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Abstract

A key challenge for living systems is balancing utilization of multiple elemental nutrients, such as carbon,
nitrogen, and oxygen, whose availability is subject to environmental fluctuations. As growth can be limited by
the scarcity of any one nutrient, the rate at which each nutrient is assimilated must be sensitive not only to
its own availability, but also to that of other nutrients. Remarkably, across diverse nutrient conditions, E. coli
grows nearly optimally, balancing effectively the conversion of carbon into energy versus biomass. To
investigate the link between the metabolism of different nutrients, we quantified metabolic responses to
nutrient perturbations using LC-MS based metabolomics and built differential equation models that bridge
multiple nutrient systems. We discovered that the carbonaceous substrate of nitrogen assimilation, a-
ketoglutarate, directly inhibits glucose uptake and that the upstream glycolytic metabolite, fructose-1,6-
bisphosphate, ultrasensitively regulates anaplerosis to allow rapid adaptation to changing carbon availability.
We also showed that NADH controls the metabolic response to changing oxygen levels. Our findings support
a general mechanism for nutrient integration: limitation for a nutrient other than carbon leads to build-up of
the most closely related product of carbon metabolism, which in turn feedback inhibits further carbon
uptake.
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Aims summary

Aim 1: Reveal the interplay between different nutrient utilization systems

We proposed to measure the response of the E. coli metabolome to perturbation of the availability of one
nutrient as a function of the other nutrients present. These experiments have been successfully conducted,
and have led to important insights into nutrient coordination in E. coli. By combining LC-MS-based
metabolomics with genetics (enzyme knockouts and point mutants), we have been able to link molecular-
level regulatory events to their physiological consequences. For example, we identified the key regulator
linking nitrogen availability and carbon utilization, a-ketoglutarate. This regulation involves low nitrogen
resulting in build-up of a-ketoglutarate, which in turns inhibits Enzyme | of the phosphotransferase system
(PTS) responsible for glucose uptake (Doucette et al., 2011). Mutants of the PTS system lack the ability to
match glucose uptake to nitrogen availability. Similarly, investigated point mutants of the anaplerotic enzyme
phosphoenolpyruvate carboxylase. These point mutants which lack positive regulation of anaplerosis by
fructose-1,6-bisphosphate, a key metabolite indicating high sugar availability. Such mutants grow normally in
steady glucose but are strikingly deficient in an oscillating glucose environment (Xu et al., 2012a; Xu et al.,
2012b). Related work investigates additional nutrients and stresses, and the robustness of biological
responses to them (Goodarzi et al., 2010; Hart et al., 2011; Peterson et al.,, 2012; Reaves and Rabinowitz,
2011a, b).

Aim 2: Advance quantitative understanding of nutrient integration

The initial aim was to develop an ordinary differential equation (ODE) model of central metabolism in E. coli
that bridges multiple nutrient systems. This model aims to include most central metabolites of E. coli and
their enzymatic connections, with kinetic parameters taken from the literature or computationally inferred
based on the data from Aim 1. As proposed initially in the application, we are assembling the model in a
modular fashion. We first built an ODE model on nitrogen assimilation system (Yuan et al.,, 2009). We
successfully combined the simplified nitrogen assimilation model with simplified models of glycolysis and the
TCA cycle to explain the linkage between nitrogen availability and carbon utilization (Doucette et al., 2011).
We are now working with larger scale modular models, which include all enzyme connections. These models
have been assembled in a manner that will soon allow their integration. We have coded the complete model
and shown that it can obtain various physiologically relevant steady-states. We will begin testing its
dynamical properties shortly.

Aim 3: Gain insight into the key principles underlying the coordination of metabolic activity across
pathways

We proposed to develop simplified models that capture the fundamental processes that enable effective
integrated metabolic regulation. The reductionist models were proposed to be assembled in light of typical
pathway architectures, known cellular objectives, and physical constraints. To this end, we have successfully
gained insights from our nitrogen-carbon network and glycolysis-anapleurosis pathways. We initially found
that feedback inhibition alone is sufficient to enable both intracellular metabolite concentration homeostasis
and optimal steady-state fluxes (Goyal et al., 2010). More recently, we demonstrated that feed forward
regulation is important in oscillating conditions (Xu et al., 2012a; Xu et al., 2012b). In general, our
experimental and computational results support a primary paradigm for nutrient integration: Limitation for a
nutrient other than carbon leads to build-up of the most closely related product of carbon metabolism, which
in turn feedback inhibits further carbon utilization. This principle was tested and confirmed by oxygen-carbon
network: NADH built up and regulated central carbon metabolism(Amador-Noguez et.al. in preparation).
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Research Achievements

