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Outline

= Motivation

m Coherent Interfaces

o Effect of Au and AE on defect accumulation and recombination

=  Semi-coherent Interfaces
e Development of an off-lattice kinetic Monte Carlo code
— Why we need this kind of code
— What we can do with it (so far)
e Applications. Vacancy diffusion in the presence of Twist Boundaries

e Error Estimation

m Conclusions
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“Structureless” in this
context refers to interfaces
where

the response is dominated
by defect energetics and
kinetics

with only a minor
contribution from the
interface atomic structure.

Such interfaces are likely to
be coherent or nearly-

coherent with a small lattice
mismatch.
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Radiation damage at “structureless” interfaces

m  Study of such interfaces
establishes a baseline for
interfacial effects

o interface effects
originating from
differences in defect
energetics and kinetics in
the two constituent
materials

o before adding the effects
due to atomic structures
of interfaces
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The atomic structure of the TiO,/SrTiO; interface
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Structure of as-grown TiO,/SrTiO, interface

= Epitaxial [004]-oriented TiO, film on
(001) SrTiO,

Deposited via pulsed laser deposition

XRD confirms TiO, is anatase

polymorph

Film about 300 nm thick

= Sharp TiO,/SrTiO; interface
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Irradiation of TiO,/SrTiO, interface
m 250 keV Ne
’ | e~ _ irradiations
4 i .0%_' .
] = "2 = Peak dpa is at about
3 SrTiO, : 3
Al - a - 330-340 nm
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Irradiation of TiO,/SrTiO, interface:
room temperature
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= Denuded zone forms on TiO, side of interface
= Amorphous layer forms on SrTiO; side of interface
= Denuded zone persists even as amorphous layer forms

s Denuded zone independent of atomic structure of interface
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Irradiation of TiO,/SrTiO, interface:
500 C

= Denuded zone forms on both
sides of the interface

= Very thin amorphous layer
forms at the interface

= Dislocation walls form in TiO,

})enuded Z/ones on both sides ‘ th | N film
el - :
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Two determiners of defect properties
near structureless interfaces

s Defect transport driven by differences in
chemical potential n

e Defects move from regions of high chemical potential
to regions of low chemical potential

s Defect transport controlled by bulk migration
energies

 Whether defects can cross interface depends on

migration barriers relative to temperature in both
phases
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Two determiners of defect properties
near structureless interfaces

Phase A (TiO,) Phase B (SrTiO,)
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Towards a Figure of Merit for “structureless” interfaces

= Differences in chemical s Differences in mobility E™
potential u drive defect flow determine rate of defect
from one side to the other buildup at interface

 Define phase A such that u,> . . .
g Ha~te = Kinetic sinks

Aup g
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Kinetic Monte Carlo model for structuraless interfaces

Phase A (TiO,) Phase B (SrTiO,)

N
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AE™,
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Phase A (TiO,)00
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We have systematically change the migration parameters, run 1000 KMC
mdependent calculations for each set and calculate the resulting defect proflle.
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Probability

Concentration profiles
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Au - AE maps at 300 K

The enhancement
probability is related
to the amorphization

The depletion 001 |
probability is related 0.0001 |
to the length of the
denuded zone
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Aun — AE maps at 800 K

Depletion Enhancement
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Increasing the temperature reduces the effect. It is a steady state effect
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Two Reacting Defects at 300 K

Landscape Defect 1 Landscape Defect 2
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Reaction Probability at the Interface

Total Probability of Reaction
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Two Reacting Defects at 300 K

Landscape Defect 1

Landscape Defect 2
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Reaction Probability at the Interface

Total Probability of Reaction
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Motivation

Ballistic

Sink behavior of Interfaces mixing

Competition

Current Molecular

Dynamics technique can

Thermally
Activated

\ diffusion

it

between two effects

Interface long term evolution will
be investigated by our Kinetic
Monte Carlo approaches.

handle collision cascades Fin iven
and defect initiation. stea ate of
interface
Defect migrations, Microstructure
] Defect initiation
aggregation and annhilation evolution

| | |
o | |

Atomic vibrations ~ Dynamical processes Thermally activated dynamics

\

Experimental measurements
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Our Kinetic Monte Carlo Approaches

m  Self-learning KMC. (L. Vernon, B. Uberuaga, A. Voter)
 Dynamically explores the potential energy surface to discover all processes.
e Calculate the rates accurately.

e Might be computationally demanding.

" Event-driven KMC. (Me and Alfredo)
« Uses the local microstructure to guess potential processes.
« The accuracy in the rate calculation can be tuned.

« Computationally less demanding.

» Los Alamos

NATIONAL LABORATORY UNCLASSIFIED Slide 21

EST.1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA //;NA'D%%




Event-Driven KMC: Coupling MD LAMMPS - KMC

Set of possible events

Harmonic Transition State Theory

Particle rate: I'=vexp(-Egp/KT); Two options
to calculate Egp:

1. Linear approximation Egp = E+(EE;)/2
2. Nudged-elastic band (NEB)

Esp >
» Los Alamos
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NEB
/ World i

LINEAR
World j \

NEB

/1| unear

Each vacancy exchange
is handled by a set of

processors. The global

relaxation is performed
using all processors

Hybrid models can be
used depending on the
complexity of the sample
to obtain more accurate
results
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Applications

o (110) 4-degrees Twist Boundary in bcc Fe.
i. Interface structure
ii.  Vacancy formation energies
iii. Vacancy accumulation using hybrid linear approx-NEB

o (111) 2-degrees Twist Boundary in fcc Cu.
i. Interface structure
i.  Vacancy formation energies
iii. Vacancy accumulation using hybrid linear approx-NEB
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Vacancy-Twist Boundary Interaction Energy in a (110)

Fe Interface

Dislocation
structure at the
interface: 2 sets of
ay/2<111>
dislocations and 1
set of a,<100>
screw dislocations

Interaction energy
maps. Vacancies are
attracted to
dislocations.
Thermodynamic driving
force for the vacancies
to accumulate at the
interface.
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Vacancy accumulation at the (110) Fe Interface

vacancies
Non-bcc atoms

d=10"*V/A%.s=1.16 10-3 dpa
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Error Estimation

MD annealing for 1 ns at 500 K of KMC samples computing atomic
displacements and maximum shear strength

1050
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For the lowest dose rate investigated the number of events does not change
the observable of interest. On the other hand, for larger dose rates, the
maximum shear stress is ~ 30% lower after annealing.
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Vacancy-Twist Boundary Interaction Energy in a (111)
Cu Interface

Dislocation
structure at the
interface: 3 sets of
a,/6<112>
Shockley partial
screw dislocations

Interaction energy
maps. Vacancies are .
attracted to R S o £
dislocations. so Lttt o 4§, w
Thermodynamic driving N TR
force for the vacancies
to accumulate at the 20 30 40 50 60 70
interface. X X
1 The interaction energy is most attractive at the MDls
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ion at the (111) Cu Interface

vacancies

Vacancy accumulat

Non-fcc atoms
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Error Estimation

MD annealing for 1 ns at 500 K of KMC samples computing atomic
displacements and maximum shear strength
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In this case the events do not change the observable of interest at any dose
rate. The maximum different in the shear stress is ~ 3%.
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Conclusions

We have developed an hybrid KMC-MD off-lattice algorithm
It is able to describe diffusion with all the fields (elastic, thermodynamic)
We can reach real times far beyond MD capabilities.
Application to CuNDb interfaces (in collaboration with Liang Zhang-MIT).
Improvement of the physics:

Implementation of interstitial diffusion.
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