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Exploration of a Cell-Centered Lagrangian Hydrodynamics Method
D. E. Burton?, T.C. Carney!?, N.R. Morgan?, S. Runnels!, M.]. Shashkov!

We present a new cell-centered Lagrange hydro method, discuss some of its aspects
that are still being explored, and demonstrate its performance on several test
problems. The method is second-order in both space and time, enforcing
conservation equations for volume, linear momentum, and total energy on the same
control volume, while enforcing angular momentum on a dual control volume. The
method employs a compatible decomposition of total energy that enables the
computation of specific kinetic and internal energy at the cell’s center of mass. Trial
values for stress and velocity at cell interfaces are determined using a multi-
dimensional, two-shock Riemann-like solution with innovations that increase its
effectiveness for skewed cells. These trial values are then combined to compute
velocity and stress at the vertices that are then propagated back to the cell
interfaces in a way that maintains geometric volume compatibility and angular
momentum.
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Abstract

We present a new cell-centered Lagrange hydro method,
discuss some of its aspects that are still being explored, and
demonstrate its performance on several test problems. The
method is second-order in both space and time, enforcing
conservation equations for volume, linear momentum, and
total energy on the same control volume, while enforcing
angular momentum on a dual control volume. The method
employs a compatible decomposition of total energy that
enables the computation of specific kinetic and internal
energy at the cell’s center of mass. Trial values for stress
and velocity at cell interfaces are determined using a multi-
dimensional, two-shock Riemann-like solution with
innovations that increase its effectiveness for skewed cells.
These trial values are then combined to compute velocity
and stress at the vertices that are then propagated back to
the cell interfaces in a way that maintains geometric volume
compatibility and angular momentum.
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We are interested in cell-centered hydro (CCH) as
a possible alternative to staggered-grid hydro (SGH)

Background

« Staggered Lagrangian methods (SGH) have been a practical tool for large-scale
simulations since before 1950

* Nevertheless, SGH has many known flaws with respect to: mesh imprinting, spurious
vorticity, shock capturing, symmetry preservation, and energy conservation

» Cell-centered Eulerian hydro formulations have been around for many years

- Earliest suggestion for cell-centered Lagrangian (CCH) seems to have been by Ruppel
& Harlow in 1981, leading to the CAVEAT code

* Recently there has been renewed interest in CCH (Barlow, Burton, Despres, Luttwak,
Maire, Shashkov, & others)

To be a viable alternative to SGH, CCH must have comparable capabilities in the areas of:
» Material strength
» Multi-material cells
» Unstructured polytopal grids
* Multi-dimensional formulation with curvilinear geometry
* Advection
» efc.

We will demonstrate some of these capabilities, but the presentation will focus on:
» Mimetic derivation of the difference equations

SIAM 2011 - 3 F gﬂ'h%




Interest in alternatives to SGH is motivated by problems like the
Pressurized Ball that suggest CCH is more stable

] . cells: 25 radial x 10 angular
Spherical ball of gas with 10% angular grading
constant boundary pressure & initial radius 10
10% angular grading stop time 10
p=1, e=1, Y=5/3
boundary pressure=200/3
Staggered Cell-centered Undergoes several bounces rz geometry
(SGH) ) (CCH) before the stop time

2.5 us

SGH
crashes at
5.2 s

4.5 ps e—— 5.0 ps 10.0 us

Colors correspond to density
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Because we are in relatively unexplored territory, we used a
mimetic approach to guide the derivation of the difference scheme

Motivation: The mimetic approach considers not

«  Areas of interest (strength, multi-material only the finite volume differencing of
cells, ...) have not been widely * Evolution equations
investigated in a CCH context e Flux conservation equations

*  Our preliminary implementations of CCH but also ancillary relationships that
seemed to be sensitive (or surprisingly place constraints on the formulation

insensitive) to algorithmic variations . Cabdmmetic voliiiie conseirvation

 Curl & divergence identities
 Angular momentum
» Entropy production

£
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Polytopal grids are described by connectivity that
collapses naturally from 3D to 2D & 1D

tetrahedron i

Surfaces

|

T N
segment i

%

The basic connectivity structure
is called an “iota”