Our research in this project has resulted in the development of novel experimental and computational
approaches for the quantitative study of nutrient integration in E. coli. Our efforts concentrated on the
coordination of nitrogen and carbon utilization, including the key interface between glycolysis (the primary
glucose catabolic pathway) and the TCA cycle (where carbon and nitrogen metabolism directly intersect). Our
investigation yielded significant advances in the understanding of E. coli nutrient integration, and more
generally of microbial central metabolic regulation.

a-Ketoglutarate coordinates carbon and nitrogen utilization via enzyme | inhibition (Doucette et al., 2011)

This single seminal paper achieves a majority of each of the three initial grant aims. Microbes survive in a
variety of nutrient environments by modulating their intracellular metabolism. Balanced growth requires
coordinated uptake of carbon and nitrogen, the primary substrates for biomass production. Yet the
mechanisms that balance carbon and nitrogen uptake were previously poorly understood. Here we report in
Escherichia coli that a sudden increase in nitrogen availability results in an almost immediate increase in
glucose uptake. The concentrations of glycolytic intermediates and known regulators, however, remain
homeostatic. Instead, we find that a-ketoglutarate, which accumulates in nitrogen limitation, directly blocks
glucose uptake by inhibiting enzyme |, the first step of the sugar-phosphoenolpyruvate phosphotransferase
system (PTS). This inhibition enables rapid modulation of glycolytic flux without marked changes in the
concentrations of glycolytic intermediates by simultaneously altering import of glucose and consumption of
the terminal glycolytic intermediate phosphoenolpyruvate. Quantitative modeling shows that this previously
unidentified regulatory connection is, in principle, sufficient to coordinate carbon and nitrogen utilization.
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Figure 4. The differential equation model consists of five metabolic reactions: glucose transport and
phosphorylation with concomitant conversion of PEP to pyruvate, reversible glycolytic conversion of glucose-
6-phosphate to two molecules of PEP, condensation of PEP and pyruvate to a-ketoglutarate, nitrogen transfer
from glutamine to a-ketoglutarate producing two molecules of glutamate, and glutamine synthesis from
glutamate and ammonia. Glutamate is consumed in the outflux to biomass, which is controlled by glutamine
and a-ketoglutarate concentrations. Glucose and ammonia availability are the inputs to the model. a-
ketoglutarate inhibits its own production as well as glucose transport, and glutamine inhibits glutamine
synthesis. (b) The model was used to simulate the steady-state pool sizes of each metabolite as external
nitrogen availability (parameter Sy in the model) was varied over a 13-fold range with carbon availability kept
constant. The equations were simulated with all variables in the same unitless concentration scale; here, the
fold changes in pool size, relative to the condition where nitrogen is most scarce (Sy = 0.35), are plotted on a
logarithmic scale.

Ultrasensitive regulation of anapleurosis via allosteric activation of PEP carboxylase (Xu et al., 2012a)

Our investigation of nitrogen-carbon coordination hit a roadblock when we realized that existing information
regarding integration of glycolysis and the TCA cycle was deficient. This paper rectifies this deficiency by
revealing a predominant role for activation of anaplerosis by fructose-1,6-bisphosphate. The paper is also a
landmark in investigation of allosteric regulation: it is the first to make allostery-altering directed mutations
in central carbon enzymes and show both their metabolic and fitness consequences.

Anapleurosis is the filling of the tricarboxylic acid cycle with four-carbon units. The common substrate for
both anapleurosis and glucose phosphorylation in bacteria is the terminal glycolytic metabolite
phosphoenolpyruvate (PEP). Here we show that Escherichia coli quickly and almost completely turns off PEP
consumption upon glucose removal. The resulting buildup of PEP is used to quickly import glucose if it
becomes available again. The switch-like termination of anapleurosis results from depletion of fructose-1,6-
bisphosphate (FBP), an ultrasensitive allosteric activator of PEP carboxylase. E. coli expressing an FBP-
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insensitive point mutant of PEP carboxylase grow normally when glucose is steadily available. However, they
fail to build up PEP upon glucose removal, grow poorly when glucose availability oscillates and suffer from
futile cycling at the PEP node on gluconeogenic substrates. Thus, bacterial central carbon metabolism is
intrinsically programmed with ultrasensitive allosteric regulation to enable rapid adaptation to changing

