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Abstract: Several plausible modeling strategies are available to develop finite element (FE)
models of ever-increasingly complex phenomena. Expert judgment is typically used to choose
which strategy to employ, while the “best” modeling approach remains unknown. This paper
proposes a decision analysis framework that offers a systematic and rigorous methodology for
comparing plausible modeling strategies. The proposed framework departs from the
conventional approach that considers only test-analysis correlation to select the model that
provides the highest degree of fidelity-to-data. The novelty of the framework lies in an
exploration of the trade-offs between robustness to uncertainty and fidelity-to-data. Exploring
robustness to model imprecision and inexactness, in addition to fidelity-to-data, lends credibility
to the simulation by guaranteeing that its predictions can be trusted even if some of the
modeling assumptions and input parameters are incorrect. To demonstrate this approach, an
experimental configuration is analyzed in which large masses are used to load the CX-100 wind
turbine blade in bending during vibration testing. Two plausible simulations are developed with
differing strategies to implement these large masses using (i) a combination of point-mass and
spring elements or (ii) solid elements. In this paper, the authors study the ability of the two FE
models to predict the experimentally obtained natural frequencies, and the robustness of these
competing models to uncertainties in the input parameters. Considering robustness for model
selection provides the extent to which prediction accuracy deteriorates as the lack-of-knowledge
increases. Therefore, the preferable modeling strategy is the one that offers the best
compromise between fidelity-to-data and robustness to uncertainty. To predict the bending
vibration of the CX-100 wind turbine blade, it is observed that the modeling strategy with solid
elements is far superior to the other one in its ability to provide a compromise between fidelity-
to-data and robustness to the modeling assumptions. (Approved for unlimited, public release on
October xx, 2012, LA-UR-12-xxxx, Unclassified.)
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1. Introduction
1.1 Motivation

The wind energy industry in the United States has consistently observed the design of larger
wind turbines, with the largest ones in 2011 produced with blades 61.5 meters in length. In
anticipation of this continued trend, blades 100 meters in length are already being pursued for
future wind turbines (Griffith and Ashwill 2011). Modeling and simulation techniques can be
used to economically and efficiently study the behavior of wind turbines produced at this
massive scale, which enables designers to consider both aerodynamic and structural concerns
early in the design process (Quarton 1998), and mitigate the increasing costs of full-scale
testing (Veers et al. 2003). Finite element (FE) models calibrated against experimental data
have gained acceptance for routine use in studying the static and dynamic responses of wind
turbine blades, as demonstrated by its inclusion in wind turbine design standards (DNV 2010).
Further, FE models are advantageous to study complex load cases that arise from in-service
wind loading (Jensen et al. 2006, Leishman 2002), as compared to the idealized loads that are
implemented in full-scale experiments (Freebury and Musial 2000).

Assumptions and simplifications are routinely implemented in FE models to mitigate our lack-of-
knowledge about the underlying physics and to reduce the computation time that it may take to
simulate complex phenomena. For example, it has been proposed to simulate wind turbines
using geometrically non-linear, one-dimensional beam elements when coupling FE models of
the wind turbine structural response with computational fluid dynamics models of the
surrounding airflow (Dalton et al. 2012). Here, expert judgment was used to identify the need for
geometric non-linearity (as opposed to material non-linearity), which can account for self weight
as wind turbine blades are produced at larger scales. The use of one-dimensional beam
elements is necessary to reduce computation time and make the simulation of wind turbines at
the plant scale feasible. Current computing resources and code capabilities prevent the
simulation of plant performance based on full-physics, full-coupling, three-dimensional
representations of the structural response and air flow, which renders these simplifications
necessary. As seen, FE models are only able to provide an approximation of reality due to the
need for assumptions and simplifications. The main concern that arises is the extent to which
predictions of a numerical simulation can be trusted, given that the models implemented rely on
assumptions and simplifications.

Even though there may be a severe lack-of-knowledge about the best modeling strategy, recent
wind turbine studies continue to consider that a model if of good quality when its predictions
match physical experiments after calibration or validation exercises. It is important to note that
the model complexity, as influenced by the model form and number of parameters used to
define the model, will also affect the quality of model output (Myung 2000, Atamturktur et al.
2012). For example, when comparing the output of four different wind turbine drive train models,
Martins et al. (2007) found that the model that accounted for mechanical damping achieved the
best agreement between measurements and simulations, while the less complex models
provided poorer agreement with the experimental data. Another study found it necessary to
include non-linearity in the structural response of a wind turbine blade to better match the
deformation observed during experimental static testing (Jensen et al. 2006). However, when
the quality of numerical models are determined solely by their fidelity to experimental data, the
modeling preference strategy will typically lean towards FE models that are overly complex at
the risk of over-fitting the experimental data and at the cost of a poor generalization to other,
non-tested settings (Myung 2000). This paradigm in modeling and simulation has been formally
recognized, and it can be shown that fidelity-to-data, robustness to assumptions and predictive
capability are antagonistic attributes of any family of models (Ben-Haim and Hemez 2011).
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To quantify the effect on predictions of lack-of-knowledge introduced by modeling assumptions
and simplifications, this manuscript proposes a novel, non-probabilistic decision analysis
framework rooted in info-gap decision theory (IGDT). Info-gap decision theory has surfaced as a
useful method to study the influence of our ignorance on numerical predictions and the
decisions that they support (Ben-Haim 2006). The methodology proposed herein deviates from
other model selection methods (see Section 1.2), because it is non-probabilistic in nature, and is
performed by assessing the trade-offs of fidelity-to-data and robustness of predictions to our
lack-of-knowledge. The basic premise is that a good-quality model, while it should be able to
reproduce the available measurements, should also provide predictions that are as insensitive
as possible to the modeling assumptions and simplifications. In the proposed framework, model
selection is achieved through a rigorous exploration of robustness versus accuracy of
predictions. Understanding these trade-offs is important for the development of robust numerical
models because it is the very mechanism through which the trustworthiness of predictions can
be established.

