

LA-UR-12-22322

Approved for public release; distribution is unlimited.

Title: Small deformation viscoplastic dynamic sphere problem

Author(s): Chabaud, Brandon M.
Brock, Jerry S.
Williams, Todd O.

Intended for: Society for Industrial and Applied Mathematics 2012 Annual Meeting,
2012-07-09/2012-07-13 (Minneapolis, Minnesota, United States)

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Small deformation viscoplastic dynamic sphere problem

Brandon Chabaud* Jerry Brock Todd Williams

Computational Physics Division
Los Alamos National Laboratory

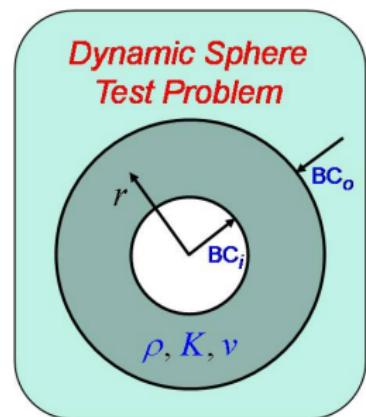
July 11, 2012

Research objectives

- Obtain analytic solution to dynamic sphere test problem
- Develop software to evaluate solution
- Demonstrate 'convergence' of computed solution

Schematic of dynamic sphere problem

- Analytic solution includes:
 - Dirichlet BC: Displacement
 - Neumann BC: Strain
 - Robin BC: Stress
- Time-varying BCs applied at r_i, r_o
- This talk focuses only on Dirichlet (displacement) BCs



Outline

- Describe Bodner-Partom model of viscoplasticity.
- Describe Bodner-Partom dynamic sphere problem.
- Derive series solution for displacement.
- Describe numerical implementation of analytic solution.
- Demonstrate self-convergence of solution.

Conservation law equations for isotropic viscoplastic material

- Formulated in material coordinates, so mass balance satisfied
- Constant temperature, so no energy equation
- Variables:
 - $u(x, t)$: displacement
 - $\epsilon(x, t) = \frac{1}{2}(\nabla u + \nabla u^T)$: total strain tensor
 - $\epsilon^P(x, t)$: plastic strain tensor

$$\rho \ddot{u} = \nabla \cdot \sigma + b$$

$$\sigma = C(\epsilon - \epsilon^P)$$

$$u(x, 0) = u^{(0)}(x), \quad \dot{u}(x, 0) = u^{(1)}(x)$$

$$u|_{\partial\Omega} = u_b(x, t)$$

Bodner-Partom viscoplastic constitutive model

The constitutive model variables are

- $\epsilon^p(x, t)$: plastic strain tensor
- $Z(x, t)$: isotropic hardening variable

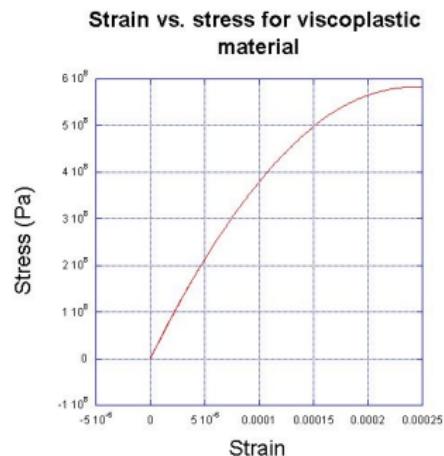
and the equations of the model are

$$\dot{\epsilon}^p = G\left(\frac{|S|}{Z}\right) \frac{S}{|S|}$$

$$\dot{Z} = \gamma(Z) G\left(\frac{|S|}{Z}\right) |S|$$

$$\epsilon^p(x, 0) = \epsilon^{p,(0)}(x), \quad Z(x, 0) = Z^{(0)}(x)$$

where $S(x, t) = \sigma - \frac{1}{3} \text{tr} \sigma I$ is the stress deviator.



