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Abstract 

A  key  challenge  for  living  systems  is balancing utilization of multiple elemental nutrients,  such as  carbon, 

nitrogen, and oxygen, whose availability is subject to environmental fluctuations. As growth can be limited by 

the scarcity of any one nutrient, the rate at which each nutrient is assimilated must be sensitive not only to 

its own availability, but also to that of other nutrients. Remarkably, across diverse nutrient conditions, E. coli 

grows  nearly  optimally,  balancing  effectively  the  conversion  of  carbon  into  energy  versus  biomass.  To 

investigate  the  link between  the metabolism of different nutrients, we quantified metabolic  responses  to 

nutrient perturbations using LC‐MS based metabolomics and built differential equation models  that bridge 

multiple  nutrient  systems.  We  discovered  that  the  carbonaceous  substrate  of  nitrogen  assimilation,  α‐

ketoglutarate,  directly  inhibits  glucose  uptake  and  that  the  upstream  glycolytic metabolite,  fructose‐1,6‐

bisphosphate, ultrasensitively regulates anaplerosis to allow rapid adaptation to changing carbon availability. 

We also showed that NADH controls the metabolic response to changing oxygen levels. Our findings support 

a general mechanism for nutrient integration: limitation for a nutrient other than carbon leads to build‐up of 

the most  closely  related  product  of  carbon metabolism,  which  in  turn  feedback  inhibits  further  carbon 

uptake.  
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Aims summary 

Aim 1: Reveal the interplay between different nutrient utilization systems 

We proposed to measure the response of the E. coli metabolome to perturbation of the availability of one 

nutrient as a function of the other nutrients present. These experiments have been successfully conducted, 

and  have  led  to  important  insights  into  nutrient  coordination  in  E.  coli.  By  combining  LC‐MS‐based 

metabolomics with genetics  (enzyme knockouts and point mutants), we have been able  to  link molecular‐

level  regulatory  events  to  their physiological  consequences.  For  example, we  identified  the  key  regulator 

linking  nitrogen  availability  and  carbon  utilization,  α‐ketoglutarate.  This  regulation  involves  low  nitrogen 

resulting  in build‐up of α‐ketoglutarate, which  in turns  inhibits Enzyme  I of the phosphotransferase system 

(PTS)  responsible  for glucose uptake  (Doucette et al., 2011). Mutants of  the PTS system  lack  the ability  to 

match glucose uptake to nitrogen availability. Similarly, investigated point mutants of the anaplerotic enzyme 

phosphoenolpyruvate  carboxylase.  These  point mutants which  lack  positive  regulation  of  anaplerosis  by 

fructose‐1,6‐bisphosphate, a key metabolite indicating high sugar availability. Such mutants grow normally in 

steady glucose but are strikingly deficient  in an oscillating glucose environment  (Xu et al., 2012a; Xu et al., 

2012b).  Related  work  investigates  additional  nutrients  and  stresses,  and  the  robustness  of  biological 

responses  to  them  (Goodarzi et al., 2010; Hart et al., 2011; Peterson et al., 2012; Reaves and Rabinowitz, 

2011a, b).  

Aim 2: Advance quantitative understanding of nutrient integration 

The initial aim was to develop an ordinary differential equation (ODE) model of central metabolism in E. coli 

that bridges multiple nutrient  systems. This model aims  to  include most central metabolites of E. coli and 

their enzymatic connections, with kinetic parameters taken from the  literature or computationally  inferred 

based on  the data  from Aim 1. As proposed  initially  in  the application, we are assembling  the model  in a 

modular  fashion. We  first  built  an  ODE model  on  nitrogen  assimilation  system  (Yuan  et  al.,  2009). We 

successfully combined the simplified nitrogen assimilation model with simplified models of glycolysis and the 

TCA cycle to explain the linkage between nitrogen availability and carbon utilization (Doucette et al., 2011). 

We are now working with larger scale modular models, which include all enzyme connections. These models 

have been assembled in a manner that will soon allow their integration. We have coded the complete model 

and  shown  that  it  can  obtain  various  physiologically  relevant  steady‐states.  We  will  begin  testing  its 

dynamical properties shortly. 