The framework proposed in this paper is demonstrated on the bending vibration of the CX-100
wind turbine blade developed at the Sandia National Laboratories (SNL). In two earlier studies,
the FE model of CX-100 blade has undergone rigorous Verification and Validation (V&V)
assessments to ensure the credibility of predictions (see Mollineaux et al. 2012 for verification
studies and Van Buren et al. 2012 for the validation studies). These earlier studies are briefly
summarized in Section 2 for completeness. More recently, the CX-100 blade was dynamically
tested at the National Renewable Energy Laboratory (NREL) with large masses used to load the
blade in bending. The added masses are represented in two alternative configurations, using (i)
point masses and stiffening springs or (ii) high-fidelity solid elements. The ability of these two
competing modeling strategies to replicate the experimentally obtained natural frequencies is
discussed in Section 3. In Section 4, the fundamental principles behind IGDT are presented,
and the extent to which predictions of these two competing models are robust to uncertainties in
the model input parameters is quantified. The strategy that implements high-fidelity solid
elements is found to be both more accurate and more robust than the use of point masses. The
practical implication of these findings is that predictions, and their accuracy, can be trusted even
if some of the assumptions upon which the solid-element FE model relies upon are incorrect.

1.2 Related Literature

Model selection has been a widely pursued topic due to the lack-of-knowledge that arises in
identifying an appropriate modeling strategy (Draper 1994). The importance of model selection
arises from the fact that different modeling strategies will affect the quality of predictions. As
early as the 1930’s, it was observed that using the same data to train an algorithm and evaluate
its performance can lead to a false sense of confidence in the results (Larson 1931). One
method to mitigate this shortcoming in model selection is cross-validation, where experimental
data are divided into at least two sets: (i) a calibration set, and (ii) at least one (or more) hold-out
sets. The calibration set of experimental data is used to update the model, and the model that is
able to best replicate the hold-out sets of data is considered to be the best choice. The data-
splitting technique used to divide the available experimental data into different sets is known to
affect the model selection process (Arlot and Celisse 2010).

In the last decade, Bayesian methods have been widely pursued for model selection, with
several approaches rooted in its theory, such as the intrinsic Bayes factor (Berger and Pericchi
1996), fractional Bayes factor (O’Hagan 1995), deviance information criterion (Spiegelhalter et
al. 2002), and asymptotic approaches (Wasserman 2000). One advantage of Bayesian
approaches is that they will naturally take structural uncertainty into account. Further, when
sufficient experimental data are available, the “true” model will always be chosen by Bayesian
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model selection (Berger et al. 2001). While powerful, however, the Bayesian approach to model
selection also draws criticisms. One drawback is the very strong assumption that a “true” model
exists, and that the “true” model is one of the models being considered (Kadane and Lazar
2004). Further, the development of defensible prior uncertainties is often difficult. Despite the
drawbacks to Bayesian approaches, many studies have successfully demonstrated its use in
model selection (Terejanu et al. 2011, Beck and Yuen 2004).

Several other methods have also been proposed to address the question of model selection, for
example the Akaike information criterion (Bozdogan 2000, Akaike 1973), minimum description
length (Grunwald 2000), likelihood ratio tests (Posada and Buckley 2004), and information-
theoretic measure of complexity (Bozdogan 2000, Bozdogan and Bearse 1997). Myung (2004)
compares the performance of several model selection techniques, with the conclusion that
model complexity must be taken into account to ensure that an overly complex model is not
selected. Recent studies have also acknowledged the importance of robustness in model
selection (Miller and Welsh 2005, Terejanu et al. 2011, Johnson and Omland 2004).