Radially symmetric dynamic sphere IVP

Let $\lambda = -C\epsilon^P$ be plastic stress tensor. In spherical coordinates,

$$c_r^{-2}\ddot{u} = u'' + \frac{2}{r}u' - \frac{2}{r^2}u + c_r^{-2}f_r(\lambda)$$

$$\lambda_{rr} = -C_{rrrr}\epsilon_{rr}^P - 2C_{rr\theta\theta}\epsilon_{\theta\theta}^P$$

$$\lambda_{\theta\theta} = -C_{rr\theta\theta}\epsilon_{rr}^P - (C_{rrrr} + C_{rr\theta\theta})\epsilon_{\theta\theta}^P$$

$$u(r, 0) = d_r^0(r) \quad \dot{u}(r, 0) = v_r^0(r) \quad \epsilon_{rr}^P(r, 0) = 0 \quad \epsilon_{\theta\theta}^P(r, 0) = 0$$

$$u(r_i, t) = \text{BC}_i(t) \quad u(r_o, t) = \text{BC}_o(t)$$

where

$$f_r(\lambda) = b_r + \frac{1}{\rho}[\lambda'_{rr} + \frac{2}{r}(\lambda_{rr} - \lambda_{\theta\theta})].$$

Analytic solution for u

- Assume λ_{rr} , $\lambda_{\theta\theta}$ are known.
- u has the form $u(r, t) = r^{-1/2}[\bar{w}(r, t) + \tilde{w}(r, t)]$.
- $\bar{w}(r, t) = \gamma_0(t) + \gamma_1(t)r$ contains BCs.
- $\tilde{w}(r, t) = \sum_{n=1}^{\infty} a_n(t) \psi_n(r)$ contains plasticity.
- $a_n(t)$ is given by the equation

$$a_n(t) = c_{3,n} \cos c_r \sqrt{\lambda_n} t + c_{4,n} \sin c_r \sqrt{\lambda_n} t + \frac{1}{c_r \sqrt{\lambda_n}} \int_0^t F_n(s) \sin c_r \sqrt{\lambda_n} (t-s) ds,$$

$$F_n(t) = c_r^2 \frac{\int_{r_i}^{r_o} \tilde{f}(r, t) \psi_n(r) dr}{\int_{r_i}^{r_o} r \psi_n^2(r) dr}$$

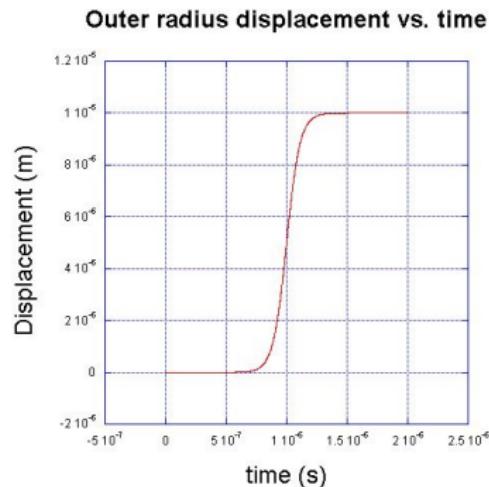
where $\tilde{f} = L(\tilde{w}) + r^{3/2} c_r^{-2} f_r(\lambda)$.

Numerical implementation

- Choose number of grid points nr through shell, number of time steps nt , and number of eigenmodes nl .
- Numerical quadrature in time and space, including hereditary integral.
- Take $\tilde{w}(r, t) = \sum_{n=1}^{nl} a_n(t) \psi_n(r)$ at each time step and grid point.
- Use material model to partition total strain (from u) into elastic (ϵ) and plastic (ϵ^P) components.
- At each time step, iterate to find ϵ^P , λ , and u .
- Numerical error arises from quadrature, series truncation, and discretization in computing ϵ^P .

Self-convergence for test problem

- Consider convergence of analytic solution in nr , nt , nl .
- Compute to a final time of $T = 2$ microseconds.
- At inner radius r_i , impose void displacement BCs: $u(r_i, t) = 0$.
- At outer radius r_o , impose time-varying smooth jump displacement BCs.



Self-convergence: Convergence in space

Take $nt = 8000$, $nl = 300$.

