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Abstract: Several plausible modeling strategies are available to develop finite element (FE) 
models of ever-increasingly complex phenomena. Expert judgment is typically used to choose 
which strategy to employ, while the “best” modeling approach remains unknown. This paper 
proposes a decision analysis framework that offers a systematic and rigorous methodology for 
comparing plausible modeling strategies. The proposed framework departs from the 
conventional approach that considers only test-analysis correlation to select the model that 
provides the highest degree of fidelity-to-data. The novelty of the framework lies in an 
exploration of the trade-offs between robustness to uncertainty and fidelity-to-data. Exploring 
robustness to model imprecision and inexactness, in addition to fidelity-to-data, lends credibility 
to the simulation by guaranteeing that its predictions can be trusted even if some of the 
modeling assumptions and input parameters are incorrect. To demonstrate this approach, an 
experimental configuration is analyzed in which large masses are used to load the CX-100 wind 
turbine blade in bending during vibration testing. Two plausible simulations are developed with 
differing strategies to implement these large masses using (i) a combination of point-mass and 
spring elements or (ii) solid elements. In this paper, the authors study the ability of the two FE 
models to predict the experimentally obtained natural frequencies, and the robustness of these 
competing models to uncertainties in the input parameters. Considering robustness for model 
selection provides the extent to which prediction accuracy deteriorates as the lack-of-knowledge 
increases. Therefore, the preferable modeling strategy is the one that offers the best 
compromise between fidelity-to-data and robustness to uncertainty. To predict the bending 
vibration of the CX-100 wind turbine blade, it is observed that the modeling strategy with solid 
elements is far superior to the other one in its ability to provide a compromise between fidelity-
to-data and robustness to the modeling assumptions. (Approved for unlimited, public release on 
October xx, 2012, LA-UR-12-xxxx, Unclassified.) 
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1. Introduction 

1.1 Motivation 

The wind energy industry in the United States has consistently observed the design of larger 
wind turbines, with the largest ones in 2011 produced with blades 61.5 meters in length. In 
anticipation of this continued trend, blades 100 meters in length are already being pursued for 
future wind turbines (Griffith and Ashwill 2011). Modeling and simulation techniques can be 
used to economically and efficiently study the behavior of wind turbines produced at this 
massive scale, which enables designers to consider both aerodynamic and structural concerns 
early in the design process (Quarton 1998), and mitigate the increasing costs of full-scale 
testing (Veers et al. 2003). Finite element (FE) models calibrated against experimental data 
have gained acceptance for routine use in studying the static and dynamic responses of wind 
turbine blades, as demonstrated by its inclusion in wind turbine design standards (DNV 2010). 
Further, FE models are advantageous to study complex load cases that arise from in-service 
wind loading (Jensen et al. 2006, Leishman 2002), as compared to the idealized loads that are 
implemented in full-scale experiments (Freebury and Musial 2000). 

Assumptions and simplifications are routinely implemented in FE models to mitigate our lack-of-
knowledge about the underlying physics and to reduce the computation time that it may take to 
simulate complex phenomena. For example, it has been proposed to simulate wind turbines 
using geometrically non-linear, one-dimensional beam elements when coupling FE models of 
the wind turbine structural response with computational fluid dynamics models of the 
surrounding airflow (Dalton et al. 2012). Here, expert judgment was used to identify the need for 
geometric non-linearity (as opposed to material non-linearity), which can account for self weight 
as wind turbine blades are produced at larger scales. The use of one-dimensional beam 
elements is necessary to reduce computation time and make the simulation of wind turbines at 
the plant scale feasible. Current computing resources and code capabilities prevent the 
simulation of plant performance based on full-physics, full-coupling, three-dimensional 
representations of the structural response and air flow, which renders these simplifications 
necessary. As seen, FE models are only able to provide an approximation of reality due to the 
need for assumptions and simplifications. The main concern that arises is the extent to which 
predictions of a numerical simulation can be trusted, given that the models implemented rely on 
assumptions and simplifications. 

Even though there may be a severe lack-of-knowledge about the best modeling strategy, recent 
wind turbine studies continue to consider that a model if of good quality when its predictions 
match physical experiments after calibration or validation exercises. It is important to note that 
the model complexity, as influenced by the model form and number of parameters used to 
define the model, will also affect the quality of model output (Myung 2000, Atamturktur et al. 
2012). For example, when comparing the output of four different wind turbine drive train models, 
Martins et al. (2007) found that the model that accounted for mechanical damping achieved the 
best agreement between measurements and simulations, while the less complex models 
provided poorer agreement with the experimental data. Another study found it necessary to 
include non-linearity in the structural response of a wind turbine blade to better match the 
deformation observed during experimental static testing (Jensen et al. 2006). However, when 
the quality of numerical models are determined solely by their fidelity to experimental data, the 
modeling preference strategy will typically lean towards FE models that are overly complex at 
the risk of over-fitting the experimental data and at the cost of a poor generalization to other, 
non-tested settings (Myung 2000). This paradigm in modeling and simulation has been formally 
recognized, and it can be shown that fidelity-to-data, robustness to assumptions and predictive 
capability are antagonistic attributes of any family of models (Ben-Haim and Hemez 2011). 
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To quantify the effect on predictions of lack-of-knowledge introduced by modeling assumptions 
and simplifications, this manuscript proposes a novel, non-probabilistic decision analysis 
framework rooted in info-gap decision theory (IGDT). Info-gap decision theory has surfaced as a 
useful method to study the influence of our ignorance on numerical predictions and the 
decisions that they support (Ben-Haim 2006). The methodology proposed herein deviates from 
other model selection methods (see Section 1.2), because it is non-probabilistic in nature, and is 
performed by assessing the trade-offs of fidelity-to-data and robustness of predictions to our 
lack-of-knowledge. The basic premise is that a good-quality model, while it should be able to 
reproduce the available measurements, should also provide predictions that are as insensitive 
as possible to the modeling assumptions and simplifications. In the proposed framework, model 
selection is achieved through a rigorous exploration of robustness versus accuracy of 
predictions. Understanding these trade-offs is important for the development of robust numerical 
models because it is the very mechanism through which the trustworthiness of predictions can 
be established. 

