

LA-UR-

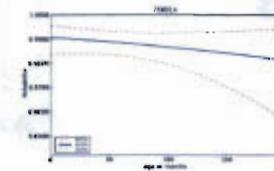
11-01594

Approved for public release;
distribution is unlimited.

Title: Modeling the Reliability of Complex Systems with Multiple Data Sources: A Case Study on Making Statistical Tools Accessible to Engineers

Author(s): C.M. Anderson-Cook
R. Klamann
J. Morzinski

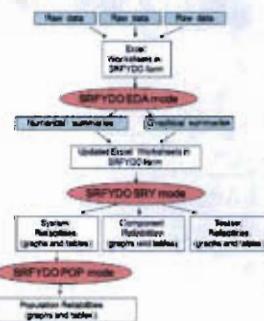
Intended for: NASA Statistical Engineering Symposium
Williamsburg, VA
May 3-5, 2011


Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

"Modeling the Reliability of Complex Systems with Multiple Data Sources: A Case Study on Making Statistical Tools Accessible to Engineers"

Christine Anderson-Cook, Richard Klamann, Jerome Morzinski,
Statistical Science Group,
LANL

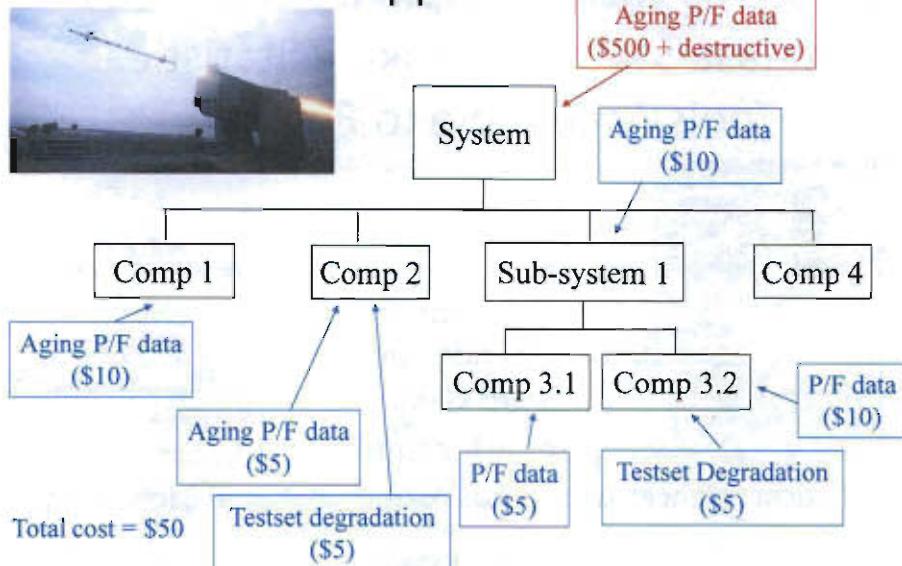
Estimating the reliability of complex systems, such as Department of Defense weapons, often involves using multiple data sources, including expensive and destructive full system tests, as well as non-destructive subsystem and component level tests. Using statistical methodology developed by the Statistical Sciences Group at Los Alamos National Laboratory, a process for estimating and predicting future reliability was developed. A multi-phase software tool, SRFYDO, was developed to make this process accessible and understandable to the system engineers who need to perform these analyses. In this talk, we present a short overview of the method, but focus on how the software was developed with the goal of assisting the engineers with their analyses.


Modeling the Reliability of Complex Systems with Multiple Data Sources: A Case Study on Making Statistical Tools Accessible to Engineers

Christine Anderson-Cook

Richard Klamann

Jerome Morzinski

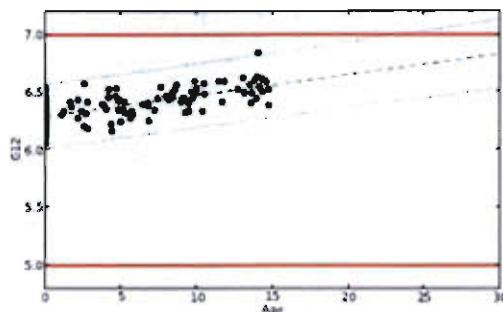

Statistical Sciences Group, Los Alamos National Laboratory

May 2011

Outline

- **Motivation for System Reliability Approach** – multiple data sources available with expensive full system tests
- **New Statistical Method** – Bayesian multi-level data combination
- **Evolution of SRFYDO (System Reliability Formatter for YADAS Data and Output) Software and Process**
- **Final Product and Process**
- **Lessons Learned**

