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Exploration of a Cell-Centered Lagrangian Hydrodynamics Method 

D. E. Burtonl, T.C. Carneyl, N.R. Morgan2, S. Runnels1, M.J. Shashkov1 

We present a new cell-centered Lagrange hydro method, discuss some of its aspects 
that are still being explored, and demonstrate its performance on several test 
problems. The method is second-order in both space and time, enforcing 
conservation equations for volume, linear momentum, and total energy on the same 
control volume, while enforcing angular momentum on a dual control volume. The 
method employs a compatible decomposition of total energy that enables the 
computation of specific kinetic and internal energy at the cell's center of mass. Trial 
values for stress and velocity at cell interfaces are determined using a multi­
dimensional, two-shock Riemann-like solution with innovations that increase its 
effectiveness for skewed cells. These trial values are then combined to compute 
velocity and stress at the vertices that are then propagated back to the cell 
interfaces in a way that maintains geometric volume compatibility and angular 
momentum. 
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Abstract 

We present a new cell-centered Lagrange hydro method, 
discuss some of its aspects that are still being explored, and 
demonstrate its performance on several test problems. The 
method is second-order in both space and time, enforcing 
conservation equations for volume, linear momentum, and 
total energy on the same control volume, while enforcing 
angular momentum on a dual control volume. The method 
employs a compatible decomposition of total energy that 
enables the computation of specific kinetic and internal 
energy at the cell's center of mass. Trial values for stress 
and velocity at cell interfaces are determined using a multi­
dimensional, two-shock Riemann-like solution with 
innovations that increase its effectiveness for skewed cells. 
These trial values are then combined to compute velocity 
and stress at the vertices that are then propagated back to 
the cell interfaces in a way that maintains geometric volume 
compatibility and angular momentum. 
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We are interested in cell-centered hydro (CCH) as 
a possible alternative to staggered-grid hydro (SGH) 

Background 

• Staggered Lagrangian methods (SGH) have been a practical tool for large-scale 
simulations since before 1950 

• Nevertheless, SGH has many known flaws with respect to: mesh imprinting, spurious 
vorticity, shock capturing, symmetry preservation, and energy conservation 

• Cell-centered Eulerian hydro formulations have been around for many years 

• Earliest suggestion for cell-centered Lagrangian (CCH) seems to have been by Ruppel 
& Harlow in 1981, leading to the CAVEAT code 

• Recently there has been renewed interest in CCH (Barlow, Burton, Despres, Luttwak, 
Maire, Shashkov, & others) 

To be a viable alternative to SGH, CCH must have comparable capabilities in the areas of: 

• Material strength 

• Multi-material cells 

• Unstructured polytopal grids 

• Multi-dimensional formulation with curvilinear geometry 

• Advection 

• etc. 

We will demonstrate some of these capabilities, but the presentation will focus on: 

• Mimetic derivation of the difference equations 

- • . J JtIt'!fa~l 
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Interest in alternatives to SGH is motivated by problems like the 
Pressurized Ball that suggest CCH is more stable 

Staggered 
(SGH) 

o JJs 

4.5 JJS 

Cell-centered 
(CCH) 

...... 

....... 

...... 

....... 

Spherical ball of gas with 
constant boundary pressure & 

10% angular grading 

Undergoes several bounces 
before the stop time 

1.0 JJs 

5.0 JJs 

cells: 25 radial x 10 angular 

10% angular grading 

initial radius 10 

stop time 10 

p=1 , e=1, Y=513 

boundary pressure=20013 

rz geometry 

SGH 
crashes at 

5.2 IJs 

2.5 JJS 

10.0 JJs 
Colors correspond to density 
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Because we are in relatively unexplored territory, we used a 
mimetic approach to guide the derivation of the difference scheme 

Motivation: 

• Areas of interest (strength, multi-material 
cells, ... ) have not been widely 
investigated in a CCH context 

• Our preliminary implementations of CCH 
seemed to be sensitive (or surprisingly 
insensitive) to algorithmic variations 

A 
Los Alamos 
NATI O NAL LABORATO RY 
---- EST. 1943 
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The mimetic approach considers not 
only the finite volume differencing of 