The framework proposed in this paper is demonstrated on the bending vibration of the CX-100 
wind turbine blade developed at the Sandia National Laboratories (SNL). In two earlier studies, 
the FE model of CX-100 blade has undergone rigorous Verification and Validation (V&V) 
assessments to ensure the credibility of predictions (see Mollineaux et al. 2012 for verification 
studies and Van Buren et al. 2012 for the validation studies). These earlier studies are briefly 
summarized in Section 2 for completeness. More recently, the CX-100 blade was dynamically 
tested at the National Renewable Energy Laboratory (NREL) with large masses used to load the 
blade in bending. The added masses are represented in two alternative configurations, using (i) 
point masses and stiffening springs or (ii) high-fidelity solid elements. The ability of these two 
competing modeling strategies to replicate the experimentally obtained natural frequencies is 
discussed in Section 3. In Section 4, the fundamental principles behind IGDT are presented, 
and the extent to which predictions of these two competing models are robust to uncertainties in 
the model input parameters is quantified. The strategy that implements high-fidelity solid 
elements is found to be both more accurate and more robust than the use of point masses. The 
practical implication of these findings is that predictions, and their accuracy, can be trusted even 
if some of the assumptions upon which the solid-element FE model relies upon are incorrect. 

1.2 Related Literature 

Model selection has been a widely pursued topic due to the lack-of-knowledge that arises in 
identifying an appropriate modeling strategy (Draper 1994). The importance of model selection 
arises from the fact that different modeling strategies will affect the quality of predictions. As 
early as the 1930’s, it was observed that using the same data to train an algorithm and evaluate 
its performance can lead to a false sense of confidence in the results (Larson 1931). One 
method to mitigate this shortcoming in model selection is cross-validation, where experimental 
data are divided into at least two sets: (i) a calibration set, and (ii) at least one (or more) hold-out 
sets. The calibration set of experimental data is used to update the model, and the model that is 
able to best replicate the hold-out sets of data is considered to be the best choice. The data-
splitting technique used to divide the available experimental data into different sets is known to 
affect the model selection process (Arlot and Celisse 2010).  

In the last decade, Bayesian methods have been widely pursued for model selection, with 
several approaches rooted in its theory, such as the intrinsic Bayes factor (Berger and Pericchi 
1996), fractional Bayes factor (O’Hagan 1995), deviance information criterion (Spiegelhalter et 
al. 2002), and asymptotic approaches (Wasserman 2000). One advantage of Bayesian 
approaches is that they will naturally take structural uncertainty into account. Further, when 
sufficient experimental data are available, the “true” model will always be chosen by Bayesian 
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model selection (Berger et al. 2001). While powerful, however, the Bayesian approach to model 
selection also draws criticisms. One drawback is the very strong assumption that a “true” model 
exists, and that the “true” model is one of the models being considered (Kadane and Lazar 
2004). Further, the development of defensible prior uncertainties is often difficult. Despite the 
drawbacks to Bayesian approaches, many studies have successfully demonstrated its use in 
model selection (Terejanu et al. 2011, Beck and Yuen 2004). 

Several other methods have also been proposed to address the question of model selection, for 
example the Akaike information criterion (Bozdogan 2000, Akaike 1973), minimum description 
length (Grunwald 2000), likelihood ratio tests (Posada and Buckley 2004), and information-
theoretic measure of complexity (Bozdogan 2000, Bozdogan and Bearse 1997). Myung (2004) 
compares the performance of several model selection techniques, with the conclusion that 
model complexity must be taken into account to ensure that an overly complex model is not 
selected. Recent studies have also acknowledged the importance of robustness in model 
selection (Müller and Welsh 2005, Terejanu et al. 2011, Johnson and Omland 2004). 

