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Research objectives
@ Obtain analytic solution to dynamic sphere test problem

@ Develop software to evaluate solution

@ Demonstrate ‘convergence’ of computed solution

LA-UR-12-xxxxx

2/18



Schematic of dynamic sphere problem

@ Analytic solution includes:

o Dirichlet BC: Displacement

o Neumann BC: Strain
e Robin BC: Stress

@ Time-varying BCs applied

at rj, ro

@ This talk focuses only on Dirichlet

(displacement) BCs
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Outline

Describe Bodner-Partom model of viscoplasticity.
Describe Bodner-Partom dynamic sphere problem.
Derive series solution for displacement.

Describe numerical implementation of analytic solution.

Demonstrate self-convergence of solution.
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Conservation law equations for isotropic viscoplastic material

@ Formulated in material coordinates, so mass balance satisfied

e Constant temperature, so no energy equation
@ Variables:
o u(x,t): displacement
o €(x,t)=3(Vu+ VuT): total strain tensor
e eP(x,t): plastic strain tensor

pu=V.-o+b
o= C(e—¢€P)
u(x,0) = u@(x), i(x,0) = uM(x)

ulpa = up(x, t)
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Bodner-Partom viscoplastic constitutive model

The constitutive model variables are
@ cP(x,t): plastic strain tensor
e Z(x,t): isotropic hardening

variable Strain vs. stress for viscoplastic
material

and the equations of the model are

B

|

e =62

2y
z=+2)6(2s
€P(x,0) = ep’(o)(x), Z(x,0) = 7O(x)

Stress (Pa)

-510° ] 510% 00001 000015 00002 000025
Strain

where S(x,t) = 0 — 1trol is the stress
deviator.
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Radially symmetric dynamic sphere IBVP

Let A = —CeP be plastic stress tensor. In spherical coordinates,
2 2
li=u"+= U ——u+c_2f()\)
r
Arr = _Crrrrerr 2Crr90599
Moo = —Crro0€t, — (Corrr + Crron)eby

u(r,0) =d%(r) i(r,0)=vo(r) €P(r,0)=0 ehg(r,0) =10
u(ri, t) = BCj(t) u(ro,t) = BCo(t)

where i 5
fr(A) = br + ;[/\lrr + ;()‘rr — Aoo)]-
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Analytic solution for u

Assume A, Agy are known.

u has the form u(r, t) = r=Y2[w(r, t) + w(r, t)].
w(r,t) = vo(t) + 71(t)r contains BCs.

w(r,t) =021 an(t)Yn(r) contains plasticity.
an(t) is given by the equation

an(t) = ©3,C0SCr\/ Apt + Capsinc/Ant

\/>/ )sin ¢ v/ An(t — s)ds,

Jie F(r t)gn(r)dr
_ 2Jr;
PO = R ar

where f = L(W) + r3/2c2f,()).

LA-UR-12-xxxxx

18



Numerical implementation

Choose number of grid points nr through shell, number of
time steps nt, and number of eigenmodes n/.

Numerical quadrature in time and space, including hereditary
integral.

Take W(r, t) = Y7, a,(t)¥n(r) at each time step and grid
point.

Use material model to partition total strain (from u) into
elastic (¢) and plastic (e?) components.

At each time step, iterate to find €P, A, and w.

Numerical error arises from quadrature, series truncation, and
discretization in computing €P.
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Self-convergence for test problem

e Consider convergence of analytic solution in nr, nt, nl.
@ Compute to a final time of T = 2 microseconds.

@ At inner radius r;, impose void displacement BCs: u(r;, t) = 0.

@ At outer radius r,, impose time-varying smooth jump
displacement BCs.

Outer radius displacement vs. time

1210°

Displacement (m)

/
: .

5107 0 5107

"

110° 1510° 210° 2510°

time (s)
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Self-convergence: Convergence in space

Take nt = 8000, n/ = 300.

