conventional and “improper” dihedrals. Accounting for nonbonded contributions to the potential
energy, the Lennard-Jones parameters € and o describe repulsive and dispersive interactions, and
the point charges q describe electrostatic interactions. For Lennard-Jones interactions between
different atom types, the parameters g and c,; were calculated using Lorentz-Berthelot
combining rules:
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Intramolecular nonbonded interactions between atoms separated by one or two bonds (“1-2” and
“1-3” interactions) were set to zero; Lennard-Jones and electrostatic pairwise interactions
between atoms separated by three bonds (“1-4” interactions) were scaled by 0.5 and 0.8333,
respectively; and atoms separated by more than three bonds were unscaled. Note that the
functional form of the forcefield used in this study does not explicitly model atomic
polarizability. While a polarizable forcefield (Rappe and 111 1991) has the potential to improve
guantitative accuracy over a wider range of conditions, especially for electrolyte systems such as
this, the greater resources required to use such a forcefield were not justified by the goals of this
study.

Forcefield parameters for lithium ion were taken from the OPLS forcefield (Jensen and
Jorgensen 2006). To develop forcefields for other molecules, an energy-minimized ab initio
structure was first generated using Gaussian03 (Frisch, Trucks et al. 2004) at the B3LYP/aug-cc-
pvdz level of theory. From the results of this calculation, the Antechamber (Wang, Wang et al.
2006) suite of forcefield tools was used to assign initial bonded and nonbonded forcefield
parameters from the Generalized AMBER Force Field (GAFF) (Wang, Wolf et al. 2004). Also
during this step, atomic point charges were calculated from the ab initio results via Antechamber
using the restrained electrostatic potential (RESP) (Bayly, Cieplak et al. 1993; Cieplak, Cornell
et al. 1995) method. After initial assignment of parameters via Antechamber, the resulting
forcefield for a given molecule was refined, if necessary, by assigning different GAFF atom
types in order to yield a pattern of bond types more consistent with ab initio results. Lennard-
Jones, bond, angle, and dihedral parameters for the various atom types were not changed from
their GAFF values. Using the forcefields described above, all MD simulations for this study
were conducted using the open source LAMMPS (version: 19 Jul 2011) MD code (Plimpton
1995; Plimpton 2012).

For a given combination of solvent composition and salt concentration, an initial low-density
system was constructed by randomly placing the required molecules into a cube using the open
source simulation setup tool Packmol (Martinez, Andrade et al. 2009) and then compressing the
system to a density close to experimental values over 0.1 ns at 300K. Subsequent isothermal-
isobaric (NPT) simulations were started from these initial systems. Total NPT simulation time
was 10 ns to 20 ns. The first 1 ns of data was discarded from each simulation to allow systems to
relax. For the systems with the slowest dynamics (i.e. 300 K and pure EC), system volume and
energies were oscillating around their long-term averages after 0.5 ns.

System trajectory snapshots were recorded every 1 ps. This data was post-processed to calculate
mean-squared-displacements, diffusivities, conductivities, pair correlation functions,
coordination numbers, pair autocorrelation functions, and cluster network topologies for each of
the 27 systems described previously.

The mean-square displacement of the center of mass of a set of N molecules during time t is

1 N 2
MSD(t)= NZ( [ri(t0+t)—ri(t0)] ) (2.4.5)
|
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where r (1) is the position of molecule i at time t and () denotes an ensemble average over

possible starting times t . The self-diffusion coefficient D for a species i can be calculated from
Equation (2.4.5) using the Einstein relation

o MSD(0)
DI (0= "¢ (2.4.6)
D= timoo DP(t) 2.4.7)

where D*P(t) is the apparent value of D calculated for a finite time t.
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Figure 31: Self-diffusion coefficients versus time for 1.0 M LiPF6 in EC (top), DMC
(middle), and EC/DMC (bottom) solvents at 300 K and 400 K.

Figure 31 shows self-diffusion coefficients (Equation 2.4.6) versus time for 1.0 M LiPF6 in EC,
DMC, and EC/DMC solvents at 300 K and 400 K. Solvent diffusivities are significantly higher
in pure DMC systems than in pure EC systems, particularly at 300 K. This is consistent with
experimental measurements of diffusivity and viscosity and EC’s relatively high melting point
(310 K versus 268 K for DMC (Linstrom and Mallard)). In mixed EC/DMC systems, DMC and
EC diffusivities are nearly identical and approximately equal to the average of the values
observed in corresponding pure DMC and EC systems. Solvent diffusivities are 2-5x larger than
ion diffusivities for any particular system, which would be consistent with the formation of
bulky, slowly-diffusing molecular clusters around ions. Variations in ion diffusivity between
different systems match the trends observed for variations in solvent diffusivity. At 300 K Li and
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PF6 diffusivities do not attain their long-time values within the available simulation time,
indicating sub-diffusive behavior. For pure DMC systems, note that the Li+ and PF6- curves
coincide perfectly, suggesting strong ion pairing. Li and PF6 curves for EC and EC/DMC
systems are close but do not coincide perfectly. Decreasing LiPF6 concentration to 0.1 M (not
shown) leads to increased diffusivities, which would be consistent with decreased cluster
formation and a reduced system viscosity. This effect is slight for the pure DMC systems (1.2x)
but significant for pure EC systems (3x at 300 K and 1.7x at 400 K), suggesting that EC and
DMC may interact fundamentally differently with the Li+ and/or PF6- ions present in the
system.

lonic conductivity A can be calculated using the Einstein relation

> N N

A2PP(t)= 6t\kaT 2 2 224 [ri(t0+t)—ri(to)] [rj(t0+t)—rj(t0)]) (2.4.8)
i ]

A= timoo AZPP(t) (2.4.9)

where A%P(t) is the apparent value of A calculated for a finite time t, () denotes an ensemble
average over possible starting times t , e is the charge of an electron, V is the simulation box
volume, kB is Boltzmann’s constant, T is temperature, z. is the charge on ion i in units of
electrons, ri(t) is the position of molecule i at time t, and summation is done over all N ions in the
simulation box. The diagonal (i=j) terms in Equation (2.4.8) represent the Nernst-Einstein
(uncorrelated) conductivity, i.e. the ideal conductivity arising only from ion self-diffusion. The
off-diagonal terms in Equation (2.4.8) account for correlated ion motion, which generally
reduces electrolyte conductivity relative to the Nernst-Einstein value.
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Figure 32: ldeal Nernst-Einstein (uncorrelated) ionic conductivity versus time for 1.0 M
LiPF6 in EC, DMC, and EC/DMC solvents at 300 K and 400 K.
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Figure 33: As in Figure 32, except true (correlated) ionic.

Figure 32 shows the ideal Nernst-Einstein ionic conductivity versus time for 1.0 M LiPF6 in EC,
DMC, and EC/DMC solvents at 300 K and 400 K. The Nernst-Einstein conductivities follow the
same trends observed for ion diffusivity; i.e. conductivity for pure DMC systems is significantly
higher than for pure EC systems, with intermediate values for mixed EC/DMC systems. The
Nernst-Einstein conductivity increases significantly as salt concentration is increased from 0.1 M
to 1.0 M (not shown). Figure 33 shows the true ionic conductivity for the same systems as in
Figure 33. While the curves for true conductivity in Figure 33 do not attain steady values within
the allotted simulation time, indicating that longer simulations are required to get precise values
for conductivity, several trends are nonetheless apparent. First, as expected, true conductivities
are significantly lower (by at least an order of magnitude) than the Nernst-Einstein values. More
interestingly, conductivities for pure EC systems are significantly higher than for pure DMC
systems, which is opposite the trend for Nernst-Einstein conductivities. More specifically, the
steady and consistent downward trend for the DMC curves in Figure 33, particularly at higher
temperatures, suggests conductivity in DMC systems is essentially negligible, in spite of
significantly higher diffusivity. Also unlike the Nernst-Einstein case, conductivities for mixed
EC/DMD systems more closely match conductivities for pure EC systems, as opposed to taking
values approximately equal to the average of the pure EC and pure DMC conductivities. Further,
conductivity does not appear to change significantly as salt concentration is varied between 0.1
M, 0.3 M, and 1.0 M (not shown), but this is difficult to judge due to the short simulation times.
These observations all suggest conductivity is strongly influenced by correlated ion movement
and this correlated movement can vary significantly between solvents. With regard to the ionic
conductivities predicted for pure EC systems, the simulation values appear to be approximately
20% to 50% of experimental conductivity values. In addition to neglecting any electronic
contribution present in experiment, this is not unexpected when using a non-polarizable
forcefield with full integer charges on the ionic species, which tends to result in slowed
dynamics.
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Figure 34: Pair correlation functions g(r) versus separation r for Li+ with solvent carbonyl
oxygens (Li-O), PF6- (Li-P), and other Li+ (Li-Li) for 1.0 M LiPF6 in EC, DMC,
and EC/DMC solvents at 300 K and 400 K. “EC/dmc” and “ec/DMC” denote
coordination of Li with EC and DMC, respectively, in mixed EC/DMC solvent
systems.

Figure 34 shows the pair correlation functions g(r) versus separation r for Li+ with solvent
carbonyl oxygens (Li-O), PF6- (Li-P), and other Li+ (Li-Li) for 1.0 M LiPF6 in EC, DMC, and
EC/DMC solvents at 300 K and 400 K. The primary Li-O peaks occur at approximately r=2.1
for both EC and DMC in all solvent systems. Very slight secondary Li-O peaks occur at
approximately r=8.1 for EC and r=5.9 for DMC. As temperature is increased, the secondary
peak for DMC becomes slightly more prominent, and the secondary peaks for both EC and DMC
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shift to slightly lower values of r. Changes in LiPF6 concentration (not shown) do not appear to
significantly change the Li-O g(r) for any solvent/temperature combination.

Similar to the Li-O case, primary Li-P peaks occur at the same point, approximately r=3.2, for all
solvent systems; and very slight secondary peaks occur at approximately r=9.1 for EC and r=6.6
for DMC. As temperature is increased, the secondary Li-P peak for EC becomes less prominent
and broadens to include a shoulder at approximately r=7.1, whereas the secondary Li-P peak for
DMC becomes more prominent and less broad. Lower LiPF6 concentration (not shown) may
increase the prominence of the secondary Li-P peaks for all solvent/temperature combinations,
but results are noisy due to poor statistics with the reduced number of Li and PF6 species.

The primary Li-Li peaks g(r) in Figure 34 have maxima at approximately r=4.3 and shoulders or
sub-peaks at approximately r=5.7 for all solvent systems. The primary Li-Li peaks for EC are
significantly less prominent than those for DMC, with EC/DMC values being intermediate.
Secondary Li-Li peaks occur at approximately r=9.2 for EC systems but are minor to non-
existent for DMC systems. Increasing temperature greatly increases the prominence of the
primary Li-Li peak for EC, decreases prominence of any secondary peak, and reduces shoulders
or sub-peaks in the primary peak for all solvent systems. Results from lower LiPF6
concentrations (not shown) are inconclusive due to poor statistics with the reduced number of Li
species.

Table 2: Average number of solvent carbonyl oxygen atoms within first coordination shell of Li+
for all combinations of solvent, temperature, and LiPF6 concentration used in this
study. “EC/dmc” and “ec/DMC” denote coordination of Li with EC and DMC,
respectively, in mixed EC/DMC solvent systems.

0.1M 0.3M 1.0M
300 K350 K400 K|300 K350 K400 K|300 K350 K400 K
EC 52 50 42|51 42 36|40 33 29
EC/dmc 30 24 2025 18 16|16 15 13
ec/DMC 20 16 14|18 15 13|16 14 1.2
DMC 26 21 21)25 21 20]23 20 20

Table 3: As in Table 2, except for coordination of PF6- ions with Li+.

‘ 0.1M ‘ 0.3M ‘ 1.0M

300 K350 K400 K|300 K350 K400 K|300 K350 K400 K
EC 04 04 08[04 09 11|11 14 16
EC/DMC 05 09 12|08 14 16|15 17 19
DMC 17 20 20|19 21 22|21 22 22
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Table 4: As in Table 2, except for coordination of Li+ ions with Li+.

‘ 0.1M ‘ 0.3M ‘ 1.0 M

300 K350 K400 K|300 K350 K400 K|300 K350 K400 K
EC 00 00 0100 03 05[04 07 09
EC/DMC 00 02 03|01 06 07|09 11 13
DMC 09 10 10|14 14 16|16 16 17

Tables 2, 3, and 4 list the average number N of solvent carbonyl oxygen atoms (N_ic), PF6- ions
(NLip), and Li+ ions (Npivi), respectively, within the first coordination shells of Li+ ions for all
combinations of solvent, temperature, and LiPF6 concentration used in this study. These first
shell coordination numbers are equal to the area under the first peaks of the corresponding pair
correlation functions g(r) (e.g. Figure 34). Nijo for EC systems varies from 2.9 (1.0 M, 400 K) to
5.2 (0.1 M, 300 K) and for DMC systems from 2.0 (1.0 M, 400 K) to 2.6 (0.1 M, 300 K). Nio
results for mixed EC/DMC systems take on intermediate values, with N0 for EC molecules
always at least slightly greater than Nijo for DMC molecules. Ny jo decreases for all solvent
systems as either temperature or LiPF6 concentration is increased, with EC coordination being
the most sensitive. Niip trends are generally opposite those for Niio , suggesting that solvent
carbonyl oxygen atoms and PF6- compete for coordination with Li+. N jp for EC systems varies
from 0.4 (0.1 M, 300 K) to 1.6 (1.0 M, 400 K) and for DMC systems from 1.7 (0.1 M, 300 K) to
2.2 (1.0 M, 400 K). Nyjp results for mixed EC/DMC systems again take on intermediate values,
generally staying closer to the pure EC results. Unlike Niio , Nip increases for all solvent
systems as either temperature or LiPF6 concentration is increased, with EC coordination still
being the most sensitive. Ny i trends generally match those for Niip , suggesting that association
of Li+ with other Li+ may depend upon PF6- as an intermediary. Ny i for EC systems varies
from 0.0 (0.1 M, 300 K) to 0.9 (1.0 M, 400 K) and for DMC systems from 0.9 (0.1 M, 300 K) to
1.7 (1.0 M, 400 K).
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Figure 35: Neighbor autocorrelation function (acf) versus time for Li+ with solvent
carbonyl oxygens (Li-O), PF6- (Li-P), and other Li+ (Li-Li) for 1.0 M LiPF6 in
EC, DMC, and EC/DMC solvents at 300 K and 400 K. A “neighbor” is defined
as an atom closer than the minimum after the first peak of the corresponding
g(r) in Figure 34.

For any given timestep, if a particular PF6- or Li+ ion is within the first coordination shell of a
particular Li+ ion, those ions are defined to be “neighbors”. Similarly, if a particular solvent
carbonyl oxygen atom is within the first coordination shell of a particular Li+ ion, that solvent
molecule and that Li+ are neighbors. (Other solvent oxygen atoms are ignored for the purpose of
neighbor determination, because their association with Li+ is negligible compared to the
carbonyl oxygen.) An adjacency matrix A(t) is formed wherein Ai,j(T)zl if object i (e.g. one of
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the Li+ ions) and object j (e.g. one of the PF6- ions) are neighbors at time t and 0 otherwise. The
neighbor autocorrelation function R(t) is the probability that a particular neighbor pair at time ty

will also be neighbors at tytt. R(t) is calculated according to

R(t) = (A (to)A (o +1)) (2.4.10)

where () denotes an ensemble average over possible initial times ty and indices i and j.

Figure 35 shows R(t) versus time for coordination of Li+ with solvent carbonyl oxygens (Li-O),
PF6- (Li-P), and other Li+ (Li-Li) for 1.0 M LiPF6 in EC, DMC, and EC/DMC solvents at 300
K and 400 K. The R(t) curves for Li-O indicate that Li+ ions tend to swap solvent neighbors
within a few nanoseconds at 300 K and within a nanosecond at 400 K. Reducing LiPF6
concentration does not appear to significantly influence characteristic times for Li-O pairing (not
shown). The characteristic times for Li-P pairing are longer than the 20 ns simulation time at 300
K and are approximately 5 ns to 15 ns at 400 K. Characteristic times for Li-Li pairing are much
longer than Li-O values and appear to be approximately half the Li-P values, which is consistent
with Li-Li association occuring through PF6- intermediates. Characteristic times for Li-P and Li-
Li pairing appear to be significantly reduced for systems containing EC solvent. Trends in Li-P
and Li-Li pairing for lower LiPF6 concentration are not discernable due to poor statistics.
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Figure 36: Common cluster topologies formed by Li+ (black) neighboring with PF6-
(green) or solvent carbonyl oxygen atoms (EC = blue, DMC = red). Lines
represent neighbor pairing. Node size is proportional to the frequency with
which a cluster topology was observed. The systems are composed of 0.1 M
LiPF6 in EC, DMC, or EC/DMC at 300 K and 400 K.
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(a) EC (b) DMC

Figure 38: Snapshots showing all Li+ ions (purple), all P atoms (orange) from PF-6, and
only solvent carbonyl oxygen atoms (red) neighbored with a Li+. The systems
are 1.0 M LiPF6 in pure EC and DMC at 300 K. The blue box outlines the
periodic simulation cell. Note that some clusters may span periodic
boundaries.

For any given timestep t, a theoretical graph or network can be constructed in which the nodes
represent specific Li+ ions, PF6- ions, or solvent carbonyl oxygen atoms and edges connect
specific Li-O and Li-P neighbor pairs (as defined above). For this discussion we define a cluster
as a connected component of that graph, i.e. a subgraph in which every node is connected to
every other node in the subgraph by at least one path and is not connected to any node not in the
subgraph. For every timestep there will then exist a set of clusters with a variety of network
topologies or patterns of connectedness. Two clusters are isomorphic if they have the same
topology. (Cluster analysis was aided by the open source Python package NetworkX v1.7
(Hagberg, Schult et al. 2008).) Figure 36 shows the most common cluster topologies formed by
Li+ neighboring with PF6- and solvent carbonyl oxygen atoms for systems composed of 0.1 M
LiPF6 in EC, DMC, or EC/DMC at 300 K and 400 K. For clarity the least commonly observed
cluster topologies are omitted, but the clusters shown represent at least 90% of the topologies
observed for a particular system. Figure 37 represents systems composed of 0.3 M LiPF6. (1.0 M
systems are not shown, because the number of minor topologies becomes too numerous to
display clearly.)

For EC systems the most common cluster topology is a single Li+ ion surrounded by six EC
molecules, resulting in a cluster with +1 charge (Figure 36 and Figure 37, top row). The next
most common topologies have fewer EC molecules and zero, one, or two PFg™ ions, resulting in
clusters with +1, 0, or -1 charge. Averaging over all observed clusters, the number of EC
molecules or PF6- ions around a Li+ ion is equal to the coordination numbers listed in Table 2
and Table 3. Note that the most common cluster topology does not match the coordination

71



implied by the results these tables. Increasing temperature and LiPFg concentration generally
results in a greater variety of cluster topologies for EC systems and a greater likelihood of
forming clusters with zero charge. This increased formation of clusters with zero charge may
offset the gains in conductivity expected with increased temperature and salt concentration. The
extent of this effect will be influenced by the characteristic lifetime of individual clusters; but
given the relatively long correlation time for neighboring between Li+ and PF6-, this effect is
expected to be non-negligible. Figure 38a is a simulation snapshot showing Li+ ions, PF6- ions,
and solvent carbonyl oxygen atoms neighbored with Li+ for the system composed of 1.0 M
LiPFg in pure EC at 300 K. The common topology of Li+ surrounded by six solvent molecules is
readily apparent.

For DMC systems the most common cluster topology involves two Li+ ions neighbored with
two or three distinct solvent molecules and connected to each other via two shared PF6-
neighbors. At 300 K clusters composed of a single Li+, a single PF6-, and three or four solvent
molecules are also relatively common. Increasing LiPF6 concentration leads to increased cluster
variety, but unlike EC systems, the vast majority of clusters observed in DMC systems have zero
charge. Given the relatively long correlation time for neighboring between Li+ and PF6-,
particularly for DMC systems, the formation of primarily neutral clusters is consistent with the
negligible ionic conductivity observed for DMC systems. Also unlike EC systems, decreasing
temperature generally results in a reduced variety of cluster topologies. Relative to EC systems,
the formation of extended chains or rings is much more likely in DMC systems. In all clusters
containing more than one Li+, the Li+ associate via one to three (typically two) intermediate
PF6-. Solvent carbonyl oxygens were not observed simultaneously neighboring with multiple
Li+. Figure 38b is a simulation snapshot showing Li+ ions, PF6- ions, and solvent carbonyl
oxygen atoms neighbored with Li+ for the system composed of 1.0 M LiPF6 in pure DMC at
300 K. Relative to the EC system shown in Figure 36a, there are fewer and larger clusters for the
DMC system.

Due to the presence of two solvent types, a wide variety of cluster topologies is observed for
EC/DMC systems. The general pattern of topologies, however, is more similar to EC systems
than DMC systems, with minimal formation of extended chains or rings and more clusters with
nonzero charge. This observation is consistent with ionic conductivity for EC/DMC systems
more closely matching EC systems than DMC systems. Given that the high melting point of EC
prevents its use as a room-temperature electrolyte solvent, the dominance of cluster formation
similar to that in EC systems rather than DMC systems is fortunate. In addition to the many other
constraints and trade-offs necessary when choosing an electrolyte composition, it seems the ideal
solvent must associate strongly enough with the cations and/or anions to minimize their pairing
and the formation of neutral clusters, without being overly viscous. In the case of EC/DMC
blends used in commercial lithium ion batteries, a compromise is apparently reached, wherein
the highly dielectric EC inhibits cation and anion association and DMC allows sufficient fluidity
and diffusion.
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2.5 Modeling Passivation Layer Growth and Decomposition

In order to maintain stability and long life in a battery, the electrolyte should be inert with respect
to the anode and cathode surfaces, so that direct reduction or oxidation of the electrolyte
molecules is prevented. Many material combinations used in Li-ion batteries do not possess this
property; in particular, ethylene carbonate (EC) molecules can easily be reduced through electron
transfer at a clean Li or graphene anode surface. The fact that EC and graphene can be
successfully used in Li-ion batteries is due to the formation of a passivation layer, named the
solid electrolyte interphase or interface (SEI) by Peled (Peled 1979), at the anode surface. The
SEI layer forms during the early stages of charging, and alows diffusion of Li* ions while
insulating the surface from electron transfer.

The morphological structure of the SEI layer is fairly complex. The prevailing picture,
introduced by Peled et a (Peled, Golodnitsky et al. 1997), is a mosaic of microphases, a
collection of grains of different materials. However, there is some organization to this mosaic,
and experiments indicate a general two-layer structure: athin layer of inorganic species (e.g. LiF,
Li,O, LiOH) close to the electrode material, and a thicker outer layer made up of organic
compounds. Measurements of the thicknesses of these layers vary, but typical estimates are 1-2
nm for the inner layer, and tens of nanometers for the outer organic layer (Andersson,
Henningson et al. 2003).

Although an electronically insulating SEI layer is necessary for stability, the characteristics of
the SEI layer can have further effects on battery performance. Because lithium is consumed in
the formation of the SEI layer, this layer contributes to the reduction of battery capacity,
especiadly if it continues to grow throughout the lifetime of charge-discharge cycles; thickening
of this layer slows lithium ion diffusion and increases the total impedance. SEI layer phenomena
also appear to be closely tied to thermal abuse behavior. In typical thermal models of Li-ion cells
(Hatchard, MacNeil et al. 2001; Kim, Pesaran et al. 2007), exothermic decomposition reactions
within the SEI layer a moderate temperatures (100'C) can provide a temperature boost that
accelerates reactions in the rest of the cell, leading to run-away. The mechanical response of the
SEI layer to the volume expansion of the anode during lithiation may aso be an important
phenomenon in the performance and failure of batteries.

In this project, we have made progress on developing three separate capabilities to model SEI
growth and behavior; each approach has distinct strengths. A continuum model, implemented in
COMSOL, uses well-established governing principles and allows a rapid initial look at the
phenomena presumed to be at work. A kinetic Monte Carlo (KMC) model allows more detailed
treatment of the complex geometry of the SEI microstructure, and provides a bridging scale
between atomic-scale processes (like individual molecular reactions and diffusion-hops) and
meso- and macro-scale phenomena. A phase field model of the SEI growth complements both of
these, using continuum-level transport equations while allowing a natural treatment of the
changing layer geometry and structure.
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2.5.1 Comsol Modeling of SEI Growth

carbon — SEI «—/ IHP [— | OHP |—

Figure 39: Schematic of COMSOL model regions and their interfaces.

The COMSOL model of the SEI is a 1D model made up of four separate regions representing the
carbon anode, the SEI layer, the inner Helmholtz plane (IHP), and the outer Helmholtz plane
(OHP); these regions are linked at their interfaces, as shown schematically in Figure 39.

In the carbon anode, the transport of lithium is described by a simple diffusion equation:

ac, d°c,
—H=p—X 2.5.1
ot ox? (251)
where cy; is the concentration of lithium and D is the diffusivity. In the SEI layer, the transport of
lithium ions is modeled; in addition to diffusion, electromigration and the reaction source term S
are also included:
Jc . duc . 9°C, .,
-+ —t-=D—-+S§ (2.5.2)
ot ot oX

The electromigration velocity u is proportional to the gradient of the electric field o:

u= —,u% (2.5.3)
oX
The electric field satisfies a Poisson equation within the SEI:
82
€€, B_XZ) =—€cC . (2.5.4)

The IHP and OHP are treated as single nodes, so that the rate of change of lithium ion
concentraion is determined by a flux difference plus a reaction source term:

aCLi+
?:‘]R_‘]L +S (255)
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2.5.2 Kinetic Monte Carlo Modeling of SEI Growth

A kinetic Monte Carlo (KMC) model of SEI growth has been developed and implemented in the
Sandia KMC code SPPARKS. There are several reasons for using KMC to approach this
modeling problem. KMC provides a natural bridging scale between continuum and atomistic
descriptions. The lattice-based description used in the KMC model allows straightforward
modeling of the evolving SEI geometry and microstructure. Finally, a KMC model addresses
some of the inaccuracies associated with mean-field continuum theory, particularly for
configurations with small concentrations of individual species.

In order to have overlap with continuum models, our KMC model should capture the same
phenomena, including lithium diffusion, chemical reactions, electron tunneling effects, and
electric field-driven migration of charged species. The first two of these, diffusion and reactions,
can be included in a KMC model in a very natural way. The latter two, electron tunneling and
electro-migration, are included more approximately for now, although future work may improve
the fidelity of the representation of these phenomena.

SE|_organic

OHP

SEIl_inorganic

IHP

Figure 40: Example geometry lattice for KMC simulation. Each site is labeled with a
material identifying its location in the anode/SEl/electrolyte structure.

The geometry of our KMC model is made up of a discrete lattice of sites (Figure 40). The lattice
is a face-centered cubic (FCC) crystal with lattice constant a, so that each site has 12 nearest

neighboring sites at a distance a/v/2. Each site is labeled with a “material”, where the material
identifies in which part of the anode/SEl/electrolyte structure the site is located. The material can
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be carbon, SEIl-inorganic, SEl-organic, IHP, OHP, or electrolyte. Note that some of these (like
IHP and OHP) are not true material identifiers, but label the sites according to their location
relative to the structure. Material labels can change throughout the simulation; for example as the
SEI layer grows individual sites are changed to SEI material. Wherever the SEI (organic or
inorganic) sites are located, the nearest neighbor that are not SEI or carbon are labeled as IHP
sites; the nearest neighbors to the IHP sites that are not SEI, carbon, or IHP are labeled as OHP.
The geometry and lattice are oriented so that the anode surface is a <111> crystal plane, the
close-packed plane in the FCC lattice, and is normal to the z axis.

In addition to its material label, each site may contain a “species”, representing occupation of the
site by a particular mobile atom or molecule. Types of species allowed in the current model are
Li, Li*, EC, EC’, LiEC, LiEC", LiOCO;, LiEDC, and Li,COs. Each site may contain at most
one species (although a site can be empty).

Finally, the KMC model is defined by a set of events that can take place. Possible events include
movement of a species from one site to another, chemical reaction (which transforms the species
of a set of sites), or creation or destruction of SEI material (which transforms the material of a set
of sites). Details of possible events are given below.

