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Abstract. We present an efficient algorithm to generate random graphs
with a given expected degree sequence. Existing algorithms run in O(N?)
time where IV is the number of nodes. We prove that our algorithm runs
in O(N + M) time where M is the number of edges. For expected degree
sequences with finite mean, this is O(N) as N — co.

1 Introduction

Random graph models are regularly used for studying networks with random
processes such as social networks with epidemic or rumor spreading, or the In-
ternet with web surfers seeking information. Capturing the degree distribution
is one of the most important goals in creating a model and some well-understood
graph models have been developed where the degree distribution is controlled.
In this paper we focus on the model of Chung and Lu [4] which generates a
random graph with a given expected degree sequence.

Because application networks are often very large, efficient random graph
generation is important to evaluate the models and processes. Although many
theoretical results are known about the Chung-Lu model [2,9,4-6], the algo-
rithms used for generating such graphs are inefficient. In this paper we intro-
duce a new algorithm which generates Chung-Lu random graphs in time that is
O(M + N) where M is the number of edges and N the number of nodes. In most
relevant cases we are interested in distributions for which the average degree is
finite, so M is proportional to N. For such a distribution the runtime is O(N).
This is a significant improvement over previous algorithms that require O(N?)
runtime.

1.1 Model description

The basic random graph model is the Erdés—Rényi graph G(N, p) with N nodes
0,1, ..., N —1. Each pair of nodes has an edge with probability p, and edges
between a pair of nodes are assigned independently of one another. The expected



degree of a node is k = p(N — 1). Typically we consider graphs for which  is
O(1) as N — o0, so p is small and the graph is sparse. Under such conditions, the
expected degree approaches pN as N — oo. The obvious algorithm to generate
these graphs requires considering each of the O(N?) pairs of nodes independently
and assigning an edge with probability p. However, it has been shown that the
runtime can be reduced to O(N + M) where N is the number of nodes and M
the number of edges [1].

The degree distribution resulting from the Erdés—-Rényi model is binomial,
and in the large N, constant p/N limit it approaches a Poisson distribution with
mean p/N. Many real world graphs have much more pronounced heterogeneity in
degrees [10, 2]. This has led to models which attempt to incorporate more hetero-
geneity. Some of these models retain independence of edges but allow different
individuals to have different expected degree. Of these, the most prominent was
introduced by Chung and Lu [4]. In this model, each node w is assigned a weight
w, which we can assume is chosen from a distribution with density p. We do not
need to restrict w, to be an integer. We define w =} w, /N to be the average
weight. Two nodes v and v with weights w, and w, are then joined by an edge
with probability p, , = w,w,/Nw. Looking at all nodes v # u, we anticipate
that the expected degree of u is Z#u w,w, /NW = w, — w2/Nw. In a large
graph this typically converges to w,. So the weight w, represents the expected
degree of node u in a large graph.

We note that in some cases it is possible that w,w,/Nw > 1. In this case,
we set D, , = 1, but the expected degree of v and v will be less than w, or
wy. A few other approaches have been introduced to produce related graphs
that avoid this difficulty in other ways. For example, we could define p,, =
1 — exp(—wyw, /NW) or py ., = Wy, /[NW + wyw,| [11,3,9]. Typically as N
grows the difference between these approaches is negligible because wyw, /N —
0 and thus the leading order terms for p, , are the same. However, for some
distributions p, the frequency of nodes with very high degree is large enough
that as the number of nodes grows, the maximum weight also grows sufficiently
quickly that w,w,/N does not tend to zero for the nodes with highest weight
in which case these models differ. We will focus our attention on the Chung-Lu
graphs, though our algorithm can be easily translated to the others.

The number of nodes in the graph is taken to be N and we define M = Nw/2.
This value of M is a mild overestimate of the expected number of edges. A
number of theoretical results are known about this model [2,9, 4, 6,5]. Although
Ref. [7] shows a fast algorithm to generate approximate Chung-Lu graphs in
the bipartite case, there appears to be relatively little work on algorithms to
efficiently generate Chung-Lu graphs.

We begin our approach by showing a fast algorithm for generating Erdds—
Rényi graphs. This approach is by itself not a significant result (indeed closely
related algorithms exist already [1]), but it serves as an example to motivate
our main algorithm. Once we introduce the main algorithm, we prove that its
expected runtime is O(N + M). We finally discuss other applications and impli-
cations of this algorithm.



2 Erdos—Rényi case

We begin by describing our algorithm in a simpler context. The Erdés—Rényi
network is a special case of Chung-Lu networks in which all individuals have the
same weight w. We find that p, , = p = w/N for all pairs v and v.

