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TMS abstract

Effects of Grain Size and Boundary Structure on the Dynamic Tensile Response of

Polycrystalline Copper.

Juan P. Escobedo-Diaz, Ellen K. Cerreta, Darcie Dennis-Koller, Brian M. Patterson,
Curt A. Bronkhorst, Benjamin L. Hansen, Davis Tonks and Ricardo A. Lebensohn

Plate-impact experiments were conducted to examine the effect of grain size (30, 60 and
200 um) on the dynamic tensile response of high purity copper samples. The preceding
compressive stress was ~1.5 GPa for all tests, low enough to cause early stage incipient spall.
The free-surface velocity histories show no significant effect of the grain size on the initial pull-
back signal. The quantitative metallography of the recovered samples shows the volume fraction
of voids to be 0.4 % for all cases. Nevertheless, the void size distribution is different, with the
void size increasing with increasing grain size. In the 200 um samples, void coalescence was
observed along the grain boundaries, whereas in smaller grained specimens individual voids
dominated the deformation. EBSD observations show that voids preferentially nucleate/grow at
grain boundaries with high angle misorientation, while the boundaries corresponding to low

angle (<5°) or X3 type were more resistant to damage.
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Kolleret. al. ,J. Appl. Phys 98(10), (2005)

Cu (1.3 mm)

Damage evolution depends on the microstructure
and characteristics of the shock wave shape.

Escobedo, Trujillo and Cerreta, unpublished (2011)

Objective
Isolate kinetic and spatial effects on dynamic damage: Study the effect
of spatial distribution of defects (grain boundaries) while kinetics were held constant.




Experimental configuration and loading path
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Initial characterization: OFHC Copper
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Experimental parameters

Impactor [ L o] i Qnsst
e ample ompressive | gtress
Exp. No. (ki thickness stress
(wm) Material Thickness Velocity (mm) (GPa) Oonset
il (mm) (mis) (GPa)
1 30 2z-cut quartz 2.0 134 4.0 1.50 1.38
2 60 z-cut quartz 2.0 133 40 1.50 1.36
3 100 z-cut quartz 20 131 4.0 1.46 1.31
4 200 z-cut quartz 20 131 4.0 1.46 138
Exp. 1 - 30 mic
100 Exp. 2- 80 mic |
Exp. 3 - 100 mic
Exp. 4 - 200 mic

Samples were subjected to same
loading conditions: peak stress,
pulse duration and release rate.
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Pull-back wave

- Similar pull-back signal for all grain size.
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Free surface velocity after the minima.
S. Cochran and D. Banner, J Appl. Phys 48 (7), (1977)

- Different spall peak magnitude and re-acceleration rate > damage dynamics.




Optical analysis

Damage fields depend on the grain size with no linear trend.
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Damage quantification
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Void area fraction and void size similar in
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Void size distribution.




Micro x-ray tomography

(100ptm) (200pm)

B.P. Patterson et al, Subinitted to Microscopy and

Tomography results (3D) qualitatively agree with Microanalysis (2010)
optical (2D)
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EBSD Orientation Maps

= Voids remain isolated in the 60 and 100 um samples

- Coalescence is promoted in the 30 and 200 um

sample 10
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oid growth/coalescence vs. grain size
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Grain boundary structure as the determining factor for preferred void nucleation location.




Effect of GB structure: columnar grained case
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A. Perez-Bergquist et. al., TMS 2011.

High angle boundary (~50°)
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Mechanisms for damage evolution

Potential nucleation sites:
Grain boundaries # £1 and =3
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Distance between voids determine individual growth

or coalescence.




Main findings

« No clear effect of the grain size on the shock rise, compression, release and
calculated spall strength. However, the magnitude of the spall peak and the rate at
which the free surface velocity rises to achieve it, were clearly dependent upon the
grain size.

» Higher spall peaks correlated with a larger amount of damage observed in the
respective recovered sample. Similarly, the re-acceleration rates correlated adequately
with the void shape/size observed in the damage field of the recovered samples.

A grain boundary other than the special £1 or £3 boundary was found to be a
necessary, but not a sufficient, condition for void nucleation.

« Void growth and coalescence behavior are clearly dependent on the spatial
distribution and size of the defects (i.e. grain size ), with coalescence being more
dominant in the 30 and 200 um samples.
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