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Abstract. We present an efficient algorithm to generate random graphs 
with a given expected degree sequence. Existing algorithms run in O(N2) 
time where N is the number of nodes. We prove that our algorithm runs 
in O(N.+ M) time where M is the number of edges. For expected degree 
sequences with finite mean, this is O(N) as N -+ 00. 

1 Introduction 

Random graph models are regularly used for studying networks with random 
processes such as social networks with epidemic or rumor spreading, or the In­
ternet with web surfers seeking information. Capturing the degree distribution 
is one of the most important goals in creating a model and some well-understood 
graph models have been developed where the degree distribution is controlled. 
In this paper we focus on the model of Chung and Lu [4] which generates a 
random graph with a given expected degree sequence. 

Because application networks are often very large, efficient random graph 
generation is important to evaluate the models and processes. Although many 
theoretical results are known about the Chung-Lu model [2,9,4- 6]' the algo­
rithms used for generating such graphs are inefficient. In this paper we intro­
duce a new algorithm which generates Chung-Lu random graphs in time that is 
O( M + N) where M is the number of edges and N the number of nodes. In most 
relevant cases we are interested in distributions for which the average degree is 
finite, so M is proportional to N. For such a distribution the runtime is O(N). 
This is a significant improvement over previous algorithms that require O(N2) 
runtime. 

1.1 Model description 

The basic random graph model is the Erdos- Renyi graph G(N,p) with N nodes 
0, 1, ... , N - 1. Each pair of nodes has an edge with probability p, and edges 
between a pair of nodes are assigned independently of one another. The expected 
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degree of a node is /'i, = p(N - 1). Typically we consider graphs for which /'i, is 
0(1) as N --+ 00, so p is small and the graph is sparse. Under such conditions, the 
expected degree approaches pN as N --+ 00. The obvious algorithm to generate 
these graphs requires considering each of the 0(N2) pairs of nodes independently 
and assigning an edge with probability p. However, it has been shown that the 
runtime can be reduced to O(N + M) where N is the number of nodes and M 
the number of edges [1]. 

The degree distribution resulting from the Erdos- Renyi model is binomial, 
and in the large N, constant pN limit it approaches a Poisson distribution with 
mean pN. Many real world graphs have much more pronounced heterogeneity in 
degrees [10,2]. This has led to models which attempt to incorporate more hetero­
geneity. Some of these models retain independence of edges but allow different 
individuals to have different expected degree. Of these, the most prominent was 
introduced by Chung and Lu [4]. In this model, each node u is assigned a weight 
Wu which we can assume is chosen from a distribution with density p. We do not 
need to restrict Wu to be an integer. We define w = Lu wu/N to be the average 
weight. Two nodes u and v with weights Wu and Wv are then joined by an edge 
with probability Pu ,v = wuwv/Nw. Looking at all nodes v =1= u, we anticipate 
that the expected degree of u is Lv;>fu wuwv/Nw = Wu - w;jNw. In a large 
graph this typically converges to Wu. So the weight Wu represents the expected 
degree of node u in a large graph. 

We note that in some cases it is possible that Wu Wv / Nw > 1. In this case, 
we set Pu,v = 1, but the expected degree of u and v will be less than Wu or 
W v . A few other approaches have been introduced to produce related graphs 
that avoid this difficulty in other ways. For example, we could define Pu,v = 
1 - exp( -wuwv/Nw) or Pu,v = wuwv/[Nw + wuwv] [11,3,9]. Typically as N 
grows the difference between these approaches is negligible because wuwv/N --+ 
o and thus the leading order terms for Pu,v are the same. However, for some 
distributions p, the frequency of nodes with very high degree is large enough 
that as the number of nodes grows, the maximum weight also grows sufficiently 
quickly that Wu Wv / N does not tend to zero for the nodes with highest weight 
in which case these models differ. We will focus our attention on the Chung-Lu 
graphs, though our algorithm can be easily translated to the others. 