Variables are located relative to

the iota; e.g.,

u; is the cell center velocity
relative to iota i

o) i is the surface stress
tensor for iota i

N =Nn'
is the outward surface
normal

Sums are usually over iotas
connected to points or
cells; e.g.,

The sum of surface vectors
about a cell is

YN =0

and that about a point is

YN =0

A | =
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The Howell (2Dxy) and Verney (3D) problems demonstrate both
multi-dimensional and strength capabilities

Howell — 2Dxy Verney - 3D

Elastic-plastic shell coasts
inward until it stops
~* 4 cm cylindrical
* 3cm spherical Colors correspond to speed

e

R
e
ity .'l"“f i

Initial velocity field is
divergence-free

u (r) =y Rouler
%

S e m e e A B e R

Solid model
« Generic hypo-elastic plastic

6 —

“ Radius (¢m)

L Hugoniot
’ i » Approximated by Dukowicz
I T form
Ll i | 1 | L | N | L | 1 | L -

Q 20 40 60 50 100 120 140 160

Fune (us)
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The mimetic approach begins with a conservative finite volume method

Differential p% .

Cast the evolution
Mf = cﬁdnof"‘ equations in integral

Integral «— (not differential) form

Second-order
requires in-cell
gradients

Finite volume Mf = ZN_.f.*

Implement as
finite volume integrals

» Los Alamos
NATIONAL LABORATORY
EST.1943

===
Mass constant

. Lagrange
M =0%

Strain s Velocity
My = Cﬁdn u
Momentum
yw~  Stress
Mu = Cf)d neo
Total energy Total
. ) energy flux
Mj = Cﬁdn-J A
Entropy

elc.

Main CCH challenge is the
determination of the
* surface fluxes

Operated by Los Alamos National Security, LLC for NNSA
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To determine the surface fluxes,
we must consider more than the evolution equations

Finite Ancillary equations
volume
Curl & _
Mass divergence Geomet.rlc.:.volume
M =0 identities compatibility
. VX(VU):O pv=V.-u
Strain o
My =Y Nu V- (Vxu)=0 N
i ' M:v: = ZN ' uJ
py = Vu b Vx(V-0)=0 -
0= ZN u Evolution v -(V 0 0')= 0 = geo.vol.chg.
Angular momentum
Momentum ] / g o
Ma =Y N .o «T Conservation S N . = o
. pu:VO' o Z -‘ VPXZN ux 0 L::erx(N o-v)
L / . ;
= r. ! i i L i
Total energy . "
V X ZNI o.l —
pj=V-(c-u) M:J":ZN"U;'“Z. v iN’x ._, | Second law of
, - % =" | thermodynamics
0= ZN’ o, -u etc.
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Total
energy

Kinetic
energy

:l:l:-ll:

Momentum
equation

To incorporate the Second Law into the discretization,
we must first decompose the energy equation

Alternative variable

(not a linearization)
0,=0.+0.0

us == u: ¥+ 6.&':“ \

\

eS|
:[ZN -O'j}-uz+0': {ZNu}+[ZN -(5;:0-5;1:)]

=M, [k +w + d]

N W T
) ik

Internal

energy - W +d
L=l YN .o \
< _V_ Z O, U “Work”
) 1
Ww.=—0.:
oM. 5 “Dissipation”
=O'_:}7 y I < i i i
: d =—)>)N'-(6_0-0 u
= N (6o
Strain
equation

The Second Law

In a closed system (j=0),

the kinetic energy must dissipate into
the internal, suggesting

d >0

It is sufficient (but not necessary) that

_— d'=i-§0-8u>0

which is the “entropy condition”

Dissipation models similar to
AjQi i
n'-6,0~ud, u

are invoked to satisfy the entropy
condition

YA [ =y

N
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Algorithmic roadmap
We begin with a description in terms of surface fluxes

Linear construction from cell center

to cell surface Integration of fluxes
Similarly Cell CV Similarly Cell CV
o S e \
V:O' The objective is to &
L : learn how the W
o - : 4
0 ancillary equations
u —=—=-==-- constrainthefluxes | | @ (Gy------
' : V.u
I
|
I
I
|
Riemann-like solution
e
[ I
I “:) I
Nodal CV = : n
Dissipation T :
region Nodal CV !
i |
: I
| Similarly
/.\ ! i |
— 2 I -
- Los Alamos ! |
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Cells are divided into an equilibrium “core” and
possibly non-equilibrium “shell” regions