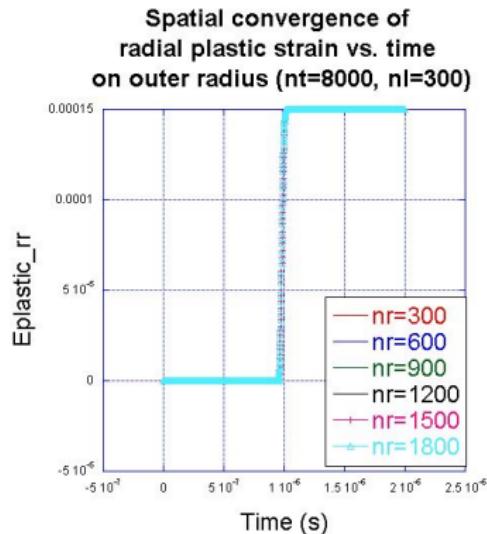
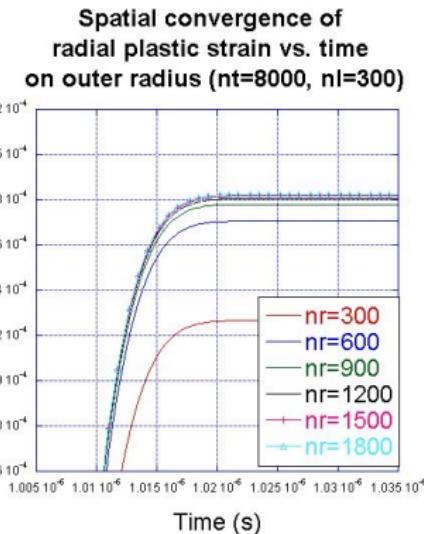


Figure: Left: nr convergence plot of ϵ_{rr}^p vs. time at r_o . Right: Zoomed in plot of ϵ_{rr}^p .

Self-convergence: Convergence in time

Take $nr = 1200$, $nl = 300$.

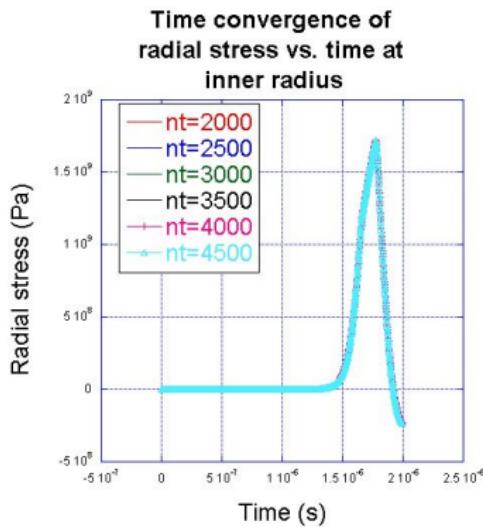
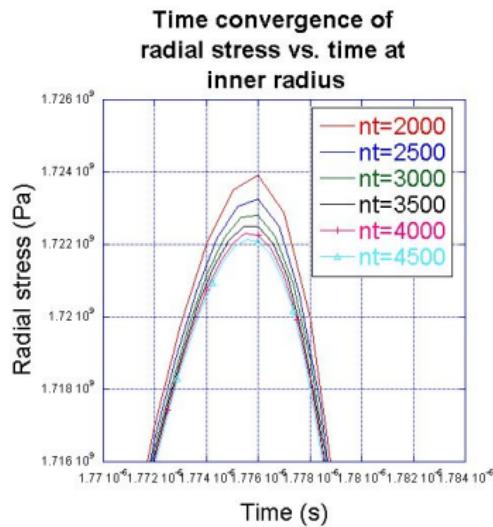


Figure: Left: nt convergence plot of σ_{rr} vs. time at r_i . Right: Zoomed in plot of σ_{rr} .

Self-convergence: Convergence in eigenmode

Compute through shell at final time $T = 2$ microseconds. Take $nr = 1200$, $nt = 3500$.

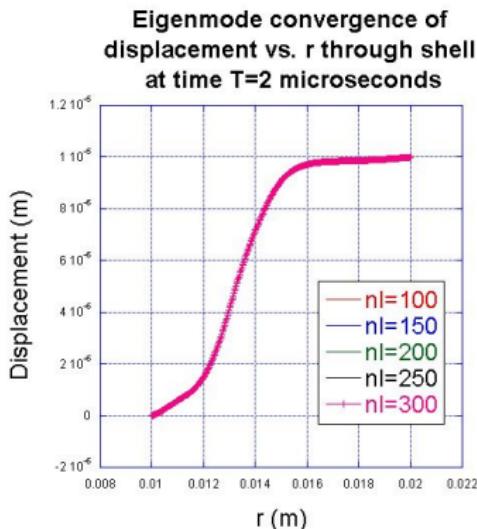
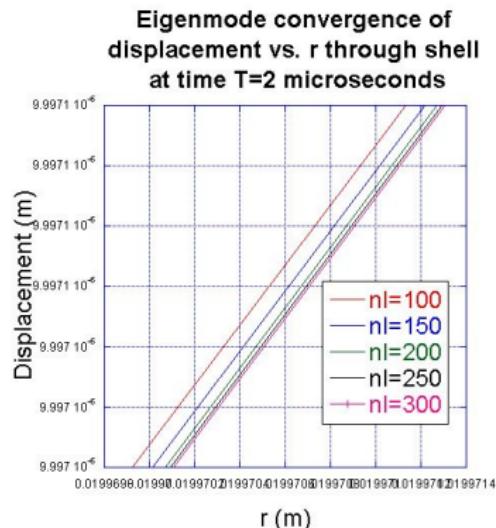