The KMC simulation progresses in time by executing events one at a time. For a given
configuration, the list of possible events is constructed, along with the corresponding rate for
each event (ki for event i). An event is chosen at random with weighted probability, with the
probability of each event i given by:
P= K (2.5.6)
K;

j

That event is executed, and the system clock is updated by a computed timestep:

At = [ 2 k. ]_l In(%j (2.5.7)

where r is a random number between 0 and 1 with uniform distribution. After the event, a new
event list and rates must be computed for the resulting new configuration.

Most of the computational time in the KMC simulation is spent computing possible events and
their rates. ldeally, for efficiency, when an event is executed the list of possible events and rates
for the new configuration needs to be updated only for events involving nearby sites. There are
two requirements for this to be true. First, the possibility for an event, and the computation of its
rate, should be a function only of the states (material and species) of nearby sites. Second, a
given event should change the state (material and species) only of nearby sites. This is true for
events like diffusion — the hopping of a species from one site to another — which is inherently
local. More problematic are events that depend on an electric field, such as electro-migration,
since the electric field depends on the charge distribution throughout the domain, and local
changes to charged species therefore have long-range effects on the field. A successful KMC
simulation requires efficient treatment of these types of events.
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Our KMC model has been implemented as an application in the SPPARKS KMC solver
developed at Sandia (Plimpton, Battaile et al. 2009). The battery model application defines
lattice sites, events, and rates, as well as how the execution of an event changes the state of the
model. The SPPARKS framework handles efficient storage and random event selection, along
with common tasks like 1/0. SPPARKS also allows spatial decomposition and parallelization
through an approximation that assumes independent events taking place on each processor.

2.5.2.1 Event Descriptions

There are two main types of events in the model: diffusion/migration events, which involve the
hopping of a species from one site to a neighboring site, and reaction events, which may involve
species at multiple sites and lead to changes in the species or materials at one or more sites. The
rates for each type of event must be specified, and in some cases we choose these rates based on
corresponding parameters in the continuum model for SEI growth.

Diffusion We allow diffusion of lithium atoms within the carbon anode, so that the Li species
can hop from a carbon site to a neighboring carbon site if it is unoccupied. Lithium is the only
species that is present in the anode, and neutral lithium atoms are not present elsewhere outside
the anode. Lithium ions, on the other hand, can diffuse through the bulk of the SEI material
(organic or inorganic), along the surface between two IHP sites, or across the SEI/IHP interface.
The rate k for species hopping events is related to the continuum diffusivity D through the
relation(Doll and VVoter 1987):

:égzyﬁ (2.5.8)

where d is the dimensionality and I; is the distance between the current site and site j. For an FCC

lattice where hops are limited to one of 12 equivalent nearest neighbors (I = a/+/2), this is
simply:

D =ka? (2.5.9)

Electromigration In order to account for electromigration, the electric potential ¢ must be
computed. Our approach to this is a modification of that taken by Lau et al. (Lau, Turner et al.
2008) and Pornprasertsuk et al. (Pornprasertsuk, Holme et al. 2009). To approximate ¢
efficiently, we assume that it is only a function of the z direction (the direction normal to the
anode surface), so that each z-plane of atoms i has a constant potential ¢;. The potential can be
separated into two contributions:

(2.5.10)
Here, ¢! is the part of the potential corresponding to the arrangement of charged species in the
domain; ¢y, is due to the charged species accumulated at the boundaries. These two parts of the

potential can be thought of, respectively, as the particular and homogeneous solutions to the
Poisson equation V2¢p = —p/e.
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To obtain the space charge potential ¢, we can first compute the electric field EZ that
corresponds to this potential at each z-plane. In the continuum limit:

E, = 9% (2.5.11)
0z
£ 9, =p (25.12)
0z

The discrete value of EX can be computed by summing the average charge densities over the
planes:

Ch(Y N
Es :Z_(ZPk - Z on ) (2-5-13)
&\ k=0 K=i+l

where py is the average charge density in plane k, and h is the inter-plane spacing in the z
direction (h =a/\'3 for close-packed planes in an FCC lattice). The space charge potential ¢! can
then be calculated by:

¢ = —hil E; (2.5.14)
j=0

To compute the potential due to surface charge, we denote the surface charge densities at the
boundaries (e.g. anode and OHP) as pu1 and pn.. Then the potential across the domain is

L
== (P=) (2.5.15)

¢bN

where L is the distance between boundaries. When the permittivity € is variable, this must be
solved from a numerically integrated Poisson equation:

%=a [ii] ki 1 (2.5.16)

i€y | ke &

For a constant e this simplifies to ¢} = N"go{,\’. The total potential at the z-plane i is therefore:

4 :‘h*i E 4 [21] > (2.5.17)

j=1 gj k=1 gk

The effect of the potential on the motion of charged species, i.e. electromigration, is accounted
for by computing the change in activation energy for a species hop from plane i to plane j. For a
potential difference of Ap" = ¢' — ¢', the activation energy is

AE" = AE} +aqAg” (2.5.18)

where AEy" is the diffusion energy barrier in the absence of an electric field, « is a symmetry
factor taken as 1/2, and q is the charge of the diffusing species. Thus, the effect of the electric
field on the event rate is modified by the electric field by a multiplicative factor on the electric
field-free rate ko:
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(2.5.19)

Chemical reactions The SEI reactions currently accounted for take place in the IHP, that is, at
the sites neighboring the surface of the SEI:

EC +Li* == LiEC"

LiEC* +e”——LIiEC
2LiIEC—— LIEDC+C,H,(g)
LIEC +e”—— LiOCO; +C,H, (g)
LiOCO; + LIEC* ——Li,CO, +EC
LiOCO; + LIEC* —— LIiEDC

(2.5.20)

In the model, reaction events involving two reactants are possible when reactants are present at
neighboring sites in the IHP (reactions involving a single reactant and an electron are discussed
below). If a reaction is possible, it may take place with a probability corresponding to a rate Kk,
where in our simple initial model we take k = 1.0 for all reactions.

Reactions involving an electron transfer are assumed to be limited by electron tunneling across
the SEI layer into the IHP. In our model, the rate of such a reaction decays exponentially with the
distance from the carbon anode surface to the reaction site:

k, =k exp''e (2.5.21)
Here, ¢ is the normal distance to the carbon anode surface and ¢. is a critical length scale that can
be prescribed.

The LIEDC and Li,CO3 products in our model occupy both of the sites originally occupied by
the reactants in the corresponding reaction. After the reaction takes place, these sites are
converted to SEI material: SEI-organic for LIEDC, and SEI-inorganic for Li,COs. This results in
growth of the SEI layer, after which neighboring sites may be newly identified as IHP or OHP.
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2.5.2.2 KMC Simulation Results

Figure 41: KMC simulation results at a nondimensional time of t = 200 for two different
values of the tunneling length {.: (a) {. = a, (b) . = 2a, where a is the unit cell
size. In both figures, the light blue sites represent the carbon anode, red are
the organic SEI, green are inorganic SEI, and blue are the IHP sites where
surface reactions take place.
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Figure 42: Average SEI layer thickness for two different values of the tunneling length {.:
@) f.=a, (b){.=2a

In the current version of the model implemented in SPPARKS, the electric field is not solved for
a changing geometry, so that chemical reactions and electromigration are not included in the
same simulation. In this section, we show typical results for a simulation of the growth of the
SEI layer through chemical reaction.

Figure 41 shows the SEI layer at nondimensional time t = 200 for two different values of the
electron tunneling length £.. A few observations are possible. First, the final layer thickness is
obviously a function of the tunneling length, implying that transport of electrons through the
layer to the growing SEI surface is the limiting step. Once the layer has become thick enough
that electron tunneling is unlikely, layer growth slows (though it does not stop completely, as the
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probability of electron transfer never goes completely to zero). Second, while inorganic SEI sites
are sparse, they are more concentrated close to the anode surface. This is a consequence of the
set of reactions in our model, in which two electron reductions are necessary to create inorganic
SEI (Li2COg), while only a single electron is needed to create organic SEI (LiIEDC). Finally, we
note that it is possible in this model for IHP sites to become “trapped” in the SEI. It is unclear
whether this may be a possible mechanism for creating a porous SEI material structure.

Figure 42 shows the SEI growth curves vs. time for the same values of .. The SEI thickness is
computed by counting the total number of SEI sites in the simulation and computing the total
volume of material. The red and green curves in the plots show the separate contributions from
organic and inorganic SEI sites.

2.5.3 Phase Field Modeling of SEI Growth

Phase field models are mesoscale continuum models in which the interface is diffuse, such that
material properties vary smoothly but rapidly across it. In contrast with sharp interface models,
one or more phase field variables are added to phase field models to distinguish different phases.
In the phase field model for SEI growth used in this study, we consider two bulk phases (SEI
phase and electrolyte phase) in the domain, and use one phase field variable n to describe the
material phase such that # = 1 in the SEI phase, = 0 in the electrolyte phase, and 0 <z <1 in
the SEl/electrolyte interfacial region. Five species are considered in the system: electrons e ,
lithium ions Li", organic solvent M, SEI component N and an anion A", where Li* and A~ make
up a lithium salt in the electrolyte. The mole fraction and mole concentration of these species are
denoted by Xy, ..., X, and ¢y, ...,Cn, respectively, where n = 5 is the number of species. As in
(Guyer, Boettinger et al. 2004), we treat electrons (i = 1) as interstitials with zero volume, and all
other species (ions and neutral atoms) are substitutional species with identical molar volume Q.

The molar volume at each spatial point is then given by V= innzz X, . The molar
concentration of each species is defined as ¢, = X, /V,_, and it follows that the concentrations of

substitutional species are constrained by zinzz ¢ =1/Q.

In order to derive the evolution equations of species concentrations c; and phase field 7, we first
construct the free energy functional of the system. Following the expression in (Guyer,
Boettinger et al. 2004), the free energy functional of the system can be written as

f({c}.n)= JV ( f, ({c}.7) +%5|V77|2 %pgﬁ]dv (2.5.22)

which consists of the contributions from bulk energy, interfacial energy and electrostatic energy.

In Eq. (2.5.22), ¢ is the gradient coefficient related to the thickness and energy of the diffuse
interface, ¢ is the electric potential, and p is the charge density such that p = inn:l z.c., Where F

is Faraday’s constant and z; is the valence of species i. The bulk energy density is expressed as
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f,({c}.n) =X [@h(n)+ 1 (1-h(n))+RT In X, +W,g (7)], (2.5.23)

where o and £ denote SEI phase and electrolyte phase, respectively, and ;i and i are the
chemical potentials of pure component i in the respective phases. In Eq. (2.5.27), h(y) = #*(65° —
157 + 10) is an interpolation function that satisfies h(1) = 1 and h(0) = 0. The entropy of mixing
term is given by RT In X;, where R is the gas constant and T is the temperature. A double-well
function g(n) = #%(1 — n)* keeps the interface from smoothing out, and W; is the energy
coefficient characterizing the energy barrier of species i moving across the interface.

Substituting Eqg. (2.5.22) into Eq. (2.5.23) we get the full expression of the free energy functional
of the system. Based on that, the evolution equations of the conserved variables ¢; and non-
conserved variable » can be written as

ac,
ﬁ =V-(M,VR) s
aa_‘;_v (MY (z-7))+s, (i=2K .n) (2.5.24)
9 _ —L5—f =L| eVin— of,
ot on 877
where z is the electrochemical potential of species i given by
—_of _df i
L= —= +F¢z, (1=1K ,n 2.5.25
s oc,  dc, & ( ) ( )

It is noted that substitutional species follow different governing equations compared with
electrons since they are constrained by the volume conservation. Because of this conservation,
we only need to solve for the concentrations of electrons and n — 2 substitutional species, and the

concentration of the last substitutional species can then be obtained from z:‘:zci =1/Q. In Egs.
(2.5.24), L is the mobility coefficient of the interface, and M; is the mobility coefficient of
species i, which are related to the diffusivity of species i through
_D,(1+Qc)c,
T
D.cc

—17n

i:RT(ci+cn)

(2.5.26)

The electric potential ¢ is obtained from the Poisson equation:
oVip+p=0 (2.5.27)

where ¢ is the dielectric constant. The Poisson equation is used to solve for ¢ since the
simulation domain in this work includes the entire interfacial region, and therefore
electroneutrality cannot be assumed. Eq. (2.5.27) closes the governing equations of c¢; and 7.
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The source term s; in Egs. (2.5.24) represents the generation or consumption of species i due to
SEI formation reactions. The detailed SEI chemistry is not included here; instead, we use a
simplified global reaction corresponding to SEI formation:

Lif+e+M=2N (2.5.28)
From the reaction (2.5.28) we can write the source term as
s, =viRg(n) (2.5.29)

where v; is the stoichiometric coefficient of species i in the reaction (2.5.28) such that v+ = ve- =
vm =—1 and vy = 2. The double-well function g(#) constraints the reaction to occur only within
the SEl/electrolyte interfacial region. R is the net rate of the SEI formation reaction, and its value
can be obtained from the Bulter-VVolmer kinetics (Bockris 2001) such that

_ azFA¢ 1-a)zFA¢
R=k.c_.c_c, exp(—?]— k.cl exp[% (2.5.30)

where ks and ky, are the rates of forward and backward reaction in (2.5.28), respectively, « is the
symmetry factor, z is the number of charge transferred in the reaction, and Ag is the electric
potential difference in two phases. Since z = 1, by assuming « = 0.5 we can rewrite Eq. (2.5.30)

Where k =, /k k, and 73 = Ap — Ag is the overpotential. Note that, in contrast with sharp

interface models, the concentrations of species vary across the diffuse interface in the phase field
model. As such, the SEI formation reaction (2.5.31) is not strictly heterogeneous, and moreover,
the overpotential 74 is not a constant and depends on the concentrations of species. The
dependence of the overpotential on concentration is investigated by Bazant et al. (Bai, Cogswell
et al. 2011; Cogswell and Bazant 2012), where the generalized Butler-VVolmer kinetics is derived
such that the overpotential is determined by the change in total electrochemical potential of the
charge transfer reaction per charge transferred. In this case, the driving force for the charge
transfer reaction is not the pure electric potential difference, but the difference in the total
electrochemical potential. Following the derivation in (Bai, Cogswell et al. 2011; Cogswell and
Bazant 2012), we may write the overpotential for the SEI formation reaction (2.5.33) as

20, _(ﬂu* + +,UM) _2p, —(ﬂw +o_ "‘ﬂM)
ZF B F

n, = (2.5.32)
From Egs. (2.5.31) and (2.5.32) we can see that R > 0 (i.e., SEI forms) when

20, <p .+ [+ M, and vice versa. Itis noted that in reality, the SEI formation is a complex

process that involves multiple elementary reactions, and some of them may be irreversible, so the
relation between the reaction rate and the concentration and electric potential goes beyond the
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single step Butler-VVolmer kinetics. The incorporation of the detailed SEI chemistry is left for the
future work.

Egs. (2.5.24)-(2.5.27), (2.5.29), (2.5.31)-(2.5.32) comprise the phase field model of SEI growth.
The boundary conditions for c; and # are fixed c;and V¢ =0 at boundaries. For the electric
potential ¢, we set ¢ = 0 at the electrolyte boundary. At the electrode boundary, ¢ is determined
by the applied current density i, such that the fluxes of charged species, J;, satisfies

i = inn:lziJi.

Before closing this section, it is worthwhile to compare the phase field model of SEI growth with
the Poisson- Nernst-Planck (PNP) equations (sharp interface model) that are widely applied in
analysis of electrochemical systems. Both models capture the diffusion and electromigration of
species, and solve Poisson’s equation to get the electric potential. The main difference lies in the
transport of species across the interface. In the sharp interface model, the PNP equations are
solved at each bulk phase (i.e., SEI phase and electrolyte phase) separately, and species move
across the SEl/electrolyte interface through the SEI formation reactions or other charge transfer
reactions. These reactions are heterogeneous and occur only at the interface. The rates of these
reactions determine the fluxes of species across the interface, which give the boundary
conditions for the PNP equations. In the phase field model, the SEl/electrolyte interface is
diffuse, and the model is solved in the whole domain including two bulk phases and the
interfacial region. No boundary condition is needed at the diffuse interface since the species
move across the interface naturally according to the nonequilibrium thermodynamics. Because of
the diffuse interface, the SEI formation reactions are not strictly heterogeneous, and the fluxes of
species through the interface are not only due to SEI formation reactions, but also driven by
diffusion and electromigration. The full comparison of the performance of the phase field model
and PNP equations is beyond the scope of this work. It will be shown later that the effect of
diffuse interface on the kinetics of species across the interface is minor since SEI growth (i.e.,
interface motion) is dominated by SEI formation reactions rather than diffusion or
electromigration of species.

2.5.3.1 Numerical Simulation

The phase field model developed in the previous section is solved to capture SEI growth using
the finite difference method implicitly. At each time step, we first solve Eq. (2.5.27) to get the
electric potential ¢, and then update concentrations c; and phase field # according to Egs (2.5.24).
In the simulation, we assume that the SEI phase mainly consists of Li*, e and N, and the
electrolyte phase mainly contains Li*, M and A". The equilibrium fractions of each species in
each phase are given in Table 5. Note that the fractions of electro-inactive species is set to be
10-6 rather than 0 for the sake of computational convenience.
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Table 5: Initial concentrations X; in bulk phases

a (SEI) S (Electrolyte)
e 0.1-10° 10°
Li' 0.1 0.05
N 0.8-10° 10°
M 10° 0.9-10°
A 10° 0.05-10°

The equilibrium fraction of each species is its initial fraction in the simulations and these satisfy
the electroneutrality condition in both phases. The equilibrium condition is achieved when the
electrochemical potential of each species is the same in two phases, i.e., 7 = @’ so the
equilibrium fraction of each species is related to its standard chemical potential through

0 =

A = % — % =RT In(xi—oﬁ)— Fz,A¢° (2.5.33)

0
Xia

where Ag0 = ¢o“ — ¢¢ is the electric potential difference between the two phases when they are
in equilibrium. A¢o is a material property depending on the choice of electrode and electrolyte.

The default values of parameters are: T = 298 K, Q = 10> m?/s, W1 = 0, W; = 3.6x10° J/mol (i =
2,..,n),e=36x10"Jm,D;=10 ¥ m%s, Di=10 °m¥s (i=2, ...,n), L=10 2m3/(J-s), o =
7.083 x 10 F/m, k = 2.5 m**/(mol*® - s), Ago = —0.1 V, i = 0. Unless specified explicitly,
default values of the parameters are used in all simulations. The initial SEI thickness is set to be
0.25 nm, and we assume the SEI layer is compact during its growth. In each simulation, we first
let the system approach equilibrium without activating SEI formation reactions, after which we
activate SEI formation reactions to capture the SEI growth.
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Figure 43: Distribution of (a) phase field, (b) concentrations of species, (c) charge density
and (d) electric potential at equilibrium state.

Figure 43 shows the distribution of phase field, concentrations of species, charge density and
electric potential at the equilibrium state. Figure 43a shows the phase field #, with » =1 and 0 in
the SEI and electrolyte phases, respectively. In the SEl/electrolyte interfacial region, » changes
smoothly from 1 to 0. The concentration distribution of each species is given in Figure 43b,
which shows that the concentrations in the bulk phases are constant, and they change rapidly but
smoothly in the interfacial region. In particular, it is found that electrons are driven toward the
SEI surface and therefore have a peak concentration at the left side of the interface. Because of
the Coulomb force, the lithium ion concentration has a corresponding peak at the right side of the
interface. Because of this distribution of charged species, the charge density across the interfacial
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region is first negative and then positive before approaching zero in the bulk region, see Figure
43c. This demonstrates that the charge separation and the double-layer structure at the interface
are well captured by the current model. Figure 43d gives the distribution of the electric potential.
It clearly shows that the electric potential difference in two phases at equilibrium equals Ago,
which is consistent with the Nernst equation since the initial fraction of each species is its
equilibrium fraction.
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Figure 44: Concentrations of species at (a) 80 ps and (b) 240 ps; Distribution of (c) charge
density and (d) electric potential at different time.

After the equilibrium state shown in Figure 43 is reached, the SEI formation reaction is activated
to capture the SEI growth. Figure 44a and b give the distribution of concentrations of all species

at different time during SEI growth. The SEl/electrolyte interface moves towards the electrolyte

phase after the SEI formation reaction is activated, which indicates that the SEI layer starts to
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grow. Moreover, it is found that during SEI growth, the concentrations of Li* and e in the SEI
bulk region are no longer constants, but a linearly decreasing function of distance from the SEI
boundary. This concentration distribution reveals that the interface motion (i.e., SEI growth) is
controlled by the diffusion of species. It is also found that as time increases, the concentrations of
Li* and e at the interfacial region decrease. This trend is better captured by the evolution of
charge density distribution shown in Figure 44c. It can be seen that as SEI grows, the charge
separation remains, but with a decreasing charge density at the interface. The decrease of
interfacial charge density reduces the SEI growth rate, as will be shown later. Figure 44d
illustrates the evolution of electric potential distribution, which shows that in addition to a
concentration gradient, an electric potential gradient is also built inside of SEI during its growth.
In particular, since the electron diffusivity is very low, in order to keep electroneutrality in the
SEI bulk region, the electric potential gradient in SEI is positive to assist the transport of
electrons. The variation of electric potential and concentration of charged species in SEI
observed in the current model agrees with the results obtained from the sharp interface model
(Christensen and Newman 2004; Colclasure, Smith et al. 2011).
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Figure 45: SEI thickness as a function of time.

The time evolution of SEI thickness is shown in Figure 45, from which we can see that at the
beginning, SEI grows quickly since the concentration of charged species at the interface is high.
As time increases, SEI growth rate decreases due to the decreased availability of electrons at the
interface. The SEI thickness exhibits a power- law scaling with respect to time, where the
exponent is close to 0.5. This growth law demonstrates that SEI growth is a diffusion-limited
process. In order to see the dependence of SEI growth on the diffusion of charged species, the
effect of electron diffusivity D.- on SEI growth and electric potential distribution is shown in
Figure 46 a-b. It can be seen that SEI growth is very sensitive to D, such that increasing De-
increases SEI growth rate considerably. Moreover, higher D, corresponds to lower electric
potential gradient in SEI since electrons with high diffusivity do not need a high electric
potential gradient to assist their transport through SEI. In contrast, varying SEI formation
reaction rate has only a minor effect on SEI growth and electric potential distribution, as shown
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in Figure 46¢-d. Therefore, high sensitivity of the SEI growth rate on D.- confirms that electron
diffusion is the rate determining step for SEI growth.
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Figure 46: (a) SEI growth and (b) distribution of electric potential at time 80 ps under
different electron dif- fusivity; (c) SEI growth and (d) distribution of electric
potential at time 240 ps with different SEI formation reaction rate.

In addition to electron diffusivity and SEI formation reaction rate, the effects of other relevant
material properties and conditions such as initial Li* fraction, equilibrium electric potential
difference, applied current density and temperature on SEI growth are also investigated. The
initial Li* fraction in SEI, X%+, can be related to the initial state of charge in the anode since the
SEl is very thin at the beginning. Figure 47a-d illustrate the SEI growth, the distribution of
electric potential and concentration of Li* and e under different X“_i.. In these simulations, the
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initial electron fraction in SEI changes as X“_i+ varies in order to keep electroneutrality in SEI
bulk phase. From Figure 47c-d we can see that the concentration gradient of Li* and e in SEI
increases as X+ increases. This is because ¢+ and c.- at the SEI boundary (SEl/anode
interface) remain the same as their initial values, and at the SEl/electrolyte interface, the fast SEI
formation reaction drives ci ;. and ce- to approach zero. A higher concentration gradient induces
more flux of charged species moving through the SEI phase, which increases the SEI growth rate
as shown in Figure 47a. Moreover, since electrons are driven more by diffusion under higher
concentration gradient, the electric potential gradient in SEI decreases as X” i+ increases, see
Figure 47Db. It is noted that the electric potential at the SEI boundary is nearly independent of
X%Li+, and the effect of the initial state of charge on the electric potential at the SEl/anode
interface is neglected in the current model. This effect will be considered in the future when the
Li* concentration and electric potential in the anode are taken into account.
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Figure 47: (a) SEI growth and distribution of (b) electric potential, (c) Li+ concentration and
(d) e— concentration at time 240 us with different initial Li+ and e-
concentration in SEI.

The equilibrium electric potential difference between the two phases, Ago, is another important
material property that depends on the selection of electrode and electrolyte. It is the potential-
dependent portion of the chemical potential difference between two phases. Figure 48a gives the
distribution of electric potential at equilibrium with different Ago. It can be seen that the electric
potential difference between two phases equals A¢y at equilibrium, which is consistent with the
Nernst equation. A¢, affects the charge density distribution as well. As shown in Figure 48b,
when Ago increases, the charge density at the left (right) side of interface becomes more negative
(positive). This is because higher Ag, drives more e moving to and more Li* moving away from
the SEl/electrolyte interface, and then the concentration of e and Li" at the left side of interface
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increases and decreases, respectively, resulting more negative charge density. Moreover, higher
e concentration attracts more Li" to the SEI surface and repels A~ from the SEI surface so that
the charge density at the right side of interface increases. The effect of Ago on the distribution of
electric potential and charge density remains during SEI growth, see Figure 49a-c. It is found
that the electric potential difference between the two phases during SEI growth increases as A¢o
increases, while the electric potential gradient within the SEI is nearly the same when Ag, varies.
The charge density distribution during SEI growth exhibits the same dependence of A¢, as at
equilibrium. It is also found that the SEI growth rate increases slightly as A¢o increases due to
higher e concentration at the interfacial region.
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Figure 48: Distribution of (a) electric potential and (b) charge density at equilibrium state
with different A@O .
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The above simulations correspond to the open-circuit case with zero current density i,. In order
to examine the behavior of SEI growth during a charge or discharge process, SEI growth under
nonzero i, is investigated. Figure 50a-d show the electric potential distribution at different time
during SEI growth with different i,. Although the SEI growth rate is nearly independent of i, it
is found that the electric potential gradient in SEI changes as ia varies. In particular, during the
charging process (i, < 0), the electric potential gradient in the SEI is higher than in the open-
circuit case, and the transport of Li* due to electrical potential gradient is larger than the
transport of Li* because of the concentration gradient. As a consequence, the net flux of Li*
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moves from the SEl/electrolyte interface to the SEl/anode interface. During the discharge
process (ia > 0), the net flux of Li* moves in an opposite direction since the transport of Li* is
dominated by the concentration gradient. This dependence of the electric potential gradient on
the charge/discharge process agrees with the observations in (Colclasure, Smith et al. 2011). It is
also found that the overpotential, 70 = A¢ — Age, depends on i,, Where A¢ is the difference
between the electric potential at the electrolyte and at SEl/anode interface; Ag. = A¢ when iy = 0.
The relation between 7, and i, at different times is shown in Figure 51a. It can be seen that iy is
linearly dependent on 7o during SEI growth. This is consistent with the Tafel equation under
small no, i, =i,nFn,/ RT, where iy is the exchange current density. Moreover, the ratio

i, /17, =i,nF / RT is found to decrease as time increases. This trend is clearly seen in Figure 51b,
which shows that the exchange current density decreases as time increases; this indicates that the
charge transfer rate decreases as the SEI becomes thicker, which is consistent with previous
results that the charge density at the interface decreases as SEI grows.
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Figure 51: (a) Overpotential as a function of applied current density at different time; (b)
Evolution of exchange current density during SEI growth.
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Figure 52: (a) SEI growth under different temperature; (b) SEI thickness as a function of
temperature at different time.

As diffusion, electromigration and electrochemical reactions are all thermally-activated
processes, temperature is an important factor that affects the SEI growth rate. Similar to the
assumption in (Broussely, Herreyre et al. 2001), here we assume the diffusivity of species has the
Arrhenius relation with respect to temperature, D; o< exp(E, / RT ), where E, is the activation
energy. The activation energy of Li* depends on the composition of SEI and electrolyte, which is
found to be around 50 kJ/mol (Abe, Sagane et al. 2005; Yamada, Iriyama et al. 2009). In the
current model, we set E, = 51 kJ/mol for all species. The effect of temperature on SEI growth
and SEI thickness is shown in Figure 52a-b. It can be seen that SEI growth rate increases as
temperature increases due to faster diffusion. Moreover, the SEI thickness exhibits the Arrhenius
relation with temperature since the SEI growth is controlled by the diffusion of electrons.