Aim 3: Gain insight into the key principles underlying the coordination of metabolic activity across 

pathways 

We proposed  to develop  simplified models  that  capture  the  fundamental processes  that enable effective 

integrated metabolic regulation. The reductionist models were proposed to be assembled  in  light of typical 

pathway architectures, known cellular objectives, and physical constraints. To this end, we have successfully 

gained  insights  from our nitrogen‐carbon network and glycolysis‐anapleurosis pathways. We  initially  found 

that feedback inhibition alone is sufficient to enable both intracellular metabolite concentration homeostasis 

and  optimal  steady‐state  fluxes  (Goyal  et  al.,  2010). More  recently, we  demonstrated  that  feed  forward 

regulation  is  important  in  oscillating  conditions  (Xu  et  al.,  2012a;  Xu  et  al.,  2012b).  In  general,  our 

experimental and computational results support a primary paradigm for nutrient integration: Limitation for a 

nutrient other than carbon leads to build‐up of the most closely related product of carbon metabolism, which 

in turn feedback inhibits further carbon utilization. This principle was tested and confirmed by oxygen‐carbon 

network: NADH built up and regulated central carbon metabolism(Amador‐Noguez et.al. in preparation).  
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Research Achievements 

Our  research  in  this  project  has  resulted  in  the  development  of  novel  experimental  and  computational 

approaches  for  the  quantitative  study  of  nutrient  integration  in  E.  coli. Our  efforts  concentrated  on  the 

coordination of nitrogen and carbon utilization,  including the key  interface between glycolysis (the primary 

glucose catabolic pathway) and the TCA cycle (where carbon and nitrogen metabolism directly intersect). Our 

investigation  yielded  significant  advances  in  the  understanding  of  E.  coli  nutrient  integration,  and more 

generally of microbial central metabolic regulation. 

α‐Ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition (Doucette et al., 2011) 

This single seminal paper achieves a majority of each of  the  three  initial grant aims. Microbes survive  in a 

variety  of  nutrient  environments  by modulating  their  intracellular metabolism.  Balanced  growth  requires 

coordinated  uptake  of  carbon  and  nitrogen,  the  primary  substrates  for  biomass  production.  Yet  the 

mechanisms that balance carbon and nitrogen uptake were previously poorly understood. Here we report in 

Escherichia  coli  that  a  sudden  increase  in nitrogen  availability  results  in  an  almost  immediate  increase  in 

glucose  uptake.  The  concentrations  of  glycolytic  intermediates  and  known  regulators,  however,  remain 

homeostatic. Instead, we find that α‐ketoglutarate, which accumulates in nitrogen limitation, directly blocks 

glucose uptake by  inhibiting enzyme  I, the first step of the sugar‐phosphoenolpyruvate phosphotransferase 

system  (PTS).  This  inhibition  enables  rapid modulation  of  glycolytic  flux without marked  changes  in  the 

concentrations of glycolytic  intermediates by simultaneously altering  import of glucose and consumption of 

the terminal glycolytic intermediate phosphoenolpyruvate. Quantitative modeling shows that this previously 

unidentified regulatory connection is, in principle, sufficient to coordinate carbon and nitrogen utilization. 

 
Figure 1. Glycolytic intermediates are 

homeostatic during nitrogen upshift. Wild‐

type E. coli cultures were subjected to a 

sudden 13‐fold increase in extracellular 

ammonia at t = 0 that induced a 2.5‐fold 

increase in growth rate. Each box shows 

the time‐dependent concentration change 

of the indicated metabolite during the 

perturbation. Concentrations are relative 

to the pool size in cells grown on ample 

nitrogen. G6P, glucose‐6‐phosphate and its 

isomer fructose‐6‐phosphate; FBP, 

fructose‐1,6‐bisphosphate; DHAP, 

dihydroxyacetone‐phosphate; PEP, 

phosphoenolpyruvate; PYR, pyruvate; ADP, 

adenosine diphosphate; ATP, adenosine 

triphosphate; OAA, oxaloacetate; CIT, 

citrate; αKG, α‐ketoglutarate; MAL, malate; 

GLU, glutamate; GLN, glutamine; ASP, 

aspartate.  
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Figure 3. α‐ketoglutarate inhibits enzyme I  (a) Phosphoenolpyruvate (PEP) donates phosphate, 

which is transferred in turn to the cytosolic proteins enzyme I, HPr, and EIIAGlc, the membrane 

transporter EIIBCGlc and finally glucose, which is simultaneously transported and phosphorylated. 