The current investigation proposes to address the question of model selection using IGDT, 
which requires the definition of a family of models to demonstrate the trade-off of fidelity-to-data 
and robustness to our lack-of-knowledge (Ben-Haim 2006). Such a family of models can 
originate from either a probabilistic or non-probabilistic description of the uncertainty and it is 
referred to as an info-gap model. Previous studies have successfully demonstrated the 
usefulness of treating uncertainties in an info-gap context, such as exploring the robustness of 
model predictions to uncertainties in connection stiffnesses (Vinot et al. 2002) and industrial 
applications (Hot et al. 2012). Herein, IGDT will be applied to model parameters to answer the 
question of model selection. The non-probabilistic treatment of uncertainty limits the 
assumptions that are applied in the analysis while accounting for model complexity. In addition, 
explicitly addressing the robustness to uncertainty of model predictions establishes confidence 
despite the lack-of-knowledge about the modeling assumptions and parameter values used in 
the simulation. 

2. Model Development and Experimental Campaign 

2.1 Development of the CX-100 FE Model 

This section provides a review of the development process of the FE model of the CX-100 
blade, as discussed in-depth by Mollineaux et al. (2012) and Van Buren et al. (2012). The model 
is developed using an accurate description of the geometry, obtained from design specifications 
of the wind turbine blade in NuMAD, preprocessor developed at SNL, and imported into ANSYS 
version 12.1 with Shell-281 finite elements. The mesh discretization is based on an element size 
of ∆x = 8 cm, which produces an overall solution uncertainty of 1.78% for the prediction of low-
frequency bending modes of the blade. This mesh size is chosen because the 1.78% numerical 
uncertainty is comparable to a 3-σ experimental variability of 1.62%, estimated from free-free 
modal testing performed at the Los Alamos National Laboratory (LANL) (Deines et al. 2011). 

 

 

Figure 1. Illustration of the ANSYS model showing different sections of the blade. 

Leading Edge Leading Edge with Balsa 

Trailing Edge

Root

Spar Cap
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Six independent sections are defined in the development of the FE model: shear web, root, spar 
cap, trailing edge, leading edge with balsa, and leading edge without balsa. With the exception 
of the shear web, because it is hidden inside the cross-section of the blade, these sections are 
illustrated in Figure 1. Isotropic materials with smeared cross-sectional properties are used to 
define the material sections. 

Modal testing performed at LANL in two configurations is used for calibration and validation 
studies: (i) free-free, where the blade is suspended with straps, and (ii) clamped-free, where a 
250-kg steel bookend fixture is used to fix the base of the blade. The model parameters are 
calibrated to the free-free and clamped-free experimental natural frequencies in a two-step 
procedure (Van Buren et al. 2012). To mitigate the uncertainty in the fixity at the base of the 
blade, fictitious springs are introduced in an attempt to implement a boundary condition that is 
between the ideal “fixed” and “free” cases. The mode shape vectors are used to validate the FE 
model, in which the modal assurance criterion is estimated to quantify the agreement of 
simulation results to the experimental data. An overall correlation of 84% is observed for the 
free-free modes and 94% for the clamped-free modes. 

     

Figure 2. Fixed-free setup (left), mass-added setup (middle), and base fixture (right). 

Modal testing performed at LANL in two configurations is used for calibration and validation 
studies: (i) free-free, where the blade is suspended with straps, and (ii) clamped-free, where a 
250-kg steel bookend fixture is used to fix the base of the blade. The model parameters are 
calibrated to the free-free and clamped-free experimental natural frequencies in a two-step 
procedure (Van Buren et al. 2012). To mitigate the uncertainty in the fixity at the base of the 
blade, fictitious springs are introduced in an attempt to implement a boundary condition that is 
between the ideal “fixed” and “free” cases. The mode shape vectors are used to validate the FE 
model, in which the modal assurance criterion is estimated to quantify the agreement of 
simulation results to the experimental data. An overall correlation of 84% is observed for the 
free-free modes and 94% for the clamped-free modes. 

2.2 NREL Modal Testing of the CX-100 Wind Turbine Blade 

The CX-100 wind turbine blade is attached to a 6300 kg (7-ton) steel frame, effectively 
allowing for a fixed-free boundary condition. Modal testing is performed using a roving impact 
hammer test procedure under two different setups: first, in a fixed-free condition, and second 
with large masses clamped to the blade. A 582-kg mass and 145-kg mass are added on the 
blade at the 1.60-meter and 6.75-meter locations, respectively. Four uni-axial accelerometers 
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and one tri-axial accelerometer are used to collect data for hammer impacts at 65 locations: 47 
in the flapwise directions, and 18 in the edgewise directions. Three test replicates are performed 
with a linear average and 150 Hz sampling frequency. The acceleration response is collected 
with 4,096 sampling points without a window function due to the relatively long sampling period 
of 11 seconds (Farinholt et al. 2012). 

Table 1. Results of the experimental modal analysis. 

Mode Fixed-Free Frequency (Hz) Mass-Added Frequency (Hz)

1st Flap Bending 4.35 1.82 

2nd Flap Bending 11.51 9.23 

3rd Flap Bending 20.54 12.72 

The experimental setups and base fixture are shown in Figure 2, and the first three flapwise 
frequencies are listed in Table 1. It is important to note that the boundary condition provided in 
the NREL testing is different from the boundary condition used in previous modal testing 
performed at LANL (Deines et al. 2011, Van Buren et al. 2012). The mass-added configuration, 
in which there is significant mass loading and a change in the compliant boundary condition to a 
more rigid fixture, defines a different configuration of the CX-100 wind turbine blade. 