The current investigation proposes to address the question of model selection using IGDT,
which requires the definition of a family of models to demonstrate the trade-off of fidelity-to-data
and robustness to our lack-of-knowledge (Ben-Haim 2006). Such a family of models can
originate from either a probabilistic or non-probabilistic description of the uncertainty and it is
referred to as an info-gap model. Previous studies have successfully demonstrated the
usefulness of treating uncertainties in an info-gap context, such as exploring the robustness of
model predictions to uncertainties in connection stiffnesses (Vinot et al. 2002) and industrial
applications (Hot et al. 2012). Herein, IGDT will be applied to model parameters to answer the
question of model selection. The non-probabilistic treatment of uncertainty limits the
assumptions that are applied in the analysis while accounting for model complexity. In addition,
explicitly addressing the robustness to uncertainty of model predictions establishes confidence
despite the lack-of-knowledge about the modeling assumptions and parameter values used in
the simulation.

2. Model Development and Experimental Campaign
2.1 Development of the CX-100 FE Model

This section provides a review of the development process of the FE model of the CX-100
blade, as discussed in-depth by Mollineaux et al. (2012) and Van Buren et al. (2012). The model
is developed using an accurate description of the geometry, obtained from design specifications
of the wind turbine blade in NUMAD, preprocessor developed at SNL, and imported into ANSYS
version 12.1 with Shell-281 finite elements. The mesh discretization is based on an element size
of Ax = 8 cm, which produces an overall solution uncertainty of 1.78% for the prediction of low-
frequency bending modes of the blade. This mesh size is chosen because the 1.78% numerical
uncertainty is comparable to a 3-0 experimental variability of 1.62%, estimated from free-free
modal testing performed at the Los Alamos National Laboratory (LANL) (Deines et al. 2011).

Leading Edge Leading Edge with Balsa \I,ROOt
minl|
U
1
Trailing Edge Spar Cap

Figure 1. lllustration of the ANSYS model showing different sections of the blade.
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Six independent sections are defined in the development of the FE model: shear web, root, spar
cap, trailing edge, leading edge with balsa, and leading edge without balsa. With the exception
of the shear web, because it is hidden inside the cross-section of the blade, these sections are
illustrated in Figure 1. Isotropic materials with smeared cross-sectional properties are used to
define the material sections.

Modal testing performed at LANL in two configurations is used for calibration and validation
studies: (i) free-free, where the blade is suspended with straps, and (ii) clamped-free, where a
250-kg steel bookend fixture is used to fix the base of the blade. The model parameters are
calibrated to the free-free and clamped-free experimental natural frequencies in a two-step
procedure (Van Buren et al. 2012). To mitigate the uncertainty in the fixity at the base of the
blade, fictitious springs are introduced in an attempt to implement a boundary condition that is
between the ideal “fixed” and “free” cases. The mode shape vectors are used to validate the FE
model, in which the modal assurance criterion is estimated to quantify the agreement of
simulation results to the experimental data. An overall correlation of 84% is observed for the
free-free modes and 94% for the clamped-free modes.

\ i
Figure 2. Fixed-free setup (left), mass-added setup (middle), and base fixture (right).

Modal testing performed at LANL in two configurations is used for calibration and validation
studies: (i) free-free, where the blade is suspended with straps, and (ii) clamped-free, where a
250-kg steel bookend fixture is used to fix the base of the blade. The model parameters are
calibrated to the free-free and clamped-free experimental natural frequencies in a two-step
procedure (Van Buren et al. 2012). To mitigate the uncertainty in the fixity at the base of the
blade, fictitious springs are introduced in an attempt to implement a boundary condition that is
between the ideal “fixed” and “free” cases. The mode shape vectors are used to validate the FE
model, in which the modal assurance criterion is estimated to quantify the agreement of
simulation results to the experimental data. An overall correlation of 84% is observed for the
free-free modes and 94% for the clamped-free modes.

2.2 NREL Modal Testing of the CX-100 Wind Turbine Blade

The CX-100 wind turbine blade is attached to a 6300 kg (7-ton) steel frame, effectively
allowing for a fixed-free boundary condition. Modal testing is performed using a roving impact
hammer test procedure under two different setups: first, in a fixed-free condition, and second
with large masses clamped to the blade. A 582-kg mass and 145-kg mass are added on the
blade at the 1.60-meter and 6.75-meter locations, respectively. Four uni-axial accelerometers
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and one tri-axial accelerometer are used to collect data for hammer impacts at 65 locations: 47
in the flapwise directions, and 18 in the edgewise directions. Three test replicates are performed
with a linear average and 150 Hz sampling frequency. The acceleration response is collected
with 4,096 sampling points without a window function due to the relatively long sampling period
of 11 seconds (Farinholt et al. 2012).

Table 1. Results of the experimental modal analysis.

Mode Fixed-Free Frequency (Hz) | Mass-Added Frequency (Hz)
1* Flap Bending 4.35 1.82
2" Flap Bending 11.51 9.23
3" Flap Bending 20.54 12.72

The experimental setups and base fixture are shown in Figure 2, and the first three flapwise
frequencies are listed in Table 1. It is important to note that the boundary condition provided in
the NREL testing is different from the boundary condition used in previous modal testing
performed at LANL (Deines et al. 2011, Van Buren et al. 2012). The mass-added configuration,
in which there is significant mass loading and a change in the compliant boundary condition to a
more rigid fixture, defines a different configuration of the CX-100 wind turbine blade.