2.5.3.2 Discussion and Conclusion

A phase field model is developed to investigate the formation and growth of the SEI layer on the
surface of an anode in a lithium ion battery. In this model, the electric potential is solved from
Poisson’s equation, and the governing equations of the concentrations of species are derived
from the nonequilibrium thermodynamics such that they move in the direction of reducing the
total free energy of the system. lons and electrons are transported through diffusion and
electromigration in the whole domain with concentration-dependent mobilities. At the
SEl/electrolyte interface, the SEI formation reaction occurs to drive SEI growth, where the
reaction rate is determined by the generalized Butler-VVolmer equation.

Several important features of SEI growth have been captured. It is found that SEI growth is a
diffusion-limited process. It exhibits a power law scaling with respect to time with the exponent
close to 0.5, and it is mainly controlled by the diffusion of electrons rather than interface
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reactions. During the SEI growth, the gradients of concentrations and electric potential both
build inside of the SEI layer due to fast interface reactions and small electron diffusivity. These
gradients decrease as the SEI thickness increases. It is also found that increasing the initial state
of charge in the anode increases the SEI growth rate and concentration gradient in the SEI, but
decreases the electric potential gradient in the SEI. On the other hand, variation of the
equilibrium electric potential difference between the two phases, and variation of the current
density, mainly affect the distribution of the electric potential and charge density, while their
influence on SEI growth rate is minor. In addition, the SEI thickness at a given time is found to
have an Arrhenius relation with temperature, and the SEI growth rate increases rapidly with
increasing temperature.

An important advantage of the present model compared with previous models is that it captures
the charge separation and the double-layer structure at the SEl/electrolyte interface, and reveals
the profile of charge density and electric potential in the interfacial region. Although the SEI
growth law found in this model is similar to previous results in the literature, we show the
evolution of charge density and electric potential in the whole domain including the
SEl/electrolyte interface during the SEI growth, which to our knowledge is novel. Since the
distribution of interfacial charge density and electric potential determines SEI formation and
growth, this information is very useful for the quantitative modeling of SEI growth.

The present model is flexible enough to include more species and more mechanisms (such as SEI
chemistry) that are relevant to SEI growth. It can also be extended to higher dimensional space
straightforwardly. Moreover, it can handle complex morphological evolution of interface. It is
known that the SEI layer contains multiple phases such as organic/inorganic layers and grains
with different compositions. The microstructure of these phases may be complex and their
evolution or breakdown will affect the life of batteries. It is expected that extending the current
model by considering more species and phases in higher dimensional space will allow simulation
of microstructural evolution in the SEI, which will help to further reveal the role of the SEI in
battery performance.

2.6 Cell Modeling

Cell modeling is defined as understanding and modeling a battery at the single cell level. This is
usually carried out by using continuum equations, whose formulation was pioneered by the
Newman group . This formulation is usually also restricted to one dimensional or pseudo one-
dimensional representations, because the geometry is essentially adequately handled by a one-
dimensional representation. Cell modeling is enhanced by micro-scale or nano-scale models,
some of which are described above.

At the most basic level, the battery consists of a cathode and anode having an electrochemical
potential difference. These are connected by a conductor (likely through a load) and by an
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electrolyte. The electrochemical potential between the two electrodes drives a flow of electrons
through the conductor and a flow of ions through the electrolyte. The losses associated with the
flow of ions and electrons cause a reduction in the electrochemical potential available for the
load that the battery is driving. We will be concerned with the losses that can occur within the
battery, those occurring between the current collector plates that are attached to each electrode.
Within each electrode region, ohmic losses can occur through electron conduction in the
electrode material and through ion transport through the electrolyte phase. Between these two
phases within each electrode there is also a loss of potential associated with the interphase
transport referred to as the overpotential. There is also a separator region between each electrode
that prevents short circuits. lonic flow through the separator region also results in an ohmic loss.
With porous electrodes, the potential losses across the electrode thickness can vary, bringing
additional challenges to the computation of the potential losses.

The problem will be formulated with respect to the potential at the cathodic and anodic collector
plates. Since the absolute potential is arbitrary, we will define the potential of the anode to be
zero while that of the cathode is defined to be V, which is a positive quantity. Then, the potential
drop associated with the battery is the difference between the theoretical open circuit potential,
U°, and this predicted/measured cell potential, V. A given potential drop is associated with a
specific current density, I, given in ampere per unit area of the cell. The potential across the cell
is expressed using @, with separate spatially-varying potentials associated with each conducting
material, the anode, ®,, the electrolyte, ®,, and the cathode, ®..

In analyzing the electrochemical evolution of a battery with porous materials, it is necessary to
differentiate between quantities averaged over the porosity, referred to as superficial quantities,
and quantities that are local to a phase or interface. For example, current is expressed as the
superficial current, i, in amperes per unit area of the cell. However, the current transfer between
the electrode and electrolyte is expressed in terms of the unit area of the porous material. The
variable, a, will be used to denote the specific surface area, or the surface area per unit volume.
In addition to flow variables, the concentration-like variables can be expressed either in terms of
superficial quantities (averaged over the phase volume fractions) or in terms of phase-specific
quantities. It will be convenient to express the separate phase compositions in terms of the phase-
specific mole faction, Xj, i.e., the mole fraction of species k in its own phase. If the volume
fraction of the phase is denoted ¢, then the superficial mole fraction (volume-averaged over all
phases present) would be ¢ Xy. Without a subscript, ¢ will denote the volume fraction of the
electrolyte; subscripts on ¢ will be used to denote the anodic and cathodic phases and sub-phases
within those materials.

2.6.1 Transport models for electrolytes

In this project we seek to provide mechanisms for the degradation of batteries due to various
aging and insult phenomena by trying to understand the tools that are necessary to describe the
phenomena. This necessarily requires us to look beyond the normal mechanisms of battery
simulation to side phenomena that control the breakdown of normal battery operation.
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For the electrolyte, this necessarily goes beyond the normal single electrolyte in a solvent
treatment of transport towards understanding chemical effects of caused by contaminants. First
we will review the original models for battery performance based on the Newman group work.
Then, we will review other formulations that enhance these models to include more chemistry
and mechanics phenomena.

We’ll briefly review the gold standard for multicomponent transport modeling, the Stefan-
Maxwell formulation as well as the lowest common dominator model, the Nernst-Planck
formulation. Then, we’ll derive a new formulation that lies in between the two and coincides
quite nicely with available theories for developing correlations for transport parameters for
concentrated electrolytes, a necessary corollary to the transport formulation.

This formulation, which | haven’t observed in the literature yet, uses the single ion correlations
for the ionic conductivities along with the simulation of the concentrated-solution electrical
conductivities to create an N parameter correlation of multicomponent electrolytes instead of the
prohibitively complex Y2 N(N-1) parameter correlation employed by the Stefan-Maxwell
relations. Most importantly, the formulation is exact in the single salt — single solvent limit (i.e.,
when N is three). In other words, the correlation exactly reproduces the Stefan-Maxwell relations
in this case, while being extensible to larger systems.

2.6.1.1 Definitions of Reference Velocities and Electrochemical Potentials

Within the electrolyte, the current and ohmic losses are associated with ionic transport in the
electrolyte. Therefore, a coupled treatment of ionic flow and potential gradients is provided in
the following. Within the electrolyte phase, ionic composition will be expressed in terms of the
phase-averaged mole fraction, X; (so that the superficial mole fraction is ¢ X;), and velocities will
be expressed either on a solvent velocity basis, v, , a mole-averaged basis, v*, or a mass-
averaged basis, v . The species velocities can be split into the reference velocity plus a diffusion
velocity, V,° that satisfies

2 XV =0 2.6.1)

The average velocity is defined as either the solvent velocity (a), the mass averaged velocity (b),
or the mole averaged velocity (c).
a) v,=V,; V=0

b) pv:zpivi Ozzpivid

c) ov =Yy 0=)cV (2.6.2)
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All velocities are superficial quantities. Thus, any influence of the porosity has already been
worked into the flux relationships. This is necessary as gradients in the state quantities are
necessarily superficial quantities.

The individual species diffusion velocities, Vid , are driven by the combined effects of
electrostatic potential and chemical potential gradients. The combined electrochemical potential
will be used here.

&= +RTIn(y X zF®, = | (T,P,X)+zFd, (2.6.3)

@, is the electrostatic potential in the electrolyte, F is Faraday’s constant, z; is the charge on
species I, X;, is the mole fraction, % is the activity coefficient, R is the ideal gas constant, T is the
temperature and £4° is the chemical potential of species i at its standard state conditions at the
temperature and pressure of the solution. It should be noted that in a concentrated electrolyte
with variable concentrations, the concept of an electric potential is an ill-defined concept. The
potential cannot be separated from the concept of chemical potential for non-ideal fluids.
Newman approaches this subject by either defining potentials in terms of a reference electrode
that can be moved around within the fluid arbitrarily or by defining what he calls an electrostatic
potential. An electrostatic potential is defined in terms of a single electrochemical potential of an
ion, m. Eqn. (2.6.4) is the definition of the electrostatic potential.

E =4 +RTIn(X,)+z, R, (2.6.4)

It turns out the definition in Eqgn. (2.6.4) is exactly what Cantera has been defining in term of the
specification of the ionic chemical potentials, with the slight twist that for fluids which are on the
molality basis, the mole fraction in Eqgn. (2.6.4) is replaced with the molality of ion m (Moffat
and Colon 2009).

The next sections will describe the transport laws within electrolyte fluids. We start with the
Stefan-Maxwell relations and then go on to special cases

2.6.1.2 Derivation of the “Normal Newman Battery” Equations for Single Electrolytes

In their paper (Fuller, M. Doyle et al. 1994), Fuller and Newman gives his expressions for the
fluxes in the electrolyte. They start out with the Stefan-Maxwell relations. Then, they set the
solvent velocity to zero to invert the Stefan-Maxwell equations. This solvent velocity reference
frame is the standard way the Stefan-Maxwell equations are handled when being employed in
battery calculations.

t0i
N, :—v+DCVc+;F+c+VO (2.6.5)
z

+
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t°
+CV,

N =—v D°Vc+
z F

In this expression c is the concentration of the binary electrolyte, ¢ =¢, /v, . And, the Stefan-
Maxwell diffusion coefficients can be related directly to the measurable transport parameters,
D¢, t7, and x. The material balance on the electrolyte yields a conservation equation for ¢, Eqn.
(2.6.6).

e % - venrve)-LOE S, (i:tf) 265)

How do you derive Eqn. (2.6.6) from Eqn. (2.6.5)? Eqgn. (2.6.6) appears ubiquitously throughout
the battery literature. The end result for the expression for the current is given by the following
equation, Eqn. (2.6.7).

i:—K[V(I) +2${(1—&) L}iln c;/i] (2.6.7)

The derivations of Egns. (2.6.6) and (2.6.7) are now presented. Let’s take the case of a binary
electrolyte within a solvent. Let’s write down the conservation equation for the three species in
the system.

@ =-V#N,] s,
@ :_V.ENJ S (2.6.8)
L))

Let’s write down a few relations.

c, =cv, cC.=cv.

i qv.e v

N, =c,v, =c,v, + M,
z,F vRTc,
0; (/
N =cv_ =C.V, +t’—l—ﬂcV/Je
zF vRTc,
NO = COVO
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where

o == (2.6.9)

The D, and D expressions are Stefan-Maxwell diffusion coefficients. We will later show that
they can be estimated from equivalent conductances and modified for ionic concentration
dependencies. Therefore, the transport expressions will be well grounded in experimental data.
Note, we are explicitly using the relationship that the reference velocity is the velocity of species
0, the solvent. Therefore, there is no diffusional velocity for species 0, nor is there a velocity due
to the electric field for species 0.

Let’s take z, times the firstand z_ times the second in Eqgn. (2.6.8).

dlz.c, i o i
M:—V- AR'A +t ALV cVy | 7,S, (2.6.10)
ot I F  VRTc, |
dlzc i o i
M =_V. zZCcv, +— ti 4 ZV.G V/j; zS
ot I F  VRTc,
Adding these up,
0=-V-: [F}+zs +2.8_, (2.6.11)

yields the Poisson equation for the electrolyte where i =z,N,F +z_N_F . This is the expected
result. What this says is that one of the continuity equations for the ions, Poisson’s equation for
the current, and the charge neutrality condition for the solution are all functionally the same
condition.

We can take the top result of Eqgn. (2.6.10) and divide by z, and v, to yield Eqgn. (2.6.12).

3(C¢):_v_[cvo+ Li 4 cVﬁ;} Se (2.6.12)
ot z,v,F VRTc, 1%

+

We can then add back in a multiple of Eqn. (2.6.11) to get the following expression, Eqn.(2.6.13)

9(ce) _ igve; % s,
o ——V-I:CVOJ 2y F+V{VRTC cVy, [+— (1 t? ) (2.6.13)

+
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Eqgn. (2.6.13) is the expression that is used as a starting point for the conservation equation set for
battery modeling of the electrolyte (Fuller, M. Doyle et al. 1994) ((Doyle, Fuller et al. 1993)
Eqgn. 10) ((Mao, Vidts et al. 1994), Eqgn. 3) . It appears in multiple papers with some variation
depending on the implementation details. One big detail is the formulation of the diffusion
operator. The one expressed by Eqn. (2.6.13) is the more general one that takes into account of
the possibility of a non-ideal solution.

What’s missing in the discussion above is an expression for the electric potential of the solution.
This actually gets into a discussion of what actually is the potential in the solution, a very tricky
subject as the definition of the potential cannot be separated from the definition of the chemical
potentials of the species in the solution. The potential also brings in the third Stefan-Maxwell
coefficient, 2, _, which has hitherto been absent from the equation set. The end result to this
discussion is an expression of the form, Eqn. (2.6.14).

Foot
—i==) XV 2.6.14
K zk“ Z, i ( )

In other words, the gradient of the sum of the electrochemical potentials multiplied by the ratio
of the transference number to the species charge is identified with the current. From this
expression the potential is defined and solved for by substituting in the definition of the
electrochemical potential. Eqn. (2.6.14) is used for both the concentrated and dilute cases. Note,
it’s also the first time we have invoked the quantity xthe electrical conductivity of the solution
within this equation description. Within x is a dependence on the third Stefan-Maxwell relation,
D

P

Egn. (2.6.14) can be expressed in other forms by substituting in the equation for the
electrochemical potential. In that form, it clearly is seen that the current in a solution with
concentration gradients is no longer directly related to the gradient of the electric potential. In
fact Eqn. (2.6.14) is used extensively in the theory of liquid junctions where the current is
assumed to be zero, and the electric potential difference is calculated for solutions with differing
concentrations.

Eqn. (2.6.14) provides input for the equation formulation to determine the potential within the
solution. Essentially, a conservation equation for the current, Eqn.(2.6.15), is written in the
electrolyte, and the expression in Eqgn. (2.6.14) is used within this expression (Fuller, M. Doyle
et al. 1994; Mao, Vidts et al. 1994).

~(Vgy FS.a (2.6.15)

Note, one could also write down a Poisson equation for the electric field within the solution,
which has on its rhs the mismatch in charge. Here the electric permittivity of the medium would
be used to relate the electric field with the gradient in the electric potential. This formulation has
to be directly the same as the formulation invoked by Eqgn. (2.6.15); there can be no differences
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as they should represent the same conservation law. Inevitably, when new the double layer or at
distances representative of the Debye length in the fluid this alternative approach is used
(Christensen and Newman 2004). Therefore, the source term for the charge differentials may be
defined via this method and not the other way round.

What doesn’t generalize about the formulation in this section is the extension to multicomponent
electrolyte systems. Essentially Eqn. (2.6.13) is tailor made for binary electrolytes. One can in
general form neutral molecule representations of the multicomponent electrolyte to get around
this limitation, but in practice this appears to have never been done.

2.6.1.3 Conservation Equations for the Individual lons

We have seen how the binary electrolyte can be worked out from the Stefan-Maxwell relations.
However, for multiple charged species in the electrolyte the neutral molecular representation
behind Eqn. (2.6.10) is insufficient because it refers only to binary electrolytes. Can we generate
a representation that is more general than the dilute representation? In general we would like the
representation to reduce to the binary electrolyte case whenever the case is appropriate. And, we
would like it to reproduce key requirements of the multicomponent representation but be
parameterized only by binary electrolyte data. At the end of this section we will demonstrate that
this is possible.

However, in order to generalize the electrolyte conservation equation to multiple species, we
must first start with a general expression for conservation of a single species. Conservation for
species k can be expressed as Eqn. (2.6.16).

_a(cgt”xk) .1C X, (v V)] =, (26.16)

w, is the molar production rate in per unit volume of the system and C is the total concentration
of the solution. v is the mole-averaged bulk velocity of the solution. Equation (2.6.16) will be
used to obtain X, once an expression for wy is provided. Boundary conditions for species
transport are obtained from no-flux Neumann conditions for the species at the collector plates.
Thus at both the anodic collector plate at x = 0 and the cathodic collector plate at x = Lo+ Ls+ L.
the boundary conditions for Egn. (2.6.16) are

XV, =0

for all species, k =1,..., N . The flux of species is thus associated with the source terms on the
right-hand side of Eqn. (2.6.16) in the anode and cathode regions. In the separator region, there
are no source terms on the right-hand side of Egn. (2.6.16), and the equation is simplified.

Additionally, the mole fractions of the electrolyte species must sum to one.
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ixk =1 (2.6.17)

And, electroneutrality is assumed everywhere in the electrolyte, Eqn. (2.6.18)

N
Y 7. X, =1 (2.6.18)

k=1

Eqgn. (2.6.17) and Eqn. (2.6.18) take the place of the last two species conservation equations,
Eqn. (2.6.16), in the equation formulation. Alternatively, Eqn. (2.6.17) may be implicitly
included if Eqn. (2.6.16) is used instead of Eqgn. (2.6.17) in the formulation, because the full set
of equations (with Eqn.(2.6.17) ) can only be satisfied if Eqn. (2.6.17) holds. However, for now,
we will explicitly include Eqgn. (2.6.17) in the equation system.

The summation of Eqn. (2.6.16) over all electrolyte species gives an equation for the bulk mole-
averaged velocity, Eqn.(2.6.19).

d )
%W.é@\, ) ;Wk (2.6.19)

Eqgn. (2.6.19) is the total continuity equation for the electrolyte phase. Therefore, we are using
the total continuity equation to obtain the bulk fluid velocity, which is the common occurrence in
1D systems. Note, however, that we can make a more sophisticated treatment by making the
pressure correspond to the total continuity equation by introducing an axial momentum equation
at the same time. The momentum equation will be an implementation of Darcy’s law under
typical battery conditions. This is what we are doing in the thermal battery program. Boundary
conditions for Eqgn. (2.6.19) at the collector interfaces is the no flux condition, so thatat x =0
and at x = Lo+ Ls+ L,

v =0. (2.6.20)

The superficial flux is conserved at the transition between the electrode and separator regions. At
those transitions, there is potentially a discontinuity in ¢. The superficial velocities are
continuous across the region boundaries. This relationship is expressed in Eqn.(2.6.21).

+

(2.6.21)

(CT v[a)

i =(C,v{ )
limx—L, ( Tta

limx—L,

However, the gradients of the mole fractions may be discontinuous at these boundaries. The
mole fractions of species will be continuous across these boundaries. The total flux of an ion, k,
N, , may be represented by the sum of the convective and diffusive components, Eqn.(2.6.22).

N, =Cr X, (v +V,27) (2.6.22)

105



The sum over all N, ’s may be used to obtain the net current density, i,, in the ionic salt,
Eqn.(2.6.23) . Note, the molar velocity v drops out of the expression, because the salt is
everywhere electroneutral.

i, =F Y zN,=C, FY z, X,V (2.6.23)
k k

Electroneutrality (outside the double layer) implies that the net divergence of the current density
is zero. This is obtained by summation of the product of Eqn. (2.6.16)with z, over all species.
Extending this summation over all phases leads to a relation between the electrode and
electrolyte currents, Eqn.(2.6.24),

Vi, =-V.i (2.6.24)

alc?
that provides the overall charge conservation. In Egn. (2.6.24), we have ignored the buildup of
charge at the interface, i.e., the surface capacitance or double layer charging, a factor that will
have to be included in later for transient analysis of the system.

Comparison of Egn. (2.6.23) with Eqgn. (2.6.19) shows the relation between the current density,
electrode reaction rate, and the accumulation of charged species, Eqn.(2.6.25).

Vi, :V%@CTFZAXM“) [FZziWi} (2.6.25)

If only a single reaction, I, (see Eqn. (2.6.88) below) involving the transfer of one ion, k, leads to
the surface current flux, the divergence of the current is directly related to the surface flux
allowing Eqgn. (2.6.19)to be written as

9(C,9X,) woge. 1o

TN-[chk(v +V, )]_Zk—FV.ue. (2.6.26)
Within the separator Eqn. (2.6.24) simplifies to the following equation

V-gE 0 (2.6.27)

Both Eqn. (2.6.24) and Eqn. (2.6.27) are needed within the equation formulation. The
independent variable associated with them is the potential of the electrolyte phase, @, . The
potential of the electrolyte phase will adjust itself so as to maintain current conservation.
Because we have specified the electric potential datum at the anode-collector interface, we do
not have need to specify any electric potential datum for ®..
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2.6.1.4 Stefan-Maxwell Equation Development

The driving force for transport is then proportional to the diffusional driving force which is
obtained from the development of an entropy production equation using non-equilibrium
statistical thermodynamics, Eqn. (2.6.28) [BSL (Bird, Stewart et al.), p.766,] (Curtiss and Bird
1999; Curtiss and Bird 2001).

cRTd, :ckTV(%}ck HVInT-Y Vp-p,. gt Y, ijgj
J

=¢,RTVIna, +c, (H, —H)VInT =Y, Vp-p, g, +Y, > p;0, (2.6.28)
i

n-1
:CkRT [Z d Inak

VX, ]+(Ck\7k =Y, )Vp_pkgk Yy ijgi
TP, !

In Eqn. (2.6.28), we will generally be concerned with several body forces: gravity, other
accelerations, and the electric potential. The electrical body force for an ion with charge z,
provides a force equal to Eqgn. (2.6.29)

P9, =-Fz VO, (2.6.29)

It can be shown that the last term in Eqgn. (2.6.28) disappears from the analysis due to the charge
balance constraint. Note, analogously the body force due to the electric field will also drop out
due to the charge balance constraint. Eqn. (2.6.28) is rather specific in what it includes and what
it doesn’t, and it is almost always misinterpreted or simplified. For one, it is not equal to the
gradient of the electrochemical potential, as that would involve including arbitrary temperature
and pressure derivatives of the electrochemical potential, which it does not include. Also, Eqgn.
(2.6.28) is not actually equal to the gradient of the electrochemical potentials assuming
isothermal and isobaric derivatives. The temperature and pressure derivatives of the activity are
included in the Eqn. (2.6.28). However, the last line in Egn. (2.6.28) refers to a condition where
the temperature and pressure derivatives in the activity can be ignored under most conditions.

In general, the electrochemical potential is expected to be the dominant driving force for
transport in ionic liquids of concern, but the pressure, gravitational/acceleration, and temperature
terms also provide driving forces for diffusion. The driving force due to pressure, gravitational,
and acceleration gradients are included in Eqn. (2.6.28). Diffusion in a temperature gradient
make be included within Eqn. (2.6.28) as well, leading to an additional term given in Eqgn.
(2.6.30).

i

XX, [D_I_D_I

D o |2 o ](VInT) (2.6.30)
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Where D is defined as the multicomponent thermal diffusion coefficient, which satisfy the
constraint that z DJT =0. Inthe remainder of this discussion, the pressure and temperature
terms are neglected except for an order of magnitude estimate.

Because thermal batteries can experience strong accelerations leading to pressure gradients, it is
interesting to estimate the magnitude of this term. With acceleration induced pressure gradients,
the first term in Eqgn. (2.6.28) is the product of the acceleration times the species molar mass.
For acceleration on the order of 1e5 g (1e6 m/s?) this pressure potential term is on the order of
1e3 N/mol. For zi=1 comparing this with the last term in Eqgn. (2.6.28) we see that this is
responsible for a potential gradient comparable to 1e-2 V/m. (This analysis has taken an
appropriate value for M; of 10 g/mol as intermediate between the various molar masses and has
not carried out a more detailed analysis.) Future analysis will consider the range of potentials
that might be associated with temperature gradients, though these are expected to be small.

In terms of the remaining driving forces, the relative velocities of the individual species are
obtained from the following multi-component diffusion equation

X, X

X, RTVIna, +X,FzV®, = X,d, =°RT-Y, = LV, V) (2.6.31)
J kj
where D the Maxwell-Stefan diffusion coefficients describing the interactions of species i and

J. When other contributions to the diffusion potential appearing in Egn. (2.6.31) are relevant (e.g.
pressure gradients, thermal diffusion or body forces), these would be added to the left-hand side

of Eqn. (2.6.31) by adding their contributions into the value of d, . Onsager’s reciprocal relations
requires that D, =2D,,. D ; is not relevant because V, —V, =0, so there are n(n — 1)/2 diffusion
coefficients required for n species. For the LiCl - KCI system, the required diffusion coefficients
are D D,..and D

Litcr’ K*cl*

Also indicated in Eqgn. (2.6.31) is the tortuosity factor, 7, that is employed to account for the
influence of porosity on the reduction in the rate of transport including diffusion. The tortuosity
is most simply modeled as being related to the volume fraction of the electrolyte phase, ¢, by

? =1/ \/a It would have been cleaner to separate out the porous flow effects from the
transport theory implementation. However, that is not possible. The gradients of the temperature
and mole fraction that go into calculating the value of d, are superficial quantities, i.e., they are
macroscalar quantities independent of the porosity. The V, ’s are actually liquid scale quantities
and must be multiplied by ¢ to generate the macroscalar fluxes. Therefore, dependence of the
macroscalar fluxes on the porosity represented by Eqgn. (2.6.31) is proportional to ¢*2. This
dependence is the commonly employed [Weidner] With the substitution of one of the equations
in Egn. (2.6.2) for one of the equations in the rank-deficient system, Eqn. (2.6.31) can be
inverted as indicated in the Appendix. The resulting expression for the species velocity k is
Eqn.(2.6.32), where L, represents the inverse of the matrix in Eqn. (2.6.31).

Vi :Zijdej (2.6.32)
j
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Again, if other driving potentials indicated in Eqn. (2.6.31) are significant, these are added to d,
in Egn. (2.6.31).

2.6.1.5 Dilute limit for the Electrolyte Phase

The flux of ionic species i in the dilute limit is equal to

— C% \Ci _ 54 Ci
N ==——-VE +av, ——F(V,ui +7, FVO} v, (2.6.33)
K, is the chemical potential of the i species. @ is the electric potential in the solution. One can
plug this equation into the balance equation for species i to yield.

S ivgey ]=vucve] R (2.6:34)

Newman states you can’t define the electric potential within a fluid with varying concentrations
uniquely. The definition of the inner Galvani potential is intertwined with the definition of the
chemical potentials of the species. He gets around this in two ways. One way is by defining the
electric potential (which he now calls the quasi-static electric potential) in terms of the chemical
potential of a single special ion n,

£ =RTInX, +z7,F (2.6.35)

Note in Eqgn. (2.6.35) the definition of the electrochemical potential doesn’t include any activity
coefficient wrt the species n. We may then plug the equation back into the conservation equation
Eqgn. to generate a rigorous expression that includes the potential @ . The other way Newman
gets around this is by defining the electric potential in the solution solely by measurement of the
electric potential from two reference electrodes inserted into the solution. In the limit of the
activity coefficient of n going to one, the dilute equations are retained.

N =-GG F[:'iI'Ci V®-D, ¢ VX, - D, ciV[In;/i ~%n }/n] GV (2.6.36)
z

1 |
n
2.6.1.6 Solution of Multicomponent diffusion equation for a single binary electrolyte in a
solvent

Consider a single electrolyte consisting of a cation with a charge z, and an anion with a charge
z_. We will make the following definitions and then solve the system. Stefan-Maxwell relations
can be used to describe the dependence of the diffusion velocities on the gradients in the
electrochemical potentials.