2.3 Fixed-free Model of the CX-100 Wind Turbine Blade 

Calibration of the fixed-free model is re-considered due to the more rigid structure used in 
the NREL experiments. Five statistically significant parameters of the fixed-free FE model of the 
wind turbine blade are identified using a forward propagation of uncertainty and sensitivity 
analysis. The influential parameters are: density of the trailing edge, density of the leading edge, 
modulus of elasticity of the spar cap, translational springs used to model the boundary condition 
perpendicular to the base fixity, and density of the trailing edge. The uncertainty bounds of the 
trailing edge density, leading edge density, and spar cap density are increased from previous 
parametric studies (Van Buren et al. 2012), from ±25% bounds to ±50% bounds in the current 
study after an exploratory design-of-experiments suggests that larger bounds are needed for the 
FE model to envelope the experimental data. It is chosen to limit the increase of the parameter 
ranges to ±50% due to mode swapping when the parameters are allowed to vary past these 
values. The upper and lower uncertainty bounds chosen for the spar cap modulus reflect the 
posterior uncertainty obtained from previous free-free calibration. The uncertainty bounds of 
boundary springs are determined from parametric studies of the fixed-free boundary condition. 
Measurements of the natural frequencies obtained during the NREL testing are utilized to 
calibrate the FE model. 

Instead of performing calibration as an optimization of model parameters to best-fit the 
experimental data, inference uncertainty quantification is performed to explore the posterior 
probability distribution of these three parameters. To efficiently perform the inference uncertainty 
quantification, the FE model is executed using a three-level, full-factorial design-of-experiments 
to provide the simulation data required to train a fast-running Gaussian Process Model (GPM). 
A Markov Chain Monte Carlo (MCMC) algorithm is used to explore the posterior distribution of 
parameters of the GPM emulator, where a statistical T-test retains only parameters that provide 
frequency predictions sufficiently “close” to those measured experimentally. This methodology 
relies on the theory proposed by Kennedy and O’Hagan (2000) and the computational 
framework developed by Higdon et al. (2008). 
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Table 2. Comparison of prior and posterior uncertainty of the FE model parameters. 

FE Model Parameter 
Prior Uncertainty Posterior Uncertainty 

Lower Upper Range Mean Std. Dev. ±2σ Range

Trailing Edge, density 274.60 823.80 549.20 335.62 49.49 197.95

Leading Edge, density 858.20 2574.60 1716.40 1165.30 248.76 995.03

Spar, modulus 29.92 53.56 23.64 43.40 5.51 22.05

Z-spring 1.00 100.00 99.00 71.91 15.98 63.91

Spar, density 1267.00 3801.00 2534.00 1673.57 335.74 1342.94

The results of the inference are summarized in Table 2. Columns 2-4 summarize the prior 
uncertainty, which represents the range of values used in the full-factorial design to train the 
GPMs. Columns 5-7 provide the posterior uncertainty, which are the statistics inferred from the 
MCMC search algorithm. The inference is successful at “learning” the value of the parameters, 
as indicated by the reduction of its uncertainty relative to the initial range used in the design. 

A graphical representation of the posterior distribution is provided in Figure 3, which plots the 
marginal distribution of each parameter on the diagonal and a probability contour of the pairs of 
parameters in the off-diagonal boxes. The inference is successful in reducing the uncertainty of 
the spar cap modulus of elasticity and the boundary spring constants. The clustering of samples 
drawn towards the lower bound in Figure 3 suggests that the algorithm may be attracted to 
values outside of the initial range provided to the GPM. However, it is chosen to keep the 
current analysis due to the introduction of mode swapping when the parameter values are 
allowed to vary outside of the prior range. 

 

Figure 3. Marginal distributions and correlation functions corresponding to Table 2. 
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Table 3. Comparison of experimental and simulated results for the fixed-free model. 

Mode Experimental (Hz) Simulated (Hz) Difference (%) 

1st Flap 4.35 4.26 -2.1% 

2nd Flap 11.51 11.45 -0.5% 

3rd Flap 20.54 19.85 -3.4% 

Table 3 compares the experimentally obtained natural frequencies to those predicted by the FE 
model with the parameters set to the mean values of the posterior distribution. The simulation 
consistently under-predicts the experimental results by 0.5-3.4%. Due to the relatively small 
error in the predictions of resonant frequencies, and the fact that the predicted mode shape 
deflections correlate well with those measured experimentally, the accuracy of the calibrated 
fixed-free model is deemed acceptable. The same model is used next to explore the mass-
added configuration. 

3. Model Development for the Mass-Added Configuration 
of the CX-100 Wind Turbine Blade 

This section discusses the development of two competing FE models used to simulate the 
NREL mass-added configuration. The two models pursued in this section are developed using 
different assumptions and simplifications, using either (i) a system of fictitious point masses and 
stiffening springs, or (ii) three-dimensional solid elements that represent the geometry of the 
added masses with high fidelity. 