The number of nodes in the graph is taken to be N and we define M = Nw /2. 
This value of M is a mild overestimate of the expected number of edges. A 
number of theoretical results are known about this model [2,9,4,6,5] . Although 
Ref. [7] shows a fast algorithm to generate approximate Chung-Lu graphs in 
the bipartite case, there appears to be relatively little work on algorithms to 
efficiently generate Chung-Lu graphs. 

We begin our approach by showing a fast algorithm for generating Erdos­
Renyi graphs. This approach is by itself not a significant result (indeed closely 
related algorithms exist already [1]), but it serves as an example to motivate 
our main algorithm. Once we introduce the main algorithm, we prove that its 
expected runtime is O(N + M). We finally discuss other applications and impli­
cations of this algorithm. 
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2 Erdos-Renyi case 

We begin by describing our algorithm in a simpler context. The Erdos- Renyi 
network is a special case of Chung-Lu networks in which all individuals have the 
same weight w. We find that Pu ,v = P = wiN for all pairs u and v. 

We begin with the vertices 0, 1, ... , N - 1, describe the obvious inefficient 
O(N2) algorithm, and show how it can be naturally sped up to an algorithm 
that is O(N +M). We begin by setting u = 0. Then for each v = 1, 2, ... , N-1 
we generate a random number r. If r < p, then we place an edge from u to v. 
Once all possible choices for v have been considered, we set u = 1, and then 
consider each v = 2, 3, ... , N - 1. We continue repeating this process until all 
possible choices for u have been considered. This process is O(N2) because it 
considers each pair of nodes separately. 

This algorithm is slow because considerable effort is spent on node pairs 
which never form edges. The algorithm can be sped up by finding a way to skip 
these pairs. Returning to the first pass through the algorithm described above 
with u = 0, let VI be the first neighbor with which u forms an edge. The value 
of VI is u + 1 + "8 where /j is the number of pairs considered that do not form 
edges before the first successful edge formation. Similarly, the second neighbor 
V2 is VI + 1 + /j where /j is the new number of pairs that do not form edges. The 
probability of a particular value of /j is (l-p )Dp (in fact, /j is negatively binomially 
distributed). Thus, rather than considering every node after u as above, we can 
find the next neighbor in a single step by choosing r uniformly in (0,1) and 
setting /j = lin r I In(l - p)J, taking /j = ° if P = 1. Thus rather than considering 
each pair of nodes separately, the algorithm considers just those pairs of nodes 
which form edges. The full procedure is presented in Algorithm 1. 

Algorithm 1 G(n,p) 
Input: number of nodes n, and probability 0 < p < 1 
Output: G(n,p) graph G(V, E) with V = {O, ... , n - I} 

E+-0 
for u = 0 to n - 2 do 

v+-u+l 
while v < n do 

choose r E (0,1) uniformly at random 

v +- v + llo~N=~) J 
if v < n then 

E +- EU {u ,v} 
v+-v+l 

Theorem 1. Algorithm 1 runs in O(N + M) time 

Proof. The proof of this theorem is relatively straightforward. We simply count 
the number of times that each loop executes. 
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The outer loop is executed N - 1 times. To calculate the number of executions 
of the inner loop we separate those "successful" iterations where the new v is at 
most N - 1 from those "unsuccessful" iterations with v ::::: N. In each pass through 
the outer loop, the inner loop executes once unsuccessfully. The total number of 
successful executions of the inner loop is exactly the number of edges that are 
generated which is O(M). Combining the total number of passes through the 
outer loop with the number of successful and unsuccessful passes through the 
inner loop the runtime is O(M + N). 0 

A similar algorithm is described in [1] which avoids the unsuccessful iterations 
of the inner loop. However, our approach lends itself to the generalization we 
describe below. 

3 Chung-Lu case 

Having set the framework with the Erdos- Renyi case we are ready to consider 
an algorithm to create Chung-Lu networks where not all nodes have the same 
weight. As before, we want to skip as many nodes as possible, but this is more 
difficult because the probabilities that any pair of nodes have an edge are not 
fixed. To simplify this, we assume that we have a list W of the weights in the 
network, and that this list is sorted in descending order. 

