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Outline 

n  Motivation 

n  Coherent Interfaces 

•  Effect of Δµ and ΔE on defect accumulation and recombination 

n  Semi-coherent Interfaces 

•  Development of an off-lattice kinetic Monte Carlo code 

—  Why we need this kind of code 

—  What we can do with it (so far) 

•  Applications. Vacancy diffusion in the presence of Twist Boundaries 

•  Error Estimation 

n  Conclusions 
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Radiation damage at “structureless” interfaces 
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Radiation 
Tolerance 

Interfacial 
structure 

Interfacial 
kinetics 

Interfacial 
energetics 

Bulk Bulk 

n  “Structureless" in this 
context refers to interfaces 
where 

o  the response is dominated 
by defect energetics and 
kinetics  

o  with only a minor 
contribution from the 
interface atomic structure.  

n  Such interfaces are likely to 
be coherent or nearly-
coherent with a small lattice 
mismatch. 

 

n  Study of such interfaces 
establishes a baseline for 
interfacial effects 
o  interface effects 

originating from 
differences in defect 
energetics and kinetics in 
the two constituent 
materials  

o  before adding the effects 
due to atomic structures 
of interfaces 
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The atomic structure of the TiO2/SrTiO3 interface 

n  (001) direction of SrTiO3 
characterized by alternating 
layers of SrO and TiO2 

•  Stoichiometric layers 

n  Layers in (001) direction of 
anatase TiO2 has the same 
structure as in SrTiO3 

n  Nearly coherent interface 

§ SrO 
§ TiO2 

§ SrO 

§ TiO2 

§ SrO 

§ TiO2 

§ SrO 

§ TiO2 

§ TiO2 

§ TiO2 

§ TiO2 

§ TiO2 

§ TiO2 

§ TiO2 

§ TiO2 

§ TiO2 
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Structure of as-grown TiO2/SrTiO3 interface  

n  Epitaxial [004]-oriented TiO2 film on 
(001) SrTiO3 
•  Deposited via pulsed laser deposition 
•  XRD confirms TiO2 is anatase 

polymorph 
•  Film about 300 nm thick  

n  Sharp TiO2/SrTiO3 interface 
•  Misfit dislocation spacing: 5.6nm 

n  Orientation relationship: 

§ STO"

§ TiO2"

§ (001) 

§ (010) § (100) 

§ (001) 

§ (010) § (100) 

M. Zhuo, et al., Scripta Mat 65, 807 (2011). 
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Irradiation of TiO2/SrTiO3 interface 

n  250 keV Ne 
irradiations 

n  Peak dpa is at about 
330-340 nm 
•  About 30-40 nm deeper than 

interface 

n  Films irradiated to 
3.3x1015 to 1.7x1016 
ions/cm2 

•  Corresponds to 1-6 dpa at 
interface, based on SRIM   
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M. Zhuo, et al., Scripta Mat 65, 807 (2011). 
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Irradiation of TiO2/SrTiO3 interface:  
room temperature 

n  Denuded zone forms on TiO2 side of interface 

n  Amorphous layer forms on SrTiO3 side of interface 

n  Denuded zone persists even as amorphous layer forms 

n  Denuded zone independent of atomic structure of interface 
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M. Zhuo, et al., Scripta Mat 65, 807 (2011). 
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Irradiation of TiO2/SrTiO3 interface:  
500 C 

n  Denuded zone forms on both 
sides of the interface 

n  Very thin amorphous layer 
forms at the interface 

n  Dislocation walls form in TiO2 
thin film 
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M. Zhuo, et al., manuscript in preparation. 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA 

U N C L A S S I F I E D 

Two determiners of defect properties  
near structureless interfaces 

n  Defect transport driven by differences in 
chemical potential µ	


•  Defects move from regions of high chemical potential 

to regions of low chemical potential 

n  Defect transport controlled by bulk migration 
energies 
•  Whether defects can cross interface depends on 

migration barriers relative to temperature in both 
phases 
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Phase A (TiO2) Phase B (SrTiO3) 

Two determiners of defect properties  
near structureless interfaces 

Em
A 

Em
B 

ΔµA-B 
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Towards a Figure of Merit for “structureless” interfaces 

n  Differences in mobility Em 
determine rate of defect 
buildup at interface 

n  Kinetic sinks 

n  Differences in chemical 
potential µ drive defect flow 
from one side to the other 
•  Define phase A such that µA>µB 

Enhanced radiation 
tolerance of A 

ΔµA-B 

ΔEm
A-B 

Σ3 coherent 
twin 

TiO2/SrTiO3 
interface 
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Phase A (TiO2) Phase B (SrTiO3) Phase A (TiO2)00 

Kinetic Monte Carlo model for structuraless interfaces 
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Em
A 

ΔµA-B 

Em
B 

Em
LI Em

RI 

We have systematically change the migration parameters, run 1000 KMC 
independent calculations for each set and calculate the resulting defect profile. 