2.3 Fixed-free Model of the CX-100 Wind Turbine Blade

Calibration of the fixed-free model is re-considered due to the more rigid structure used in
the NREL experiments. Five statistically significant parameters of the fixed-free FE model of the
wind turbine blade are identified using a forward propagation of uncertainty and sensitivity
analysis. The influential parameters are: density of the trailing edge, density of the leading edge,
modulus of elasticity of the spar cap, translational springs used to model the boundary condition
perpendicular to the base fixity, and density of the trailing edge. The uncertainty bounds of the
trailing edge density, leading edge density, and spar cap density are increased from previous
parametric studies (Van Buren et al. 2012), from £25% bounds to +50% bounds in the current
study after an exploratory design-of-experiments suggests that larger bounds are needed for the
FE model to envelope the experimental data. It is chosen to limit the increase of the parameter
ranges to +50% due to mode swapping when the parameters are allowed to vary past these
values. The upper and lower uncertainty bounds chosen for the spar cap modulus reflect the
posterior uncertainty obtained from previous free-free calibration. The uncertainty bounds of
boundary springs are determined from parametric studies of the fixed-free boundary condition.
Measurements of the natural frequencies obtained during the NREL testing are utilized to
calibrate the FE model.

Instead of performing calibration as an optimization of model parameters to best-fit the
experimental data, inference uncertainty quantification is performed to explore the posterior
probability distribution of these three parameters. To efficiently perform the inference uncertainty
quantification, the FE model is executed using a three-level, full-factorial design-of-experiments
to provide the simulation data required to train a fast-running Gaussian Process Model (GPM).
A Markov Chain Monte Carlo (MCMC) algorithm is used to explore the posterior distribution of
parameters of the GPM emulator, where a statistical T-test retains only parameters that provide
frequency predictions sufficiently “close” to those measured experimentally. This methodology
relies on the theory proposed by Kennedy and O’Hagan (2000) and the computational
framework developed by Higdon et al. (2008).
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Table 2. Comparison of prior and posterior uncertainty of the FE model parameters.

Prior Uncertainty Posterior Uncertainty

FE Model Parameter

Lower | Upper | Range Mean | Std. Dev. | #20 Range
Trailing Edge, density 27460 | 823.80 | 549.20| 335.62 49.49 197.95
Leading Edge, density | 858.20 | 2574.60 | 1716.40 | 1165.30 248.76 995.03
Spar, modulus 29.92 53.56 23.64 43.40 5.51 22.05
Z-spring 1.00 | 100.00 99.00 71.91 15.98 63.91
Spar, density 1267.00 | 3801.00 | 2534.00 | 1673.57 335.74 1342.94

The results of the inference are summarized in Table 2. Columns 2-4 summarize the prior
uncertainty, which represents the range of values used in the full-factorial design to train the
GPMs. Columns 5-7 provide the posterior uncertainty, which are the statistics inferred from the
MCMC search algorithm. The inference is successful at “learning” the value of the parameters,
as indicated by the reduction of its uncertainty relative to the initial range used in the design.

A graphical representation of the posterior distribution is provided in Figure 3, which plots the
marginal distribution of each parameter on the diagonal and a probability contour of the pairs of
parameters in the off-diagonal boxes. The inference is successful in reducing the uncertainty of
the spar cap modulus of elasticity and the boundary spring constants. The clustering of samples
drawn towards the lower bound in Figure 3 suggests that the algorithm may be attracted to
values outside of the initial range provided to the GPM. However, it is chosen to keep the
current analysis due to the introduction of mode swapping when the parameter values are
allowed to vary outside of the prior range.

p-TE p-LE k- z dir.

E - spar

p- spar

([

A

Figure 3. Marginal distributions and correlation functions corresponding to Table 2.

p- spar
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Table 3. Comparison of experimental and simulated results for the fixed-free model.

Mode Experimental (Hz) | Simulated (Hz) | Difference (%)
1% Flap 4.35 4.26 -2.1%
2" Flap 11.51 11.45 -0.5%
3" Flap 20.54 19.85 -3.4%

Table 3 compares the experimentally obtained natural frequencies to those predicted by the FE
model with the parameters set to the mean values of the posterior distribution. The simulation
consistently under-predicts the experimental results by 0.5-3.4%. Due to the relatively small
error in the predictions of resonant frequencies, and the fact that the predicted mode shape
deflections correlate well with those measured experimentally, the accuracy of the calibrated
fixed-free model is deemed acceptable. The same model is used next to explore the mass-
added configuration.

3. Model Development for the Mass-Added Configuration
of the CX-100 Wind Turbine Blade

This section discusses the development of two competing FE models used to simulate the
NREL mass-added configuration. The two models pursued in this section are developed using
different assumptions and simplifications, using either (i) a system of fictitious point masses and
stiffening springs, or (ii) three-dimensional solid elements that represent the geometry of the
added masses with high fidelity.