The obvious O(N2) algorithm considers each pair u and v and assigns an 
edge with probability Pu ,v = wuwv/Nw. We consider a mildly different O(N2) 
algorithm, which is easily modified the same way we altered the Erdos- Renyi 
algorithm to create an O(M + N) algorithm. 

Starting with u = 0, we consider every v = 1, 2, ... , N -1 in turn. We note 
that as v increases, Pu,v decreases monotonically, so we can avoid recalculating 
P for each v by setting P = Pu,u+l = wuwu+dNw initially and discarding each v 
with probability I - p. When we arrive at the first node Vl which is not discarded, 
we call Vl a potential neighbor. We have selected Vl with probability p, but the 
probability of an edge between Vl and u is actually q :s p. We calculate q = PU ,Vl' 
and then assign an edge with probability q/p. We then set p = q and continue 
on, discarding nodes with probability 1 - P until we have considered all possible 
nodes. We then increase u by 1 and repeat. This algorithm is O(N2). 

In the algorithm just described, P is fixed at each step until a potential 
neighbor is identified. The same method used in the Erdos- Renyi approach can 
quickly identify the potential neighbors Vi without considering each intermediate 
v in turn. Starting with u = 0 and using p = Pu,u+l, we choose some random 
number r uniformly in (0,1) and find the first potential neighbor Vl = U + 1 + 8 
where 8 = llnr/ln(l- p)J. If P = 1, we take 8 = O. Once Vl is identified, we 
assign an edge between u and Vl with probability q/ p where q = PU,Vl. We then 
set P = q and continue, jumping immediately to the next potential neighbor V2, 

possibly placing an edge. Again resetting p, we continue until there are no more 
nodes to consider. We then increase u by 1 and repeat. Ultimately, u takes all 
possible values, and the set of edges is complete. Note that for given u the value 
of P decreases monotonically, so the expected value of 8 increases monotonically. 



The Chung-Lu graph generating procedure is presented in Algorithm 2. 

Algorithm 2 Chung-Lu Graph 
Input: list of n weights, W = Wo, . .. , Wn-l, sorted in decreasing order 
Output: Chung-Lu graph G(V, E) with V = {O, ... , n - I} 

E+-0 
S +- Eu Wu 

for u = 0 to n - 2 do 
v+-u+1 
p +- min(wuwv/S, 1) 
while v < n do 

if poll then 
choose r E (0,1) uniformly at random 

v+-v+ l~J log(l-p) 

if v < n then 
q +- min(wuwv/S, 1) 
choose r E [0,1) uniformly at random 
if r < q/p then 

E +- Eu {u,v} 
p+-q 
v+-v+ 1 

3.1 Efficiency 

5 

For the Chung-Lu case, it is more difficult to bound the number of steps be­
cause there are occurrences where a potential neighbor Vi is identified, but upon 
closer inspection no edge is placed to Vi. We refer to these as excess potential 
neighbors. Let L be the total number of excess potential neighbors generated by 
the algorithm. We prove that L = O(N + M), and so the algorithm executes in 
O(N + M) time. 

Theorem 2. Algorithm 2 executes in O(N + M) time. 

Proof. We follow a similar argument to the Erdos- Renyi case, and conclude that 
the execution time is O(N + M + L). We will show that L = O(N + M), and 
so the total runtime is O(N + M). However, the calculation of L is considerably 
more technical, and is the focus of our proof. 

Consider a given u and some given V > u. Let Pu ,v('[J) be the a priori prob­
ability that the value of pis p when the inner loop reaches (or passes) V while 
assigning edges for u. Define Pu,v = L:p Pu,v(p)p, the a priori probability that 
v will be chosen as a potential neighbor of u. The probability that v will be 
selected as an excess potential neighbor is Pu,v -Pu,v. We seek to calculate Pu,v. 