109



c,VE =K., (v0 —v+)+ K —(vf A )

C_Vf_ = Ko— (Vo —V_) + K+—(V+ v ) (2637)

The £, are the electrochemical potentials. Well actually as the previous section indicated, they
are gradients of the mole fraction parts of these potentials.

The last expression for the Stefan-Maxwell relations for the solvent is not linearly independent of
the first two. It is replaced with the definition of the bulk velocity to be used. Newman usually
chooses to set the solvent velocity as the reference velocity in contrast to the more natural
treatment of using the mass average velocity. This should be noted in the presentation below. It
should be noted that only parts of the treatment depend on the reference velocities. Specifically
the generalized multicomponent diffusion coefficients and the transference numbers depend on
the reference velocity, not the electrical conductivity or the current. The K values are given in
terms of the Stefan-Maxwell diffusion coefficients D, .

_RTcgc,

(2.6.38)
CTDij

i
Several other definitions, where v, and v_ are the stoichiometric coefficients for the salt.
C; =C, +C, +C_ c=—t=— . (2.6.39)

LV, =—-1lV

+V+ -V -

The current is given by the following equation.
i=) Fz,N, =Fz,N, +Fz_N_ (2.6.40)
k
Now we will solve the system to show that the system is equivalent to Egn. (2.6.13). One of the

keys is to define a chemical potential for the mixed ion, £, . This is the only chemical potential
that has relevance.

E=vt+vE =v L +v (P +RTINX]y +RT In X"y~
+tFv,2,® +Fv 2z d, =

(2.6.41)

We see that the electric potential drops out of this expression so we can call the chemical
potential £, with no loss in accuracy. We may further define the mixed ion activity as

ay" = XUy X (2.6.42)
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The flux of cation and anion in the solvent velocity reference frame is given by Eqn. (2.6.43)
N, =c,v, =¢, (v, +V.*°) N_=cv_=c_ (V' +v,) (2.6.43)

We may redefine the current based on these relations realizing that the bulk flow will drop out
when the fluid is defined as being electro-neutral.

i=Y FzN, =Fz,N, +FzN_=Fz.c V! +FzcV’ (2.6.44)
k

+Y+ V4

We would like to find expressions for the fluxes in terms of the driving forces. The way to tackle
this is to first calculate an expression for the gradient of z,. From the addition of the two Stefan-
Maxwell relations.

cVu, =K, (v0 —v+) + KO_—(v0 v_) (2.6.45)

Then, we may use Eqn. (2.6.37) to eliminate one of the diffusional velocities.

eV, =K, (v, -v.)+ Ko—{vo {ﬂD (2.6.46)

Fzc

Vi, = (K. +K, )V, —KO+V+_&Li K Ly

Fzc ZC

W ={K (i, o e

c.cV C.K i
LVH =c,V, —C,V o

(Ko +K,) %° " (K, +K, )Fzc

K, i c,.cVy,

Now we will identify individual terms
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c.C c,c

+

(K. +K,.) ) (RTcoq , RTec. ]

Y
=5 G (2.6.47)
RTc, (¢,  c
+_ -
Y.
_Cg v,
RTe, (v, v
+ -
Yy G
_Cc¢ 1
RTc, i_ 2,1z
DO+ DO—
_CG v, tV_

VvRTc, i_ z. 1z
DO+ DO—

_CC v,z +vZ

CWRTe, (2 2,
5
_v.CC Z -1, _v.CC Z,-1 _v.ccD,
"WRTe,(z z, | VRTe,(z. z | VRTg,
oo ™ o)

Where ¢ is the effective binary thermodynamic diffusion coefficient for the electrolyte, i.e.,
one based on the gradient of the chemical potential.

g =Tt (2.6.48)
Z+ _27—
(DO— DO+ j

The other term turns out to be the transference number with respect to the solvent velocity (note
transference numbers depend on the reference velocities).

RTc,C.
Koo - G0, = PoC  _ Poli o (2.6.49)
(Ko+ + Ko—) RT COC+ + RT COC— DO—C+ +Do+c— Do+z+ - Z—Do—
6Dy GO,
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N, =c,v, =c,v, + L] —ﬁcv,ue (2.6.50)
z,F vRTc,

Analogously it can be shown that

0; o

N =cv =cv, +=—2YCr oy, where  (2651)

zF vRTc,
RT c,c,
{0 = K,. _ ¢D,. _ D, C, _ D, 7.
- (K +K RTc,c, ,RTcc D, c,+D,c D,1,-1D,
( o “) o+ (2.6.52)

¢ D, ¢ D,

D, 2°C.

D,.2%c, +D, 7°C_

o+5+

The last line of Eqgn. (2.6.52) demonstrates that the transference numbers from concentrated
solution theory are the same as from the Nernst-Planck theory. Analogously, we next derive the
expression for the current. Note if we add Eqgn. (2.6.50) and Eqn. (2.6.51), we get a tautology.
Therefore, we need to start again from Eqn.(2.6.37). First we solve for V.° and V. *° by solving
for the linear equation assuming V,° =0.

—c, V&, [Kof + KF} —c. V& [K+ ]
KK _+K, K _+K, K,

vie= (2.6.53)

_C+V§+ I: K+7i| - Cfvg—-’[ Ko+ K+ :'

Vd,o =
- K.K_+K, K _+K, K,

Next we plug in the direct expression for the current

i _—eVé[zeK, |-eVE[Kze |
F KK +K K, +K K,

) Ko Ky Ki&o_ +K, K, (_C+V§+ [KO_J +c. & [Kﬂ ])

Now using v_=-z,v, /z
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i —C+V§+[Z+C+Ko J cVe [ C.
F K, K,_+K, K _+ K+_K0+

z,c.ov,z, —Vgi&—v‘f,&
TKK, K, K,_+K, K., z, | z
- 2.6.54
Z+C'+CV+Z+ (Ko+ t Ko ) K K ( )
= V& |~ |-V |
K, K, +K, K, _+K, K, z, (Ko, +K,.) z_ (Ko, +K,_)
z,c,ov,z, (K, +K, [ to 0
_ ( ) (v [8]oge 2
K,.K, +K,K,_+K, K, 7, | z
Then
Fi _ -F’zc.cz (K, K, )
—=-V& | = |-V | =| with k= (2.6.55)
K z+ (KooK, +K, K, +K, K,,)

As a further note, we can show that the expression for xin Egn. (2.6.55) is equivalent to the
Newman expression, Eqn.(2.6.56), for the conductivity of a concentrated binary electrolyte on p.
306 (Newman and Thomas-Alyea 2004) (not shown).

1__-RT { 1, Gt ] (2.6.56)
K D, CD,

We have previously shown that the equations can be simplified into Eqgn. (2.6.13) repeated here.

9(co) _ igvts he S,
p _—v.[cvo]_ﬁ {VRTC Vi, +V_(1 t) (2.6.13)

+

The diffusion term, which is expressed in terms of the gradient of the salt chemical potential may
be replaced by a gradient of the salt concentration. First

He =V, i, +V_ U
:v+(,uf+RT Inm+y+)+v_(,uf +HRT Inm_ _)
2.6.57
:u[mme} ( RTh y} (2657)
+ V_

=vRT (In m+In (;q_)) +v o +v_ 1f RTHv] v

Taking the derivative of the chemical potential with respect to molality at constant temperature
and pressure
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M:L[1+M] m (2.6.58)
RT m dinm

Now using the definition of molality,

m=

¢ =G (2.6.59)
c.M c.M

0 0 (o} 0

And noting that the solvent concentration is a function of the solute concentration, we may find
the derivative of the molality in terms of the derivative of the solute concentration

ch:ch—mdInCo Vec=m 1_d|nco Vc (2.6.60)
dinc dinc
Therefore,
din(y,_ dlin
v, _v( din(r o _vf  dn(r )Y, _dinc o 2661
RT m dInm C dInm dinc

Then, we may define (yes it is a definition) the concentration diffusion coefficient in terms of the
thermodynamic diffusion coefficient

din(y,_
DC :%&[1+M] (2.6.62)
C, dinm
To yield
-
4G vy =pe[1-91% g (2.6.63)
vRTc, dinc

This may be plugged back into Eqgn. (2.6.13) to yield

3(co) :—V-[cv(,]—ﬂ+v{ D (1—MJVC}+S—*(1 t©) (2.6.64)

ot z.v.F dinc v,

Therefore, we have written the equation in terms of the gradient of the salt concentration, c, at
the expense of adding some obfuscating terms. Note, what happens to the derivation of Eqgn.
(2.6.64)when there are temperature and pressure gradients? The answer really lies in the
formulation of the Stefan-Maxwell relations. The driving forces for diffusion are specifically
defined for constant temperature and pressure. Therefore, these gradients aren’t included in the

115



derivation, and this principle filters down all the way to Eqn.(2.6.64). This means btw that
gradients in the standard state chemical potentials of the cation and anion aren’t included in
Eqgn.(2.6.64). For original work on this subject see (Newman and Chapman 1973).

2.6.1.7 Derivation of the Battery Equations assuming Nernst-Plank Formulation

For sufficiently dilute conditions, the diffusive flux of ions in a solution can be described by the
Nernst-Planck conditions, Eqgn. (2.6.65). This is the lowest common denominator for
multicomponent transport formulations.

- F
jo =-D¢ C&(Vck +2,C, EVCI)] (2.6.65)

(o]

Here, we have used the term D to describe the ion diffusion coefficient formulation that does
not use the gradient of the chemical potential. We have also identified the diffusion flux as being
relative to the solvent velocity by using the superscript o designation. In the dilute limit, this is
arbitrary, but has repercussions down the road as we shall see. The two formulations can be
compared to one another, however, not without some work. A particularly good reference for
this is (Engelhardt and Strehblow 1995), which comes out of the corrosion literature. One goal is
to define how they are related to the Stefan-Maxwell coefficients. The ratio of ¢, /c, is added to
Eqn. (2.6.65) is unity in the dilute limit. However, in later sections we will see that it is necessary
for the comparison of the Nernst-Planck equation to the Stefan-Maxwell equations.

We can translate the flux relation in Eqn. (2.6.65) to the current-flux species transport
formulation via the following method. First, we define the transference number for species k in
the solvent velocity reference frame, t;

D¢,

z le ch C
[

t =

(2.6.66)

Then, we can turn the equation into the following just by adding, subtracting, and rearranging
terms.

i :_2 DS Vet [a?kl] where o :tzi (2.6.67)
| k

. t°DF
Dkl = DI<C§kI -
Z,

(2.6.68)

Therefore, we see that if we use the current-flux formulation, Eqn. (2.6.67), as is typically used
in the battery literature, the gradients of the species are already fundamentally coupled even
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using the Nernst-Planck formulation. Both formulations, Eqns. (2.6.65) and (2.6.67), plug into
the normal conservation equation for species k.

dc .
= Ve(it+ey,)+s, (2.6.69)

Note, both the multicomponent diffusion coefficients and the transference numbers are
dependent on the reference velocity used. This is best explained in de Groot’s book (Groot and
Mazur 1962), but it is also explained in (Engelhardt and Strehblow 1995) and in Newman’s
book. The current is invariant with respect to the reference velocity, but most other quantities
depend on this definition. Following through on the formulation, we see that the electrical
conductivity of the fluid, which is defined as the proportionality constant between the gradient of
the potential and the current under constant composition conditions, is also specified by using the
formula,

i=F) z7.j;.
We see that the following value is found for the electrical conductivity (coul/(m2s) (m/volt))

2
P :E_TC&ZZED,CCI (2.6.70)
o |

We have identified the diffusional flux to be based on the solvent velocity reference frame. To
convert to the mass averaged velocity reference frame, the following transformation is effected.

. woM,
o= 0e- ) (2.6.71)
= P

This transformation affects the multicomponent diffusion coefficients, D,;, and ¢, as well
(Engelhardt and Strehblow 1995).

0 C M 0
Dy =Dy _Z 1 Dy,
m=1 ,0

cM
—_ 0 k | 0
o =0y _Z 121
= P

The last expression makes clear the dependence of the transference number on the reference
velocity definition.
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2.6.1.8 A New Multicomponent Transport Representation

After looking at the literature there doesn’t seem to be a formal description of multicomponent
transport in electrolyte systems that straddles the Nernst-Planck equations and the Stefan-
Maxwell Formulations. However, there is a real need for this formulation, just as there is for gas-
phase multicomponent transport systems. We will always assume that the Stefan-Maxwell
relations hold. However, each of the coefficients in the S-M equations is temperature, pressure,
and mole fraction dependent. Much of the important dependence refers to the mole fraction
dependence as well. The S-M formulation has too much data to fit, so it is seldom used.

In gas-phase systems the analysis of multicomponent formulations of Coffee and Heimerl
(Coffee and Heimerl 1981) is an example of a break-through formulation that is now used widely
to describe multi-component transport. Here we seek to supply a formulation that only involves
binary salt data except for the electrical conductivity data, which we will allow for a
multicomponent formulation (see (Anderko, Wang et al. 2002)). We seek to provide a
formulation that will be formally exact in the limit of a single salt in a single solvent. Therefore,
we seek guidance from the binary salt representation. In that representation both the mutual
diffusion coefficient and the transference number can be accurately represented by the Nernst-
Planck equations, modified for the non-ideality of the solution. However, the electrical
conductivity of the solution cannot be described by these equations solely. Instead the cross-term
¢j_ fundamentally comes into play for xonly. This term cannot be reconciled with a Nernst-
Planck formalism, and it is this term that breaks the Einstein relation. Thus, we seek a
modification to the Nernst-Planck equation that takes this into account, Eqn. (2.6.72). y, isa
fix-up term that will be added into the formulation.

jO __Dok
“ RT

J C&(Véa) p (2.6.72)

First we note that the approximations will be carried out in the solvent velocity reference frame.
We do this because we know that we can transform the system to the mass-averaged reference
frame later using the transform introduced in Section 2.6.1.7. Also, the transference numbers
calculated using the Nernst-Planck equations are only adequate in the dilute limit for the solvent-
velocity reference frame where VO"'0 is equal to zero.

Moreover, we will seek a formulation of the diffusion operator such that we add linear
combinations of gradients of the electrochemical driving force to the Nernst-Planck equation,
Eqgn. (2.6.73).

. D,
)= Ckad’O =— R'F C, C&(Vé:k ) +Z}[k| fl (2673)
|

0

This formulation is motivated by Eqns. (2.6.37) for the binary solution. One such formulation
that fits the objectives is the following expression Eqn. (2.6.74).
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NP LONP (. NP
jl? :Ckvkd,o :_ﬂck &(Vé:k) I_+_tk_[’( . ] if Z, #0 (2.6.74)
C

RT F oz | &%

0

0 D, e _
i =cVv2° :—R—_Ifck %(V&k) if z =0

0
The """ expression could be replaced with anything that sums to one over k. However, in the
next section we will show that this term is exactly the needed expression to exactly capture the
binary salt limiting case. to""* is obtained from Eqn. (2.6.66). From this expression we see that
t"" /z, is still zero for neutral molecules. Note for the mole averaged and mass averaged
velocity reference frames t>"* /z, is no longer zero for neutral molecules. The expression &\
is the electrical conductivity that is calculated when assuming the Nernst-Planck equations are
valid, Eqgn. (2.6.70).

F?c
KW =—TN 722D ¢ 2.6.75
RT Z 1 & okl ( )

The sum over the charged species is equal to one. i'" is the current obtained from the Nernst-
Planck assumption.
tO,NP

Fi'? =—") 1 —v¢ (2.6.76)
ZI

We can plug these expressions into Egn. (2.6.74) to find the expression for the current.

d 2 G i" o[ K=K
H- H - 0 — ok o,
i = F; Zj0 = F; 7,0 V,.!° = F;[— = —(ka) ?tk E e ]] (2.6.77)

CO
K.NP to,NP ] K— K'NP
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tO,NP

Fi == —;K [— (Ve )] (2.6.78)

Zy

Therefore, the extra terms in Eqn. (2.6.74) has the effect of modifying the solution’s electrical
conductivity to establish the current results, consistent with the multicomponent Stefan-Maxwell
results (see Eqn. (2.6.55)). Additionally, we have shown that Eqgn. (2.6.53) is correctly
reproduced by the method (Moffat 2011) verifying that the binary results of the S-M equation are
fully reproduced.

To summarize we have shown that we have derived an N parameter transport theory, 2 , and

x , that can completely reproduce the binary electrolyte S-M equations and that can be
generalized to arbitrary numbers of species. The extra parameter is associated with the deviation
from the electrical conductivities Einstein relation result. The next step, one we have not had
time to pursue, is to model multicomponent electrolyte systems with good data from S-M
equations and show that the this transport theory can have predictive value even though it is
doesn’t have a full complement of degrees of freedom that the S-M equations have. Additionally,
parameterization of 2, and x needs to be carried out in terms of parameters such as T, P, ionic
strength and binary coupling parameters that may lead to ion association terms that would
influence the value of x . Systems that look promising involve the molten salt system, the
aqueous brine system where there’s the most data, and the organic solvent systems.

2.6.2 Electrode transport

The potential evolves in each phase according to ohmic losses. In the anode and cathode, the
superficial resistivities are denoted o, and o, and the potentials evolve according to

I, =-0,V®, and i, =—o V. (2.6.79)

Here, the resistivities and currents are those associated with the cross sectional area of the cell.
Models for the resistivities of the matrix phase must be constructed based on the percolation
properties of the matrix phase. They must be cognizant of the original powder technologies for
forming the porous anodes and cathodes, and must incorporate models for the morphological
evolution of the electrode materials as a function of the battery utilization. Electrode materials
that form as a function of the electrode utilization will have varying electrical conductivities.
Interfaces between electrode materials will have interfacial electrical resistivities that may
depend on the mechanical load imposed on the cell. Interfacial electrical resistivities are usually
modeled assuming that there is a constriction resistance between two particles, an analysis of
which starts with an estimate of the Hertzian contact area, which is dependent on the applied
pressure of the contact and the elastic modulus of the two contacting materials. It’s expected (and
hoped) that the matrix materials in the anode and cathode are significantly above their
percolation thresholds so that exponentials of the effective conductivities in these materials don’t
show significantly greater values than 1.0. Here we will use Eqgn. (2.6.80) for an electrode
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consisting of two materials M1 and M2 with mole fractions X, and X,,, and conductivities
oy, and o,,,, and having a volume fraction &,, until otherwise driven to something else. This
corresponds to a series-resistance type morphology model

0, =&y (Xu:Ous + X202 (2.6.80)

The chemical evolution of the electrode leads to changes in the phase and thereby in the volume
fraction of various phases. These changes are further discussed in the section on Phase
Evolution.

Equation (2.6.79) is supplemented by the equation for charge conservation given below,
expressing the fact that current transfers from the matrix phase into the electrolyte via surface
reactions.

Vi, =-V-i (2.6.81)

e

The boundary conditions for the potential and current are given at the collector plates. These
boundary conditions are the problem input and output. Between the two electrodes, the current
is carried by the electrolyte as described in the following section so that at the end of the
electrode near the separator, the electrode current must be zero, providing another boundary
condition. For the anode-collector boundary, at x = 0, the voltage datum is applied, Eqn.(2.6.82).

® =0 (2.6.82)

a

At the anode separator interface, x = L, , the anode material ends. Therefore, a no current
condition is applied, Eqn.(2.6.83).

i,=0 (2.6.83)
The insulator at x = L+ L requires
i =0 (2.6.84)

For the cathode, the boundary conditions at the cathodic collector plate at x = Lo+ Lgt+ L, either
the net voltage drop across the battery or the net current is specified.

b, =Vor i-=1I (2.6.85)

c

Usually, we will favor the current condition, because it is better behaved numerically for
electrodes which exhibit plateau regions in their open circuit voltages as a function of electrical
discharge.
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2.6.3 Electrode reactions
Interphase Reactions

The molar production rate is largely associated with the surface reactions, the reduction and
oxidation occurring at the cathode and anode interfaces. Rates of species production reactions at
interfaces are obtained from Eqn. (2.6.86) [Goodwin et al, 2009].

Ns
S = 2Vl (2.6.86)
i=1

v,; are stoichiometric coefficients for the species k participating in reaction i. g; are rates of
progress for the i reaction. In this treatment electrons are defined just like any other species.
However, they may be singled out with the subscript e so that the net rate of production of
electrons at an interface, s, , can be written as

Ns
Se = zveiqi (2.6.87)
i=1

Where v, = +1 for reaction, i, which are in the anodic direction, and where v, = -1 for
reactions in the cathodic direction. Note reactions which transfer more than one electron should
be considered as global reactions, not elementary reactions. All elementary reactions transfer
only one electron. The net current flux across the interface is given by

I =Fs, (2.6.88)

s, has units of kmol m?2s™. In order to creates per volume production terms for inclusion into the
species conservation reactions from the s, , one needs to multiply by values for the interfacial
area of the electrode per unit volume, a_ , for the particular interface that involves the reaction
I, whose solid side involves the phase p_«.

Consider a generic charge-transfer reaction written in the anodic direction (i.e., producing
electrons) producing one electron.

A+BA C+e (2.6.89)

The net rate of production may be written as the difference between the anodic and cathodic
rates.

9=0.~G (2.6.90)

The anodic and cathodic rates of progress depend upon both the temperature and the electric-
potential difference across the double layer, E, = —®_, where @ _ is the electric potential in
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the metal, and @ _ is the electric potential in the solution outside of the diffuse-charge region,
according to Eqgn. .

FE

q, =k, (T)éaéb exp{%} (2.6.91)
~B FE

g, =k (T)a, exp{%} (2.6.92)

The thermal contributions k, (T) and k_ (T ) are usually written in Arrhenius form. For
elementary reactions, the symmetry parameters f satisfy 0 < g <1.Further the anodic and
cathodic symmetry parameters are constrained to satisfy 3, + 3, =1. &pare concentration
activities, which are usually defined just as activities for liquid and solid phases. In global
reactions, symmetry parameters are also relevant but usually called o not £ and there are no
specific constraints on the values of « .

Forward and reverse rate constants must still satisfy microscopic reversibility. That is

_ 0
t_a =K, = exp{ é? } (2.6.93)

The electron does contribute to the value of AG®, because its value is set so as to provide a
reference value for the potential drop across a reference interface. For aqueous systems, this
reference interface is the well-known standard hydrogen electrode (SHE) interface. For molten
salt systems, we are using the following reaction as a reference interface electrode reaction:

Lil) = Li* +e, (2.6.94)

where Li(l) is a pure liquid lithium electrode and the electrolyte solution is defined as pure LiCl.
For the generic charge transfer reaction, Egn. (2.6.91), (2.6.92) and (2.6.93) result in the Nernst
equation expressing the equilibrium electric potential difference at the anode as

Qn

Ezq:é[AG°+RTIn£ & j] (2.6.95)

aab

If there are multiple charge-transfer reactions, at equilibrium every charge-transfer reaction must
be equilibrated simultaneously with the same value of E;*; in this case, the set of Nernst
equations define constraints that the equilibrium species activities must satisfy. However, if for
any reason the species activities are not in equilibrium, then it is not possible to unambiguously
define a Nernst potential, especially with parallel charge-transfer pathways. For open circuit
systems, mixed potential theory then comes into play where the voltage of the metal will float to
a value where the net production rate of electrons is equal to zero.
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If multiple charge-transfer pathways are active then away from equilibrium the value of E* as
computed from Eqn. (2.6.95) has different values for each reaction, resulting in significant
complications in using the Butler-Volmer formulation. By contrast the physical anode potential
E, has a single unambiguous value (after specification of the reference interface), independent
of how many charge-transfer pathways are active. For models such as the present one, in which
the anode potential, species activities and current density are all computed self-consistently, the
Butler-Volmer form offers no substantial advantages compared to the elementary mass-action
form. More importantly, representing reactions in the mass-action form does not suffer from
restrictions that are inherent in the Butler-VVolmer form. For a single reaction, the Butler-VVolmer
form may also be represented in terms of the mass action form [Moffat, 1997].

In summary, using Eqn. (2.6.87) gives the current flux per interphase surface area. This current
flux is linked through Eqn. (2.6.86) to species conservation in Eqgns. (2.6.19) and (2.6.19). The

phase potentials in Egn. (2.6.91) and (2.6.92) are determined from the transport in the electrode
and electrolyte phases described in the previous sections. The next section describes how these
phenomena are brought together.

2.6.3.1 Comparison to the Specification of Electrode Reactions via the Open Circuit
Voltage

Newman models make the implicit assumption that the thermodynamics are assigned to the
reactions. For detailed kinetics one needs a consistent set of thermodynamic relations that may
only be achieved by assigning the thermodynamics to the species, those providing a consistent
set of parameters. At the same time electrochemical reactions are best presented in terms of an
exchange coefficient formulation. I’ll describe how to do this using Cantera in the following
sections.

Cantera has been demonstrated to have all of the tools necessary to successfully implement
what’s known about the elementary steps of the reaction and to produce a global reaction rate in
the Butler-Volmer format (where it’s the appropriate form). With its emphasis/reliance on
elementary steps, Cantera is a good vehicle for providing robust and reproducible links between
experimental data and models attempting to reproduce experiment (see ref. (Bessler, Warnatz et
al. 2007) for a good example of this).

Assuming that we have established the thermodynamics for the electrode reactions (Moffat and
Hewson 2009; Moffat and Hewson 2010), the next step is to establish the kinetics. In order to
fully understand the intricacies of implementing electrode reactions within Cantera, there’s no
substitute for actually exhaustively carrying the process out on a sample reaction.

How electrode kinetics for thermal batteries is implemented within the Cantera framework
(Goodwin and Aivazis 1999) is the emphasis of this note. Nothing necessarily new has been
developed within Cantera to handle electrode reactions. This capability to model Butler-VVolmer
electrode reactions has previously been used extensively within Cantera to model solid oxide
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fuel cells (H. Zhu, Kee et al. 2005; Bessler, Warnatz et al. 2007; Hao and Goodwin 2007;
Goodwin, Zhu et al. 2009). | do, however, explain how this functionality is used within liquid
electrolyte systems. Conventions are established for how we define the overpotential, the
exchange current density, and the current. In particular, sign conventions are established for
these quantities, which are internally consistent, and allow electrode reactions to be expressed in
both the anodic and cathodic directions.

This memo describes the implementation of electrode reactions in the literature and in Cantera.
We contrast the derivation of the equation set within the bulk Butler-Volmer formulation used in
the battery literature with Cantera’s derivation which is based on establishing specifications for
the values of chemical potentials for all species in the equation set including electrons in the
metal.

2.6.4 Cantera’s Setup of Electrochemistry

2.6.4.1 Specifying the electron chemical potential and ion chemical potentials

Let’s say we have an electrode reaction, i, that produces or consumes electrons within a solid
phase. We will write this in the cathodic direction via the following reaction.

NS NS
DSViM +nle 2 Y VM, (2.6.96)
k

k

In Egn. (2.6.96), v, ; is the reactant stoichiometric coefficient for speC|es k in this i"" reaction.

vk"I is the product stoichiometric coefficient for species k in this i" reaction. Note that Ve_i =N,
. is the number of electrons consumed by the reaction. The summation is over all species,

N |n all phases that may occur at the interface. These phases may consist of multiple bulk

phases or surface phases. Within Cantera, we will insist that there be at least one surface phase at

each interface even if the phase is empty of content, i.e., consists of just one species that has zero

elements assigned to it.

The condition for chemical equilibrium is Eqn. (2.6.97).

N

S

NS
zv;,igk *né. 2 kap,igk (2.6.97)
k

k

n,; is defined as the number of reactant electrons. The chemical potential of an electron in a
metal is defined to be equal to Eqn. (2.6.98).

S, =1 +z, FD (2.6.98)
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In this equation, £ is nonzero. Within Cantera we have used . to assign a convention for the
potential drop across an interface that is used throughout a partlcular calculation. In agueous
systems we have used the Standard Hydrogen Electrode (SHE) convention to assign ,ug
(Moffat and Colon 2009). For molten salt system, we use the convention of E =0 at
standard state conditions, for the lithium melt reaction, (R4).

Li(l)-LiCl

Li(l) =Li* +e” Efosic =0, (R4)

The chemical potential for the electron must then be equal to the expression provided in
Eqgn.(2.6.99). Note this expression is not consistent with the SHE expression, but is entirely
analogous to the SHE formulation (Moffat and Hewson 2009).

