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ABSTRACT

The inelastic response of solids to strong loading is usually simulated with plasticity
models that are solved by a method of radial return. Such implementations in which stress
is integrated forward in time are termed hypoelastic. Radial return methods are simple to
implement and computationally efficient. However, for problems with high strain-rates, these
solutions may be very inaccurate and noisy, and further may not converge under increasing
mesh resolution. Here we describe an alternate solution method based on multiple time scale
{perturbation) theory that addresses these issues.

First, we derive an analytic solution for the fast time scales (e.g., the computational
time step) in a simple plasticity model. Replacing the radial return solution with this
analytic formula produces an accurate and clean sclution while preserving simplicity and
computational efficiency.

However, the hypoelastic framework itself implies restrictions on the accuracy and physi-
cal realizability of the solution. In our second result, we show how to generate the slow time
solution to the equations. That is, we find a functional relationship between stress, strain
and internal variables. This resulting hyperelastic framework has further advantages over
hypoelasticity both as regards the physical model and computational implementation.
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Take Home Points

e Numerical simulations of solid dynamics can involve many
additional difficulties in comparison with fluids.

Inelastic solid dynamics is an inherently multiscale problem.

e There are better ways to solve standard models based on
multiscale perturbation methods.

o There are better formulations of the models — hyperelastic vs.
hypoelastic.
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Finite Volume Methods

e are a popular and effective technique for CF(/S)D

e solve for averaged quantities over length and time x

1 b4+ AL/2  pr+Ax/2

= o : T T

Ok = _AKA : / KTJI.{'-(.I il ) dx’ dt
QLA Ji—At/2 Jz—Az/2

e Averaged variables of Navier-Stokes satisfy different
equations because of nonlinearity of advection, etc.

e We term these equations of finile scale
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Momentum

Strain rate

Constitutive (elastic plastic)
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Hypoelastic Equations
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Accessible Regions of Stress Space

Plastic boundary
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Radial Return (Wilkins)

initial state elastic test

ij(t)

o (t+dt)

final plastic state
lies on boundary
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Implied Constitutive Law

For perfect plasticity with constant yield stress Y

do o (T siniCinin)
Jh .)(1 . mn-mn ‘
- — Al7 € !11 =— - = (T }rt.
dt ( / 2y2 Y )

It can be shown that radial return is an explicit approximation to
this equation
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For a large strain increment, error
approaches 100% in one step

0.6

stress increment =2 Y

—¢— gxacl solution
=—0— radial relum

tan theta
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Number of subcycles to achieve 1% accuracy
plotted against size of the stress increment.

400

300 A

200 -

100 —

steps to achieve 1% accuracy

0 : : . I v — —
0 1 2 3 4
stress lncrement (normalized to yleld)

NIYS& > Los Alamos

AL LABORATORY




Elastic vs. Plastic Stress Increments

Are large elastic "test” increments possible — e.g., when is

2G ||é;x]| At >> 2Y

i e . (TWAN
The time step is limited by the CFL condition HA a2 ]
£ 1';"
- Ou . : | | i
Now | |[¢| = }—1 and in most solids | (i ~ 100)
54 o

ou U

So large increments are possible if 5 ~ 5=
axr AT

—— in regions of steep gradients, e.g., near shocks!
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Multiple Time Scales

All the previous discussion is designed to justify the existence
_ B v

of two time scales, I At ‘and‘ TR S At << At
| — |

So, to apply perturbation theory in the constitutive law

f_]'F(T-J.',h: 5 (n’m,u#mn)
— I T e — A R s
= (E-““ oy2 ik
we will assume that ¢,,,,, is constant over a time interval A/ .