3.1 Development of the Point Mass Model 

A central point mass is added to approximate the added masses at each of the two 
locations. The point masses are then connected by fictitious springs to the nodes of the blade to 
reflect the interaction between the blade and added masses. This configuration is shown in 
Figure 4. The use of springs in this modeling strategy is adopted because exploratory FE 
simulations indicate that adding the point masses directly to the shell model of the blade 
introduces lower-order mode shapes with local deformations at the cross-sections with masses 
added. Fictitious springs are therefore introduced to maintain the rigidity of the blade cross-
section at the locations where masses are added. This modeling strategy offers a compromise 
between low computational times-to-solution and a reasonable representation of the mechanics. 

 

Figure 4. Illustration of the blade cross-section with added point masses and springs. 
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Table 4 lists the parameters used to develop the point mass representation added to the three-
dimensional blade model discretized with shell elements. The parameterization of this simplified 
modeling strategy results in the use of only six new model parameters. 

Table 4. Parameters used to develop the point mass representation. 

Parameter Description 

(1; 2) (Translation; rotation) springs at the 1.60-meter section 

3 Point mass at 1.60-meter section 

(4; 5) (Translation; rotation) springs at 6.75-meter section 

6 Point mass at 6.75-meter section 

To preserve the calibrated, fixed-free model discussed earlier in Section 2.3, only the spring 
stiffness coefficients are calibrated in the mass-added configuration (parameters 1, 2, 4, and 5 
listed in Table 4). A parametric study is performed to evaluate the effect of the spring stiffness 
on frequency predictions. 

 

Figure 5. Effect of spring stiffness coefficients on the first three bending frequencies. 

Figure 5 shows the frequency predictions as the spring stiffness values are varied from 10 to 
10+10 N/m. As the spring stiffness is increased, the natural frequencies also increase, due to the 
change in interaction between the blade and springs. Around a value of 10+6 N/m, the natural 
frequencies plateau to values that consistently under-predict the experimental natural 
frequencies. A calibration of the model parameters would likely converge to the upper bound of 
the spring stiffness values because the parametric study in Figure 5 is unable to form an 
envelope around the experimentally obtained natural frequencies. Therefore, the value of 10+8 
N/m is chosen for the spring stiffness, indicated by the vertical black line in Figure 5. 
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Table 5. Experimental and simulated frequencies for the point-mass model. 

Mode Experimental (Hz) Simulated (Hz) Difference (%) 

1st Flap 1.82 1.45 -20.3% 

2nd Flap 9.23 8.85 -4.1% 

3rd Flap 12.72 11.59 -8.9% 

Table 5 compares the natural frequencies measured experimentally to those predicted by the 
mass-added FE model. Again, the frequencies are consistently under-predicted by the model; 
however, the absolute differences for the first three modes, 0.37 Hz, 0.38 Hz, and 1.13 Hz, 
demonstrate an acceptable fidelity-to-data despite the minimal calibration activities performed 
after the model was modified to include the added masses. 

3.2 Development of the Solid Mass Model 

The second modeling strategy is to represent the added-mass configuration of the blade 
with the highest possible degree of geometrical fidelity. Three-dimensional, solid elements are 
utilized to represent the geometry of the experimental setup, implementing Solid-186 elements 
in ANSYS. Four sections are used to define the added masses. The sections are labeled the 
6.75-meter mass, 1.60-meter mass, and two 1.60-meter offset masses in Figure 6. 

 

Figure 6. Second strategy that includes solid elements to represent the added masses. 

Four sections are used to model the added masses onto the blade, as shown in Figure 6: one 
section for the wooden form attached to the blade at the 1.60-meter station, two symmetric 
sections for the hydraulic actuator system at the 1.60-meter station, and one section for the 
wooden form attached to the blade at the 6.75-meter station. The wooden forms are modeled 
using the geometry of the masses obtained from design specifications. The geometry of offset 
masses of the hydraulic actuator system at the 1.60-meter station is simplified into rectangular 
solids. Figure 7 compares the actual geometry of the experimental setup to the simplification 
implemented in the FE model. Due to its complicated geometry, expert opinion is used to 
identify the center of gravity of the offset mass, which introduces uncertainty in the analysis. 

It is emphasized that, while this modeling strategy provides a better representation of the 
masses than the point-mass and spring system, the fundamental form of the model is still 
incorrect due to the assumption that the added masses can be represented using four 
homogenized sections. Another important factor is the time-to-solution: the vibration analysis of 

6.75-meter 
Wooden Form 

1.60-meter 
Offset 

1.60-meter 
Wooden Form 
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this model is significantly more expensive than the previous one. One objective of the 
investigation is to understand the extent to which the point-mass model is able to deliver a 
similar accuracy and robustness as the solid-mass model, at lower computational cost. 

Table 6. Parameters used to develop the solid-mass representation. 