M (T’ P) = (uﬁi(l) (T)_luEiCI(I) (T)+ RT In(Z)) +z, F (2.6.99)

Also, the electron chemical potential ,u;’ (T, P)for electrons in all metals associated with
electroactive interfaces within a particular problem will be given by Eqn.(2.6.99), thereby
providing a relative standard. In addition to the use of Eqn.(2.6.99), the standard state chemical
potential of the chlorine ion in liquid LiCl is defined by convention to be equal to zero at all
temperatures and pressures, (Moffat and Hewson 2009)

1. (T,P)=0, (2.6.100)

due the charge neutrality constraint creating an essentially immeasurable degree of freedom. This
degree of freedom is satisfied by arbitrarily assigning the chlorine ion to have a zero standard
state chemical potential, where the standard state is defined to be the pure LiCl molten salt state.
Therefore, writing down the standard state Gibbs free energy change of reaction for (R4),

Li() = Li* +e” E°=0 volts,
results in Eqn. (2.6.101).
AGg, = ,ufi(,) — L —,u;’, =0 (2.6.101)

Applying the relationship between the standard electrode potential and the Gibbs free energy of
reaction,

Alq, =AGg, +nFE° =0 — nFEf,(I)L,CI— -AG;, O,

Eqgn. (2.6.99) is derived. The electron is assumed to be in its own “electron electrode phase”
within Cantera, because of the form of Egn.(2.6.99).
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<phase dim=""3" id="metal_Li_LiCl_electrons'>
<elementArray datasrc="elements.xml'"> E </elementArray>
<speciesArray datasrc="#species_electrode'> electron_Li_LiCl </speciesArray>
<thermo model="StoichSubstance'>
<referencelnterface> Li(1)-LiCl </referencelnterface>
<density units='g/cm3'>100.</density>
</thermo>
<transport model="None" />
<kinetics model="none" />
</phase>

<I-- species definitions -—>
<speciesData i1d="'species_electrode'>
<species name="electron_Li_LiCI">
<atomArray>E:1.0</atomArray>
<charge>-1</charge>
<thermo>
<Shomate Pref="1 bar"™ Tmax="700.0" Tmin="400.0">
<floatArray size="7"> -40.71053 , 6.411257 , -6.010738 , 4.150772 , -0.007908 ,
410.01408 , -77.614337
</floatArray>
</Shomate>
<Shomate Pref="1 bar" Tmax='"2700.0" Tmin="700.0">
<floatArray size="7"> -47.17129 , 14.679607 , -3.696837 , 0.794099 , 0.330556 ,
412.93171 , -85.545107
</floatArray>
</Shomate>
</thermo>
<density units="g/cm3">100.</density>
</species>
</speciesData>

Figure 53 XML format for the electron phase within Cantera for molten salt systems

Figure 53 provides the Cantera implementation of this electron phase within a metal relative to
the Li(l)-LiCl interface. The phase itself is named metal_Li_LiCl_electrons, and is defined
as a stoichiometric phase, meaning that it consists of one species. It contains one species named
electron_Li_LiCl, with the nontrivial Shomate polynomial form necessary to satisfy
Eqgn.(2.6.99). The nontrivial nature of the representation is due to the fact that the chemical
potential of the Lithium liquid, £, , and the chemical potential of the liquid molten salt, £,
are taken from the NASA and JANAF databases, and are nontrivial functions of temperature. In
those databases the conventions are to assign the heats of formation of elements in their standard
states at one bar and 298.15 K to be equal to zero. This is the convention that has been adopted
throughout in Cantera’s aqueous chemistry and electrochemistry work.

We have adopted the same type of formulation for the chemical potential when using organic
solvents common to lithium-ion batteries. In these types of systems it’s common to assign the
zero potential to the following reaction which takes place on a solid lithium anode, which takes
the place of the SHE electrode within aqueous systems.

Li(s) &= Li"+e EL e Lirroecrcome =05 Rxn. (2.6.102)

R(8) takes more explaining. We define the standard state chemical potential of the Rxn. (2.6.102)
as being equal to zero, and then define the chemical potential of the electron in order to make it
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so0. Li(s) refers to the solid lithium metal. Li+ refers to the lithium ion in the common organic
solvent used in batteries; this is a mixture of ethylene carbonate, propylene carbonate, and
dimethyl carbonate. The cation is matched by an equivalent part of the anion, PFs- , and the
concentration of the ions in the solvent are defined as 1.0E-3 molar, which is equivalent to the 1
molality convention for the H+ aqueous ion convention. Just as in the aqueous system, we also
must specify the convention that we will assume for the chemical potential of the ion pair. Here
we will assume that the standard state of the chemical potential of the Li+ is equal to zero. Also,
we will assume that the activity coefficient of the Li+ is zero as a function of the ionic strength,
an analog assumption to the pH convention used in aqueous systems that is specified on the ClI-
ion. With this assumption, then, the entire heat of solution of LiPFg from the dry salt into the
organic liquid solution would then be assigned to the enthalpy of the PFs- ion. Note also that
assigning the chemical potential of Li+ to zero requires that the standard state volume of Li+ is
also equal to zero.

The chemical potential of species i in phase a, where a may be the electrode, the solution, or the
interface between the two, is equal to Eqn. (2.6.103).

o=l (T.PX)+2F (2.6.103)

H (T, P, X ) may have multiple formats. For example it may be a stoichiometric phase, such as
an oxide, it may be an ideal solution on the mole fraction basis, or it may be an electrolyte
solution, whose activities are defined on the molar or molality scale.

Let’s expand the electrochemical potentials in Eqn. (2.6.97) using Eqn. (2.6.103) to develop an
expression for equilibrium of an electrode reaction.

NS NS NS NS
Zvir/ji +2Virzi Fq)l + n;,i/j; _nF(Delectrode = Zvipiui 1*‘2 ipzi Fq)l (26104)
i=1 i=1 i=1 i=1

v is the stoichiometric coefficient for reactants in the reaction. v;"is the stoichiometric
coefficient for products in the reaction. Collecting terms results in Eqgn. (2.6.105).

Ny Ny Ng Ny
Zvirzi Fq)i _zvipzi I:C[)i _n;,in)electrode = Zviplui _Zvir:ui - nﬂj— (2-6-105)
i=1 i=1 i=1 i=1

The rhs of Eqn. (2.6.105) is AG, the Gibbs free energy of reaction. @, is the potential of the
phase in which species i belongs. However, to simplify the lhs of Eqn. (2.6.105), we will may the
assumption that all charged species that are reactants are located in the electrolyte solution phase.
Therefore, Y vz, =n{;. And, we may define the potential difference between the electrode and
solution phdse as E:

E=0

) (2.6.106)

electrode ~ = soln
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Then, Eqn. (11) simplifies to
N, N,
_n;iFE :Zviplui _Zvir:ui _n;i/JS— = G (2.6.107)
i=1 i=1

We may also generalize Eqgn. (2.6.107) so that it may be written in both the cathodic and the
anodic directions if we define the net production of electrons in a reaction, n, by Eqn.(2.6.108).

n=n’,—ng (2.6.108)
So that
N, N,
nFE :ZVip’ui _Zvir’ui _n;i’ug = G (2.6.109)
= i=1

We may separate the Gibbs free energy of reaction out into its standard state contribution, AG®,
defining an equivalent standard potential, E°, based on AG®,

NS NS
NFE® =Y vPul® = vip —nly° = G°, (2.6.110)
i=1 i=1
and the deviation from the standard state contribution,:
nF(E-E°)=AG-AG® (2.6.111)
The later may be rewritten as Eqn.(2.6.112).

E=E° +% , (2.6.112)
n

Eqn. (2.6.112) is recognized as the Nernst equation for the reaction, after AG — AG® is written
out in terms of the logs of the activity coefficients.

To summarize, we’ve formulated chemical potentials for all ions and the electron specific to a
particular electrode for which we have specified the voltage. We have seen that the latter
condition is equivalent to specifying the standard chemical potential of the electron. We’ve also
shown in several cases how to get around the degeneracy of specifying ion chemical potentials,
caused by not being able to measure the thermo of phases with net charge, by setting one ion
chemical potential by convention. Then, the thermodynamics all other ions in solution may be
calculated without degeneracy.
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2.6.5 Formulation of the Kinetics in Terms of Elementary Steps

2.6.5.1 Equivalence of Butler-Volmer Formulation with Reversible Elementary Reaction
Formulation

Cantera’s implementation of kinetics involving charge transfer is based on the extension of mass
action kinetics to the interfacial charge transfer case where electrons are treated as any other
species. Mass action kinetics for the forward reaction is described by Eqgn. (2.6.113).

ROP,, =k, [ﬁ(cf )* ] (2.6.113)

k

The formulation for the forward and reverse reaction rate coefficients for the Rxn. (2.6.96) is
given by Egn. (2.6.114).

_ﬁif F(ka,iqu)kJ

RT

_ﬁif F(zvk,iqu)kj

RT

—-E..
K, =AT™ exp{?“:lexp =k exp (2.6.114)

where v, ; =v;?, —v,is the net stoichiometric coefficient for species k in reaction i. Eqgn.
(2.6.114) is the same form as Eqn. (16) in ref. (Goodwin, Zhu et al. 2009) with the same sign
conventions as above.

k{ is the “chemical part of the rate coefficient including a chemical activation energy, E;;

B'F (kaz@k] , Which includes a contribution from an electron reactant or product, may be
k

thought of as the change in the activation energy barrier (or the relative transition state energy
level) due to the potential energy difference between the products and reactants in the reaction.
The motivation for the form is based on transition state theory applied to electron transfer
reactions and is supplied in several standard electrochemistry books (see ref. (Bockris and Khan

1993)). ,Bif is the symmetry factor for the transition state, and is an additional input parameter

(actually the only additional input parameter) for electron transfer reactions.
Let’s take a look at this term for the case of first LiSi Reaction,

3/11Li,Si,(S) =2 4/11 Li,Siy(S)+ Li* + ¢ (2.6.115)

One electron is transferred when the reaction is written in the anodic direction.

D vz, @, :—n(d)metal —CDSO,n) = AE where  n=v, (2.6.116)
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In Eqn. (2.6.116), n is defined as the stoichiometric coefficient for the electron in the reaction; n
may be negative if the reaction is expressed as a cathodic reaction. The forward reaction, which
is the anodic direction, is enhanced for positive values of E, and reduced for negative values of
E. This makes sense, because high values of @ __ . stabilize the presence of electrons in the
metal by reducing the chemical potential of electrons.

The reverse rate of progress for reaction i may be expressed in the following analogous form

ROP, = kr’i[ - (c2)" ] (2.6.117)

k

where

_E. B'F [ka,iqu)k ] B'F [zvk,iqu)k )
}exp k K exp k (2.6.118)

=A T ex
A p|: RT RT o RT

kC is the chemical part of the reverse rate constant. The symmetry coefficients are restricted
belng related by A" + " =1. Eqn. (2.6.118) is the same form as Eqn. (17) in ref. (Goodwin, Zhu
etal. 2009). c, is the activity concentrations of the product species k, (¢ =c;a, ), where c; is
the standard concentration and a, is the activity of species k).

However, the reverse reaction rate may also be calculated from the electrochemical equilibrium
constant, which includes the electrical potential energy term in Eqn. (2.6.116):

Y v, =0. (2.6.119)

[Ta
akk

AG? +RT In| - + FZV Z, % = AG =Y vty (2.6.120)

AG; is the standard Gibbs free energy of the reaction, the last term on the rhs may be solved for
E, the equilibrium value of the potential drop across the interface that would induce an
equilibrium condition for the elementary reaction. Eqn. (2.6.120) can be rewritten as

=exp k =exp = (2.6.121)

]L[a;k' RT
k

: ? 0 e
l—Iakk —AGg - szk 7, D} [—AGS NEE® }
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where E* =@  — @

metal soln

Next, we will switch back to the reaction. The reaction must be consistent with the
thermodynamic limit, Eqn. (2.6.121). The numerator in the Ihs of Egn. (2.6.121) is a
multiplication over the products of the reaction, while the denominator is a multiplication over
the reactants of the reaction. Therefore, we may formulate the reverse rate constant of the
reaction by equating the two rates of progress under equilibrium conditions.

ROP/ = ROP™ (2.6.122)
Then, we may multiply a form of Eqn. (2.6.121) into Eqn.(2.6.117) and Eqgn. (2.6.118).

lL[(ak )Vkr —AG? —(1—,Bir ) FY> vz @ |, "
ROP® =k, | -——— |exp ‘ TT(c)™ (2.6.123)
k

fier "

to generate an expression for k ; that is consistent with electrochemical equilibrium, Eqn.
(2.6.121). Here we plug Egn. (2.6.123) into Eqn. (2.6.122) to yield Eqgn. (2.6.124).

ILI(ak)VE _AGrO_(l_ﬁir)szkqu)iq p v _ﬁiszvkqu)Eq r v
ke| ———— lexp = 1:[(05) =K exp - ]:[(cf)

f1(a)

(2.6.124)

Eqgn. (2.6.124) may be simplified.

TT(c ) +AG +(1-B' - B ) F Y v, 2, D}
exp k (2.6.125)

K
1) .

In Eqgn. (2.6.125), c; is the standard concentration of species k, which in many liquid and solid
systems is equal to one. Eqgn. (2.6.125) can be solved for several forms. In terms of just the
chemical reaction rate, the original form of the reverse chemical potential can be generated, Eqn.
(2.6.126). This is the original form of the reverse rate constant used within Cantera.

krc,i = k?,i
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(2.6.126)

In terms of the total rate forward rate constant, the reverse total rate constant obtained by
plugging Eqn. (2.6.126) into Eqgn. (2.6.118) to give Eqn. (2.6.127).

AG? +(ﬂi®sz:Vk L«

(c:)* RT

(2.6.127)

(AGP+(B+B'OFY vz,

)
) RT
)
)

(2.6.128)
[AGY+FY¥vz,
Kk

K

HPIRNY: RT
[1{)

k

When the electric potential drop across the interface is at the equilibrium value,

—nE® = kacbk o1, the forward rate of progress and reverse rate of progress are equal.
However, the potential drop across the interface may not be at equilibrium and will not be for
finite currents crossing the interface electrode. Define this difference as the surface overpotential,
s -

(@ — Py ) =-NE =-n(E=+7, )= Dz, |, or E=E"+p, (2.6.129)

The surface overpotential 7, represents the departure from the equilibrium potential at the
specific conditions of the electrode (including the calculation of the activities), and it is also
given by the expression:

~Fnn, =ng +zp‘vip§i iv{{i (2.6.130).
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Note, we have defined 7, away from the standard state conditions where all unity activities are
assumed, and even irrespective of equilibrium conditions. Therefore it’s valid under any
circumstance, especially one in which there is a net current flowing across the interface.

The forward and reverse rates of progress may be reorganized so that the Butler-Volmer form of
the equation is generated. Following the derivation in (Bessler, Warnatz et al. 2007) the forward
rate of progress is expressed as:

[ of e r .
ROP, =k; exp P Fn(Eq+775)] a)vk

RT H(Ck

k

(2.6.131)

e | BTFRES |y oy [ BTFnn,
=k exp T}H(ck) exp[T}

k

Then, we may also write the reverse rate of progress in terms of 7, . We start with Eqn. (2.6.117)
, Eqn. (2.6.118), and Eqn. (2.6.126).

r

()" | [aec+m®Ena ],
ROP. =k¢| £ lexp k TT(c)* (2.6.132)
k

p

1:[ (C; )vk" RT

Then, we apply the relation derived from Eqn. (2.6.121).

ex - 2.6.133
T p ( )

VP RT

s [l e
exp ‘
[Ta”
k

To reduce the expression to

1) | | [-FIvaer+aFYve ],
ROP, =k{|— — k - [exp k = k H(cj)k
H(Ci)k Hakvk k
v FnE® — B'Fn(E® +7,
=k; l:[(CE‘) eXp[ " ﬂRTn( M )] (2.6.134)
c ' FNE™ |1/ )% -(1-4")Fnn,
=k exp[—'g R'r; }l:[(ck) exp{ ( RT) }

Then, the net rate of progress for the reaction may be written as
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k

ROR,, =ki EXP['Bif E;Eeq }(ﬁ(Cf ) ][exp {@} —exp[_(l_iiT) v ” (2.6.135)

Eqn. (2.6.136), derived from Eqn. (2.6.121), may be used to eliminate E* from the
Eqgn.(2.6.135).

] e
exp[b} (2.6.136)

to yield

(2.6.137)
- s \«B
p L H(Ck) fAGo r vi (-5
=k:[H(cs) ' ] —— exp[ﬁ = R}(H( ) )]
k cs k k
I
f —-(1-8")F
[exp[ﬂ Fru, }_exp[ (1-5")Fn, ”
RT RT
Now the net rate of electron generation may be calculated from ROP,,
dle
M =(n)ROP,, (2.6.138)

dt

and the current through the electrode and into the solution may be defined in terms of the
electron generation rate as

e—

dfe | |
| =—z F% -z nF(ROP,,) nF(ROPL) (2.6.139)
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Then, the rate of progress for elementary electrode reactions may be defined in terms of the
current density, i, in the traditional Butler-VVolmer form as

i=i exp[%}—exp{_(kﬁ )Fm]S] (2.6.140)

RT

where i, the exchange current density, is given by:
s\s'
. r () Y 1o (e A [1(<) B'AG?
i, =nFke [1:[( ) J(l:[(ck) J S E—— exp[?ﬂ. (2.6.141)

Or, an alternative form is:

i, =nFk; exp[@}[ﬂ(cf )Vkrj (2.6.142)

k

Therefore, for elementary kinetics steps, Cantera’s implementation leads to the Butler-Volmer
format given by Eqgn. (2.6.140) and(2.6.141), a point that has already been made in ref. (Bessler,
Warnatz et al. 2007). The Eqgn. (2.6.141) agrees with Eqn. (11) in ref. (Bessler, Warnatz et al.
2007).

Let’s go through the signs. In Egn. (2.6.140), i is the current from the metal into the solution. i is
positive when the overpotential of the reaction is positive. When i is positive, electrons in the
metal are created. When the overpotential is positive the potential of the metal is higher than the
solution (see Eqn. (2.6.129)). Making the metal potential positive means that electrons have a
lower chemical potential (see Eqn. (2.6.98)), thus favoring their formation. The overpotential
must be negative for reactions to lead to the destruction of electrons.

Let’s explore the signs involved with reactions written in the cathodic direction. For reactions in
the cathodic direction, n =—1. This means that the exchange current density from Eqn. (2.6.142)
is negative. This is ok, and is a direct result of the formulation of the current convention,
expressed in Eqn. (2.6.139). It’s also true that for reactions written in the cathodic direct to
proceed in the cathodic direction then the overpotential, defined as 7, = E—-E®*, must be a
negative quantity. This is again ok, and reflects the fact that the potential E must be reduced from
its equilibrium potential E* in order to drive the destruction of electrons. Therefore, we must
expect that the exchange current density for cathodically written reactions will be negative. We
must also expect that the overpotential for reactions which destroy electrons should be negative.
For sets of interfacial electrode reactions, especially when they are intermixed with non-

electrode reactions, the resulting global current density may or may not be reducible to Butler-
Volmer form. A more general approach is needed.
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2.6.5.2 Activation Energies for Charge Transfer Reactions

Activation energies for charge transfer reactions can be approached from two methods. The first
method we will pursue is to assume that the overpotential is fixed. Then, we may use the Butler-
Volmer form of the reaction repeated here as a starting point.

i=i exp[%}—exp{_(kﬂ )Fm]S] (2.6.143)

RT

where i, the exchange current density, is given by:

(2.6.144)

S

In the first treatment we will take the overpotential, 77, as constant as we change the temperature.
Let’s calculate the activation energy for the charge transfer, E' Eqgn. (2.6.145), at constant
overpotential.

e = __gp294(Ini) (2.6.145)
dT nXe P
First we will define the activation energy of the exchange current reaction.
: d(Ini
= :—RTZ—( )
dT
X; P
Then,
, d(Ini
E :—RTZ—( )
dT I
' Fp -(1-p")Fon, 1]
"ex B Fra, +(1- 8" )ex ° (2.6.146)
IR e
=E" +Fnn,
B Fnn, —(1—,3f)|:n775
exp| ————= |—exp
RT RT
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The expression in brackets is well behaved as 77, — 0 adding a constant RT to the activation
energy, independent of the value of 3" . The expression for the activation energy of the
exchange current density is Eqn. (2.6.147).

E" =E,,— 8'AGS —RT ((1 B )E k.dlnyk (") 2w dlnykj (2.6.147)

k

E" is an observable quantity. Note, the quantity AG;, is set by convention via setting the value
at any one interface via the chemical potential of the electron. AG; is not an observed quantity.
We note that we can obtain any effective observed value of E* even if AG is set by
convention to an arbitrary constant by adjusting the value of E, ; commensurately. E, ; and E_;
should therefore be considered to be a function of the electron chemical potential convention for
reactions involving electron transport across interfaces. For this reason, it is probably best to
switch to a formulation of surface kinetics that sets the value of E" directly. This is carried out
within Cantera by specifying the Exchange Current Rate coefficient formulation for specifying
surface reaction rate coefficients.

2.6.5.3 Formulation of existing charge-transfer reactions

In order to contrast Cantera’s implementation we will explore a more traditional formulation
based on Newman’s lithium ion battery work. Lithium insertion into an electrode is represented
by Eqgn. (2.6.148).

Li*(aq)+e” +6, A Li-6, (2.6.148)

This reaction is usually represented in terms of a Butler-VVolmer representation, Egn. (2.6.149).

i =k (e, -¢,)(c.)” [exp(R_T(E u)J exp( RTF(E u)n (2.6.149)

This is represented in terms of the exchange current density, Eqn. (2.6.150).

i =i, [exp[oé‘_:_: (E—U)j—exp[_gf: (E—U)j] (2.6.150)

17, the overpotential, is defined as Eqgn. (2.6.151).

n= (I)1 _(I)2 =FE U (26151)
®, is the voltage within the electrode, while @, is the voltage in the solution adjacent to the

electrode. When E =U there will be no current crossing the interface according to Eqgn. (2.6.149)
. The definition of the overpotential in this section is the same as was used in the preceding

138



section. The value ofU we defined in Eqn. (2.6.149) is equal to E*, which we have defined in
the last section.

The open-circuit potential of insertion materials varies with the amount of lithium inserted and is
expressed by a general function of composition of the electrode.

U=U’-U.+ F(c,) (2.6.152)
This is a point that is mentioned in the Newman work. However, it needs to be emphasized how
important these parameters are to the numerical model’s success at fitting experimental discharge
curves. The calculation of U ? involves the same amount of complexity as the solution of Eqn.

(2.6.121); it’s just buried within the Newman formalism and then typically parameterized from
experiment.

The determination of U ?, is of particular note. U ?, is set such that the potential drop across a
particular electrode within the “current” calculation is zero. This is exactly what we did when we
set the electron chemical potential in Eqgn. (2.6.99) and Rxn. (R4). However, Cantera’s
implementation is more formal, and therefore the results end up less error prone.

In summary, Cantera’s representation in terms of mass-action kinetics formulations is consistent
with Newman’s formulations, but an argument can be made that it is more generalizable and
formal.

2.6.6 Enthalpy Formulation of the Heat Equation

The enthalpy formulation of the energy equation has been widely used in systems involving
phase changes due to its inherent simplicity and coherency. We use it here to describe the
thermal behavior of batteries. In the past thermal management of batteries have usually started
off with the temperature equation, see (Gu and Wang 2000). We start with formulations
developed for deformable porous media. The enthalpy formulation of the energy equation has
been widely used in systems involving phase changes due to its inherent simplicity and
coherency. We use it here to describe the thermal behavior of batteries. In the past thermal
management of batteries have usually started off with the temperature equation, see (Gu and
Wang 2000). We start with formulations developed for deformable porous media (Martinez and
Stone 2008; Martinez, Stone et al. 2011) We add convection of enthalpy and the add the
electropotential energy of charged species in a voltage field to arrive at Egn. (2.6.153)The
enthalpy formulation of the energy equation has been widely used in systems involving phase
changes due to its inherent simplicity and coherency. We use it here to describe the thermal
behavior of batteries. In the past thermal management of batteries have usually started off with
the temperature equation, see (Gu and Wang 2000). We start with formulations developed for
deformable porous media.
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o209,
"T+V-(pr-l:|-pvpj+V-£che’pj =Q
(2.6.153)

is the specific internal energy of the phase p in the mixture, also including terms associated with
charged species in a potential field. Ignored in the present treatment, this term could also include
changes in the electric capacity via charging of the double layer. However, all phases in the
current treatment are considered to be charge neutral up to this point. + is the specific mixture
enthalpy of the phase p with additions for charges in electric fields. Again, because phases,
especially the electrolyte, are electro-neutral, these extra terms are zero. v, represents the
superficial velocity of phase p.

ae,p represents the diffusive flux of energy in phase p. We sum over phases here, because there
may be separate conduction processes in connected phases of a multiphase material if they are
above the percolation threshold. ae,p includes the flux of enthalpy due to diffusion with additions
for charged species.

G p =—A,VT +zjk -VH, (2.6.154)
k
Within Egn. (2.6.154) we may separate out the terms due to charge transfer to yield

G,, ==AVT +> j, «VH, —i +V¢,
TR (2.6.155)
= 2VT+Y ) +VH, - V-(i.9,)+0,(V-i,)
k

The latter form in Eqn. (2.6.155) is the form that’s implemented in the 1D battery code. It’s
recognized that the second to last term in Eqgn. (2.6.155) is eventually the reversible power output
of the battery.

2.6.7 Darcy’s flow Equation for flow and Changes in Electrode Porosity

Bulk flow of the electrolyte is necessary when the electrodes change their volumes. The axial
momentum equation is replaced by Darcy’s flow in porous media, written for a two phase flow
implementation where S, is the relative saturation of the electrolyte in the pore space of the
electrode, and S is the relative saturation of a gas phase, if present.

d

a((p(sepe))J,v.(,;,e\,g) =Q, (2.6.156)
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%(‘p( gpg))”v‘(PgVS):Qg where S, +S, =1

¢ is the porosity of the electrode, and p, is the density of the electrolyte phase. Q, is the mass
source term for the electrolyte phase, which will be nonzero due to Li+ production and
destruction in the electrodes. v¢ is the Darcy velocity for the electrotype phase

kK
v:=—ﬁ£VQ vy =———VP (2.6.157)
He K,

Where P, is the pressure of the electrolyte phase., 1, is the viscosity of the phase, k is the
permeability of the porous phase, k,, is the relative permeability of the electrolyte phase. A key
quantity is the capillary pressure, p_, relating the pressures in the two phases

p.=P -P (2.6.158)

Both the relative permeabilities of the phases and the capillary pressure are parameterized as
functions of the surface tension, and relative saturation of the phases with common
parameterization functions (not included here) being Udell and Fitch (Udell and Fitch 1985) and
van Genuchten (Genuchten 1978) (see (Martinez, Stone et al. 2011) for a detailed explanation).

The porosity of the media may be determined by an effective stress principle for porous media in
principle and by tracking the solid mechanics of the porous medium (Martinez, Stone et al.
2011). This is a complicated process employing many empirical relations. However, here we
employ a simple correlation based on how much a swelling of the electrode leads to an increase
in the superficial volume of the electrode compared to how much it shrinks the electrolyte
porosity. In some cases this is a readily observable experimental quantity. Each cell in the
electrode is an extensive solid volume. Let’s the cell’s extensive volume, Vf“b and lets call the
actual solid volume of the object Vjs. Then, the porosity of the cell may be calculated from Eqn.
(2.6.159).

V-S
v;“p:I—'g (2.6.159)

Let’s define the following empirical swelling function for the superficial velocity gain due to a
solid velocity gain, Eqgn. (2.6.160).

v=T_ a
dve  1-¢

where ¢ —»1as ¢ — 0 (2.6.160)

o may be a function of the porosity that varies between 0 and 1. But, for stability and physical
considerations, it must be the case that it goes to 1 as the porosity disappears. Then, the
Lagrangian solid mesh motion may be determined from Eqn. (2.6.160), and the porosity of the
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electrode may be calculated from Eqn. (2.6.159). Of course what’s missing from Eqn. (2.6.160)
is a feedback on o of the applied effective stress on the electrode. In other words the more the
electrode is squeezed the tighter the pore space is reduced compared to its expansion. While this
is beyond the current implementation, linear elastic implementations have been carried out in
Goma and Aria, but without the swelling component of the electrode that changes the materials
reference state configuration via Eqn. (2.6.160). A program is being started within Aria to
combine all of these features.