Figure: Left: nl convergence plot of u vs. r at time $T = 2$ microseconds. Right: Zoomed in plot of u .

Self-convergence: Quantitative analysis I

- We compute $L^1(0, T)$ norm of percent errors of plastic strain relative to reference solution computed on extremely fine mesh to test spatial convergence.
- The order of convergence is 2.25.

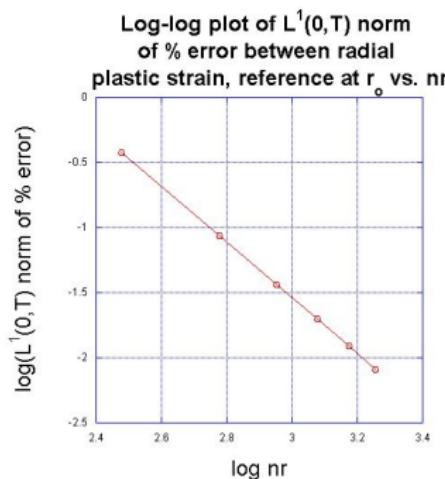


Figure: Log-log plot of $L^1(0, T)$ norm of percent error of ϵ_{rr}^p at r_o vs. nr .

Self-convergence: Quantitative analysis II

- We compute $L^1(0, T)$ norm of percent errors of stress relative to reference solution computed on extremely fine mesh to test time convergence.
- The order of convergence is 2.

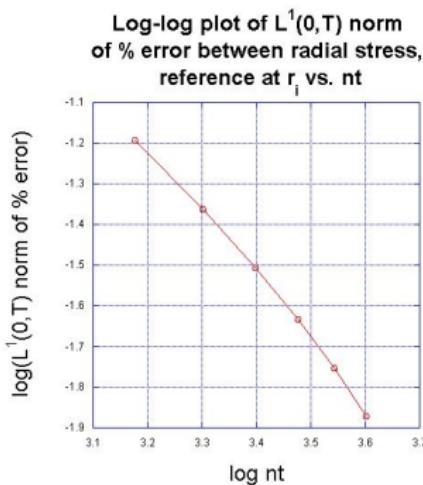


Figure: Log-log plot of $L^1(0, T)$ norm of percent error of σ_{rr} at r_i vs. nt .

Self-convergence: Quantitative analysis III

- We compute $L^1(r_i, r_o)$ norm of percent errors of displacement relative to reference solution computed on extremely fine mesh to test eigenmode convergence.
- The order of convergence is 3.2.

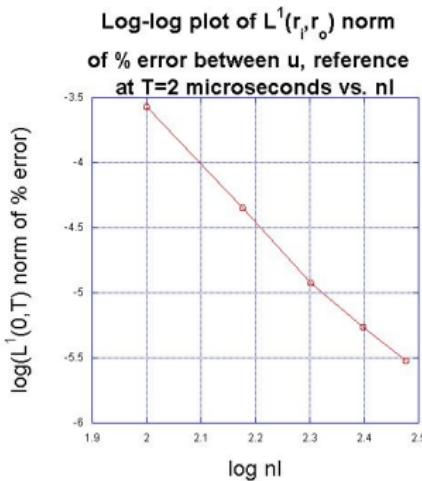


Figure: Log-log plot of $L^1(r_i, r_o)$ norm of percent error of u through shell at $T = 2$ microseconds vs. nl .

Summary

- We describe the Bodner-Partom constitutive model of plastic flow for a solid under small deformation.
- We derive an analytic solution for displacement in the form of an infinite series.
- We demonstrate convergence of a truncated solution under spatial, time, and eigenmode refinement.

Future work

- Compare analytic solution to LANL physics code.
- Derive and study solution for other boundary conditions (Neumann, Robin).
- Derive and study solution for finite deformations.