environmental conditions.
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Figure 5. PEP carboxylase allosteric regulation causes PEP accumulation upon glucose removal and thereby
enhances growth on oscillating glucose. (a) Glucose removal results in PEP buildup. E. coli cells growing freely
in glucose minimal medium were switched to no carbon, acetate, succinate or glycerol as indicated. At the
indicated times after glucose removal, the metabolome was quantified by LC-MS. Data are shown in heat-map
format, with each line reflecting the dynamics of a particular compound in a particular culture condition. (b)
PPC®*2 has higher activity than the wild type in the absence of FBP and is desensitized to FBP activation. (c)
Expression of PPC****? ablates the PEP spike upon carbon starvation (d) Growth curves of Appc pCA24N-ppc
and Appc pCA24N-ppc”33® cells. Cells were grown in either steady glucose (closed symbols) or were alternated

between glucose minimal medium and no-carbon minimal medium every 30 min (open symbols).
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Regulation of yeast pyruvate kinase by ultrasensitive allostery independent of phosphorylation (Xu et al.,
2012b)

Our advances in understanding allosteric regulation of the glycolysis-TCA interface in E. coli motivated us to
conduct similar studies in yeast, where allostery and covalent modification are major means of fast-acting
metabolic regulation. Through this investigation, we not only illuminated control of the glycolysis-TCA
interface, we also examined the relative contribution of allostery and covalent modification to an important
in vivo regulatory event: the rapid decrease in pyruvate kinase flux in yeast upon glucose removal.

The main pyruvate kinase isozyme (Cdc19) is phosphorylated in response to environmental cues. It also
exhibits positively cooperative (ultrasensitive) allosteric activation by fructose-1,6-bisphosphate (FBP).
Glucose removal causes accumulation of Cdc19’s substrate, phosphoenolpyruvate. Here we showed that this
response is retained in strains with altered protein-kinase-A or AMP-activated-protein-kinase activity or with
CDC19 carrying mutated phosphorylation sites. In contrast, yeast engineered with a CDC19 point mutation
that ablates FBP-based regulation fail to accumulate phosphoenolpyruvate. They also fail to grow on ethanol
and slowly resume growth upon glucose upshift. Thus, while yeast pyruvate kinase is covalently modified in
response to glucose availability, its activity is controlled almost exclusively by ultrasensitive allostery.
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Figure 6. Pyruvate kinase allosteric regulation in yeast results in PEP accumulation upon glucose removal and enhanced

growth on oscillating glucose.(a) Glucose removal results in PEP accumulation. Yeast in minimal media containing 2%
glucose were switched to minimal media containing no carbon, 2% glycerol + 2% ethanol, or 2% ethanol. (b) The pyruvuate

kinase E392A variant is active in the absence of FBP. (c¢) Genomic substitution of wild-type pyruvate kinase with E392A

E392A

(cdc195*°*) eliminates PEP accumulation upon glucose removal. (d) Growth of wild-type and cdc19 yeast on steady

versus oscillating glucose. Closed symbols, steady glucose; open symbols, oscillating; blue, wild-type; red, cdc19°*.
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Characteristic Phenotypes Associated with ptsN-Null Mutants in Escherichia coli K-12 Are Absent in Strains
with Functional ilvG (Reaves and Rabinowitz, 2011a)

The phosphotransferase system (PTS), encompassing El, HPr, and assorted Ell proteins, uses
phosphoenolpyruvate to import and phosphorylate sugars. A paralog of EIIA of the sugar PTS system known
as ptsN has been purported to regulate organic nitrogen source utilization in Escherichia coli K-12, and thus
to play a role in nitrogen-carbon coordination. Its known biochemical function, however, relates to
potassium homeostasis. The evidence for regulation of organic nitrogen source utilization by ptsN is based
primarily on the defective growth of AptsN mutants on amino acid nitrogen sources and other nutrient
combinations. These observations were made with E. coli strains MG1655 and W3110, which carry a
nonfunctional version of ilvG. There are three isozymes that effectively catalyze the first committed step of
branched-chain amino acid biosynthesis, but ilvG is unique for doing so effectively across a range of
potassium concentrations. Here we show that all of the nutrient utilization phenotypes attributed to ptsN are
manifested selectively in strains lacking functional ilvG. We conclude that the ptsN gene product does not
regulate organic nitrogen source utilization as previously proposed.

