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Finite Time Equations for High-Strain Rate Plasticity 
LA-U R 11-00567 

Len G. Margolin 
Los Alamos National Laboratory 

Los Alamos, NM 87545 
email: len@lanl.gov 

ABSTRACT 

The inelastic response of solids to strong loading is usually simulated with plasticity 
models that are solved by a method of radial return. Such implementations in which stress 
is integrated forward in time are termed hypoelastic. Radial return methods are simple to 
implement and computationally efficient. However, for problems with high strain-rates, these 
solutions may be very inaccurate and noisy, and further may not converge under increasing 
mesh resolution. Here we describe an alternate solution method based on multiple time scale 
(perturbation) theory that addresses these issues. 

First , we derive an analytic solut ion for the fast time scales (e .g., the computational 
time step) in a simple plasticity model. Replacing the radial return solution with this 
analytic formula produces an accurate and clean solution while preserving simplicity and 
computational efficiency. 

However, the hypoelastic framework itself implies restrictions on the accuracy and physi­
cal realizability of the solution. In our second result, we show how to generate the slow time 
solution to the equations. That is, we find a functional relationship between stress, strain 
and internal variables. This resulting hyper-elastic framework has further advantages over 
hypoelasticity both as regards the physical model and computational implementation. 
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Take Home Points 

• Numerical simulations of solid dynamics can involve many 
additional difficulties in comparison with fluids. 

Inelastic solid dynamics is an inherently multiscale problem. 

• There are better ways to solve standard models based on 
multiscale perturbation methods. 

• There are better formulations of the models - hyperelastic vs. 
hypoelastic. 
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Finite Volume Methods 

• are a popular and effective technique for CF(/S)D 

• solve for averaged quantities over length and time x 

1 It+6..t /2 1 x + 6..x/2 
O"jk Atfl O"jk(x' ,t')dx'dt' 

x t-6..t/2 x- 6.. x/2 

• Averaged variables of Navier-Stokes satisfy different 
equations because of nonlinearity of advection, etc. 

• We term these equations of finite scale 
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Hypoe/astic Equations 
Momentum 

Strain rate 

dUj _ Bajk 
P dt - BXk 

Ejk = ~ (BUj + _B_U_k) 
2 BXk BXj 

Constitutive (elastic plastic) 

dajk = F( ajk, Ejk' ai) 

\ 
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Accessible Regions of Stress Space 

Plastic boundary Oyy 

Oxx 

Elastic regian 
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N/SA --- -

Radial Return (Wilkins) 

initial state elastic test 

S'jk(t) 
:\lJ '" /--..-
&0 \ 

• 

Elastic region 

Ojk(t+dt) 
final plastic state 
lies on boundary 
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Implied Constitutive Law 

For perfect plasticity with constant yield stress Y 

dajk _ 2G (' . _ (amnEmn) . ) 
dt - EJk 2y2 aJk 

It can be shown that radial return is an explicit approximation to 
this equation 

a jk - a jk _ 2G ' . _ aZmEZm ar: + O(t1t) n+l n ( [ n' 1 ) 
t1t - EJk 2y2 Jk 
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NlSPi 

For a large strain increment, error 
approaches 100% in one step 
0.6~-------------------------------------------, 

stress increment = 2 Y 
...- oxact solution 

0.5 - --- radlal return 

1'0 -~ 0.4 -.c -
c 
1'0 -

03-

0.2 -+I----.----r--......--..-~-_r--.--_r_--.--"""""T-__._-_l 
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Number of subcycles to achieve 1% accuracy 
plotted against size of the stress increment. 

400 

>-
U 
nI ... 
::J 

300 u 
U 
nI 

'# .... 
t» 
> 200 .!! 
s: 
u co 
0 -en 100 a.. 
t» -en 

o I IjI""-

o 1 2 3 4 
stress Increment (normalized to yield) 
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Elastic vs. Plastic Stress Increments 
Are large elastic "test" increments possible - e.g., when is 

2G IIEjkllflt» 2Y 

The time step is limited by the CFL condition I u.flt < 1 

Now I IIEII ~ ~~ and in most solids I G ~ lDDY I 

So large increments are possible if I ~~ ~ ';x 
====}- in regions of steep gradients, e.g., near shocks! 

A 
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-' 

Multiple Time Scales 

All the previous discussion is designed to justify the existence 
I 

of two time scales, ~ and T ~ ~ tlt < < tlt 

So, to apply perturbation theory in the constitutive law 

dajk _ 2G ( ' . _ (amnEmn) . ) 
dt - EJk 2y2 aJk 

we will assume that Emn is constant over a time interval tlt . 