2.6.8 Modular Architecture for 1D Electrode Model

The 1D electrode code has a modular approach to domain construction, depicted in Figure 54.
There are two different types of domains: surfaces and volumes. Volume domains contain a
control volume cell formulation for a single set of equations. Volume domains are then
sandwiched between surface domains. Surface domains serve several purposes. First, boundary
conditions for volume domain equations may be applied on surfaces. Secondly, tie conditions
may be applied on surfaces. Tie conditions combine the conservation equations for neighboring
cells into a single conservation equation. For example, the conservation equation for the Li+
electrolyte species in the Volume anode domain and the Volume Separator domain are tied
together so that the species is conserved across the domain boundary and so that there is only a
single unknown specified at the interface between the domains for the Li+ species concentration.

Volume
Cathode

Volume
Separator

Volume
Anode

Interface

Collector

Interface

Interface
Interface
Collector

Figure 54  Modular Approach to construction of the Domain: Volume Domains are
sandwiched between Surface Domains, on which boundary conditions and tie

conditions are applied.

The third reason for surface domains is that actual unknowns may be associated with the domain.
We have used this capability to model plate electrodes for example, where the electrode becomes
a surface boundary condition instead of a volumetric source term.

Within each volume domain, a traditional node-centered control volume implementation is
carried out. Most of the unknowns are located at the nodes. The axial velocities are formally
located at the cell faces, which are positioned half-way between the nodes. Strict first order
upwinding is used for all convection operators; therefore, formally a strict maximum principle
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applies to the conservation equations. Diffusive fluxes are calculated at the cell faces, using
independent state properties that are interpolated between the node points. Cells that are located
at the ends of the domain are half-sized, since the corresponding node is located at the domain
boundary. No attempt has been made to implement second order boundary conditions for fluxes
at the ends of the domain. A mesh refinement algorithm has been targeted for this application,
but has not been implemented.

The resulting set of equations is solved using Trilinos. Vectors and matrices are implemented
with Epetra vectors and the Epetra_VBR matrix objects respectively. The algorithm can
formally be solved in a multiprocessor context, using a ghost node formulation, where nods are
owned by processors, and rows are stored on a processor. Ghost rows in the vectors and Ghost
columns within matrices are then implemented where needed. However, we have not kept up
with the MP implementation due to time constraints. Solution vectors are primarily written out
using an XML protocol, while the input file is controlled by an ASCI nested-block interpreter
that reads a block keyline format.

Anode Domain Separator Domain
AL A

Ccvo Ccv2 cva Ccvl Ccv3

N \ WT NN

N N & NN
1 1 | 1 1 1 1 1 1
o, 1., 2 :3 ., 4 |5} 6 ., 7 . 8 |
1 1 1 1 1 1 1 1
MFO ' MF1'MF2 i MF3 ' MF4 ' |MF5|' MF6' MF7 ' MFS8 '
VO Vi1 V.2 V3 Valvs Ve V7 V.8

Anode - Separator
Surface Domain

Anode - Collector Plate
Surface Domain

Figure 55 Node-centered Control volume implementation within each domain. Most
variables are located at the nodes. Control volume faces are located at the
midpoint between nodes. Axial velocities are located at the control volume
faces.

2.6.9 Summary of the Equations System Solved by the 1D Electrode Model

The following equations are associated with the following independent variables. We separate
the system into three cases, depending upon whether there is a pressure unknown introduced into
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the system and whether there is a gas phase. Currently, only system 1 has been completed.
System 2 and 3 are under construction.

Equation Unknown

System 1: (Reservoir assumption)
Total continuity equation Eqn. Reference Electrolyte Velocity v
Conservation for species 1,..., N —2(Li+) Eqn. (2.6.16) ------ -- Mole Fraction X,
Sum of mole fractions Eqn. (2.6.17) (solvent species) ----------- Mole Fraction X,
Electroneutrality Eqn. (2.6.18) (major anion) ~ ----—-- - Mole Fraction X, ,
Current conservation Eqgn. (2.6.24)and Eqgn. (2.6.78). ------------ Voltage @,
Current conservation for Solid Egn. (2.6.24) - Voltage &
Volume Conservation ------=-=-=======m-mmmmmmmmo oo Porosity ¢

System 2:  (Compressible, saturated Media approximation)

Darcy’s law electrolyte Eqn.(2.6.157) Reference Electrolyte Velocity v
Total Electrolyte continuity equation Eqn.(2.6.156) ---- Pressure P,
Conservation for species 1,..., N —2(Li+) Eqn. (2.6.16) ------ -- Mole Fraction X,
Sum of mole fractions Eqn. (2.6.17) (solvent species) ----------- Mole Fraction X,
Electroneutrality Eqn. (2.6.18) (major anion) ~ ----—-- - Mole Fraction X, ,
Current conservation Eqgn. (2.6.24)and Eqgn. (2.6.78). ------------ Voltage @,

Current conservation for Solid Egn. (2.6.24) - Voltage @

Enthalpy Conservation Equation Eqn. (2.6.153) ----------------- Temperature

Swelling EQUation =----=-===mmm e oo e Mesh Movement X;‘Ode

System 3:  (Compressible, unsaturated dual phase approximation)

Darcy’s law electrolyte Eqn.(2.6.157) Reference Electrolyte Velocity v
Darcy’s law gas Eqn.(2.6.157)  ----—--—---- Reference gas Velocity v
Total Electrolyte continuity equation Eqn.(2.6.156) ---- Pressure P,

Total gas continuity equation Eqn.(2.6.156) ~ ----------—-- Pressure P,
Conservation for species 1,..., N —2(Li+) Eqn. (2.6.16) ------ -- Mole Fraction X,
Sum of mole fractions Eqn. (2.6.17) (solvent species) ----------- Mole Fraction X,
Electroneutrality Eqn. (2.6.18) (major anion) ~ ----—-- - Mole Fraction X, ,
Conservation for gas species 1,..., N -2 Eqgn. (2.6.16) ------ ---- Mole Fraction X,
Sum of gas mole fractions Egn. (2.6.17)  ---- - —===-==mmmmmmmmmmm- Mole Fraction X,
Current conservation Eqgn. (2.6.24)and Eqn. (2.6.78). ------------ Voltage @,

Current conservation for Solid Egn. (2.6.24) - Voltage @
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Enthalpy Conservation Equation Eqn. (2.6.153) ---------------- Temperature
Swelling EQUation =----=-===mmm e oo e Mesh Movement X;‘Ode

A key to the implementation of System 2 and 3 has initially been found to be an implementation
of artificial compressibility for the electrolyte phase. Unlike System 1 which has a reservoir, a
phase within the System 2 system must compensate for changes in the volume of other phases
facilely. We’ve chosen the electrolyte system, where we are adding a compressibility term to the
electrolyte equation of state.

2.6.10 Calculation of Source terms — Need for integrated source terms

The electrode may have an internal state represented by internal morphology, and therefore the
electrode may have internal state variables that are not posted to the exterior of the object.
Therefore, all source term evaluations done on the electrode must formally be couched in terms
of integrated changes in time. Let AiE be the set of variables that are external to the electrode. All
of the A" will be part of the solution vector. Therefore, their time step truncation errors will be
controlled as part of the predictor-corrector integration procedure. The following independent
variables are part of A%, the external variables for electrode i.

X, Electrolyte species mole fractions,.
\Y, Mass or mole averaged velocity of the electrolyte.
\Y Anode voltage

a

\Y/ Electrolyte voltage

e

@ Electrolyte volume fraction, from volume conservation equation

However, there are variables that are not part of the global solution vector that are part of the
intrinsic solution vector of each Electrode object. The set of these variables will be denoted by
the Greek symbol, o . Within «, the following variables will be solved for, depending on the
sophistication of the implicit model for the electrode.

N, Number of moles of each solid component of the electrode
A o Surface area of each solid phase wrt the electrolyte phase e

A;i_pj Surface area of each solid phase i wrt another solid phase j
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How does this fit into the integration scheme? Let’s take the example of the solution electrolyte
phase.

To formulate the equation system we apply a control volume scheme around cell i, and employ a
control volume discretization scheme in the time domain as well, to formulate a conservative
scheme. Eqn. (2.6.161) results. V, ., is the volume of cell i at time n+1. A_ ., is the surface area
of the left boundary of cell i at time n+1.

(Vi CT¢Xk)n+l_(Vi CT¢Xk)n
t, —t (2.6.161)

n+l n

e I:ALCT¢Xk (V +V, )] tNg* [AiRCT¢Xk (V +V, )] = (Vi Wk)

n+l

In Eqn. (2.6.161), (w, ) ,, is the source term for species k evaluated at the conditions pertinent to
t =t,,,. The source term is evaluated at the conditions of the external variables, i.e.,at t =t _,,.
But, also represents an integration from conditions at t =t, to t =t_,, within the internal state of
the electrode object. This may involve abrupt transitions in the electrode structure, or it may
involve non-uniform source terms wrt time withinthe t =t to t =t_,, period due to changes in
the internal morphology or internal state of the electrode. Keeping track of these changes
requires us to use a formulation where we integrate the internal state of the electrode from t =t

to t =t.,, and use that within Eqn. (2.6.161). This concept is expressed by Eqn. (2.6.162).
tha
[ 88 (A 2 t)dt t
Vi W (AR 2,0 t) o —  Z=Z,= [ f(ALZE)dt (26.162)
n+l = 'n t

n

S¢ is the source term for the Electrode object written as an explicit process. Z is a vector of
explicit quantities that represent the internal state of the electrode. Note, we do not achieve any
extra level of time-step accuracy from this treatment, because we still use a constant value of A ,,
throughout the t, to t ., integration. There are several advantages nonetheless. First, we achieve
a level of separation between the models for the electrode and the 1D models for the cell. Z
doesn’t have to be included in the source term vector for the 1D model. The number of
unknowns within z may vary as well from treatment to treatment. We can handle abrupt changes
in the electrode structure such as the disappearance of a phase easily within the integration step.
Eqgn. (2.6.162) leads us to understand how embedded implicit coupling schemes should be
handled in a general way, especially considering when the subgrid model gets to be very
expensive.

In order to handle the implicit coupling within the 1D code, a jacobian must be formulated
consisting of the variation of V, w, ., (Am, z,t) with respect to variables with the set, A%,,. This
is easily achieved by integrating Egn. (2.6.162) repeatedly with respect to deltas of each of the
A’ variables.

146



In order to understand the time step truncation errors, predicted vs. corrected values of the Af,,
variables are calculated. This means that the time step error in these variables are controlled. The
time step errors in the z variables are not under global time step error control. This issue may
have to be addressed in the future by establishing a subcycling strategy that seeks to control the
time step error within the Eqn. (2.6.162) integration step.

2.6.11 Models for the Electrode Object

The electrode object consists of a set of solid phases, a set of surface phase that bound the solid
phases, an electrolyte phase, and constitutive relations relating the transport and reactions in
these phases. We seek to describe an electrode using a general description that may be used in
multiple contexts. In order to motivate the description, we will first describe the Newman
problem from which originates the Electrode object in order to discover what properties the
electrode object must have in order to function within the Newman equations

There are several view of the object. The external view is described by the following. The solid
phases are described by independent variables consisting of temperature pressure and solid phase
mole fractions of all of the solid phase species in the solid phases. A solid phase electrode at any
particular point in space consist of a set of individual solid phases, «, A, y,K . There may be
more than one solid phase in an electrode at any time. Frequently, there will be two or more
solids phases that exist at any time, since this represents the case of a plateau in the open cell
voltage for the system. Mole numbers of phases are represented by the symbol n’. The number
of moles of species k (local phase index in the phase is given by the symbol n”, . This same
number may be represented by the symbol n,, where ke represents the index of the species in a
group that represents all species in all phases within the object. In general, we treat the electrode
as an extrinsic system, meaning that it has a given a set amount of moles to start. The number of
moles of electrode and the resulting volume may vary as reactions occur. The vector, n,, , partly

represents the internal state of the electrode.

Separating each solid phase from each other, there is a surface phase representing the interface
between each of the solid phases. Each surface phase has a surface area associated with it. On
each surface there are optionally a set of surface species and a surface reaction object which has
a set of reactions involving the surface species and the two neighboring bulk phases. Surface
may be subdivided further. Some surfaces will represent interfaces with the electrolyte; these are
put in a separate category. The surface concentrations of species are added to the total list of
species in the electrode, n,,. The concentration of a surface phase depends on the concentration
of the two bulk phases which the surface phase separates. Obviously, if one of the adjacent bulk
phases has a zero concentration, the surface phases which adjoin it also have zero concentrations.
The bulk electrolyte phase is assumed to always be present.

Within each bulk phase there may be a diffusion object representing the diffusional transport of
ions, and electrons/holes within the object. Diffusional transport occurs between surfaces
surrounding the bulk phase. Electron and hole transport is also assumed to occur between
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adjacent cells, each of which has an electrode object. The effective conductivity of the electron
and hole transport is a constitutive property of the electrode that depends upon the morphology
of the electrode.

Each bulk phase within the Electrode object may have its own voltage. However, for inclusion
into the Newman equations, the identification of a voltage of the electrode is needed. This is
carried out by assuming that there is a phase which constitutes the contiguous bulk phase within
the Electrode object, i.e., the matrix phase. The voltage of this matrix phase will be associated
with the voltage of the bulk of the electrode.

The way we will start up the system in the simplest cases is to assume that the electrode is a
collection of N, interconnected sphere, where N A is picked to represent the exact amount of
material represented by the extrinsic Electrode object given an input particle size.

Initially we have assumed that the electrode exhibits pseudo steady state diffusion. However,
recently we have started to relax that assumption so that we may get all of the time scales
inherent in solid state diffusion and reaction so that we may model impedance spectroscopy
results. Below we describe a few of the electrode models. This is not an exhaustive list of
models; we have left some models out of the description. From a computer science perspective
each of these models are subclasses of a general Electrode class that can be used in multiple
codes and contexts.

2.6.11.1 CSTR Model

The CSTR model assumes that the Electrode object is a well-mixed solid solution consisting of
N part identical particles. Each particle has a mixture of solid phase species in the particle given
by the total mole number, n,, of species of type ks within the electrode object. The total surface

area of a single particle is given by a, . ; this may vary throughout the calculation as the
volume of the particle changes due to reactions, but a spherical geometry is currently assumed.
The rate of change of the mole numbers of species calculated from a single interfacial kinetics
object with the possibility of multiple reactions occurring on the exterior surface, Eqn. (2.6.163).

dn _ NS (RoP,

dt sa part ' part j ks, j
j=

(2.6.163)

ROP; is the rate of progress of the j™ surface reaction. & ; 1s the stoichiometric coefficient for
the ks solid-phase species in the j™ reaction. For this object the state variables, z, mentioned in
the previous section refer to the n, solid phase species. The formulation of ROP,; has been
mentioned in previous sections, see Section 2.6.5 for example. The rate of progress to
reemphasis, depends on temperature, pressure, the voltage across the interface and the mole
fractions of the species in the solid solution, the availability of phases in the solid solution, and
the mole fractions of species in the electrolyte phase.
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The expression for the source term is given by Eqn. (2.6.162). The source term fits into
continuity equations at the 1D electrode level like Egn. (2.6.161). There are source term
expressions for Li+ in the solution and electrons in the solid phase. To be precise the source term
for Li+ for the CSTR Electrode object can then be written as Egn. (2.6.164), which is written as
an explicit representation with units of kmol s™

thy thu N,
_[ SI_E|+ (AI,Enﬂ’ Z’t)dt part J. sa, part e (ROP

Viw ) (A zut) = 2 = : (2.6.164)

Li+, ]

—

It should be mentioned that there are hard digital limits imposed on the mole fractions of solid
phase species in some cases. The CSTR object will act as if it has run out of a particle species
just as if the phase has disappeared. This is due to the fact that activity coefficient representations
of solid solutions are sometimes fit over a limited set of conditions. Usage outside of that domain
is not warranted and may lead to misleading results. In order to implement the hard limit,
solution for the exact time at which the hard limit is reached has been implemented. The
technique for this is explained later.

2.6.11.2 Pseudo-Steady State Diffusion Model with Phase Change

Typically, within simple reaction mechanisms for anodes and cathodes involving the insertion or
depletion of a single ion creating a new solid phase in the process, we can formulate the reaction
rate via the following equation, Rxn. (AB)

B =A+Li"+e- Rxn. (AB)

But, now assume that we want to incorporate the effects of a solid diffusion process into the
formulation. Then, we can expand the problem into the following form.

Assume we are solving a spherical diffusion problem from an inner sphere at radius r, and
concentration C; to an outer sphere at radius r, and concentration C . Assume the diffusion
mechanism is pure Fickian with a diffusion constant of D. The model is roughly depicted in
Figure 56.
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Electrolyte
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Figure 56  Schematic of the electrode model for Pseudo-State state diffusion involving
phase transformation.

There is a general reaction at the exterior interface and a general reaction mechanism at the
interior interface in. Between the two interfaces, solid phase diffusion of lithium is assumed to
occur. In general, the actual problem involves time dependent diffusion within a sphere

d_CZEZE (2 9¢ (2.6.165)
dt  r°dr dr

Boundary conditions of the third kind are implemented on the interior and external surfaces. We
seek to find approximations to the solution of this problem. The first approach described in this
section is to linearize all reactions and diffusion processes and assume that they are in steady
state. Thus we will simplify, but in the process lose the performance of the model for short time
scales.

At the inner surface depicted in Figure 56 we have an inner reaction.

A+Li(i)=B Rxn. (inner)

At the exterior surface we have an exterior reaction. It is assumed that charge transfer occurs at
the exterior reaction.
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Lii)= Li" +e” r, Rxn. (ext)
Li(i) are interstitial lithium atoms within the B phase. Rxn. (ext) represents the charge transfer
reaction within the electrode. The electron is assumed to diffuse within the electrode via a
separate mechanism involving the conduction band.

In the solution to this system, we first assume that either the outer or inner reactions are fast
compared to diffusion and the other reaction. Then, we nondimensionalize the equations using a
Damkoeler number. The details of the derivations are in (Moffat 2012). In the derivation of the
equations care must be taken to formulate a complete model for all four rate constants involved
with Rxn. (inner) and Rxn. (ext) such that the system is completely specified. The final
equations are stated here.

For the situation where the inner reaction is rate limiting, the equations are

9% _ (472N JROP. where ROP. =k . —k . [Lii) ]  (2.6.166)
dt n p inner nner r,inner f ,inner nner

It has a ROP formulation that is equal to Eqn.(2.6.166). The diffusive flux at the inner surface is
equated with the net ROP from the inner reaction to yield Eqgn. (2.6.167).

- k" outer
Ropinner ) m[k””ner - kf Anner [ kfy,outter ](CaLH ) (Cae)] (26167)
Dain — (rout - rin)kf,innerrin
Dc,r

0 out

For exterior reaction limited situations,

iUy ~47r? ,ROP,, (2.6.168)
dt
Where
k ca,;, J{ca,_ k A
ROFzsxt — fext Lin _ ( L )( ) DaOUt — _fext ( out )ﬁ (26169)
1+ Daout Kext D C0 r-in

Figure 57 and Figure 58 contain representative results from the electrode object for
understanding the evolution of an FeS; cathode in a thermal battery. One of the goals of the
analysis was to determine whether a solid phase diffusion mechanism could be distinguished
from a mechanism based on fitting the exchange current density.
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Figure 57  Variations of the constant current curves as the exchange current density is
varied. 50 amp current at various exchange current densities assuming
infinitely fast diffusion. In this version the reaction’s rate of progress is
proportional to the inner surface area.
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Figure 58 Variations of the constant current curves as the exchange current density is
varied. 50 amp current at various exchange current densities for a fixed
value of the diffusion coefficient of 1.0E-8
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The FeS2 electrode goes through multiple plateaus as it is discharged, a concept that will be
addressed further on. However, it is clear that the gross DC behavior of the two limiting
behaviors are roughly equivalent to one another. Therefore, from the DC behavior the rate
limiting step can’t be distinguished between exchange current density limited and solid phase
diffusion limited. Note, however that the AC behavior between the two models is very different.

This motivates the need to go to AC impedance modeling matched with experimental impedance
spectroscopy to differential mechanisms.

t=t t=t

n n+l

Figure 59: Phase blue disappears on going from t =t to t= tn+1, while phase red
appears on the outside. Two cases may occur depending on whether red
nucleats before blue disappears. In the text, the inner blue region will be
called S1 (solid#1). The green region will be called S2, and the red region will
be callled S3. After blue disappears, green will be S1, and red will be S2.

2.6.12 Multiple Plateau Regions

It may be the case that there are two active surfaces at once where reactions are taking place.
This would mean that there would be three different regions inside each particle with reactions
on the two inner surfaces and on the exterior surface, all at once. Therefore, the depiction of
morphology described in Figure 56 must be expanded to include the depiction in Figure 59. The
reason for this is clearly shown in Figure 57 and Figure 58. Essentially there may be a solid
phase diffusional resistance or a loss in surface area that reduces the production rate from the
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inner surface as a plateau materials ends. This means that the voltage may have to drop so much
from the open circuit voltage for the inner plateau in order to produce additional electrons that
other reactions may start to be thermodynamically possible.

We start a treatment of this case here. We have developed the equations for the evolution of the
radii starting with the inner region and then working our way out to the exterior radius. S1, S2,
and S3 will denote the regions. We report the results here and refer the reader to original
references for the details (Moffat 2012). The subscript is will denote the inner surface, os will
denote the second surface, and es will denote the exterior surface.

The basic equations for evolution of the electrode depicted in Figure 59 do not change, but it gets
generalized. Now there are multiple surfaces denoted by the symbol b, and the expression for the
time dependent change of solid phase species ks becomes Eqgn. (2.6.170).

b
NI’

dnks — < b b b
T - ;asa,parthart - (ROPJ )aks,j (26170)

j=1

Now, there is an overall summation over active surfaces, which represent annular regions of the
particle (see Figure 59). We currently limit the number of reacting surfaces to two plus the
exterior surface. Each surface has its own InterfaceKinetics Cantera object, on which a
variable number of reactions, N, can be defined.

From the basic species production equation, we may then define production rates for phases.
Each phase is defined to exist on a particular region in the electrode. A region is defined as one
of the colors in Figure 59. The electrode will usually exhibit a plateau in its open circuit voltage
when two regions separated by a single boundary exists within the electrode. When a particular
region is consumed then the open circuit voltage undergoes a noncontinuous change in value. If
the region contains multispecies phases, then the open circuit voltage can vary continuously with
the state of charge as the composition of the phase changes with state of charge.

As the phase numbers change in Eqn. (2.6.170), the relative volumes of the regions change, and
therefore, the effective surface areas, a’, ., between the volumes change as a function of the
state of charge. One notable difference in behavior between heterogeneous kinetics as described
in Egn. (2.6.170) and homogeneous kinetics systems that the reader may be more familiar with is
their limiting time behavior. It can be shown that there is a finite time dependence to the
destruction of phases in heterogeneous systems (for spheres it is proportional to t3, whereas in
homogeneous systems exponential decaying solutions of species profiles are the norm.

Essentially for the subgrid integrations of Eqn. (2.6.170), we employ a backwards Euler
predictor corrector method. However, a strict backwards Euler implementation of Eqn. (2.6.170)
leads to a direct failure of the method during geometry changes. This is because the equation
depends on the surface area of the interface, afaypan , Which actually approaches zero as the phase
disappears, and much of the complications in dealing with the equation system has to do with
this term. The exact formula for the time discretization is given below.
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b
S

o M =¥ N '(Ropjb,nﬂ)af (2.6.171)

n sa, part S, ]
a4

Where

b, eff b,n+1

— b,
asa, part ~ OS(asa part + asa[,]part )
We have experimented with additional formulas for aZF. ., including more logically consistent
approximations. However, that is the formula currently being used and it has no numerical
drawbacks. a2, is the surface area of the interface calculated at the end of the BE step, using
the region volumes calculated from n."*. For further information our thermal battery modeling

references should be queried.

Within the approximation, we have logically assigned the global reaction rate to the inner surface
and not the exterior surface. However, an alternative formulation would be to assume that an
expanded model formulation involving a charge transfer process at the exterior of the particle
with and/or diffusion of neutral interstitial lithium into the solid particle where it then undergoes
a further reaction leading to phase change. This has led to the combination of the algorithm in
Section 2.6.11.2 with the current algorithm. We have implemented initial versions of that
algorithm but have not productionalized it.

2.6.13 Algorithms for Handling Births and Deaths of Phases

Algorithms for the birth and death of phases have not been substantially published to date. We
have found that this is an extremely tricky topic, especially when the phases to be birthed involve
multispecies, nonideal phases. Here, we publish an algorithm that is robust in handling this
important issue. Extensions to other fields such as geochemistry, and crystallization phenomena
are evident.

What we presented in the previous section where we wrote down the equations for the time
dependent evolution of phases using the mole number of species as the basic independent
unknown was actually not used, though it is algorithmically identical to the actual equation set
when phases aren’t changing status. We have determined that the equation set to be solved must
differentiate between the mole numbers of phases and the mole fractions of phases.

dn. n"-n" .
P=_1t P=a S™ +a S™ (2.6.172)

dt - tn+1_tn — “outer ~ p,outer inner ~ p,inner

Sy e i the source term for the creation of moles of phase p at the outer reaction surface. It is
strictly evaluated at a the final time in the time step, t =t"**, in a backwards Euler manner.

S™ jsevaluated as a sum over the

p,outer
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S ;,J:Jluter = z Sirj;:ter (26173)

iep

*

S™! is the source term for species i, which belongs to phase p, at the outer surface.a_ . is the

outer
sdﬁgze area of the outer surface, evaluated at an intermediate time between t, andt,,, . In
previous sections we have calculated the optimal time to evaluate the area. However, in our
initial implementation we used a trapezoidal rule. It’s turning out that this is ok. What’s essential,
however, is that the area not be evaluated at the final time. This avoids a singularity in the

equation system that occurs when a phase disappears.
In these equations, we have separated out the inner and outer surface for reaction.

For multispecies phases, additional equations for the mole fractions of all species are introduced.
The equation formulation is given below.

dn.  n™X™—n" .
e ——=a Sl A S (2.6.174)

n+l n outer ~i,outer inner ~i,inner
dt -t

One of the key issues in these calculations is the birth and death of phases. The death of phases
occurs when the plateaus react out. Either the inner radius disappears or the outer annulus region
reaches a zero thickness condition. Under these conditions it can be shown that the mole number
of phase p goes to zero at a finite rate, and at a particular time, t>**". At this time, the source
terms for all species and phases undergo an unavoidable and physically-realistic discontinuity.
We handle the discontinuity by adding another equation to the system.
1 N — * 1 * 1 1

n;+ - 0 - nin + (aoutersir,];uter + a'irﬁerSilji;ner ) (thr tn) (26175)
And we use the independent variable t"*! as the extra variable. We actually choose the phase p,
that Eqn. (2.6.175) refers to by calculating the possible times of deaths of all phases that can die

and we choose the minimum of the death times, or the original step time, whichever is shorter,
Eqgn. (2.6.176).

t™ = MIN(t5"Vp, t2,,) (2.6.176)

Note, we make sure to only change the choice of phase p in Egn. (2.6.175) when we are
evaluating the base residual and not during numerical jacobian calculations. Also, we make sure
to not change the formulation of the problem, i.e., that a phase p will die, during the nonlinear
solution procedure. If during the nonlinear solution procedure the phase doesn’t die, then the step
is considered a failure, the local time step is reduced, and the nonlinear problem is retried.
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When the phase p disappears the equations for n;“ and X" for i in phase p may actually stay
unaltered. It may be shown however, that the equation for the mole fraction at the final time,
X", becomes equivalent to Eqn. (2.6.177).

(o enn * andl
X/'= _((:tss —— ::T”er?;iff” )) (2.6.177)

outer — p,outer inner ~ p,inner
Eqgn. (2.6.177) is well posed if the source terms for the production/loss of species i is dependent
on the mole fraction of species i. If that is not the case (which would be unusual) we have
employed the following equation.
_(a* S™ 4g° g™ )

outer — i,outer inner ~i,inner

—(a* S™ +a  S™ )

outer ~ p,outer inner ~ p,inner

X= (2.6.178)

This is always well posed.