(b) The activity of purified enzyme I was determined in the presence (white squares) or absence 

(black squares) of 2 mM α‐ketoglutarate. (c) Enzyme I activity was determined in the presence of 1 

mM PEP and varying concentrations of α‐ketoglutarate.  

Figure 2. Glucose uptake increases rapidly 

upon nitrogen upshift, independent of 

glutamine concentration (a,b) Batch cultures 

of wild‐type E. coli were grown to mid‐

logarithmic phase in medium containing 2 g 

per liter glucose and 2.5 mM arginine (Arg). 

At t = 0, the cultures were perturbed by 

addition of 10 mM ammonia in a or 2 mM 

glutamine (Gln) in b. (c) Intracellular α‐

ketoglutarate and glutamine concentrations 

during a nitrogen upshift of wild‐type NCM 

3722 and ΔgltD cultures. (d) As in a except 

that E. coli batch cultures were glutamate 

synthase deficient (ΔgltD) and the medium 

contained 10 mM aspartate (Asp) instead of 

arginine.  
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Ultrasensitive regulation of anapleurosis via allosteric activation of PEP carboxylase (Xu et al., 2012a) 

Our investigation of nitrogen‐carbon coordination hit a roadblock when we realized that existing information 

regarding  integration of  glycolysis  and  the  TCA  cycle was deficient.  This paper  rectifies  this deficiency by 

revealing a predominant role for activation of anaplerosis by fructose‐1,6‐bisphosphate. The paper  is also a 

landmark in investigation of allosteric regulation: it is the first to make allostery‐altering directed mutations 

in central carbon enzymes and show both their metabolic and fitness consequences.  

 

Anapleurosis  is  the  filling of  the  tricarboxylic acid cycle with  four‐carbon units. The common  substrate  for 

both  anapleurosis  and  glucose  phosphorylation  in  bacteria  is  the  terminal  glycolytic  metabolite 

phosphoenolpyruvate (PEP). Here we show that Escherichia coli quickly and almost completely turns off PEP 

consumption  upon  glucose  removal.  The  resulting  buildup  of  PEP  is  used  to  quickly  import  glucose  if  it 

becomes available again. The switch‐like termination of anapleurosis results from depletion of fructose‐1,6‐

bisphosphate  (FBP),  an  ultrasensitive  allosteric  activator  of  PEP  carboxylase.  E.  coli  expressing  an  FBP‐

Figure 4. The differential equation model consists of five metabolic reactions: glucose transport and 

phosphorylation with concomitant conversion of PEP to pyruvate, reversible glycolytic conversion of glucose‐

6‐phosphate to two molecules of PEP, condensation of PEP and pyruvate to α‐ketoglutarate, nitrogen transfer 

from glutamine to α‐ketoglutarate producing two molecules of glutamate, and glutamine synthesis from 

glutamate and ammonia. Glutamate is consumed in the outflux to biomass, which is controlled by glutamine 

and α‐ketoglutarate concentrations. Glucose and ammonia availability are the inputs to the model. α‐

ketoglutarate inhibits its own production as well as glucose transport, and glutamine inhibits glutamine 

synthesis. (b) The model was used to simulate the steady‐state pool sizes of each metabolite as external 

nitrogen availability (parameter SN in the model) was varied over a 13‐fold range with carbon availability kept 

constant. The equations were simulated with all variables in the same unitless concentration scale; here, the 

fold changes in pool size, relative to the condition where nitrogen is most scarce (SN = 0.35), are plotted on a 

logarithmic scale.  