This leads to a very integrable ODE. 
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Short Time Scale Solution (1) 

Defining the scalar function W O"jkEjk (rate of work) 

dW = 2G (12 _ W2) 
dt 2y2 

which has solution 
y 2 d 

W = --[In F] 
G dt 

Here, F(t) A exp(at) + exp(-at) and 

1 = V(Ejk)2 

are all constants. 

NISlIt ----
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V21Y - Wo 
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Short Time Scale Solution (2) 

Then 
dO"jk . d 
-d-"--t = 2 G Ejk - O"jk -dt [lnF(t)] 

which has solution 

O"jk(t + ~t) = O"jk(t) [X(A
2 
+ 1)] + Ejk V2Y [(Ax

2 
- 1) - X(A - 1))] 

AX + 1 I AX2 + 1 

• Here, X = exp(a~t) 

• Note that a~t = V2 ~I ~t » 1 

~A!:!~~ NATIONAL 
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First Summary 

1. The perturbation solution is accurate on time scales of flt . 
In particular, it always stays exactly on the yield surface. 

2. The procedure can be generalized to more complicated yield 
surfaces. 

3. The method has been implemented and tested in large scale 
codes. 

4. it is stable, convergent and more accurate as well as 
computationally efficient. 

But, one can do more ... we can find the slow time solution 
accurate over total problem time. 

A Alamos 14 • Los L LABORATORY NATIONA 



Slow Time Scale Solution (1) 

In the fast time solution, the term X = exp(a~t) appears. 

Note that as we let ~t ---7 0, our fast time solution becomes even 
more accurate. 

Our process now will become one of 

1. refining the increments - that is, letting ~t ---7 ° 
2. expanding the fast time solution to first order in ~t 

3. back substitute the solutions generating sums 

4. converting the sums to integrals. 
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Some Notation 

We will write 8t for the time increment to distinguish it 
(conceptually) from the computational time ,6.t. 

We will write O"n = O"(n8t), Xn = exp(an8t), an = y2 In ~ 

Then our fast time solution generically can be written 

n+l _ n [Xn(An + 1)] on y2Y [(Anx2 
- 1) - X(An - 1))] 

O"jk - O"jk AnX2 + 1 + Ejk I AnX2 + 1 

Now expand Xn ~ 1 + a n8t. Setting wn = O"jkEjk 

n+l n ( ~ Gwn) ~ G on O"jk = O"jk 1 - ut y2 + 2 ut Ejk 
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Back Substituting 

n+l n ( ~ Gwn ) ~ G on 
O"jk = O"jk 1 - ut y2 + 2ut Ejk 

We also have 

n n-l on-l ( 
Gwn-l) 

O"jk = O"jk 1 - 8t y2 + 28tGEjk 

and so forth. Back substituting, we end up with to O(~t) 

n 1 
O"jk = O"jk 

NlirSA ----

G n 
1- ~ y2 ~ W

m
8t 

m=l 

n 

+ 2G L Ejk8t 
m=l 
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Slow Time Solution 

Now letting 8t -t 0 while simultaneously fixing n8t = t is a 
problem time that could be much greater than the computational 
time step 

IIjk(t) = IIjk(O) (1 -~wp) + 2Gfjk 

where WP = J; W(t') dt' is total plastic work and 

where Ejk = J; Ejk(t') dt' is total strain. 

Plastic work and total strain are internal variables. 
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Momentum 

Strain 

Plastic work 

Stress 

Ni~SA ----

Hyperelastic Equations 

dUj _ aCYjk 
p dt - aXk 

lit (aUj aUk) d I Ejk = - + t 
2 0 aXk aXj 

WP = l' W(t') dt' = l' (7jk<Sk dt' 

(7jk(t) = (7jk(O) (1 - ~2 WP) + 2GEjk 
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Summary for Hypereiastic Equations 

The hyperelastic equations use strain as the dependent variable, 
not stress. Some advantages: 

1. Replacing the constitutive (ODE) law with a functional EOS is 
numerically more stable (Hicks, 1978). 

2. Strain and plastic work have conservation laws - better for 
Eulerian and ALE frameworks. 

3. Hyperelasticity is well-posed for all loading (Naghdi, 1990). 

4. Hyperelasticity framework allows for combining other inelastic 
processes with plasticity - e.g., brittle fracture, damage, etc. 
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Conclusions 

1. High strain rate plasticity is a multiple time scale process. 

2. Perturbation theory can improve the accuracy, stability and 
efficiency of standard numerical models. 

3. Perturbation theory can also improve the mathematical and 
physical framework of plasticity theory. 
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