3.1 Development of the Point Mass Model

A central point mass is added to approximate the added masses at each of the two
locations. The point masses are then connected by fictitious springs to the nodes of the blade to
reflect the interaction between the blade and added masses. This configuration is shown in
Figure 4. The use of springs in this modeling strategy is adopted because exploratory FE
simulations indicate that adding the point masses directly to the shell model of the blade
introduces lower-order mode shapes with local deformations at the cross-sections with masses
added. Fictitious springs are therefore introduced to maintain the rigidity of the blade cross-
section at the locations where masses are added. This modeling strategy offers a compromise
between low computational times-to-solution and a reasonable representation of the mechanics.

Figure 4. lllustration of the blade cross-section with added point masses and springs.
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Table 4 lists the parameters used to develop the point mass representation added to the three-
dimensional blade model discretized with shell elements. The parameterization of this simplified
modeling strategy results in the use of only six new model parameters.

Table 4. Parameters used to develop the point mass representation.

Parameter Description
(1; 2) (Translation; rotation) springs at the 1.60-meter section
3 Point mass at 1.60-meter section
(4; 5) (Translation; rotation) springs at 6.75-meter section
6 Point mass at 6.75-meter section

To preserve the calibrated, fixed-free model discussed earlier in Section 2.3, only the spring
stiffness coefficients are calibrated in the mass-added configuration (parameters 1, 2, 4, and 5
listed in Table 4). A parametric study is performed to evaluate the effect of the spring stiffness
on frequency predictions.

15 v
—v%— Mode 1 :
—&— Mode 2 o |oae
= _'_’___f—o———{'_-.)——’.%\f_{f‘?_‘:' )
N —— > |
- 10+ - Mode 3 : ]
< / ! = I - = 0
Q G p—-a—-8 - — €]
5 / !
o / 1
2 5t / / |
[+
s f I

Spring Constant (N/m)

Figure 5. Effect of spring stiffness coefficients on the first three bending frequencies.

Figure 5 shows the frequency predictions as the spring stiffness values are varied from 10 to
10*'° N/m. As the spring stiffness is increased, the natural frequencies also increase, due to the
change in interaction between the blade and springs. Around a value of 10*® N/m, the natural
frequencies plateau to values that consistently under-predict the experimental natural
frequencies. A calibration of the model parameters would likely converge to the upper bound of
the spring stiffness values because the parametric study in Figure 5 is unable to form an
envelope around the experimentally obtained natural frequencies. Therefore, the value of 10*
N/m is chosen for the spring stiffness, indicated by the vertical black line in Figure 5.
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Table 5. Experimental and simulated frequencies for the point-mass model.

Mode Experimental (Hz) Simulated (Hz) Difference (%)
1% Flap 1.82 1.45 -20.3%
2" Flap 9.23 8.85 -4.1%
3" Flap 12.72 11.59 -8.9%

Table 5 compares the natural frequencies measured experimentally to those predicted by the
mass-added FE model. Again, the frequencies are consistently under-predicted by the model;
however, the absolute differences for the first three modes, 0.37 Hz, 0.38 Hz, and 1.13 Hz,
demonstrate an acceptable fidelity-to-data despite the minimal calibration activities performed
after the model was modified to include the added masses.

3.2 Development of the Solid Mass Model

The second modeling strategy is to represent the added-mass configuration of the blade
with the highest possible degree of geometrical fidelity. Three-dimensional, solid elements are
utilized to represent the geometry of the experimental setup, implementing Solid-186 elements
in ANSYS. Four sections are used to define the added masses. The sections are labeled the
6.75-meter mass, 1.60-meter mass, and two 1.60-meter offset masses in Figure 6.

1.60-meter
Wooden Form

ST
o oy = s; B G o
6.75-meter T TS
AN e

o o
AR TR
Wooden Form R
= “:::““
.

1.60-meter
Offset

Figure 6. Second strategy that includes solid elements to represent the added masses.

Four sections are used to model the added masses onto the blade, as shown in Figure 6: one
section for the wooden form attached to the blade at the 1.60-meter station, two symmetric
sections for the hydraulic actuator system at the 1.60-meter station, and one section for the
wooden form attached to the blade at the 6.75-meter station. The wooden forms are modeled
using the geometry of the masses obtained from design specifications. The geometry of offset
masses of the hydraulic actuator system at the 1.60-meter station is simplified into rectangular
solids. Figure 7 compares the actual geometry of the experimental setup to the simplification
implemented in the FE model. Due to its complicated geometry, expert opinion is used to
identify the center of gravity of the offset mass, which introduces uncertainty in the analysis.

It is emphasized that, while this modeling strategy provides a better representation of the
masses than the point-mass and spring system, the fundamental form of the model is still
incorrect due to the assumption that the added masses can be represented using four
homogenized sections. Another important factor is the time-to-solution: the vibration analysis of
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this model is significantly more expensive than the previous one. One objective of the
investigation is to understand the extent to which the point-mass model is able to deliver a
similar accuracy and robustness as the solid-mass model, at lower computational cost.

Table 6. Parameters used to develop the solid-mass representation.