This leads to a very integrable ODE.
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Short Time Scale Solution (1)

Defining the scalar function VWV = 7 ,,¢;;. (rate of work)

; 3 12
dm’:zG(ﬁg mx)

dt - 2Y2

: Y?d "
which has solution | W = e In F|
T (1

Here, F(t) = Aexp(at)+ exp(—at) and

[ 9 — G \/ E 1Y + ]/V{]
[=1/()® ; a=V2I— ; A=Y
\- {(’I ) ) e v 1}/ ' Vx.z f,r}" - ]/V“

are all constants.
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Short Time Scale Solution (2)

Then | |
(03B _ gy d
f‘:’-; =2Géjk— 5k o [In F(t)]

which has solution

ajk(t + At) = g;i(t) [E?(ﬂ ; l)] + &5 LA [(‘41"' = 1) = x4 = 1))

Ax?+1 [ Ax? + 1

e Here, \ — cxp(aAtl)

e Notethat oAt = V25 LA - 1
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First Summary

1. The perturbation solution is accurate on time scales of A’.
In particular, it always stays exactly on the yield surface.

2. The procedure can be generalized to more complicated yield
surfaces. |

3. The method has been implemented and tested in large scale
codes.

4. it is stable, convergent and more accurate as well as
computationally efficient.

But, one can do more ... we can find the slow time solution
accurate over total problem time.
/'\.
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Slow Time Scale Solution (1)

In the fast time solution, the term \ — exp(a/Al) appears.

Note that as we let A7 — (), our fast time solution becomes even
more accurate.

Our process how will become one of

1. refining the increments — that is, letting A7 — 0
2. expanding the fast time solution to first order in A/
3. back substitute the solutions generating sums

4. converting the sums to integrals.
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Some Notation

We will write o/ for the time increment to distinguish it
(conceptually) from the computational time A:.

We will write "' = Glnot), Yu = vxp[r}-”r”), n = g”ﬁj,, %

Then our fast time solution generically can be written

n+l _ n [\\"H(J'illu_—k 1)] q \/E} E(ﬁl”,‘{g - l) — __‘((_-"fln — 1))

ik = Ojk

*'ﬂ"ln ‘\‘2 ] f'!k [ :_,41”..,}\.'.2 + 1

Now expand \, ~ | +«,0t.  Setting W" = o ¢',

Gwwn
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. . . GWn o ot
{'T_;-I'P] - 0—1?;{-‘ (l = t’” 1};2 ) —|— 2!"}1*(;1‘:.?#

We also have

GYWn 1
(T";.’LI = .':I'I_ (1 — {”}—2) _th'?L(T f-f_l

and so forth. Back substituting, we end up with to O(A/)

|‘ ('
f‘TTL —rrf; ( - }) fﬁf‘) Z ”’rﬁf‘

m=1 m=1
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Slow Time Solution

Now letting o/ — 0 while simultaneously fixing nd/ =1 is a
problem time that could be much greater than the computational
time step

G . _

gjk(t) = 0%(0) (] B

where W7 = [T W(t')dl’ is total plastic work and
where ¢, = [ ¢;.(t')dl’ is total strain.

Plastic work and total strain are internal variables.
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Momentum

Strain

Plastic work

Stress

NYSHE

e v ey e —

o;k(t) = o;x(0) (1 -

Hyperelastic Equations

4 dt a:I.T;,.

1 [* [ 0u i Ouyg )
E ol = = —=}- 1t
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Summary for Hyperelastic Equations

The hyperelastic equations use strain as the dependent variable,
not stress. Some advantages:

1. Replacing the constitutive (ODE) law with a functional EOS is
numerically more stable (Hicks, 1978).

2. Strain and plastic work have conservation laws — better for
Eulerian and ALE frameworks.

3. Hyperelasticity is well-posed for all loading (Naghdi, 1990).

4. Hyperelasticity framework allows for combining other inelastic
processes with plasticity - e.g., brittle fracture, damage, etc.
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Conclusions

1. High strain rate plasticity is a multiple time scale process.

2. Perturbation theory can improve the accuracy, stability and
efficiency of standard numerical models.

3. Perturbation theory can also improve the mathematical and
physical framework of plasticity theory.
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