• Evolution equations 

• Flux conservation equations 

but also ancillary relationships that 
place constraints on the formulation 

• Geometric volume conservation 

• Curl & divergence identities 

• Angular momentum 

• Entropy production 

- •. ~ II!:'Q'A~ 
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Polytopal grids are described by connectivity that 
collapses naturally from 3D to 2D & 1 D 

z __ ------nil f 
iota i o s 

Z K A 

I--"~~ N i = N iili 

p / P 

+ ~ / I The basic connectivity structure I Sums are usually over iotas 
is called an " iota" connected to points or 

cells; e.g., 
Variables are located relative to 
the iota; e.g., I The sum of surface vectors 

about a cell is 
u i is the cell center velocity 

LNi =O z 
relative to iota i " /' 

! (j i is the surface stress and that about a point is s 
tensor for iota i p 

e,f ---7 p LNi =O 

N i 
N i = N iili 

is the outward surface 
segmenti~ normal 

- •. J~~l 
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The Howell {2Dxy} and Verney {3D} problems demonstrate both 
multi-dimensional and strength capabilities 

5 
:'6 
" '5 
6i 

Posi u.on History at Inner Pole 

I CCBI 
- SGII 

4 t- I I I I J::. -1 
o W ~ m m 100 IW I~ 1m 

'rune (us) 

Verney - 3D 

Elastic-plastic shell coasts 
inward until it stops 

• 4 cm cylindrical 
• 3 cm spherical 

Initial velocity field is 
divergence-free 

u(r)=uo( Ro
;,,, r 

Solid model 
• Generic hypo-elastic plastic 

Hugoniot 
• Approximated by Dukowicz 

form 

Colors correspond to speed 
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The mimetic approach begins with a conservative finite volume method 

Differential 

Integral 

Finite volume 

f 

CELL 

A 
Los Alamos 
NATIONA L LABORATORY 
---- EST. 19 4 3 

df _ n.c p- - v 
dt 

Mj=~dn.r* 

Mj= L,Ni · ( 

N 

~ 

Cast the evolution 
equations in integral 
(not differential) form 

Second-order 
requires in-cell 

gradients 

Implement as 
finite volume integrals 

Operated by Los Alamos National Security, LLC for NNSA 

Mass constant 

Strain 

. Lagrange 
M = 0'--

,r- Velocity 

Mr=~dnu* 

Momentum ,r- Stress 

Mti = ~dn.(j* 

Total Total energy ~ energy flux 

Mj = ~dn·f 
Entropy 

etc. 

Main CCH challenge is the 
determination of the 

* surface fluxes 

1A • . J~\I~l 
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Mass 

Strain 

I py=Vu I 

Momentum 

pu= V·cr 

Total energy 

To determine the surface fluxes, 
we must consider more than the evolution equations 

Finite 
volume 

M_ =0 

M/I :: = LNiu: 
p 

0 = LNiu: 

M :: u:: = LNi ·cr; 
p 

0 = LNi ·cr; 

Evolution 

Ancillary equations 

Curl & 
divergence 

identities 

VX(Vu)=o 
V.(Vxu)=o 
Vx(V.cr)=o 
V.(Vxcr)=o 

z 

V X "Ni ui =0 
p L..J s 

z 

V ." N i 
X u

i = 0 p L..J s 

z 

V x" Ni 
. cr i = 0 p L..J s 

Geometric volume 
compatibility 

I pv=Vu I 

M::v:: = LN i 
. u: 

= geo. vol. chg . 

Angular momentum 
i 

L:: = Ir; X(N i .cr;) 
p 

0= Lr; X(N i .cr;) 

p) = V(a u) II M) = LN' a: u: z Second law of 
V p. LN i 

X cr; = 0 thermodynamics 
p 

0= "Ni i i L..J ·cr ·u s s etc. 

- •. J~Q'Al 
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To incorporate. the Second Law into the discretization, 
we must first decompose the energy equation 

Alternative variable 
(not a linearization) 

(Js = (J: + Os:(J 

U s = u: + Os:u 

M)z = INi .(0-; .u:) 
i 

s: i i 
u s:u = Us - u: 

U _ < I 

=[ ~N' a:Ju, +a, [ ~N' u; H ~N' (8~a8~u)] 
Total 

energy = M [k +w +d ] 
zz z z ~~_ 

Kinetic~ 

\ , 
energy 

=Uz ·U
z 

z M:~' 
= (J_ : Y Mome~um ~ 

equation . 

