

LA-UR- 11-01482

Approved for public release;
distribution is unlimited.

<i>Title:</i>	Efficient generation of networks with given expected degrees
<i>Author(s):</i>	Aric Hagberg & Joel Miller
<i>Intended for:</i>	Full Paper/Report for a Proceedings at a Workshop on Algorithms and Models for the Web Graph (WAW 2011).

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Efficient generation of networks with given expected degrees

Joel C. Miller^{1,2} and Aric Hagberg³

¹ Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston, MA 02115, USA

² Fogarty International Center, National Institute of Health, Bethesda, MD 20892, USA, joel.c.miller.research@gmail.com

³ Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA, hagberg@lanl.gov

Abstract. We present an efficient algorithm to generate random graphs with a given expected degree sequence. Existing algorithms run in $\mathcal{O}(N^2)$ time where N is the number of nodes. We prove that our algorithm runs in $\mathcal{O}(N + M)$ time where M is the number of edges. For expected degree sequences with finite mean, this is $\mathcal{O}(N)$ as $N \rightarrow \infty$.

1 Introduction

Random graph models are regularly used for studying networks with random processes such as social networks with epidemic or rumor spreading, or the Internet with web surfers seeking information. Capturing the degree distribution is one of the most important goals in creating a model and some well-understood graph models have been developed where the degree distribution is controlled. In this paper we focus on the model of Chung and Lu [4] which generates a random graph with a given expected degree sequence.

Because application networks are often very large, efficient random graph generation is important to evaluate the models and processes. Although many theoretical results are known about the Chung-Lu model [2, 9, 4–6], the algorithms used for generating such graphs are inefficient. In this paper we introduce a new algorithm which generates Chung-Lu random graphs in time that is $\mathcal{O}(M + N)$ where M is the number of edges and N the number of nodes. In most relevant cases we are interested in distributions for which the average degree is finite, so M is proportional to N . For such a distribution the runtime is $\mathcal{O}(N)$. This is a significant improvement over previous algorithms that require $\mathcal{O}(N^2)$ runtime.

1.1 Model description

The basic random graph model is the Erdős–Rényi graph $G(N, p)$ with N nodes $0, 1, \dots, N - 1$. Each pair of nodes has an edge with probability p , and edges between a pair of nodes are assigned independently of one another. The expected

degree of a node is $\kappa = p(N - 1)$. Typically we consider graphs for which κ is $\mathcal{O}(1)$ as $N \rightarrow \infty$, so p is small and the graph is sparse. Under such conditions, the expected degree approaches pN as $N \rightarrow \infty$. The obvious algorithm to generate these graphs requires considering each of the $\mathcal{O}(N^2)$ pairs of nodes independently and assigning an edge with probability p . However, it has been shown that the runtime can be reduced to $\mathcal{O}(N + M)$ where N is the number of nodes and M the number of edges [1].

The degree distribution resulting from the Erdős–Rényi model is binomial, and in the large N , constant pN limit it approaches a Poisson distribution with mean pN . Many real world graphs have much more pronounced heterogeneity in degrees [10, 2]. This has led to models which attempt to incorporate more heterogeneity. Some of these models retain independence of edges but allow different individuals to have different expected degree. Of these, the most prominent was introduced by Chung and Lu [4]. In this model, each node u is assigned a weight w_u which we can assume is chosen from a distribution with density ρ . We do not need to restrict w_u to be an integer. We define $\bar{w} = \sum_u w_u/N$ to be the average weight. Two nodes u and v with weights w_u and w_v are then joined by an edge with probability $p_{u,v} = w_u w_v / N \bar{w}$. Looking at all nodes $v \neq u$, we anticipate that the expected degree of u is $\sum_{v \neq u} w_u w_v / N \bar{w} = w_u - w_u^2 / N \bar{w}$. In a large graph this typically converges to w_u . So the weight w_u represents the expected degree of node u in a large graph.