Final Report  PI: Rabinowitz  Page 7 of 13 

insensitive point mutant of PEP carboxylase grow normally when glucose is steadily available. However, they 

fail to build up PEP upon glucose removal, grow poorly when glucose availability oscillates and suffer from 

futile  cycling  at  the  PEP  node  on  gluconeogenic  substrates.  Thus,  bacterial  central  carbon metabolism  is 

intrinsically  programmed with  ultrasensitive  allosteric  regulation  to  enable  rapid  adaptation  to  changing 

environmental conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. PEP carboxylase allosteric regulation causes PEP accumulation upon glucose removal and thereby 

enhances growth on oscillating glucose. (a) Glucose removal results in PEP buildup.  E. coli cells growing freely 

in glucose minimal medium were switched to no carbon, acetate, succinate or glycerol as indicated. At the 

indicated times after glucose removal, the metabolome was quantified by LC‐MS. Data are shown in heat‐map 

format, with each line reflecting the dynamics of a particular compound in a particular culture condition. (b) 

PPCR313Q has higher activity than the wild type in the absence of FBP and is desensitized to FBP activation. (c) 

Expression of PPCR313Q ablates the PEP spike upon carbon starvation (d) Growth curves of Δppc pCA24N‐ppc 

and Δppc pCA24N‐ppcR313Q cells. Cells were grown in either steady glucose (closed symbols) or were alternated 

between glucose minimal medium and no‐carbon minimal medium every 30 min (open symbols). 

a 

b 

c 

d 
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Regulation of yeast pyruvate kinase by ultrasensitive allostery independent of phosphorylation (Xu et al., 

2012b) 

Our advances in understanding allosteric regulation of the glycolysis‐TCA interface in E. coli motivated us to 

conduct similar studies  in yeast, where allostery and covalent modification are major means of  fast‐acting 

metabolic  regulation.  Through  this  investigation,  we  not  only  illuminated  control  of  the  glycolysis‐TCA 

interface, we also examined the relative contribution of allostery and covalent modification to an important 

in vivo regulatory event: the rapid decrease in pyruvate kinase flux in yeast upon glucose removal.  

The main  pyruvate  kinase  isozyme  (Cdc19)  is  phosphorylated  in  response  to  environmental  cues.  It  also 

exhibits  positively  cooperative  (ultrasensitive)  allosteric  activation  by  fructose‐1,6‐bisphosphate  (FBP). 

Glucose removal causes accumulation of Cdc19’s substrate, phosphoenolpyruvate. Here we showed that this 

response is retained in strains with altered protein‐kinase‐A or AMP‐activated‐protein‐kinase activity or with 

CDC19 carrying mutated phosphorylation sites.  In contrast, yeast engineered with a CDC19 point mutation 

that ablates FBP‐based regulation fail to accumulate phosphoenolpyruvate. They also fail to grow on ethanol 

and slowly resume growth upon glucose upshift. Thus, while yeast pyruvate kinase is covalently modified in 

response to glucose availability, its activity is controlled almost exclusively by ultrasensitive allostery. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a b c 

d

Figure 6. Pyruvate kinase allosteric regulation in yeast results in PEP accumulation upon glucose removal and enhanced 

growth on oscillating glucose.(a) Glucose removal results in PEP accumulation. Yeast in minimal media containing 2% 

glucose were switched to minimal media containing no carbon, 2% glycerol + 2% ethanol, or 2% ethanol. (b) The pyruvuate 

kinase E392A variant is active in the absence of FBP. (c) Genomic substitution of wild‐type pyruvate kinase with E392A 

(cdc19E392A) eliminates PEP accumulation upon glucose removal. (d) Growth of wild‐type and cdc19E392A yeast on steady 

versus oscillating glucose. Closed symbols, steady glucose; open symbols, oscillating; blue, wild‐type; red, cdc19E392A.  
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Characteristic Phenotypes Associated with ptsN‐Null Mutants in Escherichia coli K‐12 Are Absent in Strains 

with Functional ilvG (Reaves and Rabinowitz, 2011a) 