Stram 
equation 

. {j, -k, 
e_ = 

energy ~ w_ +d 

"Dissipation" 

. 1 ~ . ( . .) 
d: = M L,;NI . 8;/)·8;:" 

: I 

N i 

The Second Law 

In a closed system (j = 0), 
the kinetic energy must dissipate into 
the internal, suggesting 

d >0 z -

It is sufficient (but not necessary) that 

d i = iti . 8i 
(J . 8i U > 0 

SZ sz -

which is the "entropy condition" 

Dissipation models similar to 

" i 8 i s: i n . sz(J ~ J.1uszU 

are invoked to satisfy the entropy 
condition 

- • . J~lbfl 
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Algorithmic roadmap 
We begin with a description in terms of surface fluxes 

Linear construction from cell center 
to cell surface 

Similarly Cell CV 
a 

z 

Vcr 
z 

- i a o 

u -------
z I V U 

Nodal CV = 
Dissipation 

region 

A 
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I Z 

I 
I 

Nodal CV 

Operated by Los Alamos National Security, LLC for NNSA 

The objective is to 
learn how the 

ancillary equations 
constrain the fluxes 

Riemann-like solution 
------- .. -----1 

~ 

-I 
U 

o 

------

Similarly 

(j i 
s I 

_____ 1 

Integration of fluxes 

Similarly 

ai 

s 

iI 
Z 

Cell CV 

- I 
U 

s 

- • . J~Q;!l 
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Cells are divided into an equilibrium "core" and 
possibly non-equilibrium "shell" regions 

The finite volume integrals conserve 
momentum, but do not specify a 
functional form for velocity 

Within the core, the velocity field can 
be a linear function through the 
center of mass (CM), without altering 
the cell average 

Slopes within cells are determined by 
fitting a linear solution to adjacent 
cells 

Continuity of the function and slope 
between cells determines the 
discontinuities (jumps) 

These must be treated with a non­
equilibrium model 

Los Alamos 
NATIONAL LABORATORY 
---- EST. 1943 

Operated by Los Alamos National Security, LLC for NNSA 

u 

Continuous "shell" J 
accommodates 

interpolated solution 

"Core" must be in 
~rmOdynamiC equilibrium 

'-- Discontinuous "shell" 
requires a conservative 

but non-equilibrium 
model 

••. Jr-r;r.sl 
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Velocity and stress cannot be distributed independently in the core 
without giving rise to unintended dissipation 

The core is not a modeling abstraction, 
but represents the state of the cell under 
conditions of smooth flow when there 
should be no entropy production 

Since stress is not conserved, what functional 
form should it have? 

A linear distribution is often assumed 

The requirement for thermodynamic equilibrium 
in the core places constraints on this 

Equilibrium 
core 

In the absence of discontinuities, the 
surface fluxes reduce to 

ai ---7 ai' & Ui ---7 Ui 
S 0 S 0 

the numerical entropy condition for the 
cell should vanish 

D: = INi .(a~ -a~ ).(u~ -U~ )---70 
i 

Since this is the divergence of 

d =(ai _ai).(ui -Ui ) 
: 0 : 0 : 

the integral will vanish if 

d _"= constant 

at the surface of the cell 

If velocity is linear, then the stress is 
constrained by the above relationship 

In our calculations, we satisfy this by 
assuming a constant stress in the cell 

ai =ai 
o : 

- • . ~~Q'Al 
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The curl and divergence identities constrain the fluxes on the 
nodal control volume - consider the curl of the velocity gradient 

We need to show that the difference 
equations satisfy 

VxVu=O 
z p a 

The second-order operators are 
evaluated on a staggered grid 

v xV U -),: I,.' {NCX(;Siu;J] 

If there exists a corner velocity such 
that 

( 

SfU'l = L,S'u' 

then each term vanishes because 
~' & S' are parallel 

( , ) 
;o.J'Xl~S'ii: -7N'xSu 

v xV u 
Z p 0 

20 
\ __ :'L __ 

4 equations~... .i 

2 unknowns~ A 

I X U
C 

I 0 

vu/ 
p 0 

The terms vanish if the fluxes 
are replaced by a corner velocity 

UJ f:. fiJ 
a a 

~VjEC 
Then 

v xV u =0 
z p a 

Sc = Sl + S2 
\ Sl 

~-+--
~ 

N i 

S' == IS 
, 

'\" == IN' --s 

This means that the fluxes cannot be 
specified independently and some 

information must be discarded 

U: is the fundamental quantity 

- •. J~lh'l 
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Nodal control volume: Constraints imposed by the ancillary equations 
change the conceptual picture of the differencing scheme 