z

x
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Δµ ‒ ΔE maps at 300 K	
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Δµ ‒ ΔE maps at 800 K	
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Two Reacting Defects at 300 K 
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Reaction Probability at the Interface 
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Two Reacting Defects at 300 K 
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Motivation 

Sink behavior of Interfaces 
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Time Scale 

 (second) 10-12 10-9 10-6 103 

fs ns µs ms s hr 

10-3 100 

Molecular  

Dynamics 

Kinetic  

Monte-Carlo 

Mesoscale  

Methods 

Continuum 

Methods 

Atomic vibrations 

Defect migrations, 

aggregation and annhilation 
Defect initiation 

Dynamical processes Thermally activated dynamics Experimental measurements 

Microstructure 

 evolution 

Courtesy of L. 
Zhang 
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Our Kinetic Monte Carlo Approaches 

n  Self-learning KMC. (L. Vernon, B. Uberuaga, A. Voter) 
•  Dynamically explores the potential energy surface to discover all processes. 

•  Calculate the rates accurately. 

•  Might be computationally demanding. 

 

§  Event-driven KMC. (Me and Alfredo) 

•  Uses the local microstructure to guess potential processes. 

•  The accuracy in the rate calculation can be tuned. 

•  Computationally less demanding. 
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Event-Driven KMC: Coupling MD LAMMPS – KMC 

Each vacancy exchange 
is handled by a set of 

processors. The global 
relaxation is performed 

using all processors 

Set of possible events 
Harmonic Transition State Theory 
Particle rate: Γ=νexp(-ESP/kT); Two options 
to calculate ESP: 
1.  Linear approximation ESP = E0+(Ef-Ei)/2 
2.  Nudged-elastic band (NEB) 

Hybrid models can be 
used depending on the 

complexity of the sample 
to obtain more accurate 

results 
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Applications 
 

q  (110) 4-degrees Twist Boundary in bcc Fe. 
i.  Interface structure 
ii.  Vacancy formation energies 
iii.  Vacancy accumulation using hybrid linear approx-NEB 

q  (111) 2-degrees Twist Boundary in fcc Cu. 
i.  Interface structure 
ii.  Vacancy formation energies 
iii.  Vacancy accumulation using hybrid linear approx-NEB 

Slide 23 
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Vacancy-Twist Boundary Interaction Energy in a (110) 
Fe Interface 
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The interaction energy is most attractive at <100> segments forming the MDIs 

Dislocation 
structure at the 
interface: 2 sets of 
a0/2<111> 
dislocations and 1 
set of a0<100> 
screw dislocations 

Interaction energy 
maps. Vacancies are 
attracted to 
dislocations. 
Thermodynamic driving 
force for the vacancies 
to accumulate at the 
interface. 
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Vacancy accumulation at the (110) Fe Interface 

Φ=10-4 V/A3.s=1.16 10-3 dpa	

 Φ=10-3 V/A3.s=1.16 10-2 dpa	

 Φ=10-2 V/A3.s=1.16 10-1 dpa	



●  vacancies 
●  Non-bcc atoms 
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Error Estimation  
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For the lowest dose rate investigated the number of events does not change 
the observable of interest. On the other hand, for larger dose rates, the 

maximum shear stress is ~ 30% lower after annealing.  

MD annealing for 1 ns at 500 K of KMC samples computing atomic 
displacements and maximum shear strength 
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Vacancy-Twist Boundary Interaction Energy in a (111) 
Cu Interface  

Slide 27 

The interaction energy is most attractive at the MDIs 

Dislocation 
structure at the 
interface: 3 sets of 
a0/6<112> 
Shockley partial 
screw dislocations  

Interaction energy 
maps. Vacancies are 
attracted to 
dislocations. 
Thermodynamic driving 
force for the vacancies 
to accumulate at the 
interface. 
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Vacancy accumulation at the (111) Cu Interface 
●  vacancies 
●  Non-fcc atoms 

Φ=10-4 V/A3.s=1.17 10-3 dpa	

 Φ=10-3 V/A3.s=1.17 10-2 dpa	

 Φ=10-2 V/A3.s=1.17 10-1 dpa	





Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA 

U N C L A S S I F I E D Slide 29 

Error Estimation  

In this case the events do not change the observable of interest at any dose 
rate. The maximum different in the shear stress is ~ 3%.  

MD annealing for 1 ns at 500 K of KMC samples computing atomic 
displacements and maximum shear strength 
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Conclusions 

•  We have developed an hybrid KMC-MD off-lattice algorithm 
•  It is able to describe diffusion with all the fields (elastic, thermodynamic) 
•  We can reach real times far beyond MD capabilities. 
•  Application to CuNb interfaces (in collaboration with Liang Zhang-MIT). 
•  Improvement of the physics: 

•  Implementation of interstitial diffusion. 
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