We know that Pu,u+l = Pu,u+l. We look to find Pu,v+l - Pu,v for all v. This 
requires calculating the change in Pu ,v (p) from v to v + 1. If v is not chosen as 
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a potential neighbor, t here is no change to p, but if v is chosen, then p changes 
from p to Pu,v and so t he change in p is Pu,v - p. This occurs with probability p. 
So t he change in Pu,v is the expected change in p which is 

L1Pu,v = Pu,v+ l - Pu,v , 

= L Pu,v(p )p (Pu,v - p) , 
p 

= Pu ,vPu,v - L Pu,v(p)p2 , 

P 

< P, (p - P, ) _ u,v u ,v u ,v, (1) 

using Jensen 's inequality to say that the expect ation of p2 is at least the square 
of t he expect ation of p. Note that Pu,v decreases monotonically with v and that 
Pu,v cannot be less than Pu,v. Let L1Pu,v = Pu,v+l - Pu,v . To make L1Pu,N-l 
defined, it is convenient to set Pu,N to be the value P would take for node N if 
the node list were ext ended by adding an additional node with weight O. 

We now define ((u) to be the number of excess potential neighbors node u 
is expected to have, 

N- l 

( (u ) = L Pu,v - Pu,v · (2) 
v=u+ l 

From our bound (1) for L1Pu,v, we can bound ((u) as 

By analogy with the integral - J: ¢' (x) /¢( x) dx , we anticipate that this sum­
mation behaves like a logarithm, and we use this to bound the sum. We note 
t hat In ( l + x) :::: x , implying - x:::: - In (l + x). Then , 

- L1Pu,v ::; - In (1 + L1Pu,v ) 
Pu,v Pu,v 

1 
Pu v + L1Pu v < - n ' , 

- Pu,v ' 

< - In Pu,v+l 
- Pu,v ' 

::; In Pu,v - In Pu,v+ l . 

So ((u) can be bounded by a telescoping summation, 

((u) ::; InPu,v+l -lnPu,N. 

It is difficult to bound Pu,N away from zero. So inst ead we break the sum in (2) 
into terms for which P can be easily bounded away from zero and those for 
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which it is more difficult. Set l to be the first node such that WI < 1, so Wl-l 2: l. 
Assume for now u < l. We have 

1-1 

((u):S L 
v=u+l 

-!J.p ' N-l 

P u,v + L Pu ,v - Pu,v . 
u ,V v=l 

The first summation is at most In Pu,u+l - In Pu,l = In[Pu ,u+d Pu,LJ. We have 
Pu,u+l = Pu,u+l = min(wuwu+dNw, 1) :S wuwu+dNw while Pu,l 2: wuwl-dNw 2: 
wu/Nw. Thus the first summation is at most lnwu +l, which in turn is at most 

Wu' 
The second summation can be bounded by observing that the expected num­

ber of excess potential neighbors in [l, N - 1] is at most the expected number 
of potential neighbors in [l, N - 1]. Assuming that u has at least one potential 
neighbor v 2: l, the probability for any later node to be a potential neighbor is 
at most wuwv/Nw < wu /Nw. There are N - 1 - l nodes in this region, which 
is bounded by N, so u has at most 1 + Nwu/Nw expected further potential 
neighbors in [l , N - 1]. This gives an upper bound on the second sum. 

If u 2: l , then the approach used above to bound the second summation gives 
an upper bound of ((u) :S 1 + wuN/Nw. We can add Wu to this and it remains 
an upper bound. Thus 

((u) :S Wu + 1 + ~ , 
w 

for any u. We sum ((u) over all nodes and get 

N-l 

L = L ((u), 
u=O 

N-l 

'"' Wu :S ~ Wu + 1 + -=- , 
u=o w 

Nw 
:S Nw + N + ---=- , 

w 
:S 2M + 2N. 

Therefore L = O(N + M), and we have that O(N + M + L) = O(N + M). So 
the algorithm executes in O(N + M) time. D 

4 Examples 

We demonstrate the runtime of Algorithm 2 using three different weight distri­
butions. The first has weights chosen uniformly in (1,50), giving an average of 
25 .5. The second has all weights equal to 25. The third has degrees chosen from 
a power law distribution with exponent r = -2.1, and every weight above 100 
is set to 100, giving an average of about 4.7. We generate graphs on N nodes 
where the weights are chosen from each of these distributions. In Fig. 1 we show 
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Fig. 1. Performance of Algorithm 2 showing linear scaling in the number of nodes and 
edges N + M. The 3 curves are data for weights chosen from the following distributions 
(red circles) uniform on (1,50); (green triangles) constant w = 25; and (blue squares) 
power law with exponent 1= -2.1. (a) Running time vs number of nodes and edges. 
(b) Estimate of the coefficient. 

that the execution time is O(M + N). In contrast, the standard algorithm for 
generating these scales like O(N2). 