For the case of the birth of a phase, we have found that the equations are extraordinarily
dependent on the initial guess of the mole fractions of the phases which are being born. In
general, there is only a narrow range of mole fractions over which the phase will first be stable
and thus exhibit a positive value of ST7 . Also on the first step it must be the case that for
species ie pthen

Sirjc:—l}ter > O (26179)
This must be the case for there to be a solution to the equations such that X" >=0 for all
speciesie p. This is also a desirable condition for a predicted solution of the equation system for
phases which are being born, and a necessary condition if bounds on the mole fractions are to be
imposed within the nonlinear solver when relaxing the equation system, a practical necessity.

It turns out that this condition exactly dovetails with the solution of the phase pop problem used
in the equilibrium solver. The condition for the existence of a phase pop is qualitatively
equivalent to the existence of mole fractions such that Eqn. (2.6.179) holds for a particular set of
mole fractions. The mole fractions found by the phase pop calculation minimize a functional
describing the Gibbs free energy change from the formation of the phase given a certain
composition of the phase from the component basis species of the mixture. While the
equilibrium phase pop problem doesn’t take the reaction rate constants into consideration, it can
be shown that the condition Eqn. (2.6.179) is satisfied in practice, as long as modes of the
reaction mechanism aren’t kinetically frozen.

Therefore, we may obtain a good initial guess if we seed the calculation with predicted mole
fractions from the equilibrium solver. This involves adding a predictor step to the solution of the
equation set.
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A key issue for the successful solution of the equation set is the use of numerical damping. We
always bound the values of the mole fractions such that the solution never lets them get outside
the 0 and 1. Additionally, for phases that are predicted to be birthed during a particular time step,
we bound their values to a value greater than zero. We have found this helps the initial solution.
Mole numbers corresponding to other phases which are not popping, n;“, are not bounded; their
values may go to less than zero. They are allowed to die according to the algorithm described by
Eqgns. (2.6.175) and (2.6.176), which requires that n;“ go less than zero in order for the equation
set to converge. Note, however, that the mole fractions for dying phases are still bounded even
during the backwards Euler step during which they die.

For interfacial reactions involving phase transformations, the kinetics solver must be informed of
phases which don’t exist, in addition to their mole fractions. This is a key requirement for the
correct handling of heterogeneous reactions involving moving fronts. In other words, if a species
in a phase is a reactant to a heterogeneous reaction, and the phase moles for that reactant is zero,
then the heterogeneous reaction cannot proceed in a forward direction.

However, we have found that it’s essential that these flags associated with the existence of
phases within the kinetics solver are not changed during the nonlinear solution method. Thus, the
flags aren’t turned off for phases which are popping into existence nor are flags turned off for
phases which are dying according to the Eqgns. (2.6.175) and (2.6.176) algorithm during the
nonlinear solver. The general principle is that the scenario for phase births and deaths are set up
during the predictor stage. Then, during the corrector stage the scenario is not changed as the
nonlinear solver relaxes the equation set. If a converged solution to the scenario is not found, the
time step is halved and the procedure redone.

2.6.14 Diffusion Models based on Point Defect Thermodynamics models for solid
phases: Lattice Phases

We have used the following procedure to expand the mechanism for each plateau.

The diffusion mechanism presented in Section 2.6.11.2 lacks a physical basis that may be related
to quantities calculated from first principles. In this section, we solve this problem for at least
one example, linking it to Cantera’s ability to model point defect thermodynamics models of
solid phases. The example that we will use is the first plateau on a LiSi anode for a thermal
battery. The overall reaction for this plateau is given as Eqn. (2.6.180).

. . 4 . .
1—31L|13S|4 = Li(ag)" +e; +ﬁ Li_Si, (2.6.180)

Li,Si,
At equilibrium the electrochemical potential of this reaction is zero. Therefore,

4 3
’uLi75i3 + Hiiqytey+ tH T H =F (q)m _(I)Iyte)

AG = 1_1 ey 11 LiysSiy
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The reactions are now separated into two reactions, which occur on separate surfaces just as we
did in in Section 2.6.11.2 . Now, however, we will identify a particular experimentally identified
diffusion mechanism associated the diffusion process in the Li;Sis.phase. Diffusion will be
assumed to be via an interstitial lattice sites. The main Li;Sis lattice will be assumed to be fully
populated. Therefore, the Li;Si; phase will consist of two interrelated linked lattices. Cantera has
the capability to model these types of solids with its LatticePhase object. On the inner surface
the Liy3Si4 species is transformed into a Li;Si3 species. The latter species is less lithiated than the
former species. Therefore, in addition to the Li;Sis species that’s formed, a concentration of
interstitials is postulated to be injected into the interstitial lattice of the Li;Siz. We make the
assumption that there is one interstitial site for every matrix site within each solid phase. The
following equation sums up the inner reaction.

3 i, Si, == Li(i_Li.Si.) +22 V(i Li.Si.)}+ 2 Li i

11 13904 &— ol 11 e ] 11 773 (2.6.181)
We assume that the interstitials occupy a different lattice than the Li;Sis, formally. This
interstitial lattice consists of two species, Li(i_Li-Sisz) and V(i_Li;Si3z) where V is the vacancy.
In order to have a mole fraction for Li(i), which is essential for the thermodynamic consistency
of the two surface reaction scheme, there needs to be two species on a lattice. The external
complimentary reaction turns into the following form, Rxn. (2.6.182).

Li(i_Li,Si,) ==V(i_Li,Si,) + e;75i3 + Li(aq) (2.6.182)
The lithium interstitial goes into the electrolyte solution leaving behind an electron and an
interstitial vacancy. We have assumed that the electron transfer occurs at the electrolyte/solid

interface. If you add up the two reactions, Rxn. (2.6.181) and Rxn. (2.6.182), you end up with
something different than the original reaction, Rxn. (2.6.180).

3 . . ) 4 . . s
—Li,.Si,—Li(ag)" +e;. . +— LiSi.+4V (i Li,Si
11 13904 &— ( q) Li,Sig 11 7913 (_ 7 3) (2.6.183)

This difference means that we have potentially changed the Gibbs free energy of the electrode
reaction by this process. What we’ve done however does have physical significance. What we’ve
done by adding in an interstitial lattice into the phase is to make the Gibbs free energy of the
phase dependent on the Lithium element potential. We’ve changed the mole fraction of
interstitial Li in the Li;Si3 by creating more Li;Siz while ejecting a full Li(i) into the electrolyte.
Rxn. (2.6.183) reflects this change in the interstitial lattice concentration and represents real
phenomena that occur for non-stoichiometric solids. Experimentally, this effect actually shows
up on experimental open circuit plots at the end of the plateau.

What this means however is that the open circuit potential for Rxn. (2.6.183) may be different
than Rxn. (2.6.181) if the chemical potential of the vacancy isn’t zero. The formula for the
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chemical potential of the vacancy is given below, assuming ideal solution behavior on the lattice
site.

#,(T)= 14 (T)+RTIn(X, )= £ (T)+RTIn( X)) (2.6.184)

Manipulation of the chemical potential of Li(i_Li7Si3) can make the value of X, as small as
possible. And, then one can as a rule set the value of £ (T) to zero. However, the mixing term
is formally non-zero, and will vary as a function of the conditions and Lithium element potential.
Therefore, we’ve opted to set £ (T) to a value which sets 44, (T ) to zero at one temperature and
lithium element potential, and let variations in the previous calculations propagate from that
condition, hoping changes will be small in nature.

This example has shown that in principle quantities that can be calculated from DFT calculations
of defect thermodynamics of solids can be used directly within the Electrode object.

2.6.15 Electrode model with Distributed Treatment of Diffusion

We’ve started models using the electrode object with a grid in the radial direction for both single
phases and for multiple regions. First we start out with the equations for transport of species
within the solid phase that account for lattice motion and nonideality of the solid phase. We
apply this on a mesh that may be moving as the particle expands and contracts. Essentially this is
the treatment that modern implementations of the Newman equation are built on. Notable
contributions in this field include Newman, White and Kee. Ralph White had a notable
contribution (Zhang and White 2007) within the field where he has tried out various methods for
solving the electrode problem.

The initial conservation equation is Eqn. (2.6.185) for neutral molecule transport within an
electrode. Note, we have already made the assumption that transport is via neutral molecules.
However, this has been relaxed for example by (Colclasure, Smith et al. 2011) when developing
models for the SEI layer. In those models, it is not assumed that electroneutrality holds, and
therefore a complimentary Gauss’ law equation for the electrical potential with the formation of
surface space charge layers must be assumed.

aC. . .
Sva(0C )= (1) where , =-D 5 (C7X, %) (2.6.185)

J, ; is the molar flux of species i. C° is the standard concentration of the phase sites in the
current phase. X, isthe mole fraction of species i on the phase sites, while y; is the activity
coefficient of species i. Eqn. (2.6.185) may be enhanced to support more than one distributed
phase. For example this is often done within solid phase systems to describe diffusion through
multiple different types of lattices (Swalin 1972) that may be used to describe the
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thermodynamics of a solid, as well as the addition of interstitial species that may exist on
interstitial phases that may be used to describe diffusion processes.

In this equation v, is the material motion of the solid. As the material swells and contracts this
motion will be nonzero. There have been several treatments of Lagrangian motion of a solid
structure within porous flow frameworks within Sandia (Cairncross, Schunk et al. 1996; Schunk,
Sackinger et al. 1998; Schunk 1999; Roach and Schunk 2000; Schunk 2000). These are very
instructive to look at. However, none is exactly analogous to the current. This is not necessarily
a deformation under an elastic strain. Instead the motion within Eqn. (2.6.185) is a modification
to the reference state of the strain-free state, i.e., the reference state before deformation
mechanics is applied, due to chemical reactions and solid state diffusion. Note, deformation
mechanics as defined within these publications would then be applied on top of the reference
state.

The reference state within solids may be clearly identified with an observable quantity. It’s
associated with the lattice of solids as the lattice gets contorted by swelling phenomena. Note,
the lattices are not conserved necessarily within our system as reactions may cause damage to the
lattice or we may be interested in growth of interfacial layers which are created by lattice-
building reactions involving the electrolyte and interstitial compounds within the electrode
(Colclasure, Smith et al. 2011).

The mesh may also move independently of the reference state; this is needed when additional
lattice site are created at interfaces. The concentration variables are then calculated on a moving
frame of reference that requires the addition of a substantial derivative to the equations. The final
result is Egn. (2.6.186).

aﬁ_(vs Ve, )+V+ (v C ):i%(rzjm) (2.6.186)

ot r2

Boundaries between the domains are handled with interfacial kinetics objects. The boundary
conditions for moving meshes at interfaces are given by the following equations for the mesh
motion (i.e., the distinguishing condition) and the species conservation equation.

N
nev,C'* =) s* (2.6.187)

i=1
neJ, =S“-n.v.C, (2.6.189)

This methodology has been used previously to model the growth of Cu,S, a corrosion production
of Cu and H,S (Moffat, Sun et al. 2008). This capability is currently under construction.
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2.6.16 Initial DAE problem

The battery code has been shown to be problematic in starting up especially when constant
current boundary conditions are specified. One issue is that, as currently constructed without
inductance terms, the voltage unknowns are algebraic constraints on the system. The equation
may be categorized formally as a nilpotency 1 index DAE system (Brenan, Campbell et al.
1989). As such the equation system cannot formally be solved unless consistent initial conditions
for the algebraic constraints are imposed at the initial time. And then, on top of this condition is
the specification of other parts of the initial condition that must in turn be consistent with the
DAE constraints on the system. This latter part is usually identified with the solution of a start-up
nonlinear system where parts of the initial time derivative of the solution vector is solved for. We
have implemented this alternative non-linear system within the battery code and describe the
equations here.

We can divide the unknowns into those that have time derivatives, y, and those that don’t, y,.
Functions referring to these are f for the y, unknownsand g for the y, unknowns. This
functional relationship is described in Eqgn. (2.6.189).

o=f| My y y:{yl} (2.6.189)
dt Y,

d
e

In Eqgn. (2.6.189), we note that the y, variables don’t have explicit time derivatives.

It’s well known that consistent initial conditions are the key to starting DAE problems. This
spawns the necessity to solve an additional problem, Eqn. (2.6.190), where the equation
unknowns, y°*¢, have been slightly altered to the following form.

; dy,
0=f DAE [% ’ ( ylconstant)’ Y, ] yDAE =J dt (26190)

0= gDAE [ddig , ( ylconstant ), Y, ]

The solution vector is now a combination of time derivatives, the y, equation and the original
y, unknowns.

The reformulation from Eqn. (2.6.189) to Eqgn. (2.6.190) has significant effects that are not
noticed at first hand. For one, the jacobian of the matrix problem no longer becomes singular as
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the time step goes to zero. It can be shown that the jacobian of the Newton’s method problem
that stems from Eqgn. (2.6.189) becomes singular as Vt — 0, even if the nilpotency index of the
DAE problem is equal to 1, a very mild problem. Things get much worse if the nilpotency index
is greater than 1, such as in the Navier-Stokes equations where the index is 2.

This DAE solution capability may be used whenever there is a step-jump in a constant current
boundary condition. This type of boundary condition is frequently used as part of a pulse-testing
regimen for a battery. It can be shown that he battery can have multiple solutions with different
voltage fields depending on the value of the current boundary condition. Eqgn. (2.6.190) is
exactly the equation system that determines the solution to this problem.

Numerical experiments have shown, though, that the issues with start-up are not solved with a
proper solution of the DAE initial problem. Instead, they are more rooted in the initial selection
of the boundary conditions and how that selection affects the eigenvector spectrum away for the
actual solution of the problem. When constant current boundary conditions are used as part of the
initial problem, a mode where the voltage field immediately start to diverge often results. The
causes the nonlinear solution of the initial time step to fail. This mode may be entirely avoided if
the constant voltage boundary conditions are used instead, even if the eventual solution to the
nonlinear system is the same.

2.6.17 Root finder used within the 1D code

Currently, the code can stall trying to find a constant current solution when there are no local
electrons to grab at the local current conditions. This is because the source term, let alone the
jacobian, is not guaranteed to be even continuous at points where the phases are born or are
killed off.

The solution to this problem is to wrap the problem in a root finder algorithm based on constant
voltage boundary conditions. The root finder then can vary the voltage to find or at least bracket
the voltage that yields the desired current. A root finder algorithm doesn’t actually require C1
continuity, nor even CO continuity if certain requirements on convergence behavior are net, in its
function evaluation.

In addition to a root finder combined with the constant voltage B.C., additional algorithm
changes are needed for cases where phase deaths and births occur in order to make the function
algorithm Lipschitz continuous, over the combined time period of the calculation, a necessary
condition for the formal convergence of a time stepping algorithm (Sili 2010). One additional
condition is that the time at which the phase deaths occur are calculated as part of the solution
procedure. These equations have been explained previously. This circumvents the problems with
Lipschitz continuity, because the finite number of points where Lipschitz continuity breaks down
occur at the boundaries of the time intervals over which integrations are taking place.
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The other additional condition is that an understanding of the overall function’s dependence on
the independent variable must be supplied to the root finder. For the problem class at hand, the
current is always a monotonically changing function of the voltage; the direction of the
functional dependence with respect to the independent variable can therefore be supplied to the
root finder.

2.6.18 Numerics of Linkage between the 1D electrode Code and the Electrode object

To formulate the equation system we apply a control volume scheme around cell i, and employ a
control volume discretization scheme in the time domain as well, to formulate a conservative
scheme. Eqn. (2.6.161) results. V, ., is the volume of cell i at time n+1. A _ ., is the surface area
of the left boundary of cell i at time n+1.

[ cox), (v cox,),
La—t, (2.6.191)

e I:ALCT Xk (V +Vk):|+ N ® ['A\RCT Xk (V +Vk):| = (Vi Wk)n+l

In Eqn.(2.6.191), (W, ) . is the source term for species k evaluated at the conditions pertinent to
t <t<t . The source term is evaluated at the conditions of the external variables, i.e., at

t =t,,,. But, also represents an integration from conditions at t =t, to t =t_,, within the internal
state of the electrode object. This may involve abrupt transitions in the electrode structure, or it
may involve non-uniform source terms with respect to time within the t =t  to t =t period
due to changes in the internal morphology or internal state of the electrode. Keeping track of
these changes requires us to use a formulation where we integrate the internal state of the
electrode from t =t to t =t ,, and use that within Eqn. (2.6.161). This concept is expressed by
Eqgn. (2.6.192) and(2.6.193), which is a formal representation of the subgrid integration process
within the Electrode model.

tn+1

7. = jfj (A°().2,t) dt (2.6.192)

jn+el “jn

z

tn
The source term for the numerical model has the following form

tn+1

[ w (A" (1), 2, t)t

W (AR Zprt) = 2 (2.6.193)

+11 S+l

Eqgn. (2.6.193) indicates that we must evaluate an integral in time over a time step to evaluate
the source term for applications which use the electrode object. This integration will be tricky,
and involve the handling of special cases involving the formation and deletion of phases and
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regions of phases, as electrodes go through material transformations. However, we will not deal
with the details of electrode models here. But, instead focus on the numerical aspects of error
control.

The electrode model represents an integration of a set of time dependent equations,
Eqn.(2.6.192), for state variables, z;, that have a time history, but are not formally part of the
solution vector. The integration in Eqn. (2.6.192) is subject to a set of external fields, A%, that
influence the state variables that are part of the solution vector. Initial treatments of the time
dependence of A" have used a constant value of A% equal to the external field value att, ,, ,
which is the minimum necessary because these are stiff terms. However, strong reasons for
going to a linearly interpolated value of A® within the global time step have arisen. Eqn.
(2.6.192) may be carried out in one or more steps as the need arises for breaking the step up due
to phase or morphology changes, for relaxing the nonlinear system in Eqgn. (2.6.192) to aid in
convergence, or for integrating the equations in Eqgn. (2.6.192) with sufficient precision to
resolve the time dependence of a;toa sufficient degree. The last point will be elaborated upon
extensively below.

Once we have the independent variables for the electrode calculation determined, Eqn. (2.6.162)
is used to calculate the source term, w, ., (Afﬂ, zn+1,t)for the global field variables at the
continuum level to be used in Eqn. (2.6.161). w, ., is the source term at time t, ,, according to
the backwards Euler approximation of the time derivative used in Eqgn. (2.6.161). However, from
Eqn. (2.6.162), it represents an integrated quantity over the interval t, to t_,, thatis fully
consistent with the change in the state variables, z, over that same interval. Generally, we
require C° continuity for z over the global interval. We also require piecewise C* continuity for
z over each subintegration interval within the global step. This means that wherever a break in
the slope of z occurs within the subinterval, we must end an integration step at that time. In turn
this requirement means that the integration interval will have to be part of the solution
unknowns. We require C* continuity for AE within the global integration interval. Step jumps in
the value and derivative of A" are allowed at global integration boundaries, though they have
been shown to be linked to problems with local integration startups. The fact that we do not
expect C* continuity for the solution unknowns within the global integration means that normal
canned software such as sundials cannot solve this system of equations.

We do not achieve any extra level of formal time-step accuracy from this splitting treatment,
because we still use a constant or linearly varying value of A ,,throughout the t to t_,,
integration and we are still essentially using the backwards Euler method to integrate the
equations. There are several advantages nonetheless. First, we achieve a level of separation
between the models for the electrode and the 1D models for the cell. Z doesn’t have to be
included in the source term vector for the 1D model. The number of unknowns within z may
vary as well from treatment to treatment. We can handle abrupt changes in the electrode structure
such as the disappearance of a phase easily within the integration step, by breaking the
integration steps up at boundaries where z is discontinuous. Eqn. (2.6.162) leads us to
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understand how embedded implicit coupling schemes should be handled in a general way,
especially considering when the subgrid model gets to be very expensive.

In order to handle the implicit coupling within the 1D code, a jacobian must be formulated
consisting of the variation of w, ., (A, z,t) with respect to variables in the 1D code which are
the external field variables with the subgrid electrode model, A", . This is achieved by
integrating Eqgn. (2.6.162) repeatedly with respect to deltas of each of the A’ variables. Ideally,
the fact that there are often nonlinear convergence issues with calculating Eqn. (2.6.192) and that
there are phase births and deaths that require time steps to be calculated on the fly means that a
policy of applying a uniform time step history to Eqn. (2.6.192) during the formulation of the
numerical jacobian cannot be implemented at all times. However, this policy does have appeal
for its ability to reduce the noise in the calculation of the jacobian, and its implementation in
some form is being considered.

In order to understand the time step truncation errors, predicted vs. corrected values of the Af,,
variables are calculated. This means that the time step error in these variables are controlled. The
time step errors in the « variables are not under global time step error control. These issues are
addressed below in the future by establishing a subcycling strategy that seeks to control the time
step error within the Eqn. (2.6.162) integration step.

In that context let’s develop several principles. Let’s provide formulas for the error conditions in
several of the formulas

Let e> ., represent the global error in the computed value of the electrode state variables at t, .,

from the integration of Eqn.(2.6.192). Specifically this is equal to

e

zG,n+1 :sz,n+l —Z (t = tn+1) L (2.6.194)

Here, 2pis the analytical “true” solution of the equation system evaluated at t ,,, and z, . isthe

j.n+l

computed solution of the equation system after applying the subintegration process. In Eqgn.
(2.6.194) we also use the infinity norm in order to ensure equal control of all solution
components.

The error in the efnﬂ for a backwards-Euler predictor-corrector first order process is given by
Eqn. (2.6.195), where £ is a coefficient that depends on the solution behavior.

e = B(At) (2.6.195)

At each step of the subintegration process, it is common policy to control the local error per unit
step to be below a given tolerance, €.

le, <&(t,.—t,)
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Sometimes another more restrictive formula is used, originally championed by Gear.
le, <max(e(t,,—t,).&) (2.6.196)

It can be shown (Suli and Myers) that the truncation error, T, for the backwards Euler method is
given by

T =
n+l At

Therefore T, ,, is the error one would get if the exact solution were plugged into the
discretization equation. Applying Taylor’s theorem, it follows that there exists an & e (tn’tn+1
such that

T = %Atnilf”(in ) (2.6.197)

#ois the second time derivative of the state variables, or the first time derivative of f (tM, Z) :
Then, it can be shown (S"uli 2010) that the local error induced by the local step is equal to

le,., =le, +(t,.—t,)(f (t.. %)~ T (.2,)) NT,.. (2.6.198)

We may assume that the function is Lipschitz continuous when there are not phase changes
taking place. Note, when there are phase changes taking place the function is not Lipschitz
continuous, and therefore, most ODE software algorithms for convergence will fail their
requirements. Thus, for a given finite region in time and state space, and if there is an L such that

‘f(tn,y)—f(tn,z )‘SL|y—z| (2.6.199)
(this is the Lipschitz continuity requirement), then,

le,, <(1+hL)le, +hT,, (2.6.200)

By induction, we may now calculate an estimate for the global time step error, assuming that
there is a maximum truncation error T and all of the time steps are of the same size (I believe the
analysis doesn’t change if this is relaxed).

e®. <

n+l —

((+hL) —1)+ (LehL) e

(2.6.201)
(eL(tEﬂtnG) —l) eL(tnG+rtnG)&G
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We may define the bound on T as

T

n+l = EAtL
2

n+1

1 57
M, where M, :§AtnL+1maX§€(tG,te )(z (5))

n n+l

So that the global bound is

er?ﬂ < M.,h eL(tnGﬂ—t,?) 1 eL(tfﬂ—tnG)
2L

et (2.6.202)

n

Eqn. (2.6.202) asserts that the error in the integration can be reduced if the time step values are
reduced and that the reduction occurs in a linearly dependent rate with respect to the time step
size. This is the expected result for the Backwards Euler method.

At each step we create an estimate for the local truncation error from the predicted versus the
corrected value of the state variables, z, (tn+1 . We then assign it the value of Eqn. (2.6.196) in
the following nondimensional form, Eqgn. (2.6.203). Eqn. (2.6.203) becomes the local time step
control function for the subgrid integrator within the electrode.

Sl)rrln) | ()
max(rtol, *|z; (tn+1) ,atolj)‘ (tr?+l_tr(13)

rtol; and atol, are the relative and absolute tolerances on the electrode state variables. In
general rtol;is going to be about the same order of magnitude as the global relative tolerance
control for the global state variables. In general z, (tnj variables refer to moles of species
within a single electrode. atol, should be set for these species to be equal to no less than 10
(and probably a couple of orders of magnitude greater) multiplied by the number of total moles
of species in each electrode. Anything less leads to round off error issues, especially when phase
death and birth issues enter into the mix.

max

,0.01) (2.6.203)

i

-13

Eqn. (2.6.202) states that the error in the calculation of the state variables is proportional to the
average error of the calculation of the predictor-corrector errors in each of the subgrid iterations.
This principle will be applied to the numerical analysis routines. For example, if we require 4
digits of accuracy in the calculation of the state variables in going from t_ to t ,, then we will
require that each subgrid integration step have four digits of accuracy according to the predictor-
corrector algorithm.

Eqn. (2.6.203) states that we will require more accuracy for each intermediate step, when the
intermediate step gets smaller in relation to the global step. This is an inevitable result because
the errors for each intermediate step are additive at least when formulating a bounds on the error
for the global step. Egn. (2.6.203) also indicates that we cap the correction factor at a factor of
0.01; this is an empirical result. At the point where 100 local steps are taken for each global step,
the model for the subgrid iterations starts taking on a life of its own. The fact that the time step
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error for each time step is proportional to At> means that algorithm behind Eqn. (2.6.203) is
permissible at least theoretically.

Solution of the nonlinear equation system for each local subgrid time step requires proper
control. The accuracy of this operation is usually linked to the accuracy required for the time-
discretization error, the theory being that it does not pay to solve the nonlinear problem to a
higher accuracy than the amount of time step truncation error inherent in the time
integration(Brenan, Campbell et al. 1989). We have learned that this isn’t necessarily the case
for some subgrid integrations, especially involving systems with nonideal thermodynamics with
species with large activity coefficients. In these systems, it has been beneficial to solve the
equation system to a higher degree of accuracy than the time step truncation error would
indicate.

In solving the nonlinear system, we use Cantera’s nonlinear solver. It has the capability to
require convergence of both the solution variables and the residual equation to a given level of
accuracy. We specify convergence requirements for both of these categories. The solution
variables are controlled with the same atol rtol requirements as specified in Eqn. (2.6.203).
Residual weights are controlled in two ways. Residual equations may have different scales
associated with them. Seldom are they actually scaled such that terms of comparable magnitude
have order one. Cantera addresses this issue by calculating a row weight scaled value for each
residual row by the following formula, Eqn. (2.6.204).

rowWtscls[i] =" [J; ;| wt, (2.6.204)
i

wt, is the value of the error weight for the jth solution component. Our first requirement is that
the residual not be larger than its rowWtScls value.

res(j)

— 7 1<10 (2.6.205)
rowWtScls j

j

The idea is that the each component of the solution when bounded by its minimum value for
variance when multiplied by the jacobian entry, a linearization of the residual, provides a proper
scale for the residual. This usually works for a range of problems. However, for some problems
involving species with large activity coefficients, Eqn. (2.6.205) turned out not to be stringent
enough. In those cases, we employed

residScls[i] = min(rowWtScls[i], residAtol, +(residRtol ) rowWtScls[i]) (2.6.206)

residRtol and residAtol, are specified uniquely for each electrode object. We suspect that the
error weighting requirements for the species mole fractions for cases with high activity
coefficients was insufficient due to the high nonlinearities that created a need to specify the
mole fractions to a high level of accuracy in order to reduce the residual to an acceptable value in
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these cases. In other words, in order to solve the residual to three digits of accuracy, it was
necessary to solve the mole fractions to six digits of accuracy, when dealing with nonideal
phases.

The equation system may be interpreted by zeroing in on what it takes to converge the global
equation step.

Now, let’s start with Eqn. (2.6.207) and describe what it takes to converge this equation and what
requirements that may entail on the subgrid iteration.

