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Neutron Transport in the Capsaicin Project 

Massimiliano Rosa 
Computational Physics (CCS-2) 
Los Alamos National Laboratory 

CASL Transport PIs Meeting 
Oak Ridge National Laboratory 
Oak Ridge, TN, March ih, 2011 

ABSTRACT 

We review the neutron transport capabilities available in the Capsaicin code 
package developed and maintained by the Capsaicin Team in the Computational Physics 
Group (CCS-2) at Los Alamos National Laboratory. We discuss how the above 
capabilities are provided to the VERA-TR neutronics code framework being developed 
as part of the Consortium for tp.e Advanced Simulation of Light water reactors (CASL) 
effort within the Department of Energy's Nuclear Energy Modeling and Simulation Hub. 
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Outline 

1. Ca,psaicin within CASL 

2. Review of Capsaicin neutron transport capabilities 

3. Status update 
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1. Capsaicin within CASL 

• Provide parallel multigroup neutron transport capability on 
unstructured meshes to VERA- TR 

• Provide interface specification and libraries for VERA- TR to 
access this capability 

• Interface specification 

• Mesh description and parallel decomposition 

• Material properties and related data 

• Iteration and solution method controls 
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2. Review of Capsaicin capabilities 

A. Data 

B. Problems 

1. Fixed - source and adjoint 

2. Eigenvalue 

c. Algorithms 

1. Solvers 

2. Sweepers 

3. Discretizations 
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A. Nuclear data 

• LANL nuclear data interface (NDI) cross - section libraries 

• Analytic cross - section data 

• ANISN cross-section data 

• User - defined cross - section data (via interface) 
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B. Steady-state fixed -source problem 

• Operator notation 

LlJI == MS¢ + q, ¢ == DlJI 

• M discrete ordinates, G energy groups, N moments 

• ¢J vector of length NG, lJI and q vectors of length MG 

• L is (MGxMG), M is (MGxNG), S is (NGxNG) and D is 
(NGxMG) 

• Linear system formulation of fixed - source problem 

AljJ==b 

. ~9.~N~m~ A = (1- DL-
1
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B. Eigenvalue problem 

. 1 
• Operator notation: Llfl = MI S + -F Il/J 

k 

• F is (NGxNG) 

• Maximum eigenvalue k is "critical" eigenvalue of interest 

1 
• Generalized eigenproblem: Al/J = -Bl/J 

k 

• Standard eigenproblem: A -1Bl/J = kl/J 

A=(I-DL-1MS) B=DL-1MF 
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c. Solvers 

• Linear solvers for fixed - source problem are parallel non 
symmetric Krylov solvers 
• Source (Richardson) iteration 

• GMRES(m) 

• BiCGStab 

• Preconditioners for linear fixed - source problem 
• Diffusion Synthetic Acceleration (DSA) 

• Transport Synthetic Acceleration (TSA) 

• Linear Multi -frequency Grey (LMFG) 

A Full DSA (FDSA) 
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c. Solvers 

• Eigenvalue problem as non -linear fixed point iteration 

u 1 == U - F(u ) z + z z 

(I-P)cp 
U== 

¢ F( u) = i ETFPcp P == A-1B 
k 

L 

k-k-­
ETF¢ 

• Non -linear solvers for eigenvalue problem 
• Fixed - point (Picard) iteration 

• Jacobian - Free Newton - Krylov (JFNK) method 

A Carlson - Miller method 
Los Alamos 
NATIONAL LABORATORY 

---- EST. 19<3 

LA-UR-11-???? 9/19 ···~!(41 
v&.'f~t 



C. Solvers 

• 3D JFNK eigenvalue computation 

• HEU in central region surrounded by water 
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c. Solvers 
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c. Sweepers 

• Full Parallel Sweeps (FPS): apply L-1 to a vector at every 
Krylov iteration 

lj/(£+1) = L-1MSDlj/(R) 

• A "sweep schedule" is used to order the cell-wise sweep 
through a parallel- decomposed mesh for every angle 

• Various scheduling options for unstructured 20/30 meshes 
• RANDOM: choose priorities randomly 

• B_LEVEL/BFDS/DFDS/DFHDS: strategies based on b -levels 

• LOS: determine priority based on minimum number of graph 
edges to processor boundary 

• LosAlamos 
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c. Sweepers 

• Max edges per communication: how much data is 
accumulated before communicating it to downwind processor . 

• Max visits per receive check: how often to probe for incoming 
upwind information 

• Group set size: number of energy groups in a single task 

• Level/group sequencing: finish a level/group before moving 
on to next, or do all simultaneously? 
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c. Sweepers 

• Scheduling options for unstructured meshes can be non 
optimal for structured meshes 

• Koch - Baker -Alcouffe (KBA) scheduling algorithm 
implemented for orthogonal 20 and 30 meshes 

A 
Los Alamos 
NATIONAL LABORATORY 
---- EST. 190 

LA-UR-11 -???? 14/19 •. w Jt'.'" IOtl 
VA.'~Y.4 



c. Sweepers 

• Inexact Parallel block-Jacobi (IPBJ) 

• Split L into local and interprocessor boundary: L ==Lo + Lb 
• fjf( £+ 1) = L

o
1(MSD-Lb)fjf(R) 

• Implemented for unstructured 20 meshes 

• Cell- wise block - Gauss - Seidel (bGS) 
• Split L into cell- interior and cell- boundary: L == L + L 

c b 

• fjf( £+ 1) = -(Lc - MSD r1 
Lbfjf(R) 

• Implemented on Roadrunner hybrid computer architecture for 
unstructured 20 meshes 

• Communication delays associated with FPS are eliminated 
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c. Discretizations 

• Energy dependence 

• Multigroup approximation 

• Parallel energy decomposition 

• Angular dependence 

• Discrete ordinates (SN) 

• Spherical harmonics (SPN) 

• Diffusion 

• Quasi - Diffusion 
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c. Discretizations 

• DFEM for unstructured meshes in 1 D (slab, spherical, 
cylindrical), 2D (XY, RZ) and 3D (XYZ) 

• Linear Bars, Triangles, Quadrilaterals, 

Polygons (CFEM - based DFEM) 

• Quadratic Bars, Triangles 

• Linear ·Tetrahedra 

• DFEM available both lumped and un -lumped 

• Structured meshes in 3D 

• Diamond difference (DD) 

• Lumped linear discontinuous (LD) 
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C. CFEM - based DFEM 

• Capability to detect non - convex mesh, compute on convex 
mesh and project onto non - convex mesh 

Cells FLUXO 
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3. Update on L4 milestones 

1. SN.01.05 - Capsaicin source code deposited into the CASL 
repository 

2. SN.01.06 - Capsaicin successfully running its neutronics 
acceptance tests on leadership architecture at ORNL 

3. SN.01.07 - VERA- TR successfully running Capsaicin's 
neutronics acceptance tests on unstructured meshes 

4. SN.01.08 - VERA- TR running a 2D lattice phystcs benchmark 
problem with the same data on both structured and unstructured 
meshes 
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