The finite volume integrals conserve
momentum, but do not specify a
functional form for velocity

Within the core, the velocity field can
be a linear function through the
center of mass (CM), without altering
the cell average

Slopes within cells are determined by
fitting a linear solution to adjacent
cells

Continuity of the function and slope
between cells determines the
discontinuities (jumps)

These must be treated with a non-
equilibrium model

P
- IRAIamos

NATIONAL LABORATORY
EST.1943

“Core” must be in
ﬂejrmodynamic equilibrium

Continuous “sheII”J k Discontinuous “shell”
accommodates requires a conservative
interpolated solution but non-equilibrium
model

Operated by Los Alamos National Security, LLC for NNSA
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Velocity and stress cannot be distributed independently in the core
without giving rise to unintended dissipation

The core is not a modeling abstraction,
but represents the state of the cell under
conditions of smooth flow when there
should be no entropy production

Since stress is not conserved, what functional
form should it have?

A linear distribution is often assumed

The requirement for thermodynamic equilibrium
in the core places constraints on this

Equilibrium
core

In the absence of discontinuities, the
surface fluxes reduce to

i i i i
c.—0, & u —>u

the numerical entropy condition for the
cell should vanish

.= YN (08—t (u) —u) >0
Since this is the divergence of
d.=(0)~0!)(u, -ui)
the integral will vanish if
= constant

at the surface of the cell

If velocity is linear, then the stress is
constrained by the above relationship

In our calculations, we satisfy this by
assuming a constant stress in the cell

o, =0

SIAM 2011 - 13 nﬁ‘éﬂ'@%



The curl and divergence identities constrain the fluxes on the
nodal control volume - consider the curl of the velocity gradient

We need to show that the difference
equations satisfy

$°=8"+8°
V~><Vpu =0 V.5 WVia S'
4 o ] P o
s’ A — -,
The second-order operators are \ T | N
evaluated on a staggered grid 2D SRR RN I 3 I
4 equations | |

c 2 unknowns-=\>~(
{ch[zsfuj)]] \ —> N\
J

The terms vanish if the fluxes
are replaced by a corner velocity

u # i’ _
0 0 This means that the fluxes cannot be
@ Vjec specified independently and some
Then information must be discarded

V. xV u =0 u’ is the fundamental quantity

IV YA Jag))
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Nodal control volume: Constraints imposed by the ancillary equations
change the conceptual picture of the differencing scheme

Relation
V. x(V,u,)=0

V.V, xu,)=0

Constraint
uw —u
[e] [e]

u - u
[e] [e]

Rotational G svmmetric v
equilibrium Y
V X (V ¥e) )2 0 o' — o©° symmetric
4 p o] o (4]
. uz O-:
\V/ -(V XG):O o) = o, symmetric =7
z p o 1
I . P
I s
u
Thermodynamic (G,- _G,-) (u' u")— stant , ;
equilibrium in core o Uz o W)z cons v
/1 First order case
A u —u
> Los Alamos
NATIONAL LABORATORY
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We will compare 2 methods to calculate the corner velocity -
neither of which is completely satisfactory (see test problems)

Divergence method Gradient method

This method demands only consistency

. . . From monotonic reconstruction
with the divergence integral

directly calculate

0 g: = V:ﬁ

YN

This results in a simple set of equations

VV-u= ZNi-uC
u =u:+(xp—x:)~g:
i -u‘=n-a

o o
that is easily solved in each corner

Note that tangential information is
discarded

|

|

N

|

|

v v .

" VA =%
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The Gradient method performs signific”antly better
on the Saltzman problem - but there are issues (later)

Divergence method

\
AR

0.85

0.90

Colors correspond to density

1

0.75

Gradient method

L
uﬁn\n\\\\\\\\\m\um\\\\m\\\\\\\\\m\\\\\\\\\\\\\\\\\\\\\mm\nmu

HARTARALAAAAARAVAARAAA A

il
I

These are xy results,
rz are visually identical

T

>

L Lttt

B T R R
e e e e e s RS NN
e e e e S e i B

14

5 SRR AR ARARRRAAL
O s A R A AR A AR A A AR A AR AR SRR Y
S s AR SRS A AR A A AN NSRS NSNS N ARSAR
SN B T T SN, e

SANNSY
SRS ASRRNAAAS

H

RN

B T T R
S, AR R
S s SN N

N
A B SRANRERSRNY
SAaRRRSRLY

N,
ANNANS

S A AN RARY
\}\:: \K\\\\\\\\ s AN AN AR A AR

i,
R

SANARY
S B A A R R A SR AR AR AR A RN RR AN
LA AL LA R R R
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The Gradient method also significantly improves
results on the Noh (xy) problem on a box grid