Parameter Description 

(1; 2) (Elastic modulus; density) of 1.60-meter section 

(3; 4) Center of gravity (X; Y) coordinates of 1.60-meter offset mass 

5 Density of 1.60-meter offset section 

(6; 7) (Elastic modulus; density) of 6.75-meter section 

The parameters used to develop the solid-mass representation are listed in Table 6. The 
parameterization includes the geometry of the outset masses, represented by the center of 
gravity coordinates that define the masses, which influences the ability of the blade to bend in 
torsion. While the imperfect knowledge of the material parameters introduces parametric 
uncertainty in the prediction of vibration response, the imperfect knowledge of the center of 
gravity coordinates introduces numerical uncertainty due to the fact that the mesh changes each 
time that a different location of the center of gravity is implemented. This re-meshing step also 
contributes to significantly increasing the computational cost of the analysis. A close-up of the 
offset masses at the 1.60-meter station is provided in Figure 7, to highlight the good qualitative 
agreement between geometries of the experimental setup and FE model representation. 

 

 

      

Figure 7. Close-up of the offset mass modeled at the 1.60-meter station. 

Table 7. Experimental and simulated frequencies for the solid-mass model. 

Mode Experimental (Hz) Simulated (Hz) Difference (%) 

1st Flap 1.82 1.44 -20.9% 

2nd Flap 9.23 9.29 0.7% 

3rd Flap 12.72 13.22 3.9% 

Comparison of 
Offset Masses 
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With the masses represented using solid elements, the density is back-calculated such that the 
weights of masses implemented in the FE model correspond to the weights of masses obtained 
experimentally. The elastic modulus of the wooden forms is assumed based on the documented 
value for balsa wood. The agreement between predictions of the FE model and experimental 
measurements is listed in Table 7. It is observed that the average percent difference across the 
three bending modes is 8.5%, an improvement over the 11.1% difference observed with the 
point-mass FE model. 

4. Analysis of Robustness to Uncertainty Applied to Models 
of the CX-100 Wind Turbine Blade 

This section discusses IGDT and how it is employed to evaluate the robustness to 
uncertainty of model predictions. By establishing robustness, one demonstrates the extent to 
which the predictions remain sufficiently accurate, even if some of the modeling assumptions 
and parameter values used in the simulation are incorrect. Lack-of-robustness, on the other 
hand, indicates that the expected level of accuracy obtained, for example, through calibration, 
may not be reached if some of the assumptions and parameter values happen to be incorrect. 
Analyzing the robustness of the FE model does not necessarily translate into a reduction of 
prediction uncertainty. It helps, instead, to identify a potentially dangerous situation whereby the 
predictions, and their accuracy, are sensitive to aspects of the modeling that may be unknown 
and/or uncontrolled. 

4.1 Conceptual Demonstration of Robustness Analysis 

For the info-gap analysis presented, the allowable range of variation of model parameters is 
controlled using an uncertainty parameter, α. The definition of α is not essential; what matters is 
that increasing its value defines a nested family of models. For simplicity, the definition of α is 
kept unit-less: the same level of uncertainty, α, can be applied simultaneously to multiple 
parameters from the two modeling strategies because it has no physical unit. The second 
attribute of the info-gap analysis is the performance metric of the model, herein quantified using 
the root mean squared difference between simulation predictions and experimental 
observations. A conceptual illustration is provided next to describe the evaluation of the 
robustness of the competing FE models. 

Consider a model defined using two uncertain parameters, u1 and u2. Figure 8-a describes the 
nominal performance of the model, where u1 and u2 are defined using initial, best guesses or 
nominal values. As uncertainty, α, is increased, the parameters are allowed to vary within a 
range of permissible values (see Section 4.2 for how the bounds are chosen for the parameters 
in our application). As a result, parameters are varied from their nominal settings to become ũ1 
and ũ2. Herein, the allowable range of variation of ũ1 and ũ2 is referred to as the uncertainty 
space. It is represented as a two-dimensional rectangle of size (α1)

2 in Figures 8-b and 8-c. With 
such changes in input parameters, the model performance either improves or degrades. We 
would like, therefore, to explore the best and worst achievable performances as ũ1 and ũ2 are 
allowed to venture away from their nominal values but remain within the uncertainty space 
defined by the parameter α1. The improvement of the performance obtained from the model is 
described as the opportuneness, and the degradation of performance is the robustness. At any 
level of uncertainty α, the opportuneness and robustness points are obtained by solving two 
global optimization problems that search for the best and worst performances, respectively, 
given the space of allowable values for ũ1 and ũ2. Figures 8-b and 8-c illustrate the development 
of the robustness and opportuneness functions. 
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Figure 8-a. Analysis of nominal performance. 

 

Figure 8-b. Development of the robustness function. 

 

Figure 8-c. Development of the opportuneness function. 

 

Figure 8-d. Increased uncertainty space for α3 ≥ α2 ≥ α1. 

 

Figure 8-e. Robustness and opportuneness curves. 

Figure 8. Illustration of the successive steps of an info-gap analysis of robustness. 
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Figure 8-d illustrates that as the uncertainty parameter, α, increases, the uncertainty space, also 
increases. If the uncertainty space is defined to have nested intervals as α increases, as 
suggested in Figure 8-d, then the opportuneness and robustness curves will be monotonic 
functions because the global optimizations that they represent are performed within ever-
growing spaces. Figure 8-e then shows the resulting opportuneness and robustness curves, 
developed from the evaluation of best and worst performances at three levels of uncertainty. A 
particular focus is placed on the robustness curve, and its shape, that are useful to evaluate the 
worst-case performance of the model under increasing uncertainty bounds. A “steep,” or nearly 
vertical, robustness curve indicates that the predictions are insensitive to increasing levels of 
uncertainty, α. Such an observation would be welcome as it would reinforce our conviction that 
the model can be applied with confidence even if some of the assumptions used for its 
development are questionable. Observing, on the other hand, a robustness curve with small 
slope, “∆α/∆R,” which denotes a small improvement of robustness “∆α” relative to a change in 
performance “∆R,” indicates that the model predictions are sensitive to the values of ũ1 and ũ2 
used in the simulation. Such a lack of robustness would decrease the level of trust placed in the 
assumptions upon which the model relies. 