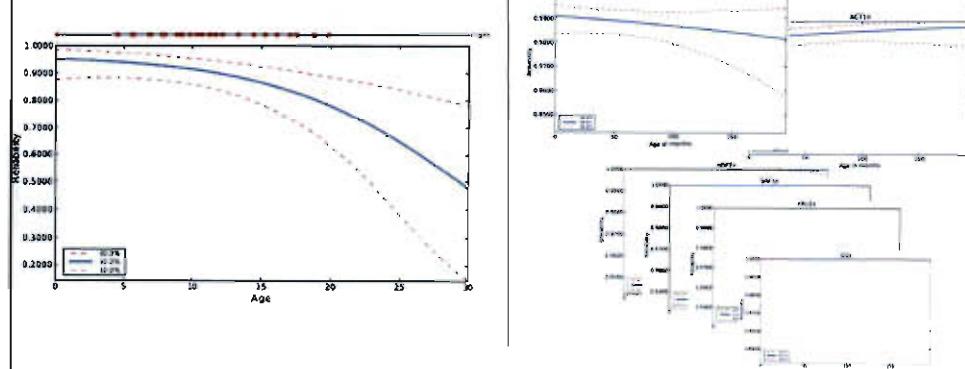
Motivation for New System Reliability Approach



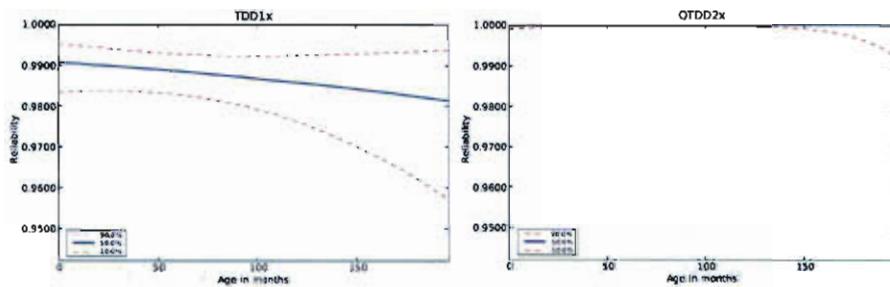
Advantages of MSRA Approach

- Uses data already available and thought to be relevant to predict reliability
- Improves precision of estimation with fewer destructive full-system tests
- Check on consistency of information from different data sources
- Flexibility to incorporate partial information into model
- Ability to predict failure before being observed in full-system test
- Component level reliabilities – leverage from different versions of system + better understanding

Disadvantage: More complex statistical method and process to obtain results


Advantage: Ability to predict failure before being observed in full-system test

- Because we can track a trend in some of the continuous measurements, we can anticipate when failures might start to occur, before they actually have been observed

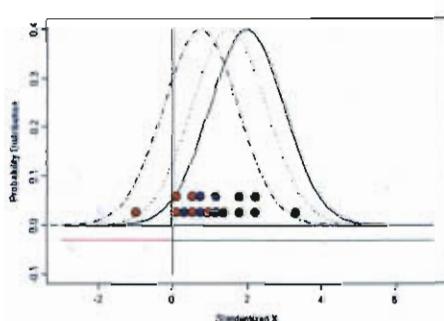

Advantage: Component Level Summaries

- Better understanding of system and important drivers of system reliability
- Ability to identify critical components and critical specs to implement corrective action

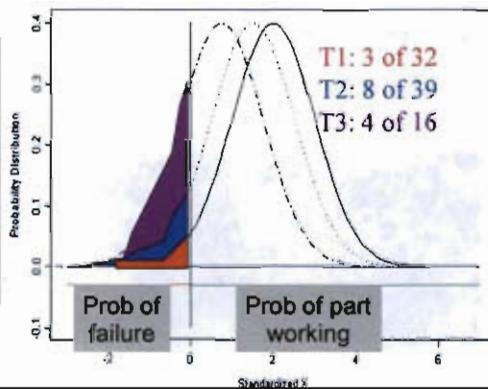
Advantage: Component Level Summaries (cont'd)

- Ability to compare different versions of the same component

Advantage: Component Level Summaries (cont'd)


- Ability to leverage data across different variants with common components
- Data used to estimate reliability:
 - $-\text{SAF2x} + 21 \text{ others} \rightarrow 75 + 47 = 122$
 - $-\text{ADP1x} + 6 \text{ others} \rightarrow 75$
 - $-\text{ADP2x} + 6 \text{ others} \rightarrow 47$