Spatial convergence of Spatial convergence of
radial plastic strain vs. time radial plastic strain vs. time
on outer radius (nt=8000, nl=300) on outer radius {nt=8000, nl=300)
000015 — 150210
15107
0.0001 * 1.408 10" o
: v
tl tlw 496 10
8 © y/
s B 1asa10t
e —nr=300 = . J _|—nr=300
w —nr=600 LS8z —nr=600
- —nr=800 L 4 —nr=800
—nr=1200 // —nr=1200
——nr=1500 148810 ——nr=1500
510° 1486107 // /

To110% 1510° 210° 25107 1005107 1.0110° 101510° 10210° 1.02510° 1.0310° 1.03510°

Time (s) Time (s)

5107 0 510

Figure: Left: nr convergence plot of €f. vs. time at r,. Right: Zoomed in
plot of €?.
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Self-convergence: Convergence in time

Take nr = 1200, n/ = 300.

Time convergence of Time convergence of
radial stress vs. time at radial stress vs. time at
) inner radius ) inner radius
210° 1.726 10 - -
—nt=2000 —nt=2000
—nt=2500 f | —nt=2500
. 15107 |- —nt=3000 % ﬁnzung —  nt=3000 [
o —nt=3500 § i g —ht=3500
5 el T % v ——nt=4000| |
[} 0
o o
: : N
w 1 o 1
T ] 5 \§
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4 J ] i3 f
0 - 1 171810° / \
510° i 1716 10° i

5107 0 510’ 110° H

Time (s) Time (s)

1510%  210%  2510° 17710%.772109 774109 776109 778 10% 78 10%1.782 101 784 10°

Figure: Left: nt convergence plot of o, vs. time at r;. Right: Zoomed in
plot of o,,.
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Self-convergence: Convergence in eigenmode

Compute through shell at final time T = 2 microseconds. Take

nr = 1200, nt = 3500.

Eigenmode convergence of
displacement vs. r through shell

at time T=2 microseconds
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= '§
% 810° ;
: /
3 s —nl=100|_|
] =
s ]g —nl=150
I —nl=200| |
a / —nl=250
. ——nl=300_|
210° i i
0.008 oot 0012 0014 0016 0018 0.0z 0022
r(m)

Eigenmode convergence of
displacement vs. r through shell
at time T=2 microseconds
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Figure: Left: n/ convergence plot of u vs. r at time T = 2 microseconds.

Right: Zoomed in plot of u.
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Self-convergence: Quantitative analysis |

e We compute L}(0, T) norm of percent errors of plastic strain
relative to reference solution computed on extremely fine
mesh to test spatial convergence.

@ The order of convergence is 2.25.

Log-log plot of L1(0,T) norm

of % error between radial
plastic strain, reference at r,vs.nr
0

™

Iog(Lw(O,T) norm of % error)

log nr

Figure: Log-log plot of L1(0, T) norm of percent error of €, at r, vs. nr.
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Self-convergence: Quantitative analysis Il

e We compute L1(0, T) norm of percent errors of stress relative
to reference solution computed on extremely fine mesh to test
time convergence.

@ The order of convergence is 2.

Log-log plot of L1(0,T) norm

of % error between radial stress,
reference at rvs. nt

Iog(Lw(O,T) norm of % error)

log nt

Figure: Log-log plot of Ll(O, T) norm of percent error of o,, at r; vs. nt.
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Self-convergence: Quantitative analysis 11

e We compute LY(r;, r,) norm of percent errors of displacement
relative to reference solution computed on extremely fine
mesh to test eigenmode convergence.

@ The order of convergence is 3.2.

Log-log plot of L1(ri,r°) norm
of % error between u, reference

5 __at T=2 microseconds vs. nl

Iog(Lw(O,T) nhorm of % error)

log nl

Figure: Log-log plot of L(r;, r,) norm of percent error of u through shell

at T = 2 microseconds vs. nl.
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Summary

@ We describe the Bodner-Partom constitutive model of plastic
flow for a solid under small deformation.

@ We derive an analytic solution for displacement in the form of
an infinite series.

@ We demonstrate convergence of a truncated solution under
spatial, time, and eigenmode refinement.
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Future work

@ Compare analytic solution to LANL physics code.

@ Derive and study solution for other boundary conditions
(Neumann, Robin).

@ Derive and study solution for finite deformations.

LA-UR-12-xxxxx

18/18