We begin with the vertices 0, 1, ..., N — 1, describe the obvious inefficient
O(N?) algorithm, and show how it can be naturally sped up to an algorithm
that is O(N + M). We begin by setting w = 0. Then foreachv =1,2,...,N -1
we generate a random number r. If 7 < p, then we place an edge from « to v.
Once all possible choices for v have been considered, we set v = 1, and then
consider each v =2, 3, ..., N — 1. We continue repeating this process until all
possible choices for u have been considered. This process is O(N?) because it
considers each pair of nodes separately.

This algorithm is slow because considerable effort is spent on node pairs
which never form edges. The algorithm can be sped up by finding a way to skip
these pairs. Returning to the first pass through the algorithm described above
with w = 0, let v; be the first neighbor with which u forms an edge. The value
of v1 is u + 1 + 6 where § is the number of pairs considered that do not form
edges before the first successful edge formation. Similarly, the second neighbor
v is v1 + 1 + § where ¢ is the new number of pairs that do not form edges. The
probability of a particular value of § is (1—p)®p (in fact, § is negatively binomially
distributed). Thus, rather than considering every node after u as above, we can
find the next neighbor in a single step by choosing 7 uniformly in (0,1) and
setting § = |Inr/In(1 — p)|, taking 6 = 0 if p = 1. Thus rather than considering
each pair of nodes separately, the algorithm considers just those pairs of nodes
which form edges. The full procedure is presented in Algorithm 1.

Algorithm 1 G(n,p)

Input: number of nodes n, and probability 0 < p < 1
Output: G(n,p) graph G(V,E) with V = {0,...,n— 1}

E«0
foru=0ton—2do
veu+1l

while v <n do
choose r € (0,1) uniformly at random

v(—v—l—{ log(r) J

log(1—p)
if v < n then
E «— EU {u,v}
vev+1

Theorem 1. Algorithm 1 runs in O(N + M) time

Proof. The proof of this theorem is relatively straightforward. We simply count
the number of times that each loop executes.



The outer loop is executed N —1 times. To calculate the number of executions
of the inner loop we separate those “successful” iterations where the new v is at
most N —1 from those “unsuccessful” iterations with v > N. In each pass through
the outer loop, the inner loop executes once unsuccessfully. The total number of
successful executions of the inner loop is exactly the number of edges that are
generated which is O(M). Combining the total number of passes through the
outer loop with the number of successful and unsuccessful passes through the
inner loop the runtime is O(M + N). O

A similar algorithm is described in [1] which avoids the unsuccessful iterations
of the inner loop. However, our approach lends itself to the generalization we
describe below.

3 Chung-Lu case

Having set the framework with the Erdés—Rényi case we are ready to consider
an algorithm to create Chung-Lu networks where not all nodes have the same
weight. As before, we want to skip as many nodes as possible, but this is more
difficult because the probabilities that any pair of nodes have an edge are not
fixed. To simplify this, we assume that we have a list W of the weights in the
network, and that this list is sorted in descending order.

The obvious O(N?) algorithm considers each pair u and v and assigns an
edge with probability p, , = wy,w,/Nw. We consider a mildly different O(N?)
algorithm, which is easily modified the same way we altered the Erd6s—Rényi
algorithm to create an O(M + N) algorithm.

Starting with u = 0, we consider every v = 1,2, ..., N — 1 in turn. We note
that as v increases, p, , decreases monotonically, so we can avoid recalculating
p for each v by setting p = py y+1 = WyWyt1/NW initially and discarding each v
with probability 1—p. When we arrive at the first node v; which is not discarded,
we call v a potential neighbor. We have selected v; with probability p, but the
probability of an edge between v; and u is actually ¢ < p. We calculate g = py 4, ,
and then assign an edge with probability q/p. We then set p = q and continue
on, discarding nodes with probability 1 — p until we have considered all possible
nodes. We then increase u by 1 and repeat. This algorithm is O(IN?).

In the algorithm just described, p is fixed at each step until a potential
neighbor is identified. The same method used in the Erdés-Rényi approach can
quickly identify the potential neighbors v; without considering each intermediate
v in turn. Starting with « = 0 and using p = py w41, We choose some random
number r uniformly in (0, 1) and find the first potential neighbor v; =u+1+§
where 6§ = [lnr/In(1 —p)]. If p = 1, we take 6 = 0. Once v is identified, we
assign an edge between u and v; with probability ¢/p where ¢ = p,, ,,. We then
set p = g and continue, jumping immediately to the next potential neighbor va,
possibly placing an edge. Again resetting p, we continue until there are no more
nodes to consider. We then increase u by 1 and repeat. Ultimately, u takes all
possible values, and the set of edges is complete. Note that for given u the value
of p decreases monotonically, so the expected value of ¢ increases monotonically.



The Chung-Lu graph generating procedure is presented in Algorithm 2.