We note that in some cases it is possible that $w_u w_v / N \bar{w} > 1$. In this case, we set $p_{u,v} = 1$, but the expected degree of u and v will be less than w_u or w_v . A few other approaches have been introduced to produce related graphs that avoid this difficulty in other ways. For example, we could define $p_{u,v} = 1 - \exp(-w_u w_v / N \bar{w})$ or $p_{u,v} = w_u w_v / [N \bar{w} + w_u w_v]$ [11, 3, 9]. Typically as N grows the difference between these approaches is negligible because $w_u w_v / N \rightarrow 0$ and thus the leading order terms for $p_{u,v}$ are the same. However, for some distributions ρ , the frequency of nodes with very high degree is large enough that as the number of nodes grows, the maximum weight also grows sufficiently quickly that $w_u w_v / N$ does not tend to zero for the nodes with highest weight in which case these models differ. We will focus our attention on the Chung–Lu graphs, though our algorithm can be easily translated to the others.

The number of nodes in the graph is taken to be N and we define $M = N \bar{w} / 2$. This value of M is a mild overestimate of the expected number of edges. A number of theoretical results are known about this model [2, 9, 4, 6, 5]. Although Ref. [7] shows a fast algorithm to generate approximate Chung–Lu graphs in the bipartite case, there appears to be relatively little work on algorithms to efficiently generate Chung–Lu graphs.

We begin our approach by showing a fast algorithm for generating Erdős–Rényi graphs. This approach is by itself not a significant result (indeed closely related algorithms exist already [1]), but it serves as an example to motivate our main algorithm. Once we introduce the main algorithm, we prove that its expected runtime is $\mathcal{O}(N + M)$. We finally discuss other applications and implications of this algorithm.

2 Erdős–Rényi case

We begin by describing our algorithm in a simpler context. The Erdős–Rényi network is a special case of Chung–Lu networks in which all individuals have the same weight w . We find that $p_{u,v} = p = w/N$ for all pairs u and v .

We begin with the vertices $0, 1, \dots, N - 1$, describe the obvious inefficient $\mathcal{O}(N^2)$ algorithm, and show how it can be naturally sped up to an algorithm that is $\mathcal{O}(N + M)$. We begin by setting $u = 0$. Then for each $v = 1, 2, \dots, N - 1$ we generate a random number r . If $r < p$, then we place an edge from u to v . Once all possible choices for v have been considered, we set $u = 1$, and then consider each $v = 2, 3, \dots, N - 1$. We continue repeating this process until all possible choices for u have been considered. This process is $\mathcal{O}(N^2)$ because it considers each pair of nodes separately.

This algorithm is slow because considerable effort is spent on node pairs which never form edges. The algorithm can be sped up by finding a way to skip these pairs. Returning to the first pass through the algorithm described above with $u = 0$, let v_1 be the first neighbor with which u forms an edge. The value of v_1 is $u + 1 + \delta$ where δ is the number of pairs considered that do not form edges before the first successful edge formation. Similarly, the second neighbor v_2 is $v_1 + 1 + \delta$ where δ is the new number of pairs that do not form edges. The probability of a particular value of δ is $(1-p)^\delta p$ (in fact, δ is negatively binomially distributed). Thus, rather than considering every node after u as above, we can find the next neighbor in a single step by choosing r uniformly in $(0, 1)$ and setting $\delta = \lfloor \ln r / \ln(1-p) \rfloor$, taking $\delta = 0$ if $p = 1$. Thus rather than considering each pair of nodes separately, the algorithm considers just those pairs of nodes which form edges. The full procedure is presented in Algorithm 1.

Algorithm 1 $G(n, p)$

Input: number of nodes n , and probability $0 < p < 1$
Output: $G(n, p)$ graph $G(V, E)$ with $V = \{0, \dots, n - 1\}$

```

 $E \leftarrow \emptyset$ 
for  $u = 0$  to  $n - 2$  do
   $v \leftarrow u + 1$ 
  while  $v < n$  do
    choose  $r \in (0, 1)$  uniformly at random
     $v \leftarrow v + \left\lfloor \frac{\log(r)}{\log(1-p)} \right\rfloor$ 
    if  $v < n$  then
       $E \leftarrow E \cup \{u, v\}$ 
       $v \leftarrow v + 1$ 

```

Theorem 1. *Algorithm 1 runs in $\mathcal{O}(N + M)$ time*

Proof. The proof of this theorem is relatively straightforward. We simply count the number of times that each loop executes.