The proof of Theorem 2 uses relatively crude bounds to show that L = 

O(M + N). Reducing L reduces the runtime, so we now look at L more closely. 
The proof shows that to have larger L requires that .tJ.P be relatively large 
compared to P. Further, in cases where typical weights are larger than 1, the . 
maximum value of L is not O(M) , but rather the average of In Wu over all u. 
This suggests a competition: increasing all weights increases the average of In wu , 

but at the same time it tends to decrease .tJ.Pj P . To investigate this further, we 
show the total number of excess potential neighbors generated by the algorithm 
in Fig. 2. In Fig. 2(a) we consider the same three distributions as before. We 
find that L j M, the number of excess potential neighbors created for each edge 
is largely independent of the number of nodes, and if all nodes have the same 
weight L = O. 

In Fig. 2(b) we show the interplay of heterogeneity and average weight more 
closely. We considered two classes of distributions. In one, w is chosen uniformly 
in (w - 5, w + 5) , and in the other w is chosen uniformly in (1,2w - 1). We 
see that the number of excess potential neighbors generated per node L j N de-
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creases in the first case and increases slowly in the second case. In both cases the 
number per edge L / M would decrease, so for these distribution our proof uses 
a significant overestimate of L, and so the excess potential neighbors become a 
negligible contribution to runtime as graph size increases. 

0.4 
(a) 

0.3 

~ 0.2 
......... 
...J 0.1 • • • • • • • • • 

0.0 .. .. .. .. .. .. .. .. .. • 

- 0.1 3 
10 104 105 106 107 

M 
1.8 
1.6 (b) 

1.4 v----1.2 
<: 1.0 
:::J 0.8 

0.6 
0.4 ----0.2 • • • • • O·~O 20 30 40 50 60 70 80 90 100 

w 

Fig. 2. Fraction of "excess potential neighbors" LIM generated by Algorithm 2. (a) 
The fraction LIM vs total number of edges in the graph M for the three degree 
distributions of Fig.!. (b) The fraction L IN for uniformly distributed sequences with 
fixed variance w = U(w - 5, w + 5) (blue circles) , and with fixed coefficient of variance 
std(w )lw, w = U(1, 2w - 1) (green triangles). 

5 Discussion 

We have developed an algorithm for creating Chung-Lu random graphs in O(M + 
N) runtime. If the average weight is bounded as N grows, this is O(N) runtime. 

Our algorithm may be generalized to other contexts. In particular, it may 
also be used to generate the random graphs introduced in Refs. [11,3]. This 
algorithm requires first that there is a single parameter w assigned to each node 
which determines the probability that any two nodes share an edge, and second 
that the nodes may be ordered in such a way that if u appears before VI which 
appears before V2, then the probability that u has an edge with VI is at least 
the probability that u has an edge with V2. It is possible to generate many other 
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graph models in this manner, including models which have assortative mixing 
(nodes with similar weights preferentially contact one another). 

Some graph models such as the configuration model do not assign edges 
independently, and so have somewhat different generation algorithms. In the 
configuration model each node is assigned a degree a priori, and then nodes 
are wired together subject to the assigned degrees as a constraint. An efficient 
algorithm to do this begins by placing nodes into a list once for each edge the 
node will have. The list is then shuffled, and adjacent nodes are joined by an 
edge. This has the unfortunate consequence that sometimes edges are repeated, 
nodes may have edges to themselves, and if the sum of degrees is odd, a node 
is left unpaired. Typically the number of such edges is small compared to the 
number of nodes, so these are simply discarded. It is possible to avoid these cases, 
but even the most efficient known algorithms that produce true graphs with the 
imposed degree distribution are substantially slower than O(N + M) [8] . 
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