Relation 

v x(v u ) = 0 
Z P 0 

v . (V XU) == 0 
Z P 0 

Rotational 
equilibrium 

V x (V . (J ) == 0 
Z P 0 

V . (V x (J ) == 0 
Z P 0 

Thermodynam ic 
equilibrium in core 

A 
Los Alamos 
N ATION AL LA BORAT OR Y 
---- EST. 1943 

Constraint 

u i ~UC 
o 0 

u i ~ U C 

o 0 

(J symmetric 

a i ~ a C symmetric 
o 0 

a i ~ a C symmetric 
o 0 

( a~ - a~ ) . ( u~ - u~ ) = constant 

Operated by Los Alamos National Security, LLC for NNSA 

U a z z 

r 

\ 

First order case 

U
C 

-7 U 
o = 

U a 
z z r----

C 

a o C 

Uo 

v 

~ 

- • . J~Ih1~ 
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We will compare 2 methods to calculate the corner velocity -
neither of which is completely satisfactory (see test problems) 

Divergence method 

This method demands only consistency 
with the divergence integral 

V=V,u=LNi .u: 

= LN
i . " ~ 

This results in a simple set of equations 
"i c "i- i n · u =n·u 

o 0 

that is easily solved in each corner 

Note that tangential information is 
discarded 

Vii 
z 

~
---ii' 

I 0 

I ~ 
1- 2 c 
IU o --. Uo 

Gradient method 

From monotonic reconstruction 
directly calculate 

g==V=" 

U
C = U + (x - x ). g 
o = p = = 

Vii __ 

':'\ ~ 
I 
I 

.1. 
"T 

U
C 

o 

IA •. J~\bfl 
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· 
The Gradient method performs significantly better 

on the Saltzman problem - but there are issues (later) 

Divergence method Gradient method 

0.75 

0.85 

0.90 These are xy results, 
rz are visually identical 

Colors correspond to density 

) ~ -M~ 
SIAM2011-17 .v~~4 



The Gradient method also significantly improves 
results on the Noh (xy) problem on a box grid 

Divergence method 

1G t ~? r; 
1" _ 

1 2 L ... + 

10 

0 " + 

G 

'-------2 

o ~~----------~O~. ~1---------0~.L2~------~0-.~~~-------O~. 

Density 

Density 
vs 

Distance 

Gradient method 

.... 
~~.!:l!' • • • ' " • • 
: • • ~ • • 4" • • 

:~ ... ~ . . -. .... •• •• .... -• 
"" -. • J/1I • .. • • R ,. .. ~ . . ' . 

I... • 
1 - . .. 

1-' ' . :=::.. ! ... ,........ . • \,~~~~ .'; . := 
. ... ..... ,'&,~ "-, ".-- -; , '. ' ,',.; ....... . . 
iI' • ••••• _""" .......... r .... ~ ............... . ... 

l5 " ::1.!!!!!!!!::~::::::~:::::':::::~ 

" 

lO L • 

\ 
\ 

OL' ______________________ ~ ____ ~ ____ ~ ____ ~ __ ~ 

o W U U U ~ U U U 

SIAM 2011 - 18 
_ •. w~~l 
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However, the Gradient results were disappointing-on the 
Noh (xy) problem on a polar grid 

It 

Divergence method 
good even at poor 
angular resolution 

::1 .. ······ .. ··· .. · .. ·· .. ··· .. · .... ···1 
u • • 

'0 

. ' 
o o.~ 0.1 US 0.2 0.25 0.3 o.~ 

A 
Los Alamos 
N AT I ONA L LABORATORY 

---- EST. 1943 

Operated by Los Alamos National Security. LLC for NNSA 

Density 

Density 
vs 

Distance 

- 1-

15 

IV 

Gradient method 
converges with increasing 

angular resolution 

" .................................. 