The outer loop is executed $N - 1$ times. To calculate the number of executions of the inner loop we separate those “successful” iterations where the new v is at most $N - 1$ from those “unsuccessful” iterations with $v \geq N$. In **each pass** through the outer loop, the inner loop executes once unsuccessfully. The total number of successful executions of the inner loop is exactly the number of edges that are generated which is $\mathcal{O}(M)$. Combining the total number of passes **through** the outer loop with the **number** of successful and unsuccessful passes through the inner loop the runtime is $\mathcal{O}(M + N)$. \square

A similar algorithm is described in [1] which avoids the unsuccessful iterations of the inner loop. However, our approach lends itself to the generalization we describe below.

3 Chung-Lu case

Having set the framework with the Erdős–Rényi case we are ready to consider an algorithm to create Chung-Lu networks where not all nodes have the same weight. As before, we want to skip as many nodes as possible, but this is more difficult because the probabilities that any pair of nodes have an edge are not fixed. To simplify this, we assume that we have a list W of the weights in the network, and that this list is sorted in descending order.

The obvious $\mathcal{O}(N^2)$ algorithm considers each pair u and v and assigns an edge with probability $p_{u,v} = w_u w_v / N \bar{w}$. We consider a mildly different $\mathcal{O}(N^2)$ algorithm, which is easily modified the same way we altered the Erdős–Rényi algorithm to create an $\mathcal{O}(M + N)$ algorithm.

Starting with $u = 0$, we consider every $v = 1, 2, \dots, N - 1$ in turn. We note that as v increases, $p_{u,v}$ decreases monotonically, so we can avoid recalculating p for each v by setting $p = p_{u,u+1} = w_u w_{u+1} / N \bar{w}$ initially and discarding each v with probability $1 - p$. When we arrive at the first node v_1 which is not discarded, we call v_1 a *potential neighbor*. We have selected v_1 with probability p , but the probability of an edge between v_1 and u is actually $q \leq p$. We calculate $q = p_{u,v_1}$, and then assign an edge with probability q/p . We then set $p = q$ and continue on, discarding nodes with probability $1 - p$ until we have considered all possible nodes. We then increase u by 1 and repeat. This algorithm is $\mathcal{O}(N^2)$.

In the algorithm just described, p is fixed at each step until a potential neighbor is identified. The same method used in the Erdős–Rényi approach can quickly identify the potential neighbors v_i without considering each intermediate v in turn. Starting with $u = 0$ and using $p = p_{u,u+1}$, we choose some random number r uniformly in $(0, 1)$ and find the first potential neighbor $v_1 = u + 1 + \delta$ where $\delta = \lfloor \ln r / \ln(1 - p) \rfloor$. If $p = 1$, we take $\delta = 0$. Once v_1 is identified, we assign an edge between u and v_1 with probability q/p where $q = p_{u,v_1}$. We then set $p = q$ and continue, jumping immediately to the next potential neighbor v_2 , possibly placing an edge. Again resetting p , we continue until there are no more nodes to consider. We then increase u by 1 and repeat. Ultimately, u takes all possible values, and the set of edges is complete. Note that for given u the value of p decreases monotonically, so the expected value of δ increases monotonically.

The Chung-Lu graph generating procedure is presented in Algorithm 2.

Algorithm 2 Chung-Lu Graph

Input: list of n weights, $W = w_0, \dots, w_{n-1}$, sorted in decreasing order
Output: Chung-Lu graph $G(V, E)$ with $V = \{0, \dots, n-1\}$

```

 $E \leftarrow \emptyset$ 
 $S \leftarrow \sum_u w_u$ 
for  $u = 0$  to  $n-2$  do
     $v \leftarrow u + 1$ 
     $p \leftarrow \min(w_u w_v / S, 1)$ 
    while  $v < n$  do
        if  $p \neq 1$  then
            choose  $r \in (0, 1)$  uniformly at random
             $v \leftarrow v + \left\lfloor \frac{\log(r)}{\log(1-p)} \right\rfloor$ 
        if  $v < n$  then
             $q \leftarrow \min(w_u w_v / S, 1)$ 
            choose  $r \in [0, 1]$  uniformly at random
            if  $r < q/p$  then
                 $E \leftarrow E \cup \{u, v\}$ 
             $p \leftarrow q$ 
             $v \leftarrow v + 1$ 

```

3.1 Efficiency

For the Chung-Lu case, it is more difficult to bound the number of steps because there are occurrences where a potential neighbor v_i is identified, but upon closer inspection no edge is placed to v_i . We refer to these as *excess potential neighbors*. Let L be the total number of excess potential neighbors generated by the algorithm. We prove that $L = \mathcal{O}(N + M)$, and so the algorithm executes in $\mathcal{O}(N + M)$ time.