4.2 Rationale for the Definition of Uncertainty 

To promote a fair comparison of the two modeling strategies, the parameters are varied in 
such as way that the effect on bending frequency predictions of the maximum parameter 
variation is consistent with the difference between the competing models at their nominal 
setting. Doing so ensures that the effect on predictions of the allowable range of parameter 
variation is consistent with the effect on predictions of varying the model forms of the competing 
modeling strategies. Because model selection is only applied to how the masses are modeled 
onto the existing shell representation, the info-gap analysis is restricted to the model parameters 
used to define the added masses. The two models at their nominal configuration exhibit a 20% 
average percent variation in the first three flapwise frequencies. The models are held at their 
nominal configuration while the weights of the masses are allowed to vary using the mass 
parameter for the point mass model, and the density parameter for the solid mass model. Table 
8 summarizes the results of the mass-only variation, where 0% variation indicates the models 
held at their nominal setting. 

Table 8. Effect on natural frequency predictions of the mass-only variation. 

Variation (%) 
Point Mass Model Solid Mass Model 

ω1 ω2 ω3 ω1 ω2 ω3 

-50% 1.94 10.42 13.43 1.94 10.59 15.38 

-25% 1.64 9.64 12.38 1.63 10.00 14.04 

0% 1.45 8.85 11.59 1.44 9.29 13.22 

+25% 1.30 8.17 10.78 1.30 8.59 12.66 

+50% 1.20 7.60 10.06 1.19 7.96 12.24 

The results presented in Table 8 are plotted in Figure 9 for clarity. It is emphasized that the 
behaviors of the two curves are slightly different, even though only the mass parameters are 
allowed to vary in the two models. The observed difference is attributed to the combined effect 
of parameter variation and model form on frequency predictions. Figure 9 demonstrates that an 
18% variation in masses is necessary to achieve the 20% variation observed between the two 
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models at nominal configuration. Thus, the lower and upper bounds of the variation 
corresponding to α = 1 are defined by allowing the mass parameters to vary up to ± 18%. 
Having defined the parameter variations corresponding to any value of α, the info-gap analysis 
can be used to address the question of model selection. 

 

Figure 9. Comparison of frequency prediction variation due to mass-only variation. 

4.3 Selection of the Mass Added Models 

The info-gap analysis is performed for the competing FE models to explore the robustness 
of predictions obtained by each one of them. Upper and lower bounds of model parameters are 
defined corresponding to the level of uncertainty being evaluated, as suggested in Figure 8 in 
the case of only two parameters. The uncertainty space is a hyper-cube defined from the lower 
and upper bounds for the vector of parameters ũ. Its size, or volume, increases monotonically 
depending on the level of uncertainty considered, α: 

   u α  = 1 ± 0.2×α  u . (1) 

The level of uncertainty, α, is multiplied by 0.2 such that when α = 1 the parameters are varied 
by ±20%, consistent with the mass-added variation pursued in Section 4.2. The robustness and 
opportuneness functions are evaluated in increments of α = 0.5. For each level of uncertainty 
evaluated, the “fmincon” optimization solver of MatlabTM is used to search for the combination of 
parameters within the family of models that produces the worst-case (for robustness) or best-
case (for opportuneness) performance. It is emphasized that a new input deck, that includes re-
meshing in the case of the solid element model, is generated and submitted to ANSYS each 
time that a combination of model parameters is evaluated during the optimization. Results of the 
ANSYS analysis must then be uploaded back in MatlabTM memory. This strategy requires 
significant scripting to automate the procedure but avoids the development of statistical 
emulators that may introduce unwanted approximations. 
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To ensure that the optimization is initiated with a high-quality guess, all combinations of the 
upper and lower bounds, or “corners” of the hyper-cube space, are evaluated using a two-level 
full-factorial design-of-experiments. The optimization is then initiated using the combination of 
model parameters that yields the maximum or minimum performance of the full-factorial design. 
Because the objective is to compare the prediction accuracies of the two modeling strategies, 
model performance is defined as the root mean squared error of natural frequencies for the first 
three flapwise bending modes: 

 
3 2

Simulation, i Experiment, i
i=1

R = ω   ω , (2) 

where R denotes the model performance metric, ωSimulation is the numerical prediction of natural 
frequency, and ωExperiment is the experimental measurement of the same frequency. 

Table 9. Range of variation for the parameters used in the point-mass model. 