Parameter Description
(1; 2) (Elastic modulus; density) of 1.60-meter section
(3; 4) Center of gravity (X; Y) coordinates of 1.60-meter offset mass
5 Density of 1.60-meter offset section
(6;7) (Elastic modulus; density) of 6.75-meter section

The parameters used to develop the solid-mass representation are listed in Table 6. The
parameterization includes the geometry of the outset masses, represented by the center of
gravity coordinates that define the masses, which influences the ability of the blade to bend in
torsion. While the imperfect knowledge of the material parameters introduces parametric
uncertainty in the prediction of vibration response, the imperfect knowledge of the center of
gravity coordinates introduces numerical uncertainty due to the fact that the mesh changes each
time that a different location of the center of gravity is implemented. This re-meshing step also
contributes to significantly increasing the computational cost of the analysis. A close-up of the
offset masses at the 1.60-meter station is provided in Figure 7, to highlight the good qualitative
agreement between geometries of the experimental setup and FE model representation.

K Comparison of

Offset Masses

Figure 7. Close-up of the offset mass modeled at the 1.60-meter station.

Table 7. Experimental and simulated frequencies for the solid-mass model.

Mode Experimental (Hz) Simulated (Hz) Difference (%)
1% Flap 1.82 1.44 -20.9%
2" Flap 9.23 9.29 0.7%
3" Flap 12.72 13.22 3.9%
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With the masses represented using solid elements, the density is back-calculated such that the
weights of masses implemented in the FE model correspond to the weights of masses obtained
experimentally. The elastic modulus of the wooden forms is assumed based on the documented
value for balsa wood. The agreement between predictions of the FE model and experimental
measurements is listed in Table 7. It is observed that the average percent difference across the
three bending modes is 8.5%, an improvement over the 11.1% difference observed with the
point-mass FE model.

4. Analysis of Robustness to Uncertainty Applied to Models
of the CX-100 Wind Turbine Blade

This section discusses IGDT and how it is employed to evaluate the robustness to
uncertainty of model predictions. By establishing robustness, one demonstrates the extent to
which the predictions remain sufficiently accurate, even if some of the modeling assumptions
and parameter values used in the simulation are incorrect. Lack-of-robustness, on the other
hand, indicates that the expected level of accuracy obtained, for example, through calibration,
may not be reached if some of the assumptions and parameter values happen to be incorrect.
Analyzing the robustness of the FE model does not necessarily translate into a reduction of
prediction uncertainty. It helps, instead, to identify a potentially dangerous situation whereby the
predictions, and their accuracy, are sensitive to aspects of the modeling that may be unknown
and/or uncontrolled.

4.1 Conceptual Demonstration of Robustness Analysis

For the info-gap analysis presented, the allowable range of variation of model parameters is
controlled using an uncertainty parameter, a. The definition of a is not essential; what matters is
that increasing its value defines a nested family of models. For simplicity, the definition of a is
kept unit-less: the same level of uncertainty, a, can be applied simultaneously to multiple
parameters from the two modeling strategies because it has no physical unit. The second
attribute of the info-gap analysis is the performance metric of the model, herein quantified using
the root mean squared difference between simulation predictions and experimental
observations. A conceptual illustration is provided next to describe the evaluation of the
robustness of the competing FE models.

Consider a model defined using two uncertain parameters, us and u,. Figure 8-a describes the
nominal performance of the model, where u; and u, are defined using initial, best guesses or
nominal values. As uncertainty, a, is increased, the parameters are allowed to vary within a
range of permissible values (see Section 4.2 for how the bounds are chosen for the parameters
in our application). As a result, parameters are varied from their nominal settings to become (j
and (.. Herein, the allowable range of variation of Gy and 0, is referred to as the uncertainty
space. It is represented as a two-dimensional rectangle of size (a;)? in Figures 8-b and 8-c. With
such changes in input parameters, the model performance either improves or degrades. We
would like, therefore, to explore the best and worst achievable performances as G, and 0, are
allowed to venture away from their nominal values but remain within the uncertainty space
defined by the parameter a;. The improvement of the performance obtained from the model is
described as the opportuneness, and the degradation of performance is the robustness. At any
level of uncertainty a, the opportuneness and robustness points are obtained by solving two
global optimization problems that search for the best and worst performances, respectively,
given the space of allowable values for iy and G,. Figures 8-b and 8-c illustrate the development
of the robustness and opportuneness functions.
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Figure 8. lllustration of the successive steps of an info-gap analysis of robustness.
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Figure 8-d illustrates that as the uncertainty parameter, q, increases, the uncertainty space, also
increases. If the uncertainty space is defined to have nested intervals as a increases, as
suggested in Figure 8-d, then the opportuneness and robustness curves will be monotonic
functions because the global optimizations that they represent are performed within ever-
growing spaces. Figure 8-e then shows the resulting opportuneness and robustness curves,
developed from the evaluation of best and worst performances at three levels of uncertainty. A
particular focus is placed on the robustness curve, and its shape, that are useful to evaluate the
worst-case performance of the model under increasing uncertainty bounds. A “steep,” or nearly
vertical, robustness curve indicates that the predictions are insensitive to increasing levels of
uncertainty, a. Such an observation would be welcome as it would reinforce our conviction that
the model can be applied with confidence even if some of the assumptions used for its
development are questionable. Observing, on the other hand, a robustness curve with small
slope, “Aa/AR,” which denotes a small improvement of robustness “Aa” relative to a change in
performance “AR,” indicates that the model predictions are sensitive to the values of iy and 0,
used in the simulation. Such a lack of robustness would decrease the level of trust placed in the
assumptions upon which the model relies.