Regulatory and metabolic rewiring during laboratory evolution of ethanol tolerance in E. coli (Goodarzi et
al., 2010)

The present paper diverges somewhat from the grant’s focus on Understanding the genetic basis of
adaptation is a central problem in biology. However, revealing the underlying molecular mechanisms has
been challenging as changes in fitness may result from perturbations to many pathways, any of which may
contribute relatively little. We have developed a combined experimental/computational framework to
address this problem and used it to understand the genetic basis of ethanol tolerance in Escherichia coli. We
used fitness profiling to measure the consequences of single-locus perturbations in the context of ethanol
exposure. A module-level computational analysis was then used to reveal the organization of the
contributing loci into cellular processes and regulatory pathways (e.g. osmoregulation and cell-wall
biogenesis) whose modifications significantly affect ethanol tolerance. Strikingly, we discovered that a
dominant component of adaptation involves metabolic rewiring that boosts intracellular ethanol degradation
and assimilation. Through phenotypic and metabolomic analysis of laboratory-evolved ethanol-tolerant
strains, we investigated naturally accessible pathways of ethanol tolerance. Remarkably, these laboratory-
evolved strains, by and large, follow the same adaptive paths as inferred from our coarse-grained search of
the fitness landscape.

Metabolomics in systems microbiology (Reaves and Rabinowitz, 2011b)

In this review article, we describe the role of metabolomics in dissecting microbial physiology, with a focus on
examples of integrative analysis of microbial metabolism. Because of the importance of microbes as model
organisms, biotechnology tools, and contributors to mammalian and ecosystem metabolism, there has been
longstanding interest in measuring their metabolite levels. Current metabolomic methods, involving mass
spectrometry-based measurement of cell extracts, enable routine quantitation of most central metabolites.
Metabolomics alone, however, is inadequate to understand cellular metabolic activity: Flux measurement
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and proteomic, genetic, and biochemical approaches with a metabolomics bent are all needed. Here we
highlight examples where these integrated methods have contributed to discovery of metabolic pathways,
regulatory interactions, and homeostasis mechanisms. We also indicate enduring challenges concerning
unstable and low abundance compounds, subcellular compartmentalization, and quantitative amalgamation
of different data types.
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RpoS proteolysis is controlled directly by ATP levels in Escherichia coli (Peterson et al., 2012)

An important aspect of nutrient integration is global proteome remodeling in response to nutrient cues. The
master regulator of stationary phase in Escherichia coli, RpoS, responds to carbon availability through
changes in stability, but the individual steps in the pathway are unknown. Here we systematically blocked key
steps of glycolysis and the citric acid cycle and monitored the effect on RpoS degradation in vivo. Nutrient
upshifts trigger RpoS degradation independently of protein synthesis by activating metabolic pathways that
generate small energy molecules. Using metabolic mutants and inhibitors, we showed that ATP, but not GTP
or NADH, is necessary for RpoS degradation. In vitro reconstitution assays directly demonstrated that ClpXP
fails to degrade RpoS, but not other proteins, at low ATP hydrolysis rates. These data suggest that cellular
ATP levels directly control RpoS stability.
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Robust control of nitrogen assimilation by a bifunctional enzyme in E. coli (Hart et al., 2011)

Bacteria regulate the assimilation of multiple nutrients to enable growth. How is balanced utilization
achieved, despite fluctuations in the concentrations of the enzymes that make up the regulatory circuitry?
Here we address this question by studying the nitrogen system of E. coli. A mechanism based on the avidity
of a bifunctional enzyme, adenylyltransferase (AT/AR), to its multimeric substrate, glutamine synthetase, is
proposed to maintain a robust ratio between two key metabolites, glutamine and a-ketoglutarate. This ratio
is predicted to be insensitive to variations in protein levels of the core circuit and to the rate of nitrogen
utilization. We find using mass spectrometry that the metabolite ratio is robust to variations in protein levels
and that this robustness depends on the bifunctional enzyme. Moreover, robustness carries through to the
bacteria growth rate. Interrupting avidity by adding a monofunctional AT/AR mutant to the native system
abolishes robustness, as predicted by the proposed mechanism.