Divergence method

Density

Density
VS
Distance

Gradient method

SIAM 2011 - 18



However, the Gradient results were disappointing-on the
Noh (xy) problem on a polar grid

Divergence method Gradient method
good even at poor converges with increasing
angular resolution angular resolution

Density
=z ) !
Density
£ VS i s L J
. Distance |

.15 0.2 .28 0.3 0%

- Los Alamos
NATIONAL LABORATORY
EST. 1943
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The curl and divergence identities also constrain the fluxes on the
cell control volume — consider the curl of the momentum equation

We need to show that the difference
equations satisfy pu = Veo

Vx(pu):VxV-o:O Yy 6,

SI
The second-order operators are
evaluated on a staggered grid 2 T
2 SYIHNBTICS === ==

S 4 equations I
S¢ % ZN’ .6'! 3 unknownsl\i &'

The terms vanish if the tensor is
non-symmetric. Then

|
|
i -
|
V V .0l=0 '
for .me( : G) : /
I s
|

If we require symmetry, the
system is over determined and
the terms vanish only if we

rN
-—ees mm em enfes o o e = o =

replace the fluxes by a corner To satisfy rotational equilibrium,
stress _ , at least the
O'sj # O~'; non-dissipative part of the stress
. must be symmetric

VA =32
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Cell control volume: Constraints imposed by the ancillary equations
change the conceptual picture of the differencing scheme

Relation Constraint .
O non — symmelric
. . dissipative
Geometric volume u —nn-u a
L] - - S
compatibility g u o, u o,
e i Fin' e SN
Vv x(Vu)zo u —>u ' x ' o,
p z0s s | f | —>
I . / I
| = I 52 u’
V(Vxu)=0 o - .

| w7 L]

Rotati | O symmetric
otationa , Lo
equilibrium o Symmetrzc(S) — non — dissipative
u O,
( G NS The non-dissipative part of the :-
Vp X (VZ : O'S) =0 o s stress must be symmetric I KN
1 u
. o NSors§ What about the dissipative part? I o,
o NS ' u
Vp '(Vz X GS) =0 O — < $ Many artificial viscosity models \l' r
* o NSorS are NS, but theoretical
justification needs work
\
- Los Alamos
NATIONAL LABORATORY
Operated b).l Los Alamos National Security, LLC for NNSA SIAM 2011 - 21 ;J'lbﬂﬁrmé



Geometric volume compatlblllty (GVC) constrains
not only the velocity flux u_ but also the surface area vectors N’

A arg

The fluxed volume change must be I'he compatible surface are
constrained to equal the geometric
volume change of the cell

AV =Y N o

In plane (xy) geometry this can be
accomplished by constraining

N = E(Nn n Nn+l)

| KEY POINT

Expressions in 3D are actually 1y
more complicated SIAM 2011 - 22 "‘




Density

Internal energy

o}

2606

1D Coggeshall problem is an example of adiabatic compression -
It is a severe test of slope limiters and curvilinear formulation

The results should be
flat and they are

“tenpl0_20. St atelame, D0000. 6, 070 TE-01" using 214 —

Planar

t=0.6007

rho=2.51 vs 2.5
e=1.85e-6 vs 1.84e-6

0.05 9.1 0,15 0.2 (R 6.3 0.5

Distance

0.4

= Lm0 30, StateDasp, (0000, 6,007 TE-01" ueing 216

0,08 0,1 0,15 0.2 028 0.3 on

Distance

Initial
conditions o
0
Coarse zoning: 20 cells w0
dtmax=1e-3 p:
Y

Analytic
solution

a={1,2,3}

e.(t)= % et

0k

“towp_20,Statelap.00000,6,007017E 01" wsing 2:4 ——

Cylindrical

t=0.6007

rho=6.30 vs 6.27
e=3.41e-6 vs 3.40e-6

“tosp12_20. Statedunp. D00M), 6. (I7A17E-01" uatng 2:4

Spherical

t=0.6007

rho=15.8 vs 15.7
e~6.30e-6 vs 6.27e-6

L

“Lemp_20,SLatebume, (0000, 5. 007017E-0L" waing 216

le-05

LY

de-%

0.0 0.1 0.18 o, 0.5 9.3 0.1
“Lamp 2 20 Statelhaw, 00000,6, OTILZE-0L" uatng 2:6
0.8 0.1 0.15 0,2 0.5 3 4,38