(Vi CT¢Xk )n+1 - (Vi CT¢Xk )n
tn+l _tn (26207)

Ty e I:A1LCTXk (V+Vk):|+niR y [ARCTXk (V+Vk):| :(Vi Wk)

R() =

n+l

The residual in Eqgn. (2.6.207) is considered converged if it is small compared to the residual
weight for that row of the matrix problem. The residual weights, wt[, are calculated via the
following procedure

For Cantera’s nonlinear solver, we define the residual weights as being equal to the residual that
will be created when solution delta’s marginally satisfy the tolerance requirements used in a
linearized newton’s method, when the absolute value of the jacobian entries are used, Eqn.
(2.6.208).

wtf :cRi\Jij\(wtjx) (2.6.208)
j=1

Then, we can be reasonably assured that the residual norm and the solution norm will roughly
approach the value of one together as convergence is achieved, if there is not a significant
amount of ill-conditioning in the matrix problem. If there is ill-conditioning the solution norm
may be significantly larger than the residual norm when the stopping criteria is triggered. We
scale the residual weighting factors by an additional factor, C¥, less than one, to reflect the ill-
conditioning in the jacobian and partially mitigate this issue (note it can’t and shouldn’t be fully
mitigated). C* is determined by a procedure that makes the solution norm and the residual norm
roughly convergent at the same time.

We will assume that the residual weighting factor is roughly equivalent to the largest component
of the residual vector (treated as a summation) multiplied by the relative tolerance of the solution
error norm. Then, in order to relax and solve the nonlinear global system at t,,, , the calculation
of the residual (and actually each term in the residual will have to be noise free at least up to
levels that are on the order of the value of wt®. Normally, this is not a problem for terms as their
calculation is considered to be noise-free. However, with source terms that come from a
subintegration step, the possibility of noise in the calculation of the subgrid terms must be
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considered. The noise in the calculation of the integrated quantity must be less than the number
of digits requested in the residual evaluation as a prerequisite. Moreover, the same is true for the
calculation of the jacobian. Requirements on the stability of the jacobian calculation may be the
more stringent and therefore the more important determining factor for success in solving the
global system.

Eqgn. (2.6.209) contains a rough breakdown of the calculation of the jacobian entries from the
source term in Egn. (2.6.207) calculated by the subgrid Electrode object that will be used in the
1D level.

d_S
dc

_ds

ds
= +
dc

+ noise(d—s) (2.6.209)
dc

calc real constE

The first term is the actual jacobian entry if the time integration within the subgrid Electrode
object is carried out in a time accurate manner such that there are no errors in the calculation of
the numerical jacobian due to time integration within the subgrid iteration. Of course, this not
really warranted or desired in practice, but it remains approachable in fact and represents an
interesting limit in terms of analysis. The second term represents the deterministic error in the
calculation of the jacobian source terms due to an inaccurate time stepping algorithm in the
subgrid iteration. For example if the calculation of the subgrid iteration used the same time step
history during the numerical differencing of the jacobian entry, then the behavior of the time-step
truncation error tolerances within the jacobian may be deterministic and not problematic in terms
of creating random noise in the calculation of the jacobian entry. They may also be compatible
with the calculation of the residual. In other words, the jacobian may be wrong, but it may not
change from iteration to iteration and it would be compatible with the residual leaving the ability
to attain a solution, albeit an inaccurate solution, intact. Then, methods may be employed to
measure the deterministic component dS/dc|ConstE , manage it, and then control its magnitude.

The last term in Eqn. (2.6.209) represents a “nondeterministic” noise component to the
calculation of the jacobian entry. Here nondeterministic is meant rather loosely to mean a
variable component of error that is due to unaccounted-for variations in the subgrid integration
due to nonlinear solver errors, differences in time stepping within the jacobian calculation,
hysteresis involving phase death and births within the subgrid iteration, and other issues. The
nondeterministic component doesn’t have an analog outside of subgrid integration problems; it’s
new. One analog, though, are problems with assuming pseudo-steady state calculations with
additional degrees of freedom on surfaces (i.e., MPSalsa’s implementation (Shadid, Salinger et
al. 1998)), which is used as part of the function calculations. In that case it was heuristically
determined that the pseudo steady state equation had to be solved to a greater degree of accuracy
to create stable function evaluations.

The requirement is stated in Egn. (2.6.210).
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noise((;ll—s)wtc’< < Wt (2.6.210)
c

Eqgn. (2.6.210) is a requirement on the last part of the convergence process. It states that the noise
in the calculation of the jacobian multiplied by the permissible variation in the solution variable
that is allowed under convergence conditions must be less that the permissible change in the
residual, which is given by the residual weight. If Eqn. (2.6.210) is not satisfied the global
solution process doesn’t converge.

But it must also be the case that

noise(d—s)<rtol a5 +atol @ (2.6.211)
dc dc dc

In Egn. (2.6.211), we are saying that the noise in the calculation of the Jacobian must be a factor
of rtol less than the main jacobian entries that determine the actual value of the global variable C.
rtol here is the requested number of digits of accuracy in the variable C and is usually a prime
determiner in the value of wt . In particular if you make rtol lower, i.e. requesting that there be
more accuracy in the calculation of the solution variables, you will make Eqn. (2.6.210) a less
stringent requirement, because the variation of the residual about the marginal convergence
requirements of the residual is less. However, you’ll be making Eqn. (2.6.211) a more stringent
requirement in the sense that the noise in the calculation of the solution variables will be larger
now than the tolerance requirements allow.

Eqgn. (2.6.211) essentially says that we need a certain number of digits of accuracy in the
jacobian entries for the nonlinear global system to converge. What does this require for the
solution of the integrated source term? Usually, numerical derivatives are taken using deltas in
solution variables that are on the order of 10°°. However, in this instance this type of delta is
unsustainable, because it is too small to rise above the time step discretization error. Instead a
large enough delta that can be gotten away with must be used. The largest numerical delta
values that are permissible are related to the size of the error weighting vector. In other words,
we only solve the system up to a granularity equal to the error weight vector, so using that
granularity in picking a numerical delta is permissible. So, setting numerical relative deltas at
values of 10~%are relevant. However, this still means that the source term must be calculated to a
relative value of 107° in order for the jacobian entry to be known to three significant digits.

The goal of 10™° may be achieved in a couple of ways. The first is to ensure that the absolute
error is restricted to errors of 107°. What this essentially means is setting rtol; to 107 in Eqgn.
(2.6.203). This is a very restrictive, but not impossible goal for the integration accuracy of the
subgrid method. The alternative is to forego thinking about driving the time step discretization
accuracy below 107°. Instead, the idea would be to ensure that the time step discretization error
is relegated to the dS/dc|ConstE term in Eqn. (2.6.209). No effort is made to reduce this term, only
to make it consistent with the residual calculation and stable with respect to its calculation. The
noise component is then isolated and reduced in magnitude.
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The chief strategy for accomplishing this is to pick a time stepping strategy for the base residual
evaluation of the source term in Eqn. (2.6.207). Then, when calculating the jacobian
contributions, the same time steps are taken. Therefore, the time step truncation error is the same
for all determinations used in the numerical jacobian, at least to an initial approximation. A key
issue are the time steps where phase changes occur. Their time values are parts of the solution
unknown. In that case, the strategy of identical time steps must slip to one in which only the
phase birth/death time steps have differing values. The other issue is that no qualitative changes
to the solution trajectories that the numerical delta calculations take that the base residual
evaluation doesn’t take as well. This is a serious issue and usually leads to global time step
truncation error faults or nonconvergence of the nonlinear global step. This occurs in practice
often. In order for the eventually, in order for the essential stability requirements of the method
are to be made, the system must be analyzed in terms of a coupled system where the subgrid
integration step has been relegated to that of the global time step itself. That’s the subject of the
next section.

Note, an alternative treatment where sensitivities are computed as part of the integration process,
an approach that’s included in sundials for example, wasn’t attempted in this approach.
However, it may have significant advantages and should be attempted in the future.

Conceptually the problem may be broken up into the solution of the global equation set and the
solution of a local equation set for the subgrid problem. The coupling is fully two-way and stiff
compared to the time-scale of physical scale, since the coupling involves Butler-Volmer
reactions which are typically close to being equilibrated. However, the coupling is down through
a source term, s. The global equations don’t explicitly depend on the unknowns from the local
equation, n}' . They depend on the local equations through a vector of source terms, s.

gl

dn' | |
d_tj (ng Y s(\/,nj’,nj))

0= (ng' V,s(v,n?,n! ))

U B

global problem (2.6.212)

dnl-l
—L=1 (n?.v.n}) .
dt local subgrid problem

s:s(n?',v,n'j')

Eqn. (2.6.212) conceptually describes the problem. One way to understand how to integrate the
coupled global and local problem is to consider how the problem would be formulated if the
equations were combined into a fully coupled system where all of the unknowns were part of the
global solution vector. In this case, presumably, then if the time stepping were handled via the
usual rtol, atol procedure then the equation system could be solved to a desired tolerance.

The local problem is already solved via an rtol, atol procedure and usually to a tighter tolerance
than the global tolerances by necessity. Therefore, when a solution is found for the global step,
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that solution has all of the convergence properties of a fully coupled solution, albeit at the global
delta time step level. No extra convergence properties are implied by taking tighter steps in the
local subgrid problem.

The equation system for the decoupled system appears even more like the coupled system in
Eqgn. (2.6.212) if the local problem is restricted to being a single step. In that case the problem
can almost entirely be recast as the solution of the global linear system via the creation of the
Schur compliment for the local problem (Golub and Van Loan 1989). Using this analogy, it
should be recognized as well that no terms in the jacobian for Eqn. (2.6.212) are actually
dropped when formulating the Schur compliment, and therefore, the combined problem remains
fully coupled even though they are solved in a decoupled process. Solving problems via a Schur
compliment process has a long and successful history, especially when doing continuation
methods such as arc length continuation.

However, when the local subgrid problem is relaxed to allow for multiple local time steps per
global time steps the system behavior may be altered dramatically. This point needs to be
emphasized. In fact, there is absolutely no proof for why the global jacobian determined by
procedure outlined in the previous section, must actually point to a descent direction when
multiplied by the current global residual, even if the jacobian is evaluated up to the desired level
of accuracy. This conjecture of course is dependent on the level of convergence, and on the norm
used in evaluating the global residual convergence process. For example, it’s typical for
convergence to occur during the initial part of the nonlinear solve. But, final convergence of the
process up to the desired tolerances may not occur because the global jacobian essentially points
in the wrong direction for just one electrode, and this issue doesn’t arise until all other modes in
the problem are sufficient converged that the remaining electrode cell’s residual contribution
stands out.

Therefore, given that these potential coupling problems are guaranteed to disappear when the
subgrid time step iterations disappear a coupling strategy has been proposed. The strategy is
based on evaluating whether the global jacobian is in fact a producer of a robust descent
direction for the global residual (see Dennis and Schnabel (J. E. Dennis and Schnabel 1996) for
practical ways to determine algorithms for this procedure). If it is not, then the global time step is
reduced until the global jacobian becomes a robust descent direction. Also, the global time step
strategy is also informed of the global jacobians being an adequate producer of a descent
direction. And, when it is not an adequate producer, then the global time step for the next time
step is reduced so that it always remains a good descent direction producer. Additional
constraints on the maximum permissible number of local steps per global steps have also been
proposed as a practical way to avoid convergence problems arising between the local to global
problem.

When the local problem is taking more than one local step per global step, a phenomena has been
observed related to the treatment of external variables during intermediate states of the local
problem. Currently, external variables are treated as fully implicitly, and undergo a step jump
during intermediate times. Essentially a relaxation process ensues related to the step jump in the
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global variables, which also includes the allowed delta time step values. The predictor-corrector
for the local problem reduces the time step at the beginning of the local problem because the
predictor-corrector algorithm fails. However, at the end of the time step the predictor-corrector
will increase the delta time because the algorithm suggests that the behavior is well represented.
The reason behind this is the step-jump in the external variables. We have proposed but not fully
implemented a fix for this behavior by implementing a linear interpolation for all external
variables that is implemented at intermediate times of the local subgrid time integration. Using
this approach relaxation phenomena over the intermediate time stepping shouldn’t occur.

2.6.19 CanTrilBat Progress

We have taken the freedom car battery electrodes and have derived thermodynamic formulations
for the anode and cathode compounds as a function of the degree of lithiation.

These have been parameterized using the Redlich-Kister model for nonideality in Cantera.
Original references for this work are from Karthikeyan et al. (Karthikeyan, Sikha et al. 2008),
Smith and Wang (Smith and Wang 2006) , and Gu and Wang (Gu and Wang 2000).

The usual method for modeling the interaction process is one based on empiricism. Essentially,
the open circuit potential is measured as a function of extent of reaction to calculate the chemical
potential of the incremental insertion process. This type of approach is used ubiquitously within
the battery modeling literature, either using a model like Redlich-Kister or even just using a
calibration curve as in the Battery Design Studio’s approach, to calibrate thermodynamics and
obtain accurate representations of the open circuit voltage as a function of the extent of reaction.
The fact that the intercalation curves are fit means that accurate representations of voltage vs.
extent of reaction curves can be produced by battery software. This is a plus. However, these
types of models with these fitting approaches then become unspecific to the chemistry
mechanism behind the chemical potential curves. Essentially they become a dead end, which
can’t inform the process of figuring out why the curves change in time or due to damage or
fatigue processes. Without specificity concerning site bonding, defect chemistry, and detailed
morphology configurations that are behind the curves, no progress can be made concerning these
issues beyond some degree of curve watching of these curves (as well as the entropy curve) as a
function of cycle number.

A better approach would be to create more advanced models for the intercalation process that
involves more specific site identification information. One interesting feature that we found
while constructing the model was the severe values of the activity coefficients used within the
freedom car models. In fact, some of the models used in Karthikeyan et al. (Karthikeyan, Sikha
et al. 2008) exhibited activity coefficient values that could not be represented with double
precision numbers only their logs could be represented. This type of numerical issue is
indicative of a species model that is not representative of a physical situation and one that is

175



forced to agree with the data. Typically, if additional species are introduced with appropriate
stoichiometries and standard states, the magnitudes of activity coefficients can be reduced
significantly. The magnitude and extent of activities are then an indicator of the appropriateness
of the speciation model. With that yardstick, it seems that the single species model used in the
current literature for intercalation fails substantially, and should be modified substantially to
include multiple species with site specific thermodynamics. For example, intercalation in
graphite usually occurs through specific planes in the graphite being filled in with a certain
periodicity depending on the amount of intercalation. This type of periodicity should be included
in more advanced speciation models.

Note, electrode models based on transfer functions solutions (both short time and long time
infinite solution formulations) have advantages in terms of understanding and accuracy (Doyle,
Fuller et al. 1993; Smith and Wang 2006) . However, they forego any ability to add complexity
to the chemistry or transport mechanism within the solid phase. Therefore, we have not pursued
these approaches.

We additionally have not included double layer capacitances in the model. These have been
shown to be important only at millisecond time scales [15] , and we have not built the
infrastructure for modeling the double layer within Cantera yet. Literature treatments of double
layer capacitances have focused on adding them with and without added film resistances due to
the diffusion layers (Doyle, Newman et al. 1996).

Our initial treatment has focused on putting the models into the Electrode_CSTR object and then
adding film resistances to that model.
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3 CONCLUSIONS AND ONGOING WORK

This report summarizes progress made under a Laboratory Directed Research and Development
project to model thermal abuse in Li-ion batteries. This project developed several notable
capabilities. The simulation of electrode-electrolyte interfaces in the presence of an applied
voltage remains a major challenge; we have developed techniques that marry an electronic
density functional theory program to capture the atomistic energetics involved in chemical
reactions induced by the applied voltage with a fluids density functional theory program to
describe the bulk response of the electrolyte to the charges in the electrode and the inner
Helmholtz plane. In a Li-ion battery, reactions at this interface grow a passivating layer that
prevents thermal runaway. We have used solvated density functional theory calculations to
develop a chemical mechanism that we have used to drive a number of mesoscale simulation
techniques (continuous, KMC, and phase field) to understand the evolution of the microstructure
of this passivating layer. Finally, one needs to capture the effect of the passivating layer on the
overall battery cell performance, and we have developed techniques based on the Trilinos
scalable solver library and the Cantera chemical kinetics library to develop a continuum-level
description of the battery behavior as the passivating layer forms.

These elements lay the groundwork for predicting how different battery materials determine a

battery’s tendency to undergo thermal runaway, but more work is required to apply these tools to
understand the shortcomings of existing materials and to develop more stable ones.
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APPENDIX A: ELECTROSTATIC FREE ENERGY IN TRAMONTO

Here we document the calculation of the electrostatic free energy in our fluids-DFT code,
Tramonto, and how it is related to other expressions for the free energy in the literature. We also
show results of testing to make sure that the free energy is calculated correctly.

For an electrolyte near a single charged surface, the surface tension is given by

AL %m[p(z)] ~ Qo)

= Flp(z) jg:: pal’

where F is the Helmholtz free energy per unit area and I, is the adsorption of species o.. Here Q
is the grand free energy of the system, p(z) is the density of all species a distance z from the
surface, py is the bulk density, and 4, is the chemical potential of species ¢. The electrostatic
mean field term in F is given by Eq. (2.2.6), where ¢(r) is the electrostatic potential and p¢(r) is
the total charge density. Note that this charge density is the total charge density in all space,
which includes both mobile and fixed charges:

pe(r)=p' (r)+p"(r Eq P (T

where the q,, are the charges and p(r) are the densities of the mobile ions in the system. This
point is often not made clear in the f-DFT literature, but is crucial to getting the right free energy
in the PB limit as we will see below.

(A1)

A.1. A note about units

In SI units Poisson's equation is given by Eq. (2.2.2). In Tramonto, we use reduced variables ¢*
= e@/kT and x* = x/d, where d is the reference length, typically one of the atomic diameters. The
dimensionless form of Poisson's equation is then

‘7295 = - in jg::‘zalja

elec

where lengths are now in units of x*, p*, = p,d°, and the dimensionless temperature Tep. is given
by
T, =4nKTee,d/ €

In the Poisson-Boltzmann limit of point charges, the unit d does not have any physical meaning.
In Tramonto, for this case we setd = 1. In the literature, typically the Debye length k is used as
the unit of length, where

9 kTeeg Teiec
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Note that the d in the denominator is simply = 1 when solving Tramonto in the PB limit. One
other common measure of length is the Bjerrum length, given by

e2 d

= ArkTeey  Tepee
So the parameter Tejec behaves as the inverse Bjerrum length when d = 1.

Ip

A.2. Poisson-Boltzmann Limit

In this section, we show that in the Poisson-Boltzmann (PB) limit of a 1:1 electrolyte consisting
of point charges near a charged surface, the normal formulation of the electrostatic free energy in
the f-DFT as presented in Sec. 2.2.2.4 is the same as the electrostatic free energy derived
previously by a different route for a PB system. In particular, we consider an expression for the
electrostatic free energy of a PB system developed by Reiner and Radke (Reiner and Radke
1990) and Honig and Sharpe(Sharp and Honig 1990). They find that the surface excess grand
free energy is

QFr = / driws(r®) — /dr {?|V¢(r)\2 + (11 — HO)} (A2)
S

where the osmotic pressure term (17— IT) is actually just the total adsorption. The first term is

integrated over the boundaries. For the case of a surface with constant charge, this term reduces

to the surface charge times the potential at the surface. We rewrite Eq. (A.1) in dimensionless
units in the DFT manner to find

O = 06, — / dr {%\Wr)r? +3 (palr) - pa,w} (A3)

where o is the surface charge density, ¢s is the electrostatic potential on the surface, and p, is
the bulk density of species a. Now consider the DFT expression for the free energy of a PB
system. In this limit, where the ions are modeled as point charges, the grand free energy
functional consists of only the ideal gas (Eqg. (2.2.5)) and mean-field electrostatic terms (Eq.
(2.2.7)):

QUp(w)] =3 [ drpa(r) (npue) = 1)+ 5 [ drpee)otw) = 3 [ drprapa)

where we are assuming that the external field V' consists of a single hard charged wall and
therefore does not contribute to the last term above. We solve this equation by the usual method,
solving the coupled Euler-Lagrange equations and Poisson's equation. Note that formally,
Poisson's equation gives the potential ¢ in terms of the total charge density:

(A.4)
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Telec
When we have a boundary, we solve this equation using just the mobile charges, and the fixed
charges lead to the boundary condition. The boundary conditions for Poisson's equation in the

case of a single planar, hard charged wall located at x =0 are

do 4o 0
L — — T =
dx Telec ’

o

— 0, x—o0
dx

where o is the surface charge density.
We note that the chemical potential is simply 1, = In p,p since the electrostatic contribution to

the free energy vanishes in the bulk. From Egs. (A1) and (A4), the excess surface free energy is
then given by

Qo(r)] — Qo] = > / drpa(r) (Inpa(r) —1) = / dr1n pa,ppa(r) + %Uqﬁ(O)
+% Z / drgape(r)o(r) =V Zpa,b(ln Papb—1)+V Z I o bPab
> G [%(r) I 22®) )+ pwb} + 500(0)

Po,b

+53 [ drauairiom

where we have split p into its fixed and mobile parts. Now recall that we are in the PB limit, so
we know that the mobile charge density obeys

p;:? — expl-gad(r)]

Plugging this into the first term above and taking the log, we can rewrite the excess surface free
energy as

Olpte)] ~lp = =3 [ delpule) — poal = 5 3 [ deaupa(e)ote) + 5000 (49

We can now do some standard manipulations on the second term. From Sharp and Honig (Sharp
and Honig 1990), an expression of Gauss' law is

5 [ pewoiar =5 [0 @)+ o wotwdr = 7 [ Vo
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This comes from noting that we can replace the charge density with V¢ from Poisson's
equation and then integrating by parts over all space, so

T‘e ec Te ec
5 [ peestedr = -2 [ oo = 22 [ |vopar

So substituting in for p™ in Eq. (A.5) we obtain

QUp(w)] = Qo) = = 3 [ pa(r) = paa] + 5000) + 5000) — 2L [ 1Par

leading to

QUp(w)] - U] == 3 [ lpalr) = pas + 00(0) = 222 [ ax|vo(e)P

This is precisely the Sharp and Honig (or Reiner and Radke) expression for the total free energy
of the PB system, Eq. (A.3). We also note that Eq. (A.5) derived here is the same as the second
part of EQ. (24) in Sharp and Honig (Sharp and Honig 1990). Thus, the f-DFT reproduces the PB
model in the limit of point charges.

A.3. Tests of Electrostatics in Tramonto

4.1.1 A.3.1. Pressure from electrostatic terms

Recall from thermodynamics that the bulk pressure is -PV = €. In the bulk, p™ = E g0, =0

due to charge neutrality, and there are no surfaces since we're in the bulk. Thus, from Eq. (2.2.7)
we see that Fc = 0 in the bulk. So mean field electrostatics make no contribution to the pressure
or to the chemical potential from the mobile ions.

The correlation term Feorr in Eq. (2.2.8) likewise makes no contribution to the bulk pressure

when the ions have the same size. If the ions have different hard sphere diameters, then Feorr do€s
make a contribution to the bulk pressure. Substituting the bulk densities into P = -£,/V, we find

corr = 5 Z,Oa bPB,b / dI'ACa/B (I‘)

This contribution was added to Tramonto in the course of this project, along with the
generalizaton of the correlation terms.
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4.1.2 A.3.2. Sum rules

Below we show various results for a 1:1 electrolyte next to a surface with a fixed surface charge
density. We check three different sum rules (Henderson 1992). First, for a system between two
planar charged surfaces as a function of the distance L between the surfaces, the solvation force
sum rule states that the force between the plates f(L) is

=5 () - KT S e/ 1) = palde /2 1 = )

T,p
where yis the excess surface free energy from Eq. (A.1). Second, the adsorption sum rule states
ex _ O
a T aﬂa

where I',% is the excess adsorption of species c. Finally, we have the contact sum rule, which
states that the bulk pressure P is given by

for a system with a charged hard wall at x = 0, with surface charge o. In the dimensionless
Tramonto units, this becomes

2ro*?

BP = p:(0) - T

where p,(0) is the contact density, i.e. the density at the charged surface.

We now consider various simple test problems, and verify that they satisfy these sum rules. The
pressure sum rule is well obeyed by Tramonto in all cases tested, so below we only consider the
force and adsorption sum rules.

4.1.3 A.3.3. PB Limit

We first verify that Tramonto satisfies the sum rules in the PB limit, with just point charges.

414 A22.1. Problem 1: small surface charges

To test the force and adsorption sum rules requires us to solve the f-DFT equations many times
for different values of L and p,, respectively. To do this we use the continuation methods
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available in Tramonto, which can increment the problem size or any continuous variable
automatically. For the adsorption sum rule, Fig. A1 shows results using arc-length continuation,
going from p_.d* = 0.06 to p..d* = 0.066, with a surface charge density of 6* = 0.04. We setd =
2.8 A, T=298 K, and £ =78.5. We find excellent agreement with the sum rule for both positive
and negative species.

Adsorption sum rule, o = 0.04
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Figure Al. Test of adsorption sum rule in PB limit.

Next consider the solvation force. For the same conditions as in Fig. Al, with a mesh size of
0.02d, pid3 = 0.06, and o* = 0.04, we find perfect agreement for the two sides of the solvation
force sum rule, as shown in Fig. A2. Note the log scale on the y-axis. We find equally good
agreement for the same parameters but with d = 4.25 A, and also for densities of pid3 = 0.04 for
the two species and a reduced surface charge density of c* = 0.2.

415 A22.1. Problem 2: large surface charges

Now we consider a system with a much higher surface charge of 6* = 1.55, and with ion
densities of pid3 =0.0267657. We again get excellent agreement for the adsorption sum rule as
shown in Fig. A3, and for the solvation force, as shown in Fig. A4. We conclude that Tramonto
is accurately calculating density profiles and free energies in the PB limit.
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A.3.4. RPM model

Now we test the restricted primitive model (RPM), which consists of a 1:1 electrolyte in which
the ions have the same sign. The ions are immersed in a background dielectric, without explicit
solvent. We check the case where we use the White Bear functional given in Eq. (2.2.6), with ¢
*=0.04, p..d* = 0.06, mesh size of 0.02d, d = 4.25 A, T = 298 K, and & = 78.5. Calculations are
performed in the mean-field limit, i.e. we do not include the correlation term Fcor in Eq. (2.2.8).
Once again the solvation force sum rule is very well obeyed as shown in Fig. A5. The
adsorption sum rule is also well obeyed, as long as one takes a small enough step in g, so that the
free energy ydoesn't change too much and it's therefore possible to get a good estimate of the
derivative dy/du. We also tested the solvation force sum rule with neutral walls, 6*=0, and all
other parameters the same. This case, shown in Fig. A6, has a small minimum in the force; both
calculation methods give this minimum and again are in perfect agreement.

A.3.5. SPM model

Finally, to test the SPM model where ions have different sizes, we checked the adsorption sum
rule and the solvation force sum rule for the system studied by Oleksy and Hansen (Oleksy and
Hansen 2006), using parameters from their 2, a 0.1 M NaCl solution, and Fig. 6, a 1M CacCl,
solution. (density profiles for the 0.1 M NaCl solution as calculated by Tramonto are shown in
Fig. 2.2.2). Both the adsorption and solvation force sum rules were also well obeyed for these
two systems. We checked using just the mean-field electrostatics, and using the generalized
correlation term, and both gave good results. A final example of the excellent agreement is
shown in Fig. A7, which shows the force sum rule for the 1M CaCl2 solution, with a surface
charge density of -0.087. This is a stringent test of the theory because it includes divalent ions at
high concentration.
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Figure A2. Test of solvation force sum rule in PB limit; pid3 = 0.06 and o* = 0.04.

Figure A3. Test of adsorption sum rule in PB limit; p.d*® = 0.0267657 and c* = 1.55.
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Figure A4. Test of solvation force sum rule in PB limit; pid3 =0.0267657 and o* = 1.55.
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force

Figure A5. Test of solvation force sum rule for the RPM; pid3 = 0.06 and 6* = 0.04. The
derivative —(1/A)dy/dL is the blue curve and the sum of the contact densities
are the red squares.
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Figure A6. Test of solvation force sum rule for the RPM; pid3 =0.06 and 6* = 0.0. The
derivative —(1/A)dy/dL is the blue curve and the sum of the contact densities
are the red squares.

force

Figure A7. Test of solvation force sum rule for the SPM, for 1M CaCl, in water; ¢* = -
0.087. The derivative —(1/A)dy/dL is the blue curve and the sum of the
contact densities are the red squares.
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