Achieving optimal growth through product feedback inhibition in metabolism (Goyal et al., 2010)

Recent evidence suggests that the metabolism of some organisms, such as Escherichia coli, is remarkably
efficient, producing close to the maximum amount of biomass per unit of nutrient consumed. This
observation raises the question of what regulatory mechanisms enable such efficiency. Here, we propose
that simple product-feedback inhibition by itself is capable of leading to such optimality. We analyze several
representative metabolic modules--starting from a linear pathway and advancing to a bidirectional pathway
and metabolic cycle, and finally to integration of two different nutrient inputs. In each case, our
mathematical analysis shows that product-feedback inhibition is not only homeostatic but also, with
appropriate feedback connections, can minimize futile cycling and optimize fluxes. However, the
effectiveness of simple product-feedback inhibition comes at the cost of high levels of some metabolite
pools, potentially associated with toxicity and osmotic imbalance. These large metabolite pool sizes can be
restricted if feedback inhibition is ultrasensitive. Indeed, the multi-layer regulation of metabolism by control
of enzyme expression, enzyme covalent modification, and allostery is expected to result in such ultrasensitive
feedbacks. To experimentally test whether the qualitative predictions from our analysis of feedback
inhibition apply to metabolic modules beyond linear pathways, we examine the case of nitrogen assimilation
in E. coli, which involves both nutrient integration and a metabolic cycle. We find that the feedback
regulation scheme suggested by our mathematical analysis closely alighs with the actual regulation of the
network and is sufficient to explain much of the dynamical behavior of relevant metabolite pool sizes in
nutrient-switching experiments.

Identifying biological network structure, predicting network behavior, and classifying network state with
high dimensional model representation (HDMR) (Miller et al., 2012)

This work presents an adapted Random Sampling - High Dimensional Model Representation (RS-HDMR)
algorithm for synergistically addressing three key problems in network biology: (1) identifying the structure
of biological networks from multivariate data, (2) predicting network response under previously unsampled
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conditions, and (3) inferring experimental perturbations based on the observed network state. RS-HDMR is a
multivariate regression method that decomposes network interactions into a hierarchy of non-linear
component functions. Sensitivity analysis based on these functions provides a clear physical and statistical
interpretation of the underlying network structure. The advantages of RS-HDMR include efficient extraction
of nonlinear and cooperative network relationships without resorting to discretization, prediction of network
behavior without mechanistic modeling, robustness to data noise, and favorable scalability of the sampling
requirement with respect to network size. As a proof-of-principle study, RS-HDMR was applied to
experimental data measuring the single-cell response of a protein-protein signaling network to various
experimental perturbations. A comparison to network structure identified in the literature and through other
inference methods, including Bayesian and mutual-information based algorithms, suggests that RS-HDMR
can successfully reveal a network structure with a low false positive rate while still capturing non-linear and
cooperative interactions. RS-HDMR identified several higher-order network interactions that correspond to
known feedback regulations among multiple network species and that were unidentified by other network
inference methods. Furthermore, RS-HDMR has a better ability to predict network response under
unsampled conditions in this application than the best statistical inference algorithm presented in the recent
DREAMS3 signaling-prediction competition. RS-HDMR can discern and predict differences in network state
that arise from sources ranging from intrinsic cell-cell variability to altered experimental conditions, such as
when drug perturbations are introduced. This ability ultimately allows RS-HDMR to accurately classify the
experimental conditions of a given sample based on its observed network state.

This work contributes new computational approaches for network identifications and control based on the
increasing availability of high-throughput biological data, including metabolomics data.

Statistical mechanics of transcription-factor binding site discovery using Hidden Markov Models (Mehta et
al., 2011)

Hidden Markov Models (HMMs) are a commonly used tool for inference of transcription factor (TF) binding
sites from DNA sequence data. We exploit the mathematical equivalence between HMMs for TF binding and
the "inverse" statistical mechanics of hard rods in a one-dimensional disordered potential to investigate
learning in HMMs. We derive analytic expressions for the Fisher information, a commonly employed measure
of confidence in learned parameters, in the biologically relevant limit where the density of binding sites is
low. We then use techniques from statistical mechanics to derive a scaling principle relating the specificity
(binding energy) of a TF to the minimum amount of training data necessary to learn it.

While this paper does not directly investigate nutrient integration in E. coli, it used statistical mechanics to
study transcription-factor binding, which contributes to better insights about large data sets being generated
in biology. By better understanding transcription factor binding, it lays the groundwork for future efforts to
make longer time-scale dynamic metabolic models that include transcriptional regulation. By better
understanding basic issues regarding applicability of HMM models to biochemical data, it lays the
groundwork for their application to study also metabolic network regulation.
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Other collaborators

In addition to collaborations among the three Pls, this grant benefited from valuable collaborations with Uri
Alon (Weizmann Institute), Tania Baker (MIT), Jim Broach (Princeton, now Penn State), Saeed Tavazoie
(Princeton, now Columbia), and Thomas Silhavy (Princeton).
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