Algorithm 2 Chung-Lu Graph

Input: list of n weights, W = wo, ..., wn—1, sorted in decreasing order
Output: Chung-Lu graph G(V, F) with V ={0,...,n— 1}
E+ 0
S >, wu
foru=0ton—2do
veu+l

p + min(wyw, /S, 1)
while v < n do
if p# 1 then
choose r € (0,1) uniformly at random

U(—U‘F\‘MJ

log(1—p)
if v <n then

g « min(wy,w, /S, 1)
choose r € [0, 1) uniformly at random
if r < g/p then

E « EU {u,v}
P gq
vev+1

3.1 Efficiency

For the Chung-Lu case, it is more difficult to bound the number of steps be-
cause there are occurrences where a potential neighbor v; is identified, but upon
closer inspection no edge is placed to v;,. We refer to these as excess potential
neighbors. Let L be the total number of excess potential neighbors generated by
the algorithm. We prove that L = O(N + M), and so the algorithm executes in
O(N + M) time.

Theorem 2. Algorithm 2 executes in O(N + M) time.

Proof. We follow a similar argument to the Erdés—Rényi case, and conclude that
the execution time is O(N + M + L). We will show that L = O(N + M), and
so the total runtime is O(N + M). However, the calculation of L is considerably
more technical, and is the focus of our proof.

Consider a given u and some given v > u. Let p, ,(p) be the a priori prob-
ability that the value of p is p when the inner loop reaches (or passes) v while
assigning edges for u. Define Py = > ; puo(P)P, the a priori probability that
v will be chosen as a potential neighbor of u. The probability that v will be
selected as an excess potential neighbor is P, ,, —p, .. We seek to calculate P, .

We know that P, ,11 = Py.u+1. We look to find P, 41 — P, ,, for all v. This
requires calculating the change in p, ,(p) from v to v + 1. If v is not chosen as



a potential neighbor, there is no change to p, but if v is chosen, then p changes
from p to p, . and so the change in p is p, ,, — p. This occurs with probability p.
So the change in P, , is the expected change in p which is

Apu,v = Ly u+1 — Pu,v >
= Pun(B)P (Pup — D) »
P

= ypPuw — Z pu,v(ﬁ)ﬁg y
)

S Pu,v (pu,v _Pu,v) 3 (1)

using Jensen’s inequality to say that the expectation of p? is at least the square
of the expectation of p. Note that P, , decreases monotonically with v and that
P, cannot be less than p, ,. Let AP, , = P, 41 — Py . To make AP, ny_4
defined, it is convenient to set P, n to be the value P would take for node N if
the node list were extended by adding an additional node with weight 0.

We now define {(u) to be the number of excess potential neighbors node u
is expected to have,

N-1
C(u) = Z Pyv—Duw- (2)
v=u+1
From our bound (1) for AP, ,, we can bound ({(u) as

N-1

((u) <

By analogy with the integral — ff ¢'(x)/$(x)dx, we anticipate that this sum-
mation behaves like a logarithm, and we use this to bound the sum. We note
that In(1 + z) < x, implying —z < —In(1 + z). Then,

APy (1 . APM> |
P’u,,v u,v
< i Pun t APy
Py
< - In Pu,v+1 7
Pu,v

SInP,y—InPyytr-
So ((u) can be bounded by a telescoping summation,
((u)<InP,yy1 —InPyn.

It is difficult to bound P, y away from zero. So instead we break the sum in (2)
into terms for which P can be easily bounded away from zero and those for



which it is more difficult. Set [ to be the first node such that w; < 1,s0 w;_; > 1.
Assume for now u < I. We have

-1 Ap s Nol
C(U)S Z Piw‘i‘zpu,v_pu,v-
v=u+1 wy =l
The first summation is at most In Py y+1 — In Py = In[Py u11/Pu]. We have

Py i1 = Puut1 = min(wyWy11/NW, 1) < wyWyy1/Nw while P, ; > wywi—1 /NW >
wy, /Nw. Thus the first summation is at most In w1, which in turn is at most
Wy -

The second summation can be bounded by observing that the expected num-
ber of excess potential neighbors in [, N — 1] is at most the expected number
of potential neighbors in [I, N — 1]. Assuming that u has at least one potential
neighbor v > [, the probability for any later node to be a potential neighbor is
at most wywy,/NW < w,/Nw. There are N — 1 — [ nodes in this region, which
is bounded by N, so u has at most 1 + Nw,/Nw expected further potential
neighbors in [, N — 1]. This gives an upper bound on the second sum.