Theorem 2. *Algorithm 2 executes in $\mathcal{O}(N + M)$ time.*

Proof. We follow a similar argument to the Erdős-Rényi case, and conclude that the execution time is $\mathcal{O}(N + M + L)$. We will show that $L = \mathcal{O}(N + M)$, and so the total runtime is $\mathcal{O}(N + M)$. However, the calculation of L is considerably more technical, and is the focus of our proof.

Consider a given u and some given $v > u$. Let $\rho_{u,v}(\hat{p})$ be the *a priori* probability that the value of p is \hat{p} when the inner loop reaches (or passes) v while assigning edges for u . Define $P_{u,v} = \sum_{\hat{p}} \rho_{u,v}(\hat{p}) \hat{p}$, the *a priori* probability that v will be chosen as a potential neighbor of u . The probability that v will be selected as an excess potential neighbor is $P_{u,v} - p_{u,v}$. We seek to calculate $P_{u,v}$.

We know that $P_{u,u+1} = p_{u,u+1}$. We look to find $P_{u,v+1} - P_{u,v}$ for all v . This requires calculating the change in $\rho_{u,v}(\hat{p})$ from v to $v + 1$. If v is not chosen as

a potential neighbor, there is no change to p , but if v is chosen, then p changes from \hat{p} to $p_{u,v}$ and so the change in p is $p_{u,v} - \hat{p}$. This occurs with probability p . So the change in $P_{u,v}$ is the expected change in p which is

$$\begin{aligned}\Delta P_{u,v} &= P_{u,v+1} - P_{u,v}, \\ &= \sum_{\hat{p}} \rho_{u,v}(\hat{p}) \hat{p} (p_{u,v} - \hat{p}), \\ &= P_{u,v} p_{u,v} - \sum_{\hat{p}} \rho_{u,v}(\hat{p}) \hat{p}^2, \\ &\leq P_{u,v} (p_{u,v} - P_{u,v}),\end{aligned}\tag{1}$$

using Jensen's inequality to say that the expectation of p^2 is at least the square of the expectation of p . Note that $P_{u,v}$ decreases monotonically with v and that $P_{u,v}$ cannot be less than $p_{u,v}$. Let $\Delta P_{u,v} = P_{u,v+1} - P_{u,v}$. To make $\Delta P_{u,N-1}$ defined, it is convenient to set $P_{u,N}$ to be the value P would take for node N if the node list were extended by adding an additional node with weight 0.

We now define $\zeta(u)$ to be the number of excess potential neighbors node u is expected to have,

$$\zeta(u) = \sum_{v=u+1}^{N-1} P_{u,v} - p_{u,v}.\tag{2}$$

From our bound (1) for $\Delta P_{u,v}$, we can bound $\zeta(u)$ as

$$\zeta(u) \leq \sum_{v=u+1}^{N-1} \frac{-\Delta P_{u,v}}{P_{u,v}}.$$

By analogy with the integral $-\int_a^b \phi'(x)/\phi(x) dx$, we anticipate that this summation behaves like a logarithm, and we use this to bound the sum. We note that $\ln(1+x) \leq x$, implying $-x \leq -\ln(1+x)$. Then,

$$\begin{aligned}\frac{-\Delta P_{u,v}}{P_{u,v}} &\leq -\ln \left(1 + \frac{\Delta P_{u,v}}{P_{u,v}} \right), \\ &\leq -\ln \frac{P_{u,v} + \Delta P_{u,v}}{P_{u,v}}, \\ &\leq -\ln \frac{P_{u,v+1}}{P_{u,v}}, \\ &\leq \ln P_{u,v} - \ln P_{u,v+1}.\end{aligned}$$