. ... ......................... ...... . 
'" 

... . .. 
.1 . LI ______________ ~ __ ~ _____ ~~ __ 

o ~ U ~ U ~ U ~ • ~ u ~ u ~ u ~ 

SIAM 2011 - 19 
_ .... ~lbtl 
.VA.'~4 



The curl and divergence identities also constrain the fluxes· on the 
cell control volume - consider the curl of the momentum equation 

We need to show that the difference 
equations satisfy piI = Ve(J 

V X (piI ) = V X Ve(J = 0 

The second-order operators are 
evaluated on a staggered grid 

V x(v_a)-7~~vl, [S' X(~Nj iJ; )] ~ 

If we can show there exists a corner 
stress tensor such that 

c 

N C 
• (Jt = ~ N I • a1 

L..J ~ 

then the stress factors out and each 
term vanishes 

S' x ( IN' -iJ \ ~ S' x N . G' - 0 

because ~( & S' are parallel 

The terms vanish if the tensor is 
non-symmetric. Then 

V pX(V='(J)=O 

for CO": = iJ:~ 

If we require symmetry, the 
system is over determined and 
the terms vanish only if we 
replace the fluxes by a corner 
stress 

(J i * ai 
s s C 0": = O":Jj E C 

V . (5 
z s 

\ s' 

20 symmetric - - - ! ---
4 equations _~I __ _ 
3 unknowns __ I ---.... 6 ' 

s 

6 2 G
C 

s 

I 
I / 
I
I V x V . (5 

p z s 

-------

N i 

To satisfy rotational equilibrium, 
at least the 

non-dissipative part of the stress 
must be symmetric 

11& • • '!f ~(hf~ 
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Cell control volume: Constraints imposed by the ancillary equations 
change the conceptual picture of the differencing scheme 

Relation 

Geometric volume 
compatibility 

v x (V u ) = 0 
p z s 

V .(V xu ) = 0 
p z s 

Rotational 
equilibrium 

V x(V . (5 )=0 
p z s 

V .(V X(5 )=0 
p z s 

Los Alamos 
NATI ON AL LA BORATOR Y 
---- EST. 1943 

Constraint 

U -7 nft· u 
s p 

U -7 U
C 

s 

U -7 U
C 

s 

(J' symmetric ( S ) 

- NS 
as -7 i (5 

s 

(5 c NSorS 

as -7 i (5 NS 
s 

(5 c NSorS 

Operated by Los Alamos National Security, LLC for NNSA 

u (j 
z z r----

I The non-dissipative part of the 
stress must be symmetric 

: : What about the dissipative part? 

I I Many artificial viscosity models 
are NS, but theoretical 

justification needs work 

(j non - symmetric 

dissipative 

u (j 
z z r--

(J 2 
s 

v 
(j symmetric 

non - dissipative 

u (j 
z z 

(jl 

s~ 

U
C 

u 
p 

r----

v 
U

C 

(j 
C 

~ 

u 
p 

- . ''!f~r;tAl 
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Geometric volume compatibility (GVC) constrains 
not only the velocity flux u: but also the surface area vectors Nl 

The fluxed volume change must be 
constrained to equal the geometric 
volume change of the cell 

z 

~v = ~Ni ·u i 

z ~ s 

In plane (xy) geometry this can be 
accomplished by constraining 

N i = ; (N n + N n+l ) 

In curvilinear geometry, things are 
much more complicated, especially 
for axi-symmetric (rz) geometry 

The problem was solved in seminal 
work by Whalen with later 
contributions from Loubere & 
Shashkov 

KEY POINT 

z 

The compatible surface areas are 

A 

~ (rn~1 + r")A 
... 

~[(r'ltl r + (rll f + (rn+ r") JA 
3 

N'= ~(A"·I +An) 

1 D plallar 

ID(vlint!rh'ol 

I Dspherical 

2Dx\' 

! [2(rn+IA" I +r('An)+r n + An + r"A,,·I] 2 Dr:. 
6 ' 

~(A/JI +A") "J,[h:r 

in which r' - ~(2r + r t ) - ~(1~ + 2r, ) 
3 p p _) 

and 

Ni 

±i 1 f) plallw 

+~ 
~r I D cylindrical 

-tr I D spherical 
A'-.l - , l' ~, 2Dx\' JIl 

LI1' 2Dr: 

A'iIi 3Dr\' 

Expressions in 3D are actually 
more complicated 

IA'-O 

IN' ;i: 0 

SIAM 2011 - 22 
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1 D Coggeshall problem is an example of ~diabatic compression -
It is a severe test of slope limiters and curvilinear formulation 

The results should be 
flat and they are 

G:V 
-

DO DO 

u~ : -Xp Initial 
conditions 

eDO = 1O-{; 
Coarse zoning: 20 cells ' 
dtmax=1e-3 pC:: =(Y- I)pC::eC:: 

Y=% 

Analytic 
solution 

Up (t)=-x~ 

P:(t) =%-tr 

e:(t)= ~-tr(Y- J ) 
a = {1,2 ,3} 

20 . .. _ .... ::J: .. . _ X::::::V: .. =:1_ ..... 
"t.Ip-2tl.5t..t.n..,.OOOOO.S.OO7oi7E-ot· YlII'Ili 2:4 20 I ·t. .. 12JO.St"te ..... OOOOO .6.oo1017E-ol· lolling 2:. 