If u > [, then the approach used above to bound the second summation gives
an upper bound of ¢(u) <1 + w,N/Nw. We can add w,, to this and it remains
an upper bound. Thus

Cu) Swy +1+ =2,
w

for any u. We sum {(u) over all nodes and get

Therefore L = O(N + M), and we have that O(N + M + L) = O(N + M). So
the algorithm executes in O(N + M) time. O

4 Examples

We demonstrate the runtime of Algorithm 2 using three different weight distri-
butions. The first has weights chosen uniformly in (1, 50), giving an average of
25.5. The second has all weights equal to 25. The third has degrees chosen from
a power law distribution with exponent v = —2.1, and every weight above 100
is set to 100, giving an average of about 4.7. We generate graphs on N nodes
where the weights are chosen from each of these distributions. In Fig. 1 we show
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Fig. 1. Performance of Algorithm 2 showing linear scaling in the number of nodes and
edges N 4 M. The 3 curves are data for weights chosen from the following distributions
(red circles) uniform on (1,50); (green triangles) constant w = 25; and (blue squares)
power law with exponent v = —2.1. (a) Running time vs number of nodes and edges.
(b) Estimate of the coefficient.

that the execution time is O(M + N). In contrast, the standard algorithm for
generating these scales like O(N?).

The proof of Theorem 2 uses relatively crude bounds to show that L =
O(M + N). Reducing L reduces the runtine, so we now look at L more closely.
The proof shows that to have larger L requires that AP be relatively large
compared to P. Further, in cases where typical weights are larger than 1, the
maximum value of L is not O(M), but rather the average of Inw, over all u.
This suggests a competition: increasing all weights increases the average of In w,,
but at the same time it tends to decrease AP/P. To investigate this further, we
show the total number of excess potential neighbors generated by the algorithm
in Fig. 2. In Fig. 2(a) we consider the same three distributions as before. We
find that L/M, the number of excess potential neighbors created for each edge
is largely independent of the number of nodes, and if all nodes have the same
weight L = 0.

In Fig. 2(b) we show the interplay of heterogeneity and average weight more
closely. We considered two classes of distributions. In one, w is chosen uniformly
in (W — 5,w + 5), and in the other w is chosen uniformly in (1,2w — 1). We
see that the number of excess potential neighbors generated per node L/N de-



creases in the first case and increases slowly in the second case. In both cases the
number per edge L/M would decrease, so for these distribution our proof uses
a significant overestimate of L, and so the excess potential neighbors become a
negligible contribution to runtinie as graph size increases.

0.4 ;
(a)
0.3}
= 0.2 !\F——I——A—.———H a8 — »——=u
S~
~ 0.1F —r L @ ——— ® —y————& )
00— —————a— & & & " " N
—0.1 . . . .
10° 10° 10 106 107
M
1.8 : : —
16 r (b) L _r‘,—r——'__
14[ ‘_4_,.,—&———__—‘/_ B
1.2 R ]
z10f ]
~ 0.84%
0.6
04F o ]
0.2¢ \N\'\’_“‘.—\.— ~ 1
00620 30 40 S50 60 70 80 90 100

Fig. 2. Fraction of “excess potential neighbors” L/M generated by Algorithm 2. (a)
The fraction L/M vs total number of edges in the graph M for the three degree
distributions of Fig. 1. (b) T'he fraction L/N for uniformly distributed sequences with
fixed variance w = U(w ~ 5, W+ 5) (blue circles), and with fixed coefficient of variance
std(w)/w, w = U(1,2w — 1) (green triangles).

5 Discussion

We have developed an algorithm for creating Chung-Lu random graphs in O(M +
N) runtime. If the average weight is bounded as N grows, this is O(N) runtime.

Our algorithm may be generalized to other contexts. In particular, it may
also be used to generate the random graphs introduced in Refs. [11,3]. This
algorithm requires first that there is a single parameter w assigned to each node
which determines the probability that any two nodes share an edge, and second
that the nodes may be ordered in such a way that if u appears before v, which
appears before vy, then the probability that w has an edge with vy is at least
the probability that u has an edge with v;. It is possible to generate many other



10

graph models in this manner, including models which have assortative mixing
(nodes with similar weights preferentially contact one another).

Some graph models such as the configuration model do not assign edges
independently, and so have somewhat different generation algorithms. In the
configuration model each node is assigned a degree a priori, and then nodes
are wired together subject to the assigned degrees as a constraint. An efficient
algorithm to do this begins by placing nodes into a list once for each edge the
node will have. The list is then shuffled, and adjacent nodes are joined by an
edge. This has the unfortunate consequence that sometimes edges are repeated,
nodes may have edges to themselves, and if the sum of degrees is odd, a node
is left unpaired. Typically the number of such edges is small compared to the
number of nodes, so these are simply discarded. It is possible to avoid these cases,
but even the most efficient known algorithms that produce true graphs with the
imposed degree distribution are substantially slower than O(N + M) [8].
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