VariantDef	Variant	Component	VariantDef	Variant	Component
Var1	Var1	SAF2x	Var2	Var2	SAF2x
Var3	Var3	WHDx	Var4	Var4	WHDx
Var5	Var5	ACT1x	Var6	Var6	ACT1x
Var7	Var7	BPSLx_Rear	Var8	Var8	BPSLx_Rear
Var9	Var9	RDLx	Var10	Var10	RDLx
Var11	Var11	FinSquiblx	Var12	Var12	FinSquiblx
Var13	Var13	MBC1x	Var14	Var14	MBC1x
Var15	Var15	ECU2x	Var16	Var16	ECU2x
Var17	Var17	ADP1x	Var18	Var18	ADP1x
Var19	Var19	Harness1x	Var20	Var20	Harness1x
Var21	Var21	FRU1x	Var22	Var22	FRU1x
Var23	Var23	MM1x	Var24	Var24	MM1x
Var25	Var25	IFR1x	Var26	Var26	IFR1x
Var27	Var27	LO1x	Var28	Var28	LO1x
Var29	Var29	LS1x	Var30	Var30	LS1x
Var31	Var31	PM1x	Var32	Var32	PM1x
Var33	Var33	RC1x	Var34	Var34	RC1x
Var35	Var35	RT1x	Var36	Var36	RT1x
Var37	Var37	RU12x	Var38	Var38	RU12x
Var39	Var39	TDD1x	Var40	Var40	TDD1x
Var41	Var41	BPSLx_Front	Var42	Var42	BPSLx_Front
Var43	Var43	SS1x	Var44	Var44	SS1x
Var45	Var45	XMT12x	Var46	Var46	XMT12x
Var47	Var47	AFD1x	Var48	Var48	AFD1x
Var49	Var49	RocketMotor1x	Var50	Var50	RocketMotor1x
Var51	Var51	RFALx	Var52	Var52	RFALx
Var53	Var53	TIVS1x	Var54	Var54	TIVS1x
Var55	Var55	RFPLx	Var56	Var56	RFPLx


Basic Building Block

- Here we have two potential sources of information about this component:

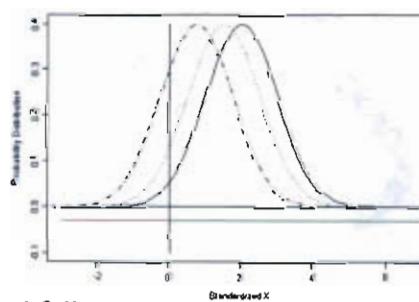
From testset data, we obtain the mean of the characteristic at each time

From the full system data, we obtain a proportion of success/failure at each time

Statistical Formulation

- For the probability that a particular component, say component with spec 1, will function correctly

$$p_1(x) = \Phi\left(\frac{\beta_{0,1} + \beta_{1,1}x - \theta_1}{\sqrt{\gamma_1^2 + \sigma_1^2}}\right)$$


$\beta_{0,1}$ – initial mean of testset distribution

$\beta_{1,1}$ – rate of shift of testset distribution

γ_1^2 – variance of testset distribution

θ_1 – discrepancy between means of spec and full system

σ_1^2 – additional variance from full system distribution

Background of Users

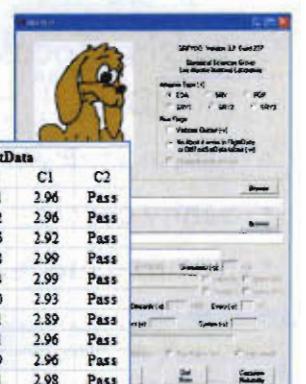
- Subject Matter Experts (SME) on particular system
 - System Engineers
 - Data Analysts
- Little or no formal statistical training

- Customers
- Department of Defense
 - NSWC Corona (RAM, ESSM, SeaSPARROW)
 - NSWC Yorktown / Indian Head (AMRAAM)
 - AMCOM/AMRDEC (Hellfire, Stinger)
 - MCPD Fallbrook (TOW)
- Department of Energy
 - LANL Enhanced and Core Surveillance Campaign

Evolution of SRFYDO

1. Development of methods

- LANL statisticians sat down with team of SMEs
 - Develop system model (identify components and how connected, map available data to components, obtain priors for analysis)
 - Statisticians did analysis
 - Sat down with SMEs to interpret results, fine-tune model


Characteristics:

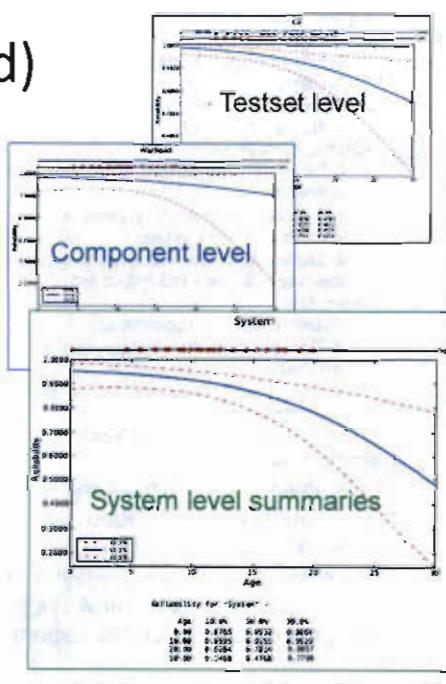
- Helpful for development of new methodology – key problems identified
- Long lag for engineers until methods available
- New data added to analysis as it became available
- Methodology implemented with unfriendly code (usable only by creators)
- Very time intensive – not scalable to many systems

Evolution (continued)

2. Development of prototype of SRFYDO

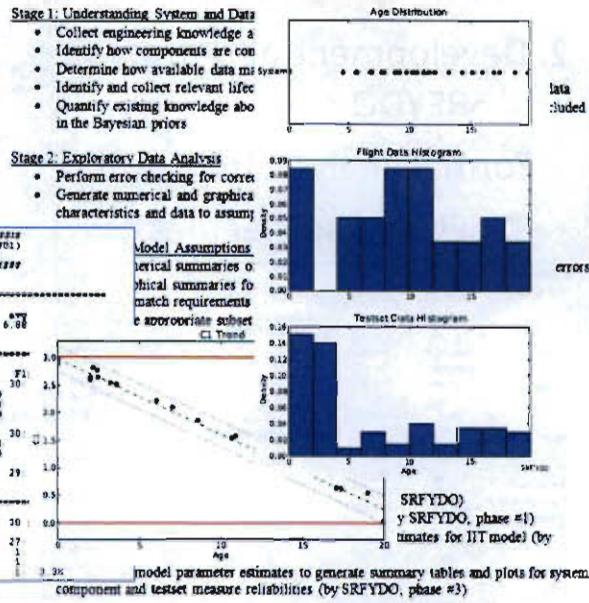
- Formal analysis from GUI
- EXCEL spreadsheet

%ComponentDef				
Component	SpecName	SpecType	LowerSpec	UpperSpec
Control	%FlightKey			
	Result	Variant	%FlightData	
Guidance1	Success	Block1	891239	3.26
	Success	Block2	891050	3.3
	Success	Block3	891054	4.51
	Dud	Block1	891081	4.65
Guidance2	Dud	Block2		2.05
	Dud	Block3		3.23
	Crash	Block1		
	Crash	Block2		
Propulsion1	Crash	Block3		
			0	0
			0	0
			0	0
Propulsion2	MissTarget	Block1		
	MissTarget	Block2		
	MissTarget	Block3		
	NoExplosion	Block1		
TargetDetection	NoExplosion	Block2		
	NoExplosion	Block3		
	Undiagnosed	Block1		
	Undiagnosed	Block2	891044	12.18
Armament	Undiagnosed	Block3	891074	12.38


%PriorSystem					
Age	NumTrans	Variant	WorstRel	LikelyRel	BestRel
		Block1	0.9	0.97	1
		Block2	0.9	0.97	1
		Block3	0.9	0.97	1
20	49	Block1	0.7	0.65	0.9
20	49	Block2	0.65	0.8	0.9
20	49	Block3	0.65	0.8	0.9
%End					
				3	3
				3	3

Evolution (cont'd)

- Output as PDF and flat text


Characteristics:

- SMEs able to function more independently
- Much more timely
- Many requests for special summaries (often later integrated into SRFYDO)
- When applied to new systems, system modeling was often difficult
- Much of data and model assumption checking that LANL did in early stages was not happening (constructing summaries in own software was easy to skip)