So $\zeta(u)$ can be bounded by a telescoping summation,

$$\zeta(u) \leq \ln P_{u,v+1} - \ln P_{u,N}.$$

It is difficult to bound $P_{u,N}$ away from zero. So instead we break the sum in (2) into terms for which P can be easily bounded away from zero and those for

which it is more difficult. Set l to be the first node such that $w_l < 1$, so $w_{l-1} \geq 1$. Assume for now $u < l$. We have

$$\zeta(u) \leq \sum_{v=u+1}^{l-1} \frac{-\Delta P_{u,v}}{P_{u,v}} + \sum_{v=l}^{N-1} P_{u,v} - p_{u,v}.$$

The first summation is at most $\ln P_{u,u+1} - \ln P_{u,l} = \ln[P_{u,u+1}/P_{u,l}]$. We have $P_{u,u+1} = p_{u,u+1} = \min(w_u w_{u+1}/N\bar{w}, 1) \leq w_u w_{u+1}/N\bar{w}$ while $P_{u,l} \geq w_u w_{l-1}/N\bar{w} \geq w_u/N\bar{w}$. Thus the first summation is at most $\ln w_{u+1}$, which in turn is at most w_u .

The second summation can be bounded by observing that the expected number of excess potential neighbors in $[l, N-1]$ is at most the expected number of potential neighbors in $[l, N-1]$. Assuming that u has at least one potential neighbor $v \geq l$, the probability for any later node to be a potential neighbor is at most $w_u w_v/N\bar{w} < w_u/N\bar{w}$. There are $N-1-l$ nodes in this region, which is bounded by N , so u has at most $1 + Nw_u/N\bar{w}$ expected further potential neighbors in $[l, N-1]$. This gives an upper bound on the second sum.

If $u \geq l$, then the approach used above to bound the second summation gives an upper bound of $\zeta(u) \leq 1 + w_u N/N\bar{w}$. We can add w_u to this and it remains an upper bound. Thus

$$\zeta(u) \leq w_u + 1 + \frac{w_u}{\bar{w}},$$

for any u . We sum $\zeta(u)$ over all nodes and get

$$\begin{aligned} L &= \sum_{u=0}^{N-1} \zeta(u), \\ &\leq \sum_{u=0}^{N-1} w_u + 1 + \frac{w_u}{\bar{w}}, \\ &\leq N\bar{w} + N + \frac{N\bar{w}}{\bar{w}}, \\ &\leq 2M + 2N. \end{aligned}$$

Therefore $L = \mathcal{O}(N + M)$, and we have that $\mathcal{O}(N + M + L) = \mathcal{O}(N + M)$. So the algorithm executes in $\mathcal{O}(N + M)$ time. \square

4 Examples

We demonstrate the runtime of Algorithm 2 using three different weight distributions. The first has weights chosen uniformly in $(1, 50)$, giving an average of 25.5. The second has all weights equal to 25. The third has degrees chosen from a power law distribution with exponent $\gamma = -2.1$, and every weight above 100 is set to 100, giving an average of about 4.7. We generate graphs on N nodes where the weights are chosen from each of these distributions. In Fig. 1 we show