The  phosphotransferase  system  (PTS),  encompassing  EI,  HPr,  and  assorted  EII  proteins,  uses 

phosphoenolpyruvate to import and phosphorylate sugars. A paralog of EIIA of the sugar PTS system known 

as ptsN has been purported to regulate organic nitrogen source utilization in Escherichia coli K‐12, and thus 

to  play  a  role  in  nitrogen‐carbon  coordination.  Its  known  biochemical  function,  however,  relates  to 

potassium homeostasis. The evidence  for regulation of organic nitrogen source utilization by ptsN  is based 

primarily  on  the  defective  growth  of  ΔptsN mutants  on  amino  acid  nitrogen  sources  and  other  nutrient 

combinations.  These  observations  were  made  with  E.  coli  strains  MG1655  and  W3110,  which  carry  a 

nonfunctional version of  ilvG. There are three  isozymes that effectively catalyze the first committed step of 

branched‐chain  amino  acid  biosynthesis,  but  ilvG  is  unique  for  doing  so  effectively  across  a  range  of 

potassium concentrations. Here we show that all of the nutrient utilization phenotypes attributed to ptsN are 

manifested selectively  in strains  lacking  functional  ilvG. We conclude  that  the ptsN gene product does not 

regulate organic nitrogen source utilization as previously proposed. 

 

Regulatory and metabolic rewiring during laboratory evolution of ethanol tolerance in E. coli (Goodarzi et 

al., 2010) 

The  present  paper  diverges  somewhat  from  the  grant’s  focus  on  Understanding  the  genetic  basis  of 

adaptation  is  a  central problem  in biology. However,  revealing  the underlying molecular mechanisms has 

been challenging as changes  in fitness may result from perturbations to many pathways, any of which may 

contribute  relatively  little.  We  have  developed  a  combined  experimental/computational  framework  to 

address this problem and used it to understand the genetic basis of ethanol tolerance in Escherichia coli. We 

used  fitness profiling  to measure  the consequences of single‐locus perturbations  in  the context of ethanol 

exposure.  A  module‐level  computational  analysis  was  then  used  to  reveal  the  organization  of  the 

contributing  loci  into  cellular  processes  and  regulatory  pathways  (e.g.  osmoregulation  and  cell‐wall 

biogenesis)  whose  modifications  significantly  affect  ethanol  tolerance.  Strikingly,  we  discovered  that  a 

dominant component of adaptation involves metabolic rewiring that boosts intracellular ethanol degradation 

and  assimilation.  Through  phenotypic  and  metabolomic  analysis  of  laboratory‐evolved  ethanol‐tolerant 

strains, we  investigated naturally accessible pathways of ethanol  tolerance. Remarkably,  these  laboratory‐

evolved strains, by and  large, follow the same adaptive paths as  inferred from our coarse‐grained search of 

the fitness landscape. 

 

Metabolomics in systems microbiology (Reaves and Rabinowitz, 2011b) 

In this review article, we describe the role of metabolomics in dissecting microbial physiology, with a focus on 

examples of  integrative analysis of microbial metabolism. Because of the  importance of microbes as model 

organisms, biotechnology tools, and contributors to mammalian and ecosystem metabolism, there has been 

longstanding  interest  in measuring  their metabolite  levels. Current metabolomic methods,  involving mass 

spectrometry‐based measurement of cell extracts, enable routine quantitation of most central metabolites. 

Metabolomics alone, however,  is  inadequate  to understand  cellular metabolic activity:  Flux measurement 



Final Report  PI: Rabinowitz  Page 10 of 13 

and  proteomic,  genetic,  and  biochemical  approaches with  a metabolomics  bent  are  all  needed. Here we 

highlight examples where  these  integrated methods have contributed  to discovery of metabolic pathways, 

regulatory  interactions,  and  homeostasis mechanisms. We  also  indicate  enduring  challenges  concerning 

unstable and low abundance compounds, subcellular compartmentalization, and quantitative amalgamation 

of different data types. 