Parameter Description Nominal ± Variation 

1 Translation springs at 1.60-meter section 10+8 10+6.4 – 10+9.6 

2 Rotation springs at 1.60-meter section 10+8 10+6.4 – 10+9.6 

3 Point mass at 1.60-meter section 582.46 465.97 – 698.95

4 Translation springs at 6.75-meter section 10+8 10+6.4 – 10+9.6 

5 Rotation springs at 6.75-meter section 10+8 10+6.4 – 10+9.6 

6 Point mass at 6.75-meter section 144.7 115.76 – 173.64

Tables 9 and 10 define the parameters associated with the competing models, along with the 
ranges of variation specified for the info-gap analysis at the level of uncertainty of α = 1. Note 
that the center of gravity parameter in Table 10 affects the definition of meshes used in the solid 
mass representation. It means that the uncertainty parameter, α, influences both the material 
behavior (density, elastic modulus) and numerical uncertainty of FE predictions due to the 
changes that it brings to the mesh discretization. 

Table 10. Range of variation for the parameters used in the solid-mass model. 

Parameter Description Nominal ± Variation 

1 Elastic modulus of 1.60-meter section 8×10+9 6.4×10+9 – 9.6×10+9 

2 Density of 1.60-meter section 636.1 508.88 – 763.32 

3 Center of gravity X coordinates of 1.60-meter offset mass 0.224 0.179 – 0.269 

4 Center of gravity Y coordinates of 1.60-meter offset mass 0.480 0.384 – 0.576 

5 Density of 1.60-meter offset section.  229.0 183.2 – 274.8 

6 Elastic modulus of 6.75-meter section 8×10+9 6.4×10+9 – 9.6×10+9 

7 Density of 6.75-meter section 1644.5 1315.6 – 1973.4 
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Figure 10. Info-gap robustness and opportuneness curves of the two strategies. 

Figure 10 presents the results of the info-gap analysis performed on the competing FE models. 
The nominal performance, associated with a level of uncertainty of α = 0, clearly demonstrates 
that the solid mass model better reproduces the experimental data compared to the point mass 
model. Further, as the uncertainty parameter increases, the solid mass model remains the 
preferable modeling strategy. Conversely, it can be stated that the solid mass model provides a 
higher degree of accuracy at any level of modeling uncertainty, α. In fact, the robustness slopes 
of the competing models are relatively consistent despite the different representations of reality. 
The result of this analysis demonstrates unambiguously that the solid mass model is the 
preferable modeling strategy to utilize, despite the lack-of-knowledge associated with the 
modeling assumptions and parameters used in the simulation. 

5. Conclusion 

This manuscript discusses a decision analysis framework for model selection that considers 
the trade-offs in the ability of a numerical simulation to, first, replicate the experimental data and, 
second, provide predictions that are robust to the modeling assumptions identified in the model 
development process. Modeling assumptions are typically formulated when developing 
numerical simulations, such as the use of fictitious boundary springs or implementing smeared 
properties for composite materials instead of attempting to define the individual layers. Although 
such assumptions have become commonplace, their effect on model predictions often remains 
unknown. Another practice is to consider that a model achieves sufficient “predictability” as long 
as its predictions reproduce the experimental measurements. Our contention is that assessing 
models based only on their fidelity-to-data while ignoring the effect that the modeling 
assumptions may exercise on predictions is not a sound strategy for model selection. 

The framework discussed in this study is applied to competing models used to simulate an 
experimental configuration of the CX-100 wind turbine blade in which masses are added to the 
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blade. Experimental data obtained from a fixed-free modal analysis performed at the National 
Renewable Energy Laboratory, with and without added masses, are utilized. The wind turbine 
blade is bolted to a 6300-kg steel frame to define the fixed-free configuration. Masses are added 
at the 1.60-meter and 6.75-meter sections to define the mass added configuration that 
enhances the flapwise bending vibrations. The FE model of the blade, developed from a 
previous verification and validation study, is first calibrated to measurements of the fixed-free 
configuration. Calibration results show that the FE model is able to replicate the experimental 
frequencies within an average 2% error. Two modeling strategies are then considered for 
implementing the masses onto the existing FE model, using (i) point masses and stiffening 
springs and (ii) high-fidelity solid elements. To examine the predictive capability of the mass-
added FE models, limited calibration exercises are performed past the initial calibration to the 
fixed-free configuration. At their nominal configurations, the point mass model reproduces the 
experimental data to within 11.1% average error, and the solid mass model is within 8.5% 
average error for the first three flapwise bending natural frequencies. 

An info-gap analysis is performed to address the question of model selection. An advantage of 
info-gap is that the formulation of prior probability distributions can be avoided because the 
analysis substitutes numerical optimization to statistical sampling. Further, the robustness to our 
lack-of-knowledge about the modeling assumptions and parameter values is accounted for 
when evaluating the model performance. The info-gap analysis is performed through parameter 
variation, where the maximum range of variation is chosen such that the change in model 
predictions is consistent with the change induced by the differing modeling strategies. It is 
observed that the solid mass model is not only more accurate, but also provides better behavior 
in robustness to modeling assumptions and unknown parameter values. Even though the solid 
mass model is a more complex representation of reality, and comes with higher computational 
cost, the analysis concludes unambiguously that it is the preferable modeling strategy. 
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