The Sedov problem is a sensitive test of the curvilinear formulation,
volumetric compatibility, energy conservation, as well as robustness

Divergence method
Xy result

2D xy

e

Density

Density
VS
Distance

L Sty S A

1D cylindrical

Divergence method Gradient method
rz result was unable to run
the problem

2D rz

5

for e

| 1D spherical / ‘
. " = . - ' - oy
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This can be expressed in an
impedance form

50:;_1-5w

In the principal frame of the strain rate
tensor, the impedance tensor is

pa, 0 0
= 0 pa, O
0 0 pa,
and
ou, 0 0
Sw= 0 dbu, 0
0 0 dbu,

A simplified tensor dissipation model is used for now —
but should be replaced by a more physically inappropriate model

We use a simplification that
corresponds to the assumptions:

+ the most compressive strain rate is
in the direction of the surface
normal

* shear wave velocities in the

tangential directions are negligible
u=pa 0 0

H= 0 0 0

0 0 0

so that the normal stress jump can
be expressed

nn : 60 = un - du
and the force density as

fi- 60 = wh(h - Su)

i 5y e .

SIAM 2011 -25 [ilf (WA
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The nodal solution is analogous to that of Maire but
extended to tensors & multi-materials (not shown)

Substitute the dissipation expression

™

ﬁf.af:ﬁf.gcw(uf_uc
s o p 0

into the flux donservation law

0= iN' o'

u' =nhn-u
5 p

p

=u, -iN’,ui (ﬁ‘ﬁ’)+ZNi (ﬁi ‘ot — ')
=[A][u,]-[B]
and solv?4or velocity

[u, ]=[A]"[B]

i

s 4] p 0
> Los Alamos

NATIONAL LABORATORY
EST. 1943

rotational equilibrium

requirement providing

O, is symmetric

Satisfies the

Operated by Los Alamos National Security, LLC for NNSA
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Predictor-
corrector
scheme

Advance
coordinates
& areas

n+

X '=x'_’+5tup

N ~%(Nn+Nn+l)

» Los Alamos
NATIONAL LABORATORY
EST.1943

The final algorithmic details

Integr..'slte Calculate the
evolution energy
equations partition

Strain & volume Kinetic energy

szz:ZNiu; ._ :l:l_'u_
My, =Y N -u Internal energy
v:+1=v;+5t\'}2 e. =j:—k:
Necessary for
Momentum kinetic energy
: definition el =e +ore.
MIl.l__ = ZN’ ) o-:
u™' =u” + St o
: i ; Constitutive
u_ = %(u'_f“ + u”) model

n+1 n
Total energy ol ~ol+6tf(v.ey)

Mj =3N o u

j:+l — j: + 5tj:

Operated by Los Alamos National Security, LLC for NNSA
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Summary: Because we are in relatively unexplored territory, we used a
mimetic approach to guide the derivation of the difference scheme

The mimetic approach led to a much better understanding of what works
or does not. In particular it constrained:

» Surface fluxes for cell & nodal control volumes
Gradients in the equilibrium core

Symmetry vs. non-symmetry of stress tensor
Nodal velocity & entropy conditions

Tensor impedance & entropy conditions

Historically, the weakest link in CCH has been the nodal solver

* It now lies in the 2" order velocity construction that drives the
Riemann solution

* The optimal solution remains to be determined

The test problems demonstrated:
» Elastic-plastic material: Verney, Howell
» Adiabatic flow: Coggeshall
* Robustness: pressurized ball, Saltzmann
* Multi-dimensional curvilinear formulation
3D: Verney
2D xy & rz: Sedov, Noh
1D planar, cylindrical, spherical: Coggeshall, Sedov

VYA I =)
SIAM 2011 - 28 MVA‘d%