 

 

 

RpoS proteolysis is controlled directly by ATP levels in Escherichia coli (Peterson et al., 2012) 

An important aspect of nutrient integration is global proteome remodeling in response to nutrient cues. The 

master  regulator  of  stationary  phase  in  Escherichia  coli,  RpoS,  responds  to  carbon  availability  through 

changes in stability, but the individual steps in the pathway are unknown. Here we systematically blocked key 

steps of glycolysis and the citric acid cycle and monitored the effect on RpoS degradation  in vivo. Nutrient 

upshifts trigger RpoS degradation  independently of protein synthesis by activating metabolic pathways that 

generate small energy molecules. Using metabolic mutants and inhibitors, we showed that ATP, but not GTP 

or NADH, is necessary for RpoS degradation. In vitro reconstitution assays directly demonstrated that ClpXP 

fails  to degrade RpoS, but not other proteins, at  low ATP hydrolysis rates. These data suggest  that cellular 

ATP levels directly control RpoS stability. 

Figure 7. Overview of 

metabolomics in systems 

microbiology. Metabolomic and 

genomics provide complementary 

information for identifying an 

organism's metabolic capabilities. 

Concentration data for 

metabolites, proteins, and 

transcripts can be used for 

regulatory inference. 

Computational integration of such 

data aims to enable the 

development of mechanistically 

accurate, predictive metabolic 

models. 
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Robust control of nitrogen assimilation by a bifunctional enzyme in E. coli (Hart et al., 2011) 

Bacteria  regulate  the  assimilation  of  multiple  nutrients  to  enable  growth.  How  is  balanced  utilization 

achieved, despite  fluctuations  in the concentrations of the enzymes that make up the regulatory circuitry? 

Here we address this question by studying the nitrogen system of E. coli. A mechanism based on the avidity 

of a bifunctional enzyme, adenylyltransferase (AT/AR), to  its multimeric substrate, glutamine synthetase,  is 

proposed to maintain a robust ratio between two key metabolites, glutamine and α‐ketoglutarate. This ratio 

is predicted  to be  insensitive  to variations  in protein  levels of  the  core  circuit and  to  the  rate of nitrogen 

utilization. We find using mass spectrometry that the metabolite ratio is robust to variations in protein levels 

and that this robustness depends on the bifunctional enzyme. Moreover, robustness carries through to the 

bacteria growth  rate.  Interrupting avidity by adding a monofunctional AT/AR mutant  to  the native  system 

abolishes robustness, as predicted by the proposed mechanism. 

 

Achieving optimal growth through product feedback inhibition in metabolism (Goyal et al., 2010) 

Recent evidence  suggests  that  the metabolism of  some organisms,  such as Escherichia  coli,  is  remarkably 

efficient,  producing  close  to  the  maximum  amount  of  biomass  per  unit  of  nutrient  consumed.  This 

observation  raises  the question of what  regulatory mechanisms enable  such efficiency. Here, we propose 

that simple product‐feedback inhibition by itself is capable of leading to such optimality. We analyze several 

representative metabolic modules‐‐starting from a linear pathway and advancing to a bidirectional pathway 

and  metabolic  cycle,  and  finally  to  integration  of  two  different  nutrient  inputs.  In  each  case,  our 

mathematical  analysis  shows  that  product‐feedback  inhibition  is  not  only  homeostatic  but  also,  with 

appropriate  feedback  connections,  can  minimize  futile  cycling  and  optimize  fluxes.  However,  the 

effectiveness  of  simple  product‐feedback  inhibition  comes  at  the  cost  of  high  levels  of  some metabolite 

pools, potentially associated with toxicity and osmotic  imbalance. These  large metabolite pool sizes can be 

restricted if feedback inhibition is ultrasensitive. Indeed, the multi‐layer regulation of metabolism by control 

of enzyme expression, enzyme covalent modification, and allostery is expected to result in such ultrasensitive 

feedbacks.  To  experimentally  test  whether  the  qualitative  predictions  from  our  analysis  of  feedback 

inhibition apply to metabolic modules beyond linear pathways, we examine the case of nitrogen assimilation 

in  E.  coli,  which  involves  both  nutrient  integration  and  a  metabolic  cycle.  We  find  that  the  feedback 

regulation  scheme  suggested by our mathematical analysis closely aligns with  the actual  regulation of  the 

network  and  is  sufficient  to  explain much of  the  dynamical behavior of  relevant metabolite pool  sizes  in 

nutrient‐switching experiments. 