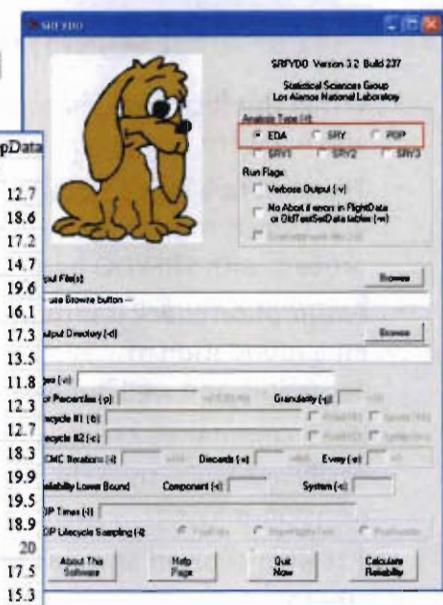
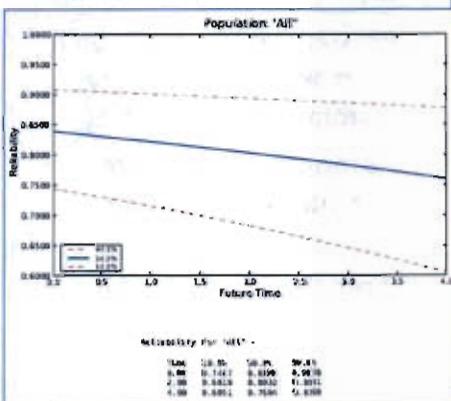
3. Larger process developed with EDA stage in SRFYDO

- EDA graphics
- Sanity checks
- Itemized model

The assumptions of the model are listed below:

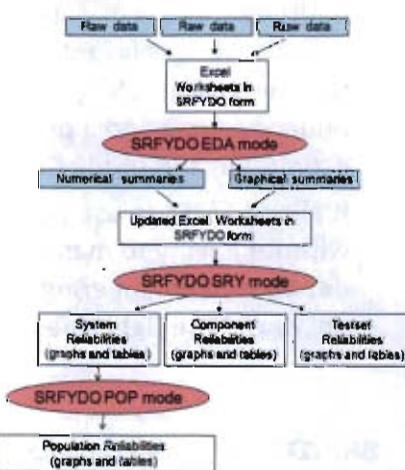
- System Structure
 1. System is a series system.
 2. Only critical testset measures are included in the analysis.
 3. Stockpile of systems is a homogeneous population (or we have lifecycle measures to distinguish between sub-populations).
- Matching Data Types
 4. Full system (flight) tests are considered the most accurate assessment of system reliability.
 5. Surrogacy assumption (systems selected for flight and testset tests have similar lifecycle properties and can be sensibly combined into a single analysis).
 6. Testset data limits correspond to operational limits for what is required of component during a full-system test.
- Testset data:
 7. Linear shift as component ages.
 8. Data at a given time are approximately normally distributed (symmetric, non-extreme outliers).
 9. Only a single operational limit is important for failure.
 10. Lifecycle covariates not highly correlated.

Process for verifying assumptions:



- Engineering knowledge
- Examining summaries from EDA
- Both

Characteristics:

- SMEs able to function more independently
- Many more discussions about assumptions and boundaries of where model appropriate
- Many fewer re-analyses (huge time-saving)
- More scalable – getting a new system ready for analysis more timely
- SME gaining confidence and expertise with method


4. New methodology added

- Population reliability for group of systems added (POP stage)

Final Product and Process

- SRFYDO is the computational engine to guide a process
- EDA mode uses common statistical summaries and graphics which builds in assumptions checking
- Systems analyzed range from:
 - 5 components with one variant
 - 35 components with 8 variants (60+ total components)

Users functioning relatively independently
 LANL offers annual training and consulting support

Lessons Learned

- When the focus was on software, our scope was too limited and we were not gaining much traction
- The shift to a guided process (with built in tools for each step) was transforming to our success – the training focuses on the process with SRFYDO being its support
- Assumption check is intuitive for many statisticians, but is built on a foundation of statistical training – making this concrete, accessible and well defined for our customers was essential
- If the summaries / tools needed to perform an analysis are easily available, then the focus shifts to interpretation and decision-making
- The plan evolved and was driven by both the users and the creators

Conclusions

- The process for obtaining system reliability estimates using multiple sources of data using SRFYDO offers a way of incorporating relevant sub-system and component level data to supplement full-system data, which leads to better understanding and a potential improvement to the precision of estimation and prediction
- It allows SMEs to use a sophisticated statistical approach without having to master all of the details of the analysis, but depends of engineering judgment to make sure we have answered the right question

SRFYDO runs on a PC (requires Python, JAVA and Excel) and is available to any US Government agency free of charge srfydo@lanl.gov

Christine Anderson-Cook candcook@lanl.gov