4.2 Rationale for the Definition of Uncertainty

To promote a fair comparison of the two modeling strategies, the parameters are varied in
such as way that the effect on bending frequency predictions of the maximum parameter
variation is consistent with the difference between the competing models at their nominal
setting. Doing so ensures that the effect on predictions of the allowable range of parameter
variation is consistent with the effect on predictions of varying the model forms of the competing
modeling strategies. Because model selection is only applied to how the masses are modeled
onto the existing shell representation, the info-gap analysis is restricted to the model parameters
used to define the added masses. The two models at their nominal configuration exhibit a 20%
average percent variation in the first three flapwise frequencies. The models are held at their
nominal configuration while the weights of the masses are allowed to vary using the mass
parameter for the point mass model, and the density parameter for the solid mass model. Table
8 summarizes the results of the mass-only variation, where 0% variation indicates the models
held at their nominal setting.

Table 8. Effect on natural frequency predictions of the mass-only variation.

Point Mass Model Solid Mass Model
Variation (%)
W1 (1)) W3 W1 w3 w3
-50% 1.94 10.42 13.43 1.94 10.59 15.38
-25% 1.64 9.64 12.38 1.63 10.00 14.04
0% 1.45 8.85 11.59 1.44 9.29 13.22
+25% 1.30 8.17 10.78 1.30 8.59 12.66
+50% 1.20 7.60 10.06 1.19 7.96 12.24

The results presented in Table 8 are plotted in Figure 9 for clarity. It is emphasized that the
behaviors of the two curves are slightly different, even though only the mass parameters are
allowed to vary in the two models. The observed difference is attributed to the combined effect
of parameter variation and model form on frequency predictions. Figure 9 demonstrates that an
18% variation in masses is necessary to achieve the 20% variation observed between the two
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models at nominal configuration. Thus, the lower and upper bounds of the variation
corresponding to a = 1 are defined by allowing the mass parameters to vary up to + 18%.
Having defined the parameter variations corresponding to any value of a, the info-gap analysis
can be used to address the question of model selection.

Effect of Mass Variation
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Figure 9. Comparison of frequency prediction variation due to mass-only variation.
4.3 Selection of the Mass Added Models

The info-gap analysis is performed for the competing FE models to explore the robustness
of predictions obtained by each one of them. Upper and lower bounds of model parameters are
defined corresponding to the level of uncertainty being evaluated, as suggested in Figure 8 in
the case of only two parameters. The uncertainty space is a hyper-cube defined from the lower
and upper bounds for the vector of parameters G. Its size, or volume, increases monotonically
depending on the level of uncertainty considered, a:

i(a) = (1+0.2xa) u. (1)

The level of uncertainty, a, is multiplied by 0.2 such that when a = 1 the parameters are varied
by +20%, consistent with the mass-added variation pursued in Section 4.2. The robustness and
opportuneness functions are evaluated in increments of a = 0.5. For each level of uncertainty
evaluated, the “fmincon” optimization solver of Matlab™ is used to search for the combination of
parameters within the family of models that produces the worst-case (for robustness) or best-
case (for opportuneness) performance. It is emphasized that a new input deck, that includes re-
meshing in the case of the solid element model, is generated and submitted to ANSYS each
time that a combination of model parameters is evaluated during the optimization. Results of the
ANSYS analysis must then be uploaded back in Matlab™ memory. This strategy requires
significant scripting to automate the procedure but avoids the development of statistical
emulators that may introduce unwanted approximations.
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To ensure that the optimization is initiated with a high-quality guess, all combinations of the
upper and lower bounds, or “corners” of the hyper-cube space, are evaluated using a two-level
full-factorial design-of-experiments. The optimization is then initiated using the combination of
model parameters that yields the maximum or minimum performance of the full-factorial design.
Because the objective is to compare the prediction accuracies of the two modeling strategies,
model performance is defined as the root mean squared error of natural frequencies for the first
three flapwise bending modes:

3
2
R= \/Z ((DSimUIatiOH,i ~ Ogyperiment, i ) ) (2)

i=1

where R denotes the model performance metric, Wsimuation i the numerical prediction of natural
frequency, and Wexperiment IS the experimental measurement of the same frequency.

Table 9. Range of variation for the parameters used in the point-mass model.