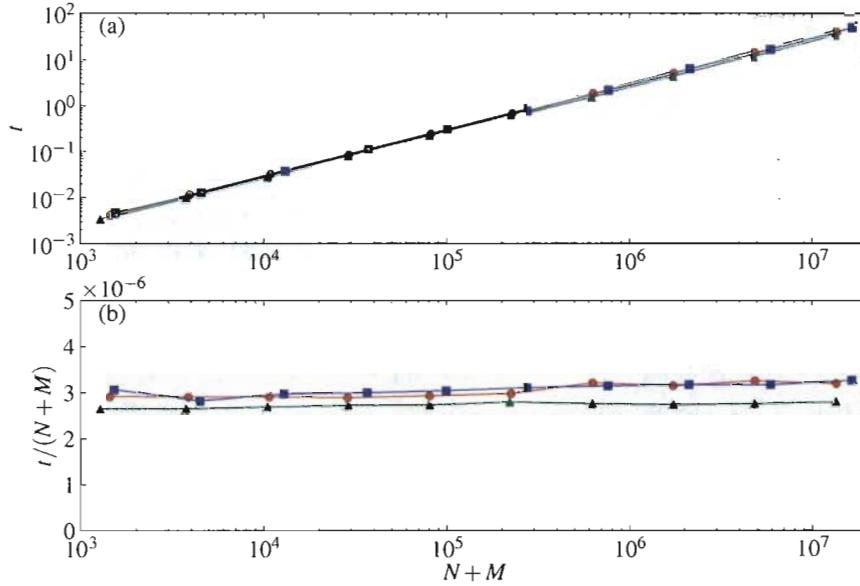


Fig. 1. Performance of Algorithm 2 showing linear scaling in the number of nodes and edges $N + M$. The 3 curves are data for weights chosen from the following distributions (red circles) uniform on $(1,50)$; (green triangles) constant $w = 25$; and (blue squares) power law with exponent $\gamma = -2.1$. (a) Running time vs number of nodes and edges. (b) Estimate of the coefficient.

that the execution time is $\mathcal{O}(M + N)$. In contrast, the standard algorithm for generating these scales like $\mathcal{O}(N^2)$.

The proof of Theorem 2 uses relatively crude bounds to show that $L = \mathcal{O}(M + N)$. Reducing L reduces the runtime, so we now look at L more closely. The proof shows that to have larger L requires that ΔP be relatively large compared to P . Further, in cases where typical weights are larger than 1, the maximum value of L is not $\mathcal{O}(M)$, but rather the average of $\ln w_u$ over all u . This suggests a competition: increasing all weights increases the average of $\ln w_u$, but at the same time it tends to decrease $\Delta P/P$. To investigate this further, we show the total number of excess potential neighbors generated by the algorithm in Fig. 2. In Fig. 2(a) we consider the same three distributions as before. We find that L/M , the number of excess potential neighbors created for each edge is largely independent of the number of nodes, and if all nodes have the same weight $L = 0$.

In Fig. 2(b) we show the interplay of heterogeneity and average weight more closely. We considered two classes of distributions. In one, w is chosen uniformly in $(\bar{w} - 5, \bar{w} + 5)$, and in the other w is chosen uniformly in $(1, 2\bar{w} - 1)$. We see that the number of excess potential neighbors generated per node L/N de-

creases in the first case and increases slowly in the second case. In both cases the number per edge L/M would decrease, so for these distribution our proof uses a significant overestimate of L , and so the excess potential neighbors become a negligible contribution to runtime as graph size increases.

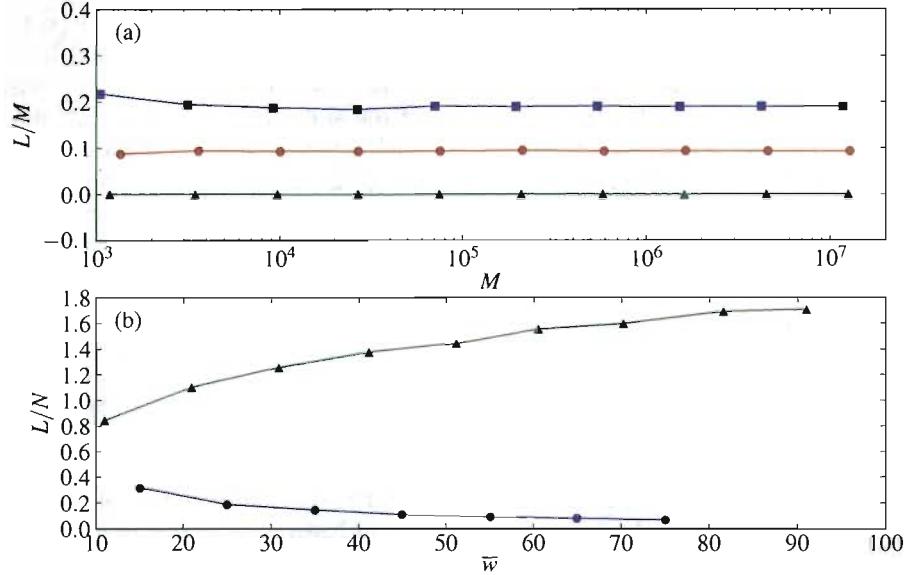


Fig. 2. Fraction of “excess potential neighbors” L/M generated by Algorithm 2. (a) The fraction L/M vs total number of edges in the graph M for the three degree distributions of Fig. 1. (b) The fraction L/N for uniformly distributed sequences with fixed variance $w = U(\bar{w} - 5, \bar{w} + 5)$ (blue circles), and with fixed coefficient of variance $\text{std}(w)/\bar{w}$, $w = U(1, 2\bar{w} - 1)$ (green triangles).