~ 
II) 
c 
CD 
C 

>-
Cl ... 

15 

10 

. ' • 

=1 
~ ..... ~ 
CD 

CIS 
E ...... ~ 
CD ... 
.E 

~ [ 
• 

'.05 '.1 

'.05 '.1 

Planar 
t=0.6007 
rho=2.51 vs 2.5 
e=1.85e-6 vs 1.84e-6 

0.15 '.2 '.25 '.3 
Distance 

.... 

.-.~.~ ..... ,-,~. ·~··- I 

0,15 '.2 '.25 '.3 '.35 '.' 

Distance 

15 

10 

.' '.' • '.05 '.1 

] 
"4 ~ 

...... ~ 

2rii ~ 

.' • '.06 '.1 

Cylindrical 
t=0.6007 
rho=6.30 vs 6.27 
e=3.41e-6 vs 3.40e-6 

0,15 '.2 '.25 ' .3 '.35 

·t. .. JO.St.t.dJIlp.0&I00.6.00701~-ot· Ulire 2:6 

.... '.2 '.25 '.3 '.35 

15 

10 

• '.' • 

"~ I 
Bo4 

-
..... 

2.4 

• ... • 

'.05 '.1 

'.05 '.1 

Spherical 
t=0.6007 
rho=15.8 vs 15.7 
e-6.30e-6 vs 6.27e-6 

.... '.2 '.25 ' .3 '.35 

·t..,12-20.Sute ..... 06OOO.6.007O:1>E~· uai"g 2:6 -

0.15 '.2 '.25 '.3 '.35 

... 

... 
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The Sedov problem is a sensitive test of the curvilinear formulation, 
volumetric compatibility, energy conservation, as well as robustness 

Divergence method 
xy result 

.).~.oootO.l.OOCI'SIK.oGO·lI-""1 :3 . 

2Dxy 

.1 .t' .. c-
o 0.2 - • 

" 10 cylindrical 

Density 

Density 

Divergence method 
rz result 
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A simplified tensor dissipation model is used for now -
but should be replaced by a more physically inappropriate model 

The stress jump at the 
discontinuity is assumed to be 
proportional to the strain rate 
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In the principal frame of the 
strain rate tensor, the pre-shock 
thickness in each direction is 
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velocity 
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The modulus tensor is of the form 
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This can be expressed in an 
impedance form 
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In the principal frame of the strain rate 
tensor, the impedance tensor is 
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We use a simplification that 
corresponds to the assumptions: 

• the most compressive strain rate is 
in the direction of the surface 
normal 

• shear wave velocities in the 
tangential directions are negligible 

J.1 = pa 0 0 

J.1~1 0 0 0 

o 0 0 

so that the normal stress jump can 
be expressed 

DD : 80" = J.1D " 8u 

and the force density as 
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The nodal solution is analogous to that of Maire but 
extended to tensors & multi-materials (not shown) 

Substitute the dissipation expression 

u
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into the f!~nservation law 
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and solve' for velocity 
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The final algorithmic details 

Integrate 
evolution 
equations 
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Summary: Because we are in relatively unexplored territory, we used a 
mimetic approach to guide the derivation of the difference scheme 

The mimetic approach led to a much better understanding of what works 
or does not. In particular it constrained: 

• Surface fluxes for cell & nodal control volumes 

• Gradients in the equilibrium core 

• Symmetry vs. non-symmetry of stress tensor 

• Nodal velocity & entropy conditions 

• Tensor impedance & entropy conditions 

Historically, the weakest link in CCH has been the nodal solver 

• It now lies in the 2nd order velocity construction that drives the 
Riemann solution 

• The optimal solution remains to be determined 

The test problems demonstrated: 

• Elastic-plastic material: Verney, Howell 

• Adiabatic flow: Coggeshall 

• Robustness: pressurized ball, Saltzmann 

• Multi-dimensional curvilinear formulation 

3D: Verney 

2D xy & rz: Sedov, Noh 

1 D planar, cylindrical, spherical: Coggeshall, Sedov 
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