 

Identifying biological network structure, predicting network behavior, and classifying network state with 

high dimensional model representation (HDMR) (Miller et al., 2012) 

This work  presents  an  adapted  Random  Sampling  ‐  High  Dimensional Model  Representation  (RS‐HDMR) 

algorithm for synergistically addressing three key problems  in network biology: (1)  identifying the structure 

of biological networks from multivariate data, (2) predicting network response under previously unsampled 
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conditions, and (3) inferring experimental perturbations based on the observed network state. RS‐HDMR is a 

multivariate  regression  method  that  decomposes  network  interactions  into  a  hierarchy  of  non‐linear 

component  functions. Sensitivity analysis based on  these  functions provides a clear physical and statistical 

interpretation of the underlying network structure. The advantages of RS‐HDMR  include efficient extraction 

of nonlinear and cooperative network relationships without resorting to discretization, prediction of network 

behavior without mechanistic modeling, robustness to data noise, and favorable scalability of the sampling 

requirement  with  respect  to  network  size.  As  a  proof‐of‐principle  study,  RS‐HDMR  was  applied  to 

experimental  data measuring  the  single‐cell  response  of  a  protein‐protein  signaling  network  to  various 

experimental perturbations. A comparison to network structure identified in the literature and through other 

inference methods,  including Bayesian  and mutual‐information  based  algorithms,  suggests  that RS‐HDMR 

can successfully reveal a network structure with a low false positive rate while still capturing non‐linear and 

cooperative  interactions. RS‐HDMR  identified several higher‐order network  interactions  that correspond  to 

known feedback regulations among multiple network species and that were unidentified by other network 

inference  methods.  Furthermore,  RS‐HDMR  has  a  better  ability  to  predict  network  response  under 

unsampled conditions in this application than the best statistical inference algorithm presented in the recent 

DREAM3  signaling‐prediction  competition. RS‐HDMR  can discern  and predict  differences  in network  state 

that arise from sources ranging from  intrinsic cell‐cell variability to altered experimental conditions, such as 

when drug perturbations are  introduced. This ability ultimately allows RS‐HDMR  to accurately  classify  the 

experimental conditions of a given sample based on its observed network state. 

This work contributes new computational approaches for network  identifications and control based on the 

increasing availability of high‐throughput biological data, including metabolomics data.  

 

Statistical mechanics of transcription‐factor binding site discovery using Hidden Markov Models (Mehta et 

al., 2011) 

Hidden Markov Models (HMMs) are a commonly used tool for inference of transcription factor (TF) binding 

sites from DNA sequence data. We exploit the mathematical equivalence between HMMs for TF binding and 

the  "inverse"  statistical mechanics  of  hard  rods  in  a  one‐dimensional  disordered  potential  to  investigate 

learning in HMMs. We derive analytic expressions for the Fisher information, a commonly employed measure 

of confidence  in  learned parameters,  in  the biologically  relevant  limit where  the density of binding sites  is 

low. We then use techniques  from statistical mechanics to derive a scaling principle relating the specificity 

(binding energy) of a TF to the minimum amount of training data necessary to learn it. 

While this paper does not directly  investigate nutrient  integration  in E. coli,  it used statistical mechanics to 

study transcription‐factor binding, which contributes to better insights about large data sets being generated 

in biology. By better understanding transcription factor binding,  it  lays the groundwork for future efforts to 

make  longer  time‐scale  dynamic  metabolic  models  that  include  transcriptional  regulation.  By  better 

understanding  basic  issues  regarding  applicability  of  HMM  models  to  biochemical  data,  it  lays  the 

groundwork for their application to study also metabolic network regulation. 
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Other collaborators 

In addition to collaborations among the three PIs, this grant benefited from valuable collaborations with Uri 

Alon (Weizmann Institute), Tania Baker (MIT), Jim Broach (Princeton, now Penn State), Saeed Tavazoie 

(Princeton, now Columbia), and Thomas Silhavy (Princeton).  
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