5 Discussion

We have developed an algorithm for creating Chung-Lu random graphs in $\mathcal{O}(M + N)$ runtime. If the average weight is bounded as N grows, this is $\mathcal{O}(N)$ runtime.

Our algorithm may be generalized to other contexts. In particular, it may also be used to generate the random graphs introduced in Refs. [11, 3]. This algorithm requires first that there is a single parameter w assigned to each node which determines the probability that any two nodes share an edge, and second that the nodes may be ordered in such a way that if u appears before v_1 which appears before v_2 , then the probability that u has an edge with v_1 is at least the probability that u has an edge with v_2 . It is possible to generate many other

graph models in this manner, including models which have assortative mixing (nodes with similar weights preferentially contact one another).

Some graph models such as the configuration model do not assign edges independently, and so have somewhat different generation algorithms. In the configuration model each node is assigned a degree *a priori*, and then nodes are wired together subject to the assigned degrees as a constraint. An efficient algorithm to do this begins by placing nodes into a list once for each edge the node will have. The list is then shuffled, and adjacent nodes are joined by an edge. This has the unfortunate consequence that sometimes edges are repeated, nodes may have edges to themselves, and if the sum of degrees is odd, a node is left unpaired. Typically the number of such edges is small compared to the number of nodes, so these are simply discarded. It is possible to avoid these cases, but even the most efficient known algorithms that produce true graphs with the imposed degree distribution are substantially slower than $\mathcal{O}(N + M)$ [8].

Acknowledgments

JCM was supported by 1) the RAPIDD program of the Science and Technology Directorate, Department of Homeland Security and the Fogarty International Center, National Institutes of Health and 2) the Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard School of Public Health under Award Number U54GM088558 from the National Institute Of General Medical Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute Of General Medical Sciences or the National Institutes of Health. Part of this work was funded by the Department of Energy at Los Alamos National Laboratory under contract DE-AC52-06NA25396, and the DOE Office of Science Advanced Computing Research (ASCR) program in Applied Mathematical Sciences.

References

1. Batagelj, V., Brandes, U.: Efficient generation of large random networks. *Physical Review E* 71, 036113 (2005)
2. Bollobás, B., Janson, S., Riordan, O.: The phase transition in inhomogeneous random graphs. *Random Structures and Algorithms* 31(1), 3 (2007)
3. Britton, T., Deijfen, M., Martin-Löf, A.: Generating simple random graphs with prescribed degree distribution. *Journal of Statistical Physics* 124(6), 1377–1397 (2006)
4. Chung, F., Lu, L.: The average distance in a random graph with given expected degrees. *Internet Mathematics* 1(1), 91–113 (2004)
5. Chung, F., Lu, L.: The volume of the giant component of a random graph with given expected degrees. *SIAM Journal on Discrete Mathematics* 20(2), 395–411 (2007)
6. Chung, F., Lu, L., Vu, V.: The spectra of random graphs with given expected degrees. *Internet Mathematics* 1(3), 257–275 (2004)

7. Eubank, S., Kumar, V., Marathe, M., Srinivasan, A., Wang, N.: Structural and algorithmic aspects of massive social networks. In: Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms. pp. 718–727. Society for Industrial and Applied Mathematics (2004)
8. del Genio, C., Kim, H., Toroczkai, Z., Bassler, K.: Efficient and exact sampling of simple graphs with given arbitrary degree sequence. *PLoS one* 5(4), e10012 (2010)
9. van der Hofstad, R.: Critical behavior in inhomogeneous random graphs. *ArXiv* (2010)
10. Newman, M.E.J.: The structure and function of complex networks. *SIAM Review* 45, 167–256 (2003)
11. Norros, I., Reittu, H.: On a conditionally Poissonian graph process. *Advances in Applied Probability* 38(1), 59–75 (2006)