Parameter Description Nominal * Variation
1 Translation springs at 1.60-meter section 10*® 1064 — 10%9°
2 Rotation springs at 1.60-meter section 10*® 1064 - 10"96
3 Point mass at 1.60-meter section 582.46 | 465.97 —698.95
4 Translation springs at 6.75-meter section | 10*® 1064 - 10"96
5 Rotation springs at 6.75-meter section 10" 10"%4 - 10*%°
6 Point mass at 6.75-meter section 144.7 115.76 — 173.64

Tables 9 and 10 define the parameters associated with the competing models, along with the
ranges of variation specified for the info-gap analysis at the level of uncertainty of a = 1. Note
that the center of gravity parameter in Table 10 affects the definition of meshes used in the solid
mass representation. It means that the uncertainty parameter, a, influences both the material
behavior (density, elastic modulus) and numerical uncertainty of FE predictions due to the
changes that it brings to the mesh discretization.

Table 10. Range of variation for the parameters used in the solid-mass model.

Parameter Description Nominal * Variation

1 Elastic modulus of 1.60-meter section 8x10" | 6.4x10™ -9.6x10"
2 Density of 1.60-meter section 636.1 508.88 — 763.32
3 Center of gravity X coordinates of 1.60-meter offset mass 0.224 0.179 — 0.269

4 Center of gravity Y coordinates of 1.60-meter offset mass 0.480 0.384 - 0.576

5 Density of 1.60-meter offset section. 229.0 183.2-274.8

6 Elastic modulus of 6.75-meter section 8x10™ | 6.4x10" -9.6x10"
7 Density of 6.75-meter section 1644.5 1315.6 - 1973.4
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Info-gap Analysis of Accuracy of the CX-100 Blade Model
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Figure 10. Info-gap robustness and opportuneness curves of the two strategies.

Figure 10 presents the results of the info-gap analysis performed on the competing FE models.
The nominal performance, associated with a level of uncertainty of a = 0, clearly demonstrates
that the solid mass model better reproduces the experimental data compared to the point mass
model. Further, as the uncertainty parameter increases, the solid mass model remains the
preferable modeling strategy. Conversely, it can be stated that the solid mass model provides a
higher degree of accuracy at any level of modeling uncertainty, a. In fact, the robustness slopes
of the competing models are relatively consistent despite the different representations of reality.
The result of this analysis demonstrates unambiguously that the solid mass model is the
preferable modeling strategy to utilize, despite the lack-of-knowledge associated with the
modeling assumptions and parameters used in the simulation.

5. Conclusion

This manuscript discusses a decision analysis framework for model selection that considers
the trade-offs in the ability of a numerical simulation to, first, replicate the experimental data and,
second, provide predictions that are robust to the modeling assumptions identified in the model
development process. Modeling assumptions are typically formulated when developing
numerical simulations, such as the use of fictitious boundary springs or implementing smeared
properties for composite materials instead of attempting to define the individual layers. Although
such assumptions have become commonplace, their effect on model predictions often remains
unknown. Another practice is to consider that a model achieves sufficient “predictability” as long
as its predictions reproduce the experimental measurements. Our contention is that assessing
models based only on their fidelity-to-data while ignoring the effect that the modeling
assumptions may exercise on predictions is not a sound strategy for model selection.

The framework discussed in this study is applied to competing models used to simulate an
experimental configuration of the CX-100 wind turbine blade in which masses are added to the
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blade. Experimental data obtained from a fixed-free modal analysis performed at the National
Renewable Energy Laboratory, with and without added masses, are utilized. The wind turbine
blade is bolted to a 6300-kg steel frame to define the fixed-free configuration. Masses are added
at the 1.60-meter and 6.75-meter sections to define the mass added configuration that
enhances the flapwise bending vibrations. The FE model of the blade, developed from a
previous verification and validation study, is first calibrated to measurements of the fixed-free
configuration. Calibration results show that the FE model is able to replicate the experimental
frequencies within an average 2% error. Two modeling strategies are then considered for
implementing the masses onto the existing FE model, using (i) point masses and stiffening
springs and (ii) high-fidelity solid elements. To examine the predictive capability of the mass-
added FE models, limited calibration exercises are performed past the initial calibration to the
fixed-free configuration. At their nominal configurations, the point mass model reproduces the
experimental data to within 11.1% average error, and the solid mass model is within 8.5%
average error for the first three flapwise bending natural frequencies.

An info-gap analysis is performed to address the question of model selection. An advantage of
info-gap is that the formulation of prior probability distributions can be avoided because the
analysis substitutes numerical optimization to statistical sampling. Further, the robustness to our
lack-of-knowledge about the modeling assumptions and parameter values is accounted for
when evaluating the model performance. The info-gap analysis is performed through parameter
variation, where the maximum range of variation is chosen such that the change in model
predictions is consistent with the change induced by the differing modeling strategies. It is
observed that the solid mass model is not only more accurate, but also provides better behavior
in robustness to modeling assumptions and unknown parameter values. Even though the solid
mass model is a more complex representation of reality, and comes with higher computational
cost, the analysis concludes unambiguously that it